
Citation: Song, T.; Wang, Y.; Li, Y.;

Fan, G. A Mathematical Analysis of

Competitive Dynamics and

Aggressive Treatment in the Evolution

of Drug Resistance in Malaria

Parasites. Mathematics 2024, 12, 1595.

https://doi.org/10.3390/

math12101595

Academic Editor: Sophia Jang

Received: 24 April 2024

Revised: 15 May 2024

Accepted: 18 May 2024

Published: 20 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Mathematical Analysis of Competitive Dynamics and
Aggressive Treatment in the Evolution of Drug Resistance in
Malaria Parasites
Tianqi Song 1, Yishi Wang 2, Yang Li 1,* and Guoliang Fan 1

1 School of Economics and Management, Shanghai Maritime University, Shanghai 201306, China
2 Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China
* Correspondence: liyang1@shmtu.edu.cn

Abstract: Experimental evidence supports the counterintuitive notion that rapid eradication of
pathogens within a host, infected with both drug-sensitive and -resistant malaria parasites, can actu-
ally accelerate the evolution of drug-resistant pathogens. This study aims to analyze the competitive
dynamics between these two strains through a mathematical model and evaluate the impact of
aggressive treatment on the spread of drug resistance. We conducted equilibrium, uncertainty, and
sensitivity analyses to assess the model, identifying and measuring the influence of key factors on the
outcome variable (the population of drug-resistant parasites). Both equilibrium and local sensitivity
analyses concurred that the density of drug-resistant parasites is notably affected by genetic instability,
the production rate of red blood cells, the number of merozoites, and competition factors. Conversely,
there is a negative relationship between genetic instability and one of the competition coefficients.
Global sensitivity analysis offers a comprehensive examination of the impact of each input parameter
on the temporal propagation of drug resistance, effectively accounting for the interplay among
parameters. Both local and global sensitivity analyses underscore the continuous impact of drug
treatment on the progression of drug resistance over time. This paper anticipates exploring the
underlying mechanisms of drug resistance and providing theoretical support for developing more
effective drug treatment strategies.

Keywords: drug resistance evolution; competitive dynamics; aggressive treatment; uncertainty and
sensitivity analysis

MSC: 92-10

1. Introduction

Drug resistance in malaria refers to the ability of strains of Plasmodium parasites to
persist and reproduce even when exposed to recommended or higher doses of antimalarial
drugs [1]. This resistance arises due to the widespread use of common antimalarial medi-
cations, leading to resistance in severe forms of the disease. Despite intensified efforts for
control, progress towards malaria elimination has stalled in recent years [2,3]. The World
Health Organization has recommended several artemisinin-based combination therapies
(ACTs) for the treatment of uncomplicated falciparum malaria [4]. While ACTs have sig-
nificantly reduced malaria morbidity and mortality rates globally, the challenge of drug
resistance persists, particularly in regions such as Southeast Asia [5], South America [6],
Papua New Guinea [7], and Eastern Africa [8].

In theory, drug treatment is a crucial intervention for patients infected with malaria,
as it can alleviate symptoms and reduce mortality rates. However, during drug treatment,
sensitive parasites are typically eliminated. If the concentration achieved is insufficient
to kill all drug-resistant mutants, populations of surviving resistant mutants will rapidly
expand, enabling their survival and reproduction [9]. This scenario increases the likelihood
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of drug resistance spreading to the next generation, potentially leading to its widespread
prevalence. Importantly, experimental evidence suggests that, when an aggressive treat-
ment regimen is employed, sensitive parasites are swiftly eradicated, potentially giving
a competitive advantage to drug-resistant parasites [10–12]. Therefore, the competition
between sensitive and drug-resistant parasites is crucial in this context [13–15]. In contrast,
a more moderate treatment approach allows some sensitive parasites to persist and com-
pete with drug-resistant strains, thereby suppressing the latter and delaying the onset of
resistance [16]. Based on this analysis, it is evident that drug treatment plays a pivotal role
in influencing the development of drug resistance. Consequently, there is an urgent need
to explore the relationship between drug-resistant parasites and drug concentration, which
is a topic of paramount importance.

Mathematical modeling is considered a crucial tool for understanding the evolution
of drug resistance. This tool not only elucidates interactions between different parasite
strains, but also provides a theoretical foundation for managing resistance. In recent years,
various epidemiological models have emerged for studying drug-resistant parasites. One
study indicated that high transmission intensity may hinder the evolution of resistance
by affecting host population immunity [17]. Similarly, another study found that early
transmission of drug-sensitive parasites and asymptomatic infections can delay the onset of
drug resistance [18]. Additionally, models have focused on the relative size of the host pop-
ulation infected with resistant parasites and its impact on the spread of drug resistance [19].
Mathematical models for malaria have integrated treatment and varying levels of resistance
to analyze the role of treatment in the development of drug resistance [20]. Concurrently,
research has investigated the potential contribution of co-infection competitive release to
the emergence of resistance [21]. While some studies aim to devise optimal strategies for
controlling resistance spread through model analysis, research simultaneously addressing
drug treatment and competition is relatively scarce [22,23]. Therefore, it is necessary to
construct a comprehensive model that integrates these key elements and draws upon
experimental findings from multiple sources [15,16,24].

One of the primary objectives of this paper is to identify influential factors and explore
the relationship between the density of drug-resistant parasites and input parameters.
Typically, this goal can be achieved by directly computing the mathematical expression
representing the state variable of drug-resistant parasites in our model. However, due
to the complexity of our model, deriving a specific formulation for the state variable of
drug-resistant parasites proves to be a challenging task. Consequently, we are compelled to
seek alternative approaches. Uncertainty and sensitivity analyses serve as important tools
for gaining insights into the mechanisms governing system behaviors. In particular, uncer-
tainty analysis helps quantitatively assess biases in the results of epidemiological studies,
enhancing our understanding of the inherent uncertainties in the data and methodologies
used [25]. By conducting sensitivity analysis, we can not only identify the parameters
significantly influencing the outcome variables of interest, but also quantify how input
uncertainties impact the overall results of the model [26].

This paper focuses on a thorough investigation of the model proposed in [27], which
considers the dynamics of drug treatment and within-host competition between drug-
sensitive and drug-resistant parasites. Built upon empirical observations [15,16,24], these
observations highlight a counterintuitive phenomenon: rapid pathogen clearance in a host
co-infected with both drug-sensitive and drug-resistant malaria parasites may paradoxi-
cally accelerate the emergence of drug resistance. This paradox arises from the competitive
interactions between the two parasite strains. To validate and refine the model, we aligned
it with experimental data to facilitate parameter estimation for subsequent statistical analy-
sis. Subsequently, we conducted a series of analytical procedures, including uncertainty
analysis, local sensitivity analysis, and global sensitivity analysis, to investigate the behav-
ior of the model under various conditions. We particularly focused on the state variable
representing the density of drug-resistant parasites, depicting it as a function of various in-
put parameters through uncertainty analysis. Sensitivity analysis helps clarify how changes
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in the input parameters influence the evolution of drug resistance within the parameter
space defined by the parameter ranges. In conclusion, the outcomes of this study hold the
potential to provide insights for formulating optimal policies to manage drug resistance
and control disease transmission.

2. Methods
2.1. Model

In this paper, we considered the model proposed in [27].

S′(t) = Λ − β1SIs − β2SIr − d1S,

I′s(t) = αβ1SIs + pαβ2SIr − γ1 Is Ir − (d2 + µ)Is,

I′r(t) = (1 − p)αβ2SIr − γ2 Is Ir − d3 Ir.

(1)

The model considers the dynamic changes in three distinct cell populations: uninfected
red blood cells denoted as S(t), drug-sensitive malaria parasites represented by Is(t),
and drug-resistant malaria parasites indicated as Ir(t). Uninfected red blood cells are
continually supplied at a constant net rate Λ from the bone marrow and have a natural
life expectancy of 1/d1 days. Malaria parasites infect red blood cells at a rate proportional
to the contact rate associated with their population size. The transmission rates for the
wild-type and drug-resistant parasites are denoted as β1 and β2, respectively. Following a
series of multiplication cycles, each infected red blood cell produces α infective merozoites
(in the case of P. falciparum, each infected cell yields a substantial number of merozoites,
typically ranging from 8 to 32 in humans). The parameter p represents the proportion of
drug-sensitive parasites released from a red blood cell infected by a drug-resistant strain.
The competition between the two parasite strains is characterized by the terms γ1 Is(t)Is(t)
and γ1 Is(t)Is(t), which align with the formulation used in numerous intra-host competition
models. Both parasite strains experience mortality at per capita rates denoted as d2 and d3.
Additionally, the clearance rate of the wild-type strain is represented by µ.

2.2. Parameter Estimation

Parameter estimation was carried out within the dynamic framework of malaria
infection, encompassing both competition and drug treatment. The model parameter
values were estimated using the least squares method to fit a dataset on malaria infection
from [24]. The least squares problem involves minimizing the discrepancy between the sum
of squared differences and the observed data over a parameter vector space constrained
by a predefined feasible region. It is crucial to recognize that the standard least squares
formulation comprises two fundamental components: mathematical and statistical [28].
The mathematical model utilized in this study is the malaria model (1) we developed. The
statistical model is built on the assumption that the output of the model and associated
random deviations (measurement errors) are governed by the random variables:

Yj = Ir(tj; θ) + ϵj, f or j = 1, . . . , n, (2)

where θ = (α, β1, β2, γ1, γ2, d2, d3, µ, p) and Ir(tj; θ) denotes the output of the mathematical
model (1). The random variables ϵj model the random deviations away from Ir(t, θ) and are
assumed to satisfy that all ϵj are independent and identically distributed random variables,
E(ϵj) = 0 for every j and var(ϵj) = σ2 < ∞ for every j. The objective function is given by

θOLS = argminθ∈Θ

n

∑
j=1

(Yj − Ir(tj; θ))2,

where θOLS is the estimator, the set of parameter vectors θ constrained by a prespecified
feasible region Θ. Θ is primarily determined based on the biological significance of the
parameter. j represents the time point at which the time series data are observed, and n is the
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number of data points available for inference. Hence, the model solution Ir(t; θ) yields the
best fit to the time series data Yj. The lsqcurve f it function in Matlab 2015b (Mathworks, Inc.,
Natick, MA, USA) is used to find the least squares best fit to the data. Moreover, in Matlab,
two numerical optimization methods are available to solve the nonlinear least squares
problem: The trust-region-reflective algorithm and the Levenberg–Marquardt algorithm.

2.3. Equilibrium Analysis

In order to explore the relationship between the drug-resistant parasites and each
parameter, computing the interior equilibrium is of primary importance. To determine the
interior equilibrium of system (1), we denote P∗ = (S∗, I∗s , I∗r ) and let the right-hand side
of (1) be zero. It then follows from the last two equations of (1) that

I∗s =
(1 − p)αβ2S∗ − d3

γ2
(3)

and

I∗r =
(αβ1S∗ − d2 − µ)[(1 − p)αβ2S∗ − d3]

γ1[(1 − p)αβ2S∗ − d3]− pαβ2γ2S∗ . (4)

Substituting I∗r and I∗s into the first equation of (1), we obtain the S∗ that satisfies

f (S∗) := k1S∗3 + k2S∗2 + k3S∗ + k4 = 0, (5)

where

k1 =− α2β1β2
2(1 − p)2(γ1 + γ2),

k2 =αβ2(1 − p)[2β1γ1d3 + β1γ2d3 + β2γ2(d2 + µ)]− αβ2γ2d1[γ1(1 − p)− pγ2],

k3 =Λαβ2γ2[γ1(1 − p)− pγ2]− β1γ1d2
3 − β2γ2d3(d2 + µ) + γ1γ2d1d3,

k4 =− Λγ1γ2d3.

It is noteworthy that not all I∗r values can keep positive due to the complex existence
condition of I∗r . According to Theorem 3 of [27], we can obtain the existence condition of
the interior equilibrium P∗. Model (1) also exhibits a fixed-point bifurcation. For details,
please refer to Reference [27].

Theorem 1 ([27], Theorem 3). Assume that k3 > 0 (or k3 < 0 and k2 > 0) and ∆ := k2
2 −

3k1k3 > 0. Then, (1) has two positive roots S∗
± with S∗

+ > S− > S∗
−, when f (S−) > 0. Moreover,

the interior equilibrium exists by further assuming that S∗ (one of S∗
±) satisfies

(H1) d3
(1−p)αβ2

< S∗ < min
{

d2+µ
αβ1

, γ1d3
αβ2(γ1(1−p)−γ2 p)

}
or

(H2) max
{

d2+µ
αβ1

, d3
(1−p)αβ2

, γ1d3
αβ2(γ1(1−p)−γ2 p)

}
< S∗

2.4. Uncertainty Analysis and Sensitivity Analysis Methods
2.4.1. Uncertainty Analysis

Uncertainty analysis was formally used to quantify the variability in the outcome vari-
able, which was due to the uncertainty in estimating the values of the input parameters [29,30].
This type of analysis provides insight into the range of potential results that the model can
generate. To initiate the uncertainty analysis, it was essential to define the prior distribution
of the input parameters under consideration. Subsequently, a Latin Hypercube Sampling
(LHS) method was applied. The outcomes were visualized through a histogram, shedding
light on how the distribution changes when different assumptions and prior distributions
for the bias parameters are altered [25]. To gain a comprehensive understanding of the out-
come variable, various statistical measures such as the mean, variance, median, quantiles,
and others were employed as valuable approaches.
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2.4.2. Local Sensitivity Analysis (LSA)

Local sensitivity refers to the sensitivity of parameters with respect to a given parame-
ter set, where only one parameter varies in a certain range and the other parameters are
fixed. If the output variable y can be defined as follows:

y = f (x) = f (x1, x2, . . . , xn), (6)

where x = (x1, x2, . . . , xn) represent the input parameters, the usual method to compute the
sensitivity of the i-th input parameter on the outcome variable is by the partial derivative
∂y
∂xi

at the nominal value of parameter xi. Derivative-based sensitivity analysis finds its
rationale in the Taylor series expansion [31]. Note that it was hard to quantify the sensitivity
if xi and y varied in different units of measurement; therefore, normalizing the sensitivity
indices was necessary, which took the form:

Si =
∂y
∂xi

σxi

σy
, (7)

where σxi and σy represent the standard deviation of input parameter xi and outcome
variable y in Monte Carlo sampling, respectively. The normalized sensitivities of the model
output are then given as

L1 = ∑ |Si|/n, L2 =
√

∑(S2
i )/n; (8)

L1 and L2 measure the impact of the input parameter on the model outcome variable
to give a preference for tuning the parameter with a high sensitivity. Derivative-based
sensitivity methods are widely performed due to the efficient calculations, but this also has
the drawback that they provide information about local sensitivity only.

2.4.3. Global Sensitivity Analysis (GSA)

Compared to the local sensitivity analysis, GSA is performed over the entire param-
eter space, where all parameter variations are simultaneously considered. In addition,
the interaction between the input parameters we are concerned with would be calcu-
lated. In this paper, we mainly apply the variance-based GSA method, i.e., the Sobol
sensitivity method. The essence of Sobol sensitivity analysis is to measure sensitivity
through variance decomposition [32,33]. According to Equation (6), x = (x1, x2, . . . , xn)
represent the input parameters, which are defined on an n-dimensional unit cube Hn =
{x|0 ≤ xi ≤ 1, i = 1, 2, . . . , n}. Based on the Sobol method, y = f (x) can be decomposed
into single model parameters and the subitem function of the parameter interaction:

f (x) = f0 +
n

∑
i=1

fi(xi) +
n

∑
i=1

n

∑
i ̸=j

fij(xi, xj) + · · ·+ f1,2,...,n(x1, x2, . . . ., xn). (9)

The number of all subitems is 2n, and the subitem function is obtained by calculating
the following multiple integrals:

f0 =
∫ 1

0
f (x)dx,

fi(xi) =
∫ 1

0
f (x)∏

k ̸=i
dxk − f0,

fij(xi, xj) =
∫ 1

0
f (x) ∏

k ̸=i,j
dxk − f0 − fi(xi)− f j(xj).

(10)
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Similarly, other subitem functions of high order can be achieved. f0 is a constant, and
the integral of every summand over any of its own variables is zero:∫ 1

0
fi1,...,is(xi1, . . . , xis)dxk = 0, 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ n, 1 ≤ s ≤ k. (11)

The subitem functions in Equation (10) satisfy Equation (11), and it can be inferred
that every subitem function in Equation (9) is orthogonal, which is:∫

Hn
fi1,...,is(xi1 , . . . , xis) f j1,...,jl (xj1 , . . . , xjl )dx = 0, for (xi1 , . . . , xis) ̸= (xj1 , . . . , xjl ). (12)

Based on the above properties, the variance of output variable V(y) can be decom-
posed as follows:

V(y) =
n

∑
i=1

Vi(xi) +
n

∑
i=1

n

∑
i ̸=j

Vij(xi, xj) + · · ·+ V1,2,...,n(x1, x2, . . . , xn), (13)

where Vi1,...,is =
∫ 1

0 f 2
i1,...,is(xi1 , . . . , xis)dxi1 , . . . , xis . is the partial variance corresponding to

the subitem function of Equation (9). The Sobol global sensitivity indices are defined by

Si1,i2,...,is =
Vi1,i2,...,is

V(y)
. (14)

We mainly considered first-order Sobol indices and total Sobol indices, which are

Si =
Vi

V(y)
, (15)

and
STi = Si + Sij(i ̸=j) + · · ·+ S1...i...s. (16)

Equation (15) is the first-order Sobol index. Equation (16) is the total-order sensitivity
index, as an extension of the Sobol sensitivity indices, which is defined as the ratio of the
sum of the related sensitivity indices. Equations (15) and (16) explain the reason why the
higher value of Si, the more importance of parameter xi on the outcome variable, but this
is not applicable in reverse. In other words, a low value of the first-order index cannot
necessarily stand for having no influence on the outcome variable due to the parameters’
interactions, which lead to a larger total-order index. Hence, total-order indices have a great
significance. Parameter xi has no impact on the outcome variable in the case STi = 0 and
vice versa. In summary, first-order Sobol indices refer to the influence of each parameter
on the outcome variable alone, which measure the importance of each parameter itself,
whereas the total Sobol indices not only characterize the contribution of the concerned
parameters, but also their interactions. The calculation of Sobol sensitivity indices involves
the computation of multiple integrals, which is very complicated and difficult, especially for
complex nonlinear models. Therefore, the Monte Carlo method is employed to approximate
the multiple integral solution.

3. Results
3.1. Parameter Estimates

Optimal fits were obtained for the dataset in Figure 1. The model has a goodness-of-fit
ratio R2 = 0.9436. In this paper, we fixed the parameter value of the production rate of
RBCs (Λ) and the decay rate of RBCs (d1) based on the research of Anderson [34]. The
estimated parameter values are shown in Table 1, where d3 < d2 accorded with the fact
that the resistant mutants have a higher death rate than wild-type strains, reflecting the
biological cost of resistance [19]. In addition, the solution curve was obtained on the basis
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of the parameter set we estimated (Figure 2), and the three cell populations involved in this
model finally reached a steady state.

0 5 10 15 20 25 30

t(days)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ir

best fit
data

Figure 1. Drug-resistant parasites’ data (red dot) with model best fit (blue line). Each data point is
assumed to have the same measurement error, estimated from competitive release of drug resistance
data in the research of Read [24]. The y-axis is plotted using a log scale, reflecting the drug-resistant
parasite density.

Table 1. Parameters in the model.

Parameter Definition Estimated Value Range Ref.

α number of merozoites that an infected RBC can produce 8.559469 [8, 32]
β1 infection rate of drug-sensitive malaria parasites 1.497515 × 10−4 [0, 1]
β2 infection rate of drug-resistant malaria parasites 0.03018763 [0, 1]
γ1 competitive coefficient 0.08115581 [0, 1]
γ2 competitive coefficient 0.003323166 [0, 1]
Λ production rate of RBCs log10 (41,500) [34]
d1 decay rate of RBCs 0.00833 [34]
d2 decay rate of drug-sensitive malaria parasites 1.497515 × 10−4 [0, 1]
d3 decay rate of drug-resistant malaria parasites 0.6355716 [0, 1]
µ level of drug concentration 1.497515 × 10−4 [0, 1]
p proportion of drug-sensitive parasites released 0.8605191 [0, 1]

from an infected RBC by drug-resistance parasites

0 10 20 30 40 50

0
2
0

4
0

6
0

8
0

day

S

Is

Ir

Figure 2. The solution curve of the model with the estimated parameters according to the data. The
solid line, the dashed line, and the dotted line represent red blood cells, drug-sensitive parasites, and
drug-resistant parasites, respectively.
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3.2. Equilibrium Analysis

Equilibrium analysis is employed to observe the relationship between the parameters
and the drug-resistant parasites in this paper. Calculating the interior equilibrium of the
dynamical system is a necessary step, then we primarily focus on the part of Ir in the
equilibrium. Equilibrium analysis results are obtained in Figure 3. The results show a
strong positive linearity between α and I∗r as α varies in the interval [8, 32] (Figure 3a),
indicating the more merozoites were produced, the higher the value of I∗r was. As the
parameters β1 and β2 increase, I∗r exhibits the tendency of decreasing and increasing,
respectively (Figure 3b,c), but in general, their impact on I∗r is not obvious, such that their
effective intervals are much smaller. The trends of γ1(rising) and γ2 (falling) on I∗r are
opposite, which exactly shows the importance of competition, that drug-resistant parasites
could be controlled by competition to some extent, and the resistant parasites could not
be suppressed once they obtain a strong competitive ability. Moreover, the results of the
upward tendency of µ and d2 just coincide with the research of Hansen [16] that aggressive
treatment (a high level drug concentration) can fail and threaten patient health and lifespan.
I∗r reduces with the increasing d1 and d3; the reason is obvious: that d3, as the decay rate
of drug-resistant parasites, will inevitably lead to the reduction of I∗r with its increasing.
The rising death rate of uninfected RBCs indicates the reduction of the resources of drug-
resistant parasites, thereby leading to their decreasing. Therefore, on the contrary, Λ, as the
production rate of uninfected RBCs, has a positive effect on I∗r . In addition, the negative
linear relationship between p and I∗r demonstrated that the gene stability can affect I∗r to a
great extent.
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Figure 3. Relationship between eleven sampled input parameters and equilibrium of Ir. These results
were obtained using a sample size of 1000. (a) Ir vs. α. (b) Ir vs. β1. (c) Ir vs. β2. (d) Ir vs. γ1. (e) Ir vs.
γ2. (f) Ir vs. d1. (g) Ir vs. d2. (h) Ir vs. d3. (i) Ir vs µ.



Mathematics 2024, 12, 1595 9 of 16

3.3. Uncertainty Analysis Results

Uncertainty analysis is performed in order to describe the range of possible outcomes
given a set of inputs (where each input parameter has some uncertainty). Therefore, in
this paper, uncertainty analysis would be performed to describe the range in the density
of drug-resistant parasites in steady states, given that a range of input parameters is
simulated. There were 50,000 input parameters samples extracted to obtain 11,888 effective
samples that yielded a positive equilibrium. Descriptive statistics (mean, var, etc.) were
calculated to describe the distribution of the outcome variables I∗r that we were concerned
with. The LHS uncertainty technique is a formal approach to quantify the effect the
uncertainty of the input variables on the prediction precision of the output variables for
which we aimed. First, we sampled all parameters by using the LHS method (Figure 4).
The descriptive statistics of I∗r is shown in Table 2. The acquired frequency distribution
in Figure 4 illustrates a wide range of I∗r for a great uncertainty in estimating the values
of eleven input parameters, with a range from 4.61 × 10−5 to 200.3142. Accordingly, 5%
to 95% of I∗r fell in the interval [1.5219, 51.7296] due to the left-skewed character of the
frequency distribution. The variance was fairly large, which indicated a high volatility of
Ir, due to the uncertainty of all parameters.

0 20 40 60 80 100 120 140 160 180 200

I
r

0

200

400

600

800

1000

1200

1400

F
r
e
q

u
e
n

c
y

Figure 4. Uncertainty analysis of equilibrium of Ir on all parameters.

Table 2. Descriptive statistics from the uncertain analysis of Ir in Figure 4.

Minimum Maximum Mean Median Variance 5th Percentile 5th Percentile

4.610 ×10−5 200.3142 16.5868 10.7515 398.9929 1.5219 51.7296

3.4. Sensitivity Analysis Results

Sensitivity analysis is performed in order to describe how sensitive the outcome
variables are to the variation of individual input parameters. Since there may be multiple
input parameters, sensitivity analysis could determine which ones drive the majority of the
variation in the outcome.

3.4.1. Local Sensitivity Analysis

Local sensitivity refers to the sensitivity of parameters with respect to a given param-
eter set. This type of analysis is usually carried out by partial derivatives of the output
functions at a fixed and predefined point of the parameter space. We are mainly concerned
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with the local sensitivity of the parameters we estimated in Table 1. The LSA results offered
a sensitivity order, which is p, α, β2, Λ, d3, γ1, γ2, β1, d1, d2, µ from large to small by the
measurement of L1 and L2. The mean of the sensitivity index has the same direction as
the equilibrium analysis results of each parameter. Table 3 and Figure 5 illustrate that d2
and µ have a little effect on Ir in the local parameter space, and p affect Ir most near the
estimated parameter, indicating that the proportion of drug-sensitive parasites released
from an infected RBC by drug-resistance parasites is fairly important in a local parameter
space. On the contrary, the direct effect of the decay rate of drug-sensitive parasites and
the drug concentration was not significant may due to ignoring the interaction between
these parameters.

Table 3. Value of local sensitivity function.

Para α β1 β2 γ1 γ2 Λ d1 d2 d3 µ p

L1
a 7.7 0.46 5.6 2.7 2.4 6.7 0.3 0.00082 6.6 0.00082 62

L2
a 1.6 0.0076 1.5 0.44 0.4 1.3 0.0062 0.00013 1.1 0.00013 12

Mean b 6.4 −0.46 1.3 2.7 −2.4 6.2 −0.28 0.00082 −6.6 0.00082 −60

a Here, L1 = ∑ |Si |/n, L2 =
√

∑(S2
i )/n are the L1- and L2-norm, respectively. b The Mean column is the mean of

the sensitivity functions.
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Figure 5. Local sensitivity of state variable Ir (drug-resistant parasites) on all parameters. The light
grey region represents from the minimum value to the maximum value; the dark grey region is from
the mean value minus the standard deviation to the mean value plus the standard deviation. The
light blue region ranges from the 5th percentile to the 95th percentile; the dark blue region ranges
from the 25th percentile to the 75th percentile.
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3.4.2. Global Sensitivity Analysis

When the sensitivity index for an output variable is examined over the time course
of the simulation, the relative importance of the parameters is shown to vary widely
depending on the time point of inspection. The global sensitivity analysis results were
obtained by employing the Sobol method, which provided a factor-based decomposition
of the output variance. The first-order indices only account for the direct contribution of
each parameter. The total Sobol indices quantified the fraction of the variance to explain
the variability of each parameter full consideration of their interaction effects. Figure 6
depicts the first-order Sobol indices and the total Sobol indices; both of them range from 0
to 1 for all parameters. The first-order Sobol index of γ2 is high in the first few days, but
then decreases sharply, and other parameters remain zero in the concerned time course.
The total Sobol index of γ2 is high during the time interval, and p, Λ, β2, α, µ, and d2
increase to a high value with time varying, indicating their relative importance to the drug-
resistant strains. The other remaining parameters including β1, d1, and γ1 are relatively less
sensitive to resistant strains. Combining the two figures, we could deduce that, between
those parameters, an interaction may exist.
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Figure 6. Sobol sensitivity indices for state variable Ir (drug-resistant parasites). The left graph
depicts the tendency of the first-order Sobol index, and the right graph describes the total sobol index
of all model parameters.

4. Discussion and Conclusions

We have studied model (1) with the aim of exploring the impact of within-host
competition and drug treatment on drug-resistant parasites. The results of our analy-
sis have not only provided predictions, but have also painted a clearer picture of the
influential parameters, laying the groundwork for the formulation of effective strategies in
resistance management.

One of the key parameters, denoted as α, exhibits a significant correlation with drug-
resistant parasites (I∗r ), underscoring the importance of the infected red blood cell’s capacity
to produce merozoites. The infection process is characterized by repetitive cycles of inva-
sions and merozoite production, as detailed by Anderson [34]. Consequently, inhibiting
merozoite invasion of erythrocytes emerges as a viable strategy to reduce the number
of drug-resistant parasites. The rate of malaria parasite infection plays a pivotal role in
determining the invasive and infectious abilities of parasites [35]. As a result, variations
in β1 and β2 can directly impact the population of drug-resistant parasites, as illustrated
in Figure 3b,c. It is worth noting a phenomenon wherein increasing β1 and β2 leads to
diminishing changes in I∗r , suggesting that, within a certain range, adjusting the infection
rate can effectively manage the evolution of drug resistance.

There is a growing interest in the potential of drug-based strategies beyond the ini-
tial treatment of malaria cases to further reduce morbidity and mortality and advance
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towards malaria elimination. Nevertheless, it is crucial to acknowledge the harsh reality
that the emergence of resistance to anti-malarial drugs or combination therapies exposes
the vulnerability of current strategies. The rapid elimination of drug-sensitive parasites can
create a favorable environment for the survival of resistant parasites [24,36], a phenomenon
well explained by the trends in I∗r seen in Figure 3g,i. Furthermore, aggressive elimination
of sensitive strains can lead to competitive release of drug-resistant parasites, given the
absence of competitors (drug-sensitive parasites) to suppress them, highlighting the signifi-
cance of competition between the two parasite types [16]. This relationship is depicted in
Figure 3d,e, illustrating how the competitive ability of resistant strains directly affects their
population. Another essential factor in the control of drug resistance is the genetic stability
of resistant parasites, as evidenced by the decline in their numbers in Figure 3j. Hence,
efforts to enhance the genetic stability of resistant parasites hold promise in resistance
management. Finally, the tendencies of I∗r in response to varying parameters such as Λ, d1,
and d3 are both reasonable and evident.

To further elucidate the sources of uncertainty, sensitivity analysis emerges as a funda-
mental technique, encompassing both local sensitivity analysis (LSA) and global sensitivity
analysis (GSA). Typically, conducting LSA involves calculating the derivative of the out-
come variable concerning each input parameter, making slight perturbations near the
best point estimates. Numerous studies have delved into LSA, often by analyzing the
basic reproduction number (R0) to examine disease equilibria in various epidemiological
models [37,38]. In some cases, additional conditions are necessary because R0 alone may
not determine the existence of interior equilibria. Consequently, we have opted to directly
focus on the interior equilibrium for our sensitivity analysis, utilizing numerical methods
to gain deeper insights. Our LSA findings emphasize the significance of genetic instability
and the number of merozoites in influencing the outcomes of the model. Intriguingly,
drug concentration appears to be the least sensitive parameter to resistant strains. This
observation may be attributed to the inherent limitations of LSA, which does not account
for interactions between inputs, potentially making it challenging to establish a definitive
ranking of the key parameters.

Global sensitivity analysis, on the other hand, excels in addressing this limitation by
considering interactions among input parameters and varying all of them simultaneously
within a certain range for epidemiological models. In contrast to LSA, GSA highlights
the importance of µ, possibly due to its strong interactions with other parameters. Ad-
ditionally, γ2 maintains the highest sensitivity throughout the analysis, suggesting that
drug therapy indirectly induces changes in the population of resistant parasites, potentially
through competition dynamics. The implementation of aggressive treatment could trigger
competitive release of drug-resistant parasites, as sensitive strains diminish. Hence, the
competitive aspect should not be underestimated, and enhancing competition between
the two strains may offer a viable approach to controlling drug-resistant parasites. The
temporal variation in the sensitivity of state variables to parameters is a valuable aspect of
infectious disease modeling studies [39]. Notably, the sensitivity of µ declines around the
40th day, possibly resulting from the elimination of drug-sensitive parasites by treatment,
leaving fewer sensitive parasites to make a diminishing contribution. Parameters p, α, Λ,
and β2 continue to play a similarly crucial role compared to the LSA and maintain a high
level of sensitivity throughout the simulation period.

Generally, Sobol global sensitivity analysis allows for accurate assessment of the
parameters’ main effects and interactions and is applicable to various parameter space di-
mensions and model types, albeit with high computational costs. In contrast, MeFAST [40]
incorporates the use of multiple statistical tests for the significance of the parameters; how-
ever, its performance may be suboptimal in highly nonlinear systems, and its evaluation
of high-order interactions among parameters is limited. The Morris method [41] incurs
lower computational costs, making it suitable for high-dimensional parameter spaces and
complex models; nevertheless, its evaluation of interactions among parameters is limited.
Derivative-based global sensitivity [40] assessment methods can provide rapid and accurate
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results, but are only applicable to differentiable functions and may have limited sensitivity
evaluation capabilities for highly nonlinear systems. Therefore, when selecting methods, it
is necessary to consider a combination of factors such as computational costs, applicability,
and evaluation accuracy.

The model effectively aligns with the available data, yielding a set of estimated pa-
rameter values that form the foundation for subsequent analysis. In our investigation, we
conducted equilibrium analysis, uncertainty analysis, and sensitivity analysis to explore
the parameters that significantly influence and are chiefly responsible for the development
of drug resistance. It is important to note that our study does not aim to directly propose
specific drug resistance management strategies, but rather, intends to offer recommenda-
tions derived from mathematical findings and logical reasoning for more effective drug
resistance control. The scope of this research solely considers the impact of drug treatment
on sensitive strains. In future work, we plan to explore an extended dynamical system that
incorporates the immune response into the model [42–44]. The immune response can play
a pivotal role in preventing the re-invasion of merozoites or eliminating infected red blood
cells [45].

Author Contributions: Conceptualization, T.S. and Y.W.; methodology, T.S.; software, Y.W.; validation,
T.S., Y.W. and Y.L.; formal analysis, T.S.; writing—original draft preparation, T.S.; writing—review
and editing, T.S.; visualization, Y.W.; supervision, G.F.; funding acquisition, Y.L. and G.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is partially supported by the National Natural Science Foundation of China
(12101318, 12101393) and the National Social Science Foundation of China (22BTJ018).

Data Availability Statement: The data utilized in this study are derived from previously published
works, which are openly available in [24] (https://www.pnas.org/doi/full/10.1073/pnas.1100299108,
accessed on 11 May 2023). The specific datasets and their respective access details can be found
within the referenced publications.

Acknowledgments: In the preparation of this paper, the author utilized Grammarly, an AI-assisted
language editing tool, to enhance the grammatical correctness and fluency of our sentences.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. World Malaria Report 2020; WHO: Geneva, Switzerland, 2020.
2. Nguyen, T.D.; Gao, B.; Amaratunga, C.; Dhorda, M.; Tran, T.N.A.; White, N.J.; Dondorp, A.M.; Boni, M.F.; Aguas, R. Preventing

antimalarial drug resistance with triple artemisinin-based combination therapies. Nat. Commun. 2023, 14, 4568. [CrossRef]
[PubMed]

3. D’Alessandro, U.; Buttiëns, H. History and importance of antimalarial drug resistance. Trop. Med. Int. Health 2010, 6, 845–848.
[CrossRef] [PubMed]

4. WHO. Report on Antimalarial Drug Efficacy, Resistance and Response: 10 Years of Surveillance (2010–2019); WHO: Geneva, Switzerland,
2020.

5. Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; et al.
Artemisinin resistance in Plasmodium falciparum malaria. New Engl. J. Med. 2009, 361, 455–467. [CrossRef] [PubMed]

6. Mathieu, L.C.; Cox, H.; Early, A.M.; Mok, S.; Lazrek, Y.; Paquet, J.C.; Ade, M.P.; Lucchi, N.W.; Grant, Q.; Udhayakumar, V.; et al.
Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. Elife
2020, 9, e51015. [CrossRef] [PubMed]

7. Miotto, O.; Sekihara, M.; Tachibana, S.I.; Yamauchi, M.; Pearson, R.D.; Amato, R.; Gonçalves, S.; Mehra, S.; Noviyanti, R.; Marfurt,
J.; et al. Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea.
PLoS Pathog. 2020, 16, e1009133. [CrossRef]

8. Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.;
et al. Evidence of artemisinin-resistant malaria in Africa. New Engl. J. Med. 2021, 385, 1163–1171. [CrossRef] [PubMed]

9. Acosta, M.M.; Bram, J.T.; Sim, D.; Read, A.F. Effect of drug dose and timing of treatment on the emergence of drug resistance in
vivo in a malaria model. Evol. Med. Public Health 2020, 2020, 196–210. [CrossRef] [PubMed]

10. Hastings, I. A model for the origins and spread of drug-resistant malaria. Parasitology 1997, 115, 133–141. [CrossRef]
11. Mackinnon, M.J.; Hastings, I.M. The evolution of multiple drug resistance in malaria parasites. Trans. R. Soc. Trop. Med. Hyg.

1998, 92, 188–195. [CrossRef]

https://www.pnas.org/doi/full/10.1073/pnas.1100299108
http://doi.org/10.1038/s41467-023-39914-3
http://www.ncbi.nlm.nih.gov/pubmed/37516752
http://dx.doi.org/10.1046/j.1365-3156.2001.00819.x
http://www.ncbi.nlm.nih.gov/pubmed/11703837
http://dx.doi.org/10.1056/NEJMoa0808859
http://www.ncbi.nlm.nih.gov/pubmed/19641202
http://dx.doi.org/10.7554/eLife.51015
http://www.ncbi.nlm.nih.gov/pubmed/32394893
http://dx.doi.org/10.1371/journal.ppat.1009133
http://dx.doi.org/10.1056/NEJMoa2101746
http://www.ncbi.nlm.nih.gov/pubmed/34551228
http://dx.doi.org/10.1093/emph/eoaa016
http://www.ncbi.nlm.nih.gov/pubmed/33209305
http://dx.doi.org/10.1017/S0031182097001261
http://dx.doi.org/10.1016/S0035-9203(98)90745-3


Mathematics 2024, 12, 1595 15 of 16

12. Hastings, I.M.; D’Alessandro, U. Modelling a predictable disaster: The rise and spread of drug-resistant malaria. Parasitol. Today
2000, 16, 340–347. [CrossRef]

13. Huijben, S.; Nelson, W.A.; Wargo, A.R.; Sim, D.G.; Drew, D.R.; Read, A.F. Chemotherapy, within-host ecology and the fitness of
drug-resistant malaria parasite. Evolution 2010, 64, 2952–2968. [CrossRef] [PubMed]

14. Wargo, A.R.; Huijben, S.; Roode, J.C.D.; Shepherd, J.; Read, A.F. Competitive release and facilitation of drug-resistant parasites
after therapeutic chemotherapy in a rodent malaria model. Proc. Natl. Acad. Sci. USA 2007, 104, 19914–19919. [CrossRef]

15. Bushman, M.; Morton, L.; Duah, N.; Quashie, N.; Abuaku, B.; Koram, K.A.; Dimbu, P.R.; Plucinski, M.; Gutman, J.; Lyaruu, P.;
et al. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum. Proc. Biol. Sci. 2016,
283, 20153038. [CrossRef]

16. Hansen, E.; Woods, R.J.; Read, A.F. How to use a chemotherapeutic agent when resistance to it threatens the patient. PLoS Biol.
2017, 15, e2001110. [CrossRef]

17. Whitlock, A.O.; Juliano, J.J.; Mideo, N. Immune selection suppresses the emergence of drug resistance in malaria parasites but
facilitates its spread. PLoS Comput. Biol. 2021, 17, e1008577. [CrossRef]

18. Ayala, M.J.; Villela, D.A. Early transmission of sensitive strain slows down emergence of drug resistance in Plasmodium vivax.
PLoS Comput. Biol. 2020, 16, e1007945. [CrossRef] [PubMed]

19. Mackinnon, M.J. Drug resistance models for malaria. Acta Trop. 2005, 94, 207–217. [CrossRef]
20. Tchuenche, J.M.; Chiyaka, C.; Chan, D.; Matthews, A.; Mayer, G. A mathematical model for antimalarial drug resistance. Math.

Med. Biol. 2011, 28, 335–355. [CrossRef] [PubMed]
21. Hansen, J.; Day, T. Coinfection and the evolution of drug resistance. J. Evol. Biol. 2015, 27, 2595–2604. [CrossRef]
22. Chiyaka, C.; Garira, W.; Dube, S. Effects of treatment and drug resistance on the transmission dynamics of malaria in endemic

areas. Theor. Popul. Biol. 2009, 75, 14–29. [CrossRef]
23. Fatmawati.; Tasman, H. An optimal control strategy to reduce the spread of malaria resistance. Math. Biosci. 2015, 262, 73–79.

[CrossRef]
24. Read, A.F.; Day, T.; Huijben, S. The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc.

Natl. Acad. Sci. USA 2011, 108, 10871–10877. [CrossRef]
25. Jurek, A.M.; Maldonado, G.; Greenland, S.; Church, T.R. Uncertainty analysis: An example of its application to estimating a

survey proportion. J. Epidemiol. Community Health 2007, 61, 650–654. [CrossRef]
26. Vesselinova, N.; Alexandrov, B.S.; Wall, M.E. Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and

Experimentally Testable Predictions. PLoS ONE 2016, 11, e0165899. [CrossRef] [PubMed]
27. Song, T.; Wang, C.; Tian, B. Modelling intra-host competition between malaria parasites strains. Comput. Appl. Math. 2020,

39, 1–17. [CrossRef]
28. Brauer, F.; Castillo Chavez, C. Mathematical Models in Population Biology and Epidemiology; Springer: Berlin/Heidelberg, Germany,

2001; pp. 267–291.
29. Iman, R.L.; Helton, J.C. An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Anal. 2010,

8, 71–90. [CrossRef]
30. Blower, S.M.; Dowlatabadi, H. Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as

an example. Int. Stat. Rev. 1994, 62, 229–243. [CrossRef]
31. Borgonovo, E. Sensitivity analysis of model output with input constraints: A generalized rationale for local methods. Risk Anal.

2010, 28, 667–680. [CrossRef] [PubMed]
32. Sobol’, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414.
33. Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output.

Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [CrossRef]
34. Anderson, R.M.; May, R.M.; Gupta, S. Non-linear phenomena in host-parasite interactions. Parasitology 1989, 99, S59–S79.

[CrossRef]
35. Hetzel, C.; Anderson, R.M. The within-host cellular dynamics of bloodstage malaria: Theoretical and experimental studies.

Parasitology 1996, 113, 25–38. [CrossRef]
36. Slater, H.C.; Okell, L.C.; Ghani, A.C. Mathematical modelling to guide drug development for malaria elimination. Trends Parasitol.

2017, 33, 175–184. [CrossRef]
37. Samsuzzoha, M.; Singh, M.; Lucy, D. Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated

epidemic model of influenza. Appl. Math. Model. 2013, 37, 903–915. [CrossRef]
38. Dunn, J.M.; Davis, S.; Stacey, A.; Diuk-Wasser, M.A. A simple model for the establishment of tick-borne pathogens of Ixodes

scapularis: A global sensitivity analysis of R 0. J. Theor. Biol. 2013, 335, 213–221. [CrossRef]
39. Wu, J.; Dhingra, R.; Gambhir, M.; Remais, J.V. Sensitivity analysis of infectious disease models: Methods, advances and their

application. J. R. Soc. Interface 2013, 10, 20121018. [CrossRef]
40. Dela, A.; Shtylla, B.; de Pillis, L. Multi-method global sensitivity analysis of mathematical models. J. Theor. Biol. 2022, 546, 111159.

[CrossRef]
41. Qian, G.; Mahdi, A. Sensitivity analysis methods in the biomedical sciences. Math. Biosci. 2020, 323, 108306. [CrossRef]
42. Chen, H.; Wang, W.; Fu, R.; Luo, J. Global analysis of a mathematical model on malaria with competitive strains and immune

responses. Appl. Math. Comput. 2015, 259, 132–152. [CrossRef]

http://dx.doi.org/10.1016/S0169-4758(00)01707-5
http://dx.doi.org/10.1111/j.1558-5646.2010.01068.x
http://www.ncbi.nlm.nih.gov/pubmed/20584075
http://dx.doi.org/10.1073/pnas.0707766104
http://dx.doi.org/10.1098/rspb.2015.3038
http://dx.doi.org/10.1371/journal.pbio.2001110
http://dx.doi.org/10.1371/journal.pcbi.1008577
http://dx.doi.org/10.1371/journal.pcbi.1007945
http://www.ncbi.nlm.nih.gov/pubmed/32555701
http://dx.doi.org/10.1016/j.actatropica.2005.04.006
http://dx.doi.org/10.1093/imammb/dqq017
http://www.ncbi.nlm.nih.gov/pubmed/20884768
http://dx.doi.org/10.1111/jeb.12518
http://dx.doi.org/10.1016/j.tpb.2008.10.002
http://dx.doi.org/10.1016/j.mbs.2014.12.005
http://dx.doi.org/10.1073/pnas.1100299108
http://dx.doi.org/10.1136/jech.2006.053660
http://dx.doi.org/10.1371/journal.pone.0165899
http://www.ncbi.nlm.nih.gov/pubmed/27824914
http://dx.doi.org/10.1007/s40314-020-1072-5
http://dx.doi.org/10.1111/j.1539-6924.1988.tb01155.x
http://dx.doi.org/10.2307/1403510
http://dx.doi.org/10.1111/j.1539-6924.2008.01052.x
http://www.ncbi.nlm.nih.gov/pubmed/18643824
http://dx.doi.org/10.1016/j.cpc.2009.09.018
http://dx.doi.org/10.1017/S0031182000083426
http://dx.doi.org/10.1017/S0031182000066245
http://dx.doi.org/10.1016/j.pt.2016.09.004
http://dx.doi.org/10.1016/j.apm.2012.03.029
http://dx.doi.org/10.1016/j.jtbi.2013.06.035
http://dx.doi.org/10.1098/rsif.2012.1018
http://dx.doi.org/10.1016/j.jtbi.2022.111159
http://dx.doi.org/10.1016/j.mbs.2020.108306
http://dx.doi.org/10.1016/j.amc.2015.02.073


Mathematics 2024, 12, 1595 16 of 16

43. Hellriegel, B. Modelling the immune response to malaria with ecological concepts: Short-term behaviour against long-term
equilibrium. Proc. Biol. Sci. 1992, 250, 249–256.

44. Li, Y.; Ruan, S.; Xiao, D. The within-host dynamics of malaria infection with immune response. Math. Biosci. Eng. 2013,
8, 999–1018.

45. Stevenson, M.M.; Riley, E.M. Innate immunity to malaria. Nat. Rev. Immunol. 2004, 4, 169–180. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/nri1311
http://www.ncbi.nlm.nih.gov/pubmed/15039754

	Introduction
	Methods
	Model
	Parameter Estimation
	Equilibrium Analysis
	Uncertainty Analysis and Sensitivity Analysis Methods
	Uncertainty Analysis
	Local Sensitivity Analysis (LSA)
	Global Sensitivity Analysis (GSA)


	Results
	Parameter Estimates
	Equilibrium Analysis
	Uncertainty Analysis Results
	Sensitivity Analysis Results
	Local Sensitivity Analysis
	Global Sensitivity Analysis


	Discussion and Conclusions
	References

