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Abstract: Lorentz invariance lies at the very heart of Einstein’s special relativity, and both the
energy formula and the relative velocity formula are well-known to be invariant under a Lorentz
transformation. Here, we investigate the spatial and temporal dependence of the velocity field
itself u(x, t) and we pose the problem of the determination of the functional form of those velocity
fields u(x, t) which are automatically invariant under a Lorentz transformation. For a single spatial
dimension, we determine a first-order partial differential equation for the velocity u(x, t), which
appears to be unknown in the literature, and we investigate its main consequences, including
demonstrating that it is entirely consistent with many of the familiar outcomes of special relativity
and deriving two new partial differential relations connecting energy and momentum that are fully
compatible with the Lorentz invariant energy–momentum relations.
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1. Introduction

In special relativity, the word “special” alludes to invariance under transformations
relating constant relative velocity frames of reference, which are known as Lorentz trans-
formations. A Lorentz invariant quantity is one which assumes an identical form under
a Lorentz transformation. While Lorentz invariance and its consequences are well estab-
lished in special relativity, it seems to have gone unnoticed that the imposition of a Lorentz
invariant velocity field u(x, t) restricts the functional form of the velocity u(x, t) to the
solution of a certain partial differential equation. For example, for a single Cartesian spatial
dimension, the requirement that the equation dx/dt = u(x, t) remains invariant under
a Lorentz transformation implies that the velocity u(x, t) satisfies the partial differential
Equations (11) or (16).

For those problems involving partial differential equations and boundary or initial
conditions, invariance of both the equation and the associated conditions under a one-
parameter Lie group of transformations generally implies a major simplification of the
problem (see, for example, [1]). In the present context, solutions of either (11) or (16) will
generate solutions of those one-dimensional special relativistic problems provided that any
boundary or initial conditions also remain invariant under Lorentz transformation. For a
single space dimension x, this means that any associated boundary or initial condition
must be assumed to be expressible in terms of the characteristic coordinates α = ct + x and
β = ct − x and have the general form f (αβ) = constant for some function f .

Special relativity has become a standard subject such that almost every text on physics
or mechanics has a dedicated chapter. The older texts are closer to the original motivating
issues and the developments that gave birth to the subject. Dingle [2] and McCrea [3] are
student texts, while more comprehensive accounts can be found in Bohm [4], French [5]
Resnick [6]. Both Moller [7] and Tolman [8] are standard works of reference, and the
reader may wish to consult [9], which contains the original papers of Einstein, Lorentz,
Minkowski and Weyl, with additional notes by Arnold Sommerfeld. In the following
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section we summarise the essential results of special relativity theory that are needed in
order to deduce the partial differential Equation (11) for the velocity field u(x, t), which is
derived in the section thereafter for a single spatial dimension x.

2. Essential Results of Special Relativity

The notion of invariance with respect to frames moving with constant relative velocity
underlies special relativistic mechanics, and in particular those transformations of space and
time leaving the wave equation unchanged, and are referred to as Lorentz transformations.
We consider a rectangular Cartesian frame (X, Y, Z) and another frame (x, y, z) moving
with constant velocity v relative to the first frame, and the motion is assumed to be in
the aligned X and x directions, as indicated in Figure 1. We view the relative velocity v
as a parameter measuring the departure of the current frame (x, y, z) from the rest frame
(X, Y, Z), and for this purpose, we adopt a notation employing the lower case for variables
associated with the moving (x, y, z) frame and the upper case or capitals for those variables
associated with the rest (X, Y, Z) frame. Accordingly, time is measured from the (X, Y, Z)
frame with the variable T and from the (x, y, z) frame with the variable t. Following normal
practice, we assume that y = Y and z = Z, so that (X, T) and (x, t) are the variables of
principal interest.

For 0 ⩽ v < c, the standard Lorentz transformations are

x =
X − vT

[1 − (v/c)2]1/2 , t =
T − vX/c2

[1 − (v/c)2]1/2 , (1)

with the inverse and identity transformations characterised by −v and v = 0, respectively.
Derivations of these equations can be found in many standard textbooks such as Feyn-
mann et al. [10] and Landau and Lifshitz [11], and other novel derivations are given by Lee
and Kalotas [12] and Levy-Leblond [13]. We note that on using the chain rule for partial
derivatives, from Equation (1) we may obtain the differential relations

∂

∂x
=

1
[1 − (v/c)2]1/2

{
∂

∂X
+

v
c2

∂

∂T

}
,

∂

∂t
=

1
[1 − (v/c)2]1/2

{
∂

∂T
+ v

∂

∂X

}
. (2)

We adopt the notation α = ct + x and β = ct − x for the characteristic variables,
and from the above equations, by direct substitution, we may readily deduce the relations

ct + x =

(
1 − v/c
1 + v/c

)1/2
(cT + X), ct − x =

(
1 + v/c
1 − v/c

)1/2
(cT − X). (3)

With the notation A = cT + X, B = cT − X and λ = [(1 − v/c)/(1 + v/c)]1/2, (3)
becomes simply α = λA and β = B/λ, so that in particular we may confirm the simple
Lorentz invariance (ct)2 − x2 = (cT)2 − X2.

T

X x

t
v

uU

Figure 1. Two inertial frames moving along x axis with relative velocity v.

The Einstein addition of velocities law is an immediate consequence of the notion of
invariance under Lorentz transformations. Since the relative frame velocity v is assumed to
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be constant, on taking the differentials of both equations in (1) with velocities U = dX/dT
and u = dx/dt, we obtain

dx =
dX − vdT

[1 − (v/c)2]1/2 , dt =
dT − vdX/c2

[1 − (v/c)2]1/2 , (4)

and dividing the first differential by the second yields the Einstein addition-of-velocity law

u =
U − v

1 − Uv/c2 . (5)

Immediate consequences of (5) are the two equivalent alternative identities

[1 − (u/c)2]1/2(1 − Uv/c2) = [1 − (v/c)2]1/2[1 − (U/c)2]1/2, (6)

and (
1 + U/c
1 − U/c

)
=

(
1 + u/c
1 − u/c

)(
1 + v/c
1 − v/c

)
, (7)

so that with velocity variables (Θ, θ, ϵ) defined by

Θ = tanh−1(U/c), θ = tanh−1(u/c), ϵ = tanh−1(v/c), (8)

Equation (7) becomes simply the translation Θ = θ + ϵ, noting that within the context of
special relativity, v and therefore ϵ are both constants. The angle θ is sometimes referred
to as the rapidity, and it is the angle in which the Lorentz invariance appears through a
translational invariance. We have the elementary relations

θ =
1
2

log
(

1 + u/c
1 − u/c

)
= tanh−1(u/c),

(
1 + u/c
1 − u/c

)1/2
= eθ , (9)

and eθ is the Doppler shift.
The particular form of the identity (6) may be established using (5) in the left-hand

side of (6), and this version is fundamental to the development of special relativity in
establishing the Lorentz invariance of certain quantities such as the Einstein energy ex-
pression e = e0/[1 − (u/c)2]1/2 discussed below. The importance of the particular form
(7) is that there exist special relativity theories which apply for relative velocities greater
than the speed of light, such as that proposed in [14,15]. This theory is complementary
to the Einstein special theory of relativity that applies to relative velocities less than the
speed of light. The authors in [14,15] derive Lorentz transformations corresponding to (1)
for superluminal relative velocities and show that Einstein’s addition-of-velocities law
still applies. The two Formulae (5) and (6), when expressed in the form (7), reveal that
at least one of the velocities u, v or U must not exceed the speed of light, and in terms of
taking square roots or logarithms, all need appropriate rearrangement depending upon the
particular values of the three velocities u, v and U.

Here, we suppose that energy and momentum are given, respectively, by the usual
expressions e = mc2 and p = mu, where m denotes the mass given by m = m0/[1 −
(u/c)2]1/2, u is the velocity in the (x, t) frame and m0 is the rest mass, and we use e0 =
m0c2 to designate the rest energy. The Lorentz invariant energy–momentum relations are
given by

p =
P − Ev/c2

[1 − (v/c)2]1/2 , e =
E − Pv

[1 − (v/c)2]1/2 . (10)

where E = Mc2 and P = MU and where M = m0/[1 − (U/c)2]1/2. It is clear from
the Lorentz invariant energy–momentum relations (10) themselves that the quantity e2 −



Mathematics 2024, 12, 1609 4 of 8

(pc)2 = E2 − (Pc)2 is invariant, while explicit use of the Einstein energy–mass expression
e = e0/[1 − (u/c)2]1/2 further prescribes this quantity to be the constant e2

0.

3. Lorentz Invariant Velocity Fields u(x, t)

We now determine the most general one-dimensional velocity field u(x, t) that re-
mains invariant under the Lorentz transformation (1). Equivalently, under the Lorentz
transformation (1), we determine the velocity field u(x, t), which is such that the differential
problem dx/dt = u(x, t) transforms into dX/dT = u(X, T) for the same function u(x, t).
Since the Lorentz transformation forms a one-parameter group of transformations in the
frame velocity v, we need only expand (1) and equate the corresponding infinitesimals
for dx/dt = u(x, t) to obtain the following first-order partial differential equation for
u(x, t), thus

t
∂u
∂x

+
x
c2

∂u
∂t

= 1 −
(u

c

)2
. (11)

This partial differential arises as follows. On taking the differentials of (1), we ob-
tain Equation (4), and by division there follows Einstein’s expression for velocities in
Equation (5). However, if the velocity equation dx/dt = u(x, t) itself remains invariant
under the Lorentz transformation, the implication is that the velocity equation for U(X, T)
enjoys the same dependence on the upper-case variables as that of u(x, t) on the lower-case
variables, namely, dX/dT = u(X, T), where the lower-case function u is the same in both
instances. From dx/dt = u(x, t) and by expanding both sides for infinitesimal values of
the velocity v, we thus have

dx
dt

=
U − v

1 − Uv/c2 ≈ U − v

(
1 −

(
U
c

)2
)

, (12)

u(x, t) ≈ u
(

X − vT, T − vX
c2

)
≈ u(X, T)− v

(
T

∂u
∂X

+
X
c2

∂u
∂T

)
, (13)

so that if U(X, T) = u(X, T), then the partial differential Equation (11) follows on reverting
to the lower-case variables (x, t).

From (1) and the formulae in (2) for the partial derivatives, the operator L defined
below is a Lorentz invariant operator, namely

L = ct
∂

∂x
+

x
c

∂

∂t
= cT

∂

∂X
+

X
c

∂

∂T
. (14)

Further, the partial differential Equation (11) remains unchanged by the particle–wave
space–time transformation x∗ = ct, t∗ = x/c and u∗ = c2/u.

We comment that in a single space dimension x with (x, t) referring to the particle
and (x∗, t∗) referring to the wave, the de Broglie particle–wave duality revolves around the
space–time transformation x∗ = ct and t∗ = x/c so that the wave velocity w = dx∗/dt∗ is
connected to the particle velocity u = dx/dt through the relation wu = c2. In the Nature
article [16] and elsewhere [17,18], de Broglie was first to supplement Planck’s particle
energy expression e = hν with the equation for particle momentum p = h/λ to establish
the dual particle–wave nature of matter for all particles and extend the principle of duality
to the laws of nature, where h is the Planck constant and ν and λ are the frequency and
wavelength, respectively, of the associated wave, having a wave speed w = νλ. By making
use of Einstein’s energy expression, the group velocity of the wave wg may be shown to
coincide with the particle velocity u, giving rise to de Broglie’s idea of the wave guiding
the motion of the particle [19,20].
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The invariance of the operator L is also apparent in terms of the characteristic coor-
dinates α = ct + x and β = ct − x, since from x = (α − β)/2, t = (α + β)/2c and the
definition of L, we have

∂

∂x
=

∂

∂α
− ∂

∂β
,

1
c

∂

∂t
=

∂

∂α
+

∂

∂β
, L = α

∂

∂α
− β

∂

∂β
, (15)

and the first-order partial differential Equation (11) becomes

α
∂u
∂α

− β
∂u
∂β

= c
(

1 −
(u

c

)2
)

, (16)

and from which it is clear that the above transformations α = λA and β = B/λ ensure
invariance under the Lorentz group (1).

In terms of θ defined by (9), the partial differential Equation (16) becomes simply

α
∂θ

∂α
− β

∂θ

∂β
= 1. (17)

This equation may be solved using Lagrange’s characteristic method, which introduces
a characteristic parameter s through the three equations

dα

ds
= α,

dβ

ds
= −β,

dθ

ds
= 1, (18)

and then the general solution is obtained by taking one integral of these equations to be an
arbitrary function of a second independent integral. Thus, for example, by division of the
first equation, we have

dβ

dα
= − β

α
,

dθ

dα
=

1
α

, (19)

which can both be integrated to yield αβ = C1 and θ = log α + C2, where C1 and C2
denote arbitrary constants. From (19), we might deduce that the general solution of
(17) may be determined from C2 = Φ(C1), where Φ denotes an arbitrary function, thus
θ(α, β) = log α + Φ(αβ).

We observe that the expression for θ(α, β) is entirely consistent with the Einstein
addition-of-velocity law in its various forms (5), (6) or (7), since under the transformations
α = λA and β = B/λ, we have as required Θ = θ + ϵ arising from

Θ(A , B) = log A + Φ(A B) = log α + Φ(αβ)− log λ = θ + ϵ, (20)

and ϵ = − log λ.
From θ(α, β) = log α + Φ(αβ) and the expressions e = mc2, p = mu, m = m0/[1 −

(u/c)2]1/2 and (9), the velocity u, energy e and momentum p can be shown to be given,
respectively, by

u
c
=

(αϕ)2 − 1
(αϕ)2 + 1

, e =
e0

2

(
αϕ +

1
αϕ

)
, pc =

e0

2

(
αϕ − 1

αϕ

)
, (21)

where ϕ(αβ) = exp Φ(αβ). We observe that the particular structure of e and p in (21)
ensures e2 − (pc)2 = e2

0, and that u(x, t) is given explicitly by

u(x, t) = c tanh[log(ct + x) + Φ((ct)2 − x2)], (22)

where Φ((ct)2 − x2) denotes an arbitrary function. Alternatively, the velocity u(x, t) can be
expressed as

u
c
=

[(ct + x)ϕ((ct)2 − x2)]2 − 1
[(ct + x)ϕ((ct)2 − x2)]2 + 1

, (23)
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where the two arbitrary functions ϕ and Φ are connected by the relation ϕ((ct)2 − x2) =
exp Φ((ct)2 − x2).

As a specific simple illustration, the extension of special relativity formulated by
the author in [21] assumes that the momentum p(x, t) and the wave energy E (x, t) =
−e(x, t)− V(x, t) both satisfy the classical wave equation

∂2 p
∂t2 = c2 ∂2 p

∂x2 ,
∂2E

∂t2 = c2 ∂2E

∂x2 , (24)

where V(x, t) denotes the applied external potential. This potential is assumed to generate
a conventional spatial force f (x, t) and a nonconventional force in the direction of time
g(x, t) such that

f = −∂V
∂x

, gc2 = −∂V
∂t

. (25)

In nonlinear continuum mechanics, g(x, t) is more commonly known as the mass or
energy production term. We refer the reader to [21] for further details of this extended
version of special relativity.

From the functional form for p(x, t) given by the third equation in (21), we obtain

c
∂p
∂α

=
e0

2

(
1 +

1
(αϕ)2

)(
ϕ + ξ

dϕ

dξ

)
=

e0

2

(
1 +

1
(αϕ)2

)
d(ξϕ)

dξ
, (26)

c
∂p
∂β

=
e0

2

(
α2 dϕ

dξ
+

1
ϕ2

dϕ

dξ

)
=

e0

2

{
α2 dϕ

dξ
− d

dξ

(
1
ϕ

)}
, (27)

where ξ = αβ and α = ct + x and β = ct − x are as previously defined. From the first wave
equation in (24), we find that

1
c2

∂2 p
∂t2 − ∂2 p

∂x2 = 4
∂2 p

∂α∂β
=

2e0α

c

{(
1 +

1
(αϕ)2

)
d2(ξϕ)

dξ2 − 2α

(αϕ)3
dϕ

dξ

d(ξϕ)

dξ

}
(28)

=
2e0

c

{
α

d2(ξϕ)

dξ2 − β
d2

dξ2

(
1
ϕ

)}
= 0. (29)

Evidently then, the first term involving α requires that ξϕ(ξ) = C1ξ + C2 where C1
and C2 denote two arbitrary constants, while the second term involving β requires a similar
expression for 1/ϕ. The only way this can happen is that either C2 = 0 and ϕ(ξ) = C1
or C1 = 0 and ϕ(ξ) = C2/ξ, in which case we obtain from (21) the following two distinct
expressions for particle velocity, energy and momentum,

u
c
=

(C1α)2 − 1
(C1α)2 + 1

, e =
e0

2

(
C1α +

1
C1α

)
, pc =

e0

2

(
C1α − 1

C1α

)
, (30)

u
c
=

(C2/β)2 − 1
(C2/β)2 + 1

, e =
e0

2

(
C2

β
+

β

C2

)
, pc =

e0

2

(
C2

β
− β

C2

)
, (31)

where α = ct + x and β = ct − x.

4. Partial Differential Relations for Energy and Momentum

From the relations for energy and momentum

e =
e0

[1 − (u/c)2]1/2 , p =
m0u

[1 − (u/c)2]1/2 , (32)

we may deduce the following expressions for the partial derivatives,

∂e
∂x

=
m0u

[1 − (u/c)2]3/2
∂u
∂x

,
∂p
∂x

=
m0

[1 − (u/c)2]3/2
∂u
∂x

, (33)
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with similar expressions for the partial derivatives with respect to time. On division of
(11) by [1 − (u/c)2]3/2 and with some rearrangement, we may deduce the two partial
differential relations connecting the partial derivatives of the energy and momentum e and
p, thus

ct
∂e
∂x

+
x
c

∂e
∂t

= cp, ct
∂p
∂x

+
x
c

∂p
∂t

=
e
c

. (34)

In terms of the invariant operator L, these relations become simply L(e) = cp and
L(cp) = e, giving rise to the apparent relations

L(e + cp) = e + cp, L(e − cp) = −(e − cp), L2(e) = e, L2(p) = p. (35)

For example, formally, we may apply the operator L to the product e2 − (pc)2 =
(e + cp)(e − cp) to obtain

L(e2 − (pc)2) = (e − cp)L(e + cp) + (e + cp)L(e − cp) (36)

= (e2 − (pc)2)− (e2 − (pc)2) = 0, (37)

as might be anticipated. The two partial differential relations (34) are fully compatible with
the two Lorentz invariant energy–momentum relations (10), so that combined with (10),
one of the partial differential equations in (34) is a consequence of the other.

5. Conclusions

For a single spatial dimension x, we have showed that the requirement for the velocity
equation dx/dt = u(x, t) to remain invariant under the Lorentz transformation (1) implies
that the velocity u(x, t) satisfies the partial differential Equations (11) or (16) and in conse-
quence inherits the particular functional form u(x, t) = c tanh[log(ct + x) + Φ((ct)2 − x2)],
where Φ((ct)2 − x2) denotes an arbitrary function of the indicated argument. As far as the
author is aware, neither the partial differential Equation (11) nor the fact that the energy and
momentum satisfy the partial differential relations (34) have been mentioned previously in
the literature. For the particular special relativistic model proposed in [21], explicit formu-
lae are given for the one-dimensional particle velocity, energy and momentum, which are
the only expressions for the proposed model which give rise to Lorentz invariant velocities.

For particles moving in both two and three spatial dimensions, there are correspond-
ing implications that are currently under investigation by the author, and planar Lorentz
invariant velocities are examined in [22]. For the higher spatial dimensions, the constraints
appear to be less restrictive so that the outcomes are more varied and more physically inter-
esting. For example, for planar motion, the two velocity components satisfy corresponding
partial differential equations to (11) with general solutions for the velocity components in
terms of two arbitrary functions F and G . These partial differential equations admit the
singular case G = (1 −F 2)1/2, such that for all arbitrary functions F , the magnitude of
the particle velocity is the speed of light. This means that there are infinitely many families
of paths with particles moving at the speed of light. In addition, there are associated
partial differential relations connecting energy and momentum corresponding to (34), and
these partial differential relations are fully compatible with the planar Lorentz invariant
energy–momentum relations and appear not to have been given previously in the literature.
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