
Citation: Köhler, A.; Kahra, M.; Breuß,

M. A First Approach to Quantum

Logical Shape Classification

Framework. Mathematics 2024, 12,

1646. https://doi.org/10.3390/

math12111646

Academic Editors: Jonathan

Blackledge and David Carfì

Received: 19 February 2024

Revised: 30 April 2024

Accepted: 21 May 2024

Published: 24 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A First Approach to Quantum Logical Shape Classification
Framework
Alexander Köhler *, Marvin Kahra and Michael Breuß

Institute of Mathematics, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen
Einheit 1, 03046 Cottbus, Germany; kahramar@b-tu.de (M.K.); breuss@b-tu.de (M.B.)
* Correspondence: koehlale@b-tu.de

Abstract: Quantum logic is a well-structured theory, which has recently received some attention
because of its fundamental relation to quantum computing. However, the complex foundation of
quantum logic borrowing concepts from different branches of mathematics as well as its peculiar
settings have made it a non-trivial task to devise suitable applications. This article aims to propose for
the first time an approach using quantum logic in image processing for shape classification. We show
how to make use of the principal component analysis to realize quantum logical propositions. In this
way, we are able to assign a concrete meaning to the rather abstract quantum logical concepts, and we
are able to compute a probability measure from the principal components. For shape classification,
we consider encrypting given point clouds of different objects by making use of specific distance
histograms. This enables us to initiate the principal component analysis. Through experiments, we
explore the possibility of distinguishing between different geometrical objects and discuss the results
in terms of quantum logical interpretation.

Keywords: quantum logic; principal component analysis; shape classification; Hilbert spaces; eigenvectors

MSC: 81P99; 03G12

1. Introduction

Quantum logic [1–3] was developed as an approach to understanding the quantum
physics structures of a logical system. The starting point for this was, above all, the formu-
lation of the Schrödinger equation and Heisenberg’s uncertainty principle. The latter, in
particular, led to the conclusion that an uncertainty principle violates the distributive law in
a logic-based framework. Over the last 70 years, various attempts that allow incorporating
the uncertainty principle into logic have been developed from this, with the pioneers being
Birkhoff and von Neumann, Reichenbach, and Mittelstaedt. In addition to the explanation
of quantum mechanical phenomena, other areas of application for quantum logic have also
emerged. The largest of these is quantum computing, where the underlying logic is featured
in so-called quantum gates; see, for example, [4]. Other potential fields of applications have
also been proposed, such as the evaluation of large datasets using contingency tables [5] or
for quantum-inspired cognitive agents [6–8]. However, arguably because of the complex
theoretical foundation of quantum logic and the peculiar settings described by it, until now,
the range of applications has been limited.

The aim of this paper is to present the first approach using quantum logic for shape
classification. In any case, our work is not to be confused with works related to quantum
computation, in which quantum-based methods are used to accelerate existing algorithms.
However, this does not refer to the use of quantum logic as a modeling framework but
rather elaborates on the design and combination of quantum gates for quantum algorithms
that are supposed to implement corresponding methods on quantum computers. For
examples of this, see [9,10] for works on translating machine learning mechanisms into

Mathematics 2024, 12, 1646. https://doi.org/10.3390/math12111646 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12111646
https://doi.org/10.3390/math12111646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12111646
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12111646?type=check_update&version=1

Mathematics 2024, 12, 1646 2 of 21

a quantum computational approach. To the best of our knowledge, this article thereby
represents the first attempt to make use of a quantum logical framework in image analysis.

In this paper, we base our study on probably the most popular interpretation of
quantum logic by Birkhoff and von Neumann [1]. This, in turn, is based on the mathematical
structures within quantum mechanics, namely Hilbert spaces and the associated operators.
To do so leads us to the use of an orthomodular logic, which is a generalization of Boolean
logic. Together, these form a projective geometry, which is one of the most important tools
of quantum logic.

As an important computational component within our approach, we make use of
principal component analysis (PCA). The PCA method was proposed by Karl Pearson in
the year 1901 [11]. Later, in 1933, Harold Hotelling developed, independently of Pearson,
an analogous method [12]. An overview of this method can be found in the book by
Jolliffe [13]. The PCA is a statistical method to decouple meaningful information from
high-dimensional data, reducing its dimensionality at the same time. This method is a
powerful tool that is widely used in various fields, including machine learning [14,15],
image processing [16,17], genetics [18,19], and finance [20,21]. As we discuss in detail in
this article, the mechanism of dimension reduction in PCA appears to be a natural fit to
quantum logic. One of the contributions of this work is exploring this connection.

Turning to computational ways to implement quantum logic, this paper represents, in
several ways, a significant extension of an idea sketched by Wirsching [22]. In his work,
he introduced a concept inspired by quantum logic that assigns to an incoming signal a
similarity measure, making use of the Gram–Schmidt method.

Our novel contribution may be described as follows. We illuminate in detail the con-
nection between quantum logic to the possible building blocks of an application-oriented
framework. By doing this, we clarify in detail which properties of technical components
are demanded for potential future applications. We consider a concrete application in the
form of shape classification, which allows us to assign a concrete meaning to the rather
abstract quantum logical concepts. The shape classification is a simple decision problem,
with the inherent binary structure, that represents the basic assumption of every application
of quantum logic. As a technical difference to [22], we employ the PCA instead of the
Gram–Schmidt method, which allows a more natural explanation of a probability measure
in accordance with quantum logic. The PCA also allows a much stronger interpretation of
computed results. We want to point out that we will not provide any comparison to other
shape classification frameworks.

The paper is structured into two main parts. The first part is presenting our model.
Here, we introduce the three important concepts for our paper. We will provide insides
of quantum logic, the principal component analysis, and how to connect these two topics
with each other. With these concepts, we can apply quantum logic for a shape classification
framework. The second part, of this paper, showcases our experiments, where we start to
explain how we preprocess our data, fulfilling all the required properties derived from the
theory part of this paper. Additionally, we want to verify our approach by presenting some
experiments. And finally, we end this paper with the conclusions and possible future work.

2. Description of Our Model

This section is dedicated to introducing all the necessary details for the use of quantum
logic for shape classification. First, we explain the concepts and operations in quantum
logic. Thereafter, we build the bridge from quantum logic toward the application of shape
classification. Then we briefly recall the principal component analysis, and we show how
to construct a probability measure based on these concepts.

2.1. Quantum Logic

We begin by introducing the fundamental framework of quantum logic, which is in
close relation to the algebraic foundations of complete lattices. It was developed as an
algebraic tool to provide an axiomatic construct for quantum mechanics where conventional

Mathematics 2024, 12, 1646 3 of 21

approaches failed. The resulting axioms became known primarily through Birkhoff and
von Neumann [1] and Piron [2] with his Geneva school’s approach [23].

2.1.1. Fundamental Lattice Setting of Quantum Logic

The idea of quantum logic is to operate on a quantum mechanical system in the form
of a special lattice, which we will introduce now step-by-step for the reader’s convenience.
We begin with the orthocomplemented lattice L =

(
H(Ω), 0,∧,∨, 1, ·⊥,≤

)
, where 0, 1

represent the minimal and maximal element, respectively, ∧ is the conjunction or meet, ∨
the disjunction or join, ·⊥ the orthocomplement and ≤ a partial order.

The orthocomplement is defined by the following three properties with the elements
or propositions a, b:

complement law: a ∨ a⊥ = 1 and a ∧ a⊥ = 0, (1a)

involution law: a⊥⊥ = a, (1b)

order-reversing: a ≤ b =⇒ b⊥ ≤ a⊥. (1c)

This quantum mechanical system contains a set Ω of possible states, e.g., the elements of
Rn, n ∈ N. These states contain the set of all properties that are relevant for a particular
realization of the system. In the quantum mechanical setting, if one considers a physi-
cal system that consists of multiple subsystems, quantum physics allows certain mixed
states, namely entangled states, which cause the difference between quantum theory and
alternative classical models.

The no-longer reducible states are called atoms. Piron [2] stated the following axioms:

P : If a1 ≤ a2, then the sublattice generated by a1 and a2 is Boolean. (2)

and
A1 : For any a ∈ L with a ̸= 0, there is an atom ã with 0 ≤ ã ≤ a. (3a)

A2 : If ã is an atom and a ≤ x ≤ a ∨ ã, then x ∈ {a, a ∨ ã}. (3b)

Axiom P means that physical measurements, which correspond to propositions a1, a2
satisfying the relation a1 ≤ a2, are compatible (see [22]).

2.1.2. Reasoning Behind the Projective Geometry of Quantum Logic

By the combination of Equations (1a)–(3b), we may arrive at Piron’s result (see [2]), in
which the propositions from L are in a one-to-one relation with the closed linear subspaces
of a Hermitian vector space or pre-Hilbert space. Let us note that this result will be crucial
to construct a computational approach relying on quantum logic.

In accordance with Piron’s result, the mentioned Hermitian vector space or pre-
Hilbert space has a non-degenerating Hermitian form ⟨· | ·⟩, which allows the formation
of the orthocomplementation S⊥ of any subset S in the sense of an orthogonality relation
concerning the Hermitian form. Here, a subset is described as closed if the involution
law (1b) applies.

At this point, we will briefly summarize how the lattice operations affect the subspaces
of the Hilbert space according to Birkhoff and von Neumann [1]:

• H ∧ H̃ := H ∩ H̃, H, H̃ ∈ H(Ω),

• H ∨ H̃ := H + H̃, H, H̃ ∈ H(Ω),
where the + represents the vector sum, such that the join or union of two subspaces is
the smallest subspace encompassing both these subspaces,

• H⊥ is the orthogonal complement of H ∈ H(Ω), such that v ⊥ w for all v ∈ H and
w ∈ H⊥, H ∨ H⊥ = H + H⊥ = 1 = H and H ∧ H⊥ = 0 = {0}, where {0} is the
singleton that only consists of the null vector,

• H ≤ H̃ is equal to H ⊆ H̃ for all H, H̃ ∈ H(Ω).

Mathematics 2024, 12, 1646 4 of 21

The lattice of subspaces of a Hermitian vector space with the orthogonal comple-
ment operation is, in general, not distributive, i.e., a ∧ (b ∨ c) ̸= (a ∧ b) ∨ (a ∧ c). As an
example for this statement, we consider the lattice of the subspaces of F2

2 = GF(2)2 =
{(0, 0), (0, 1), (1, 0), (1, 1)}, which consists of the two-dimensional elements of {0, 1}× {0, 1},
with the component-wise addition

0 + 0 = 0 = 1 + 1, 0 + 1 = 1 = 1 + 0

and component-wise multiplication

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

To make it clear that we are talking about subspaces here, we write the ordered pairs in [·]
notation. The following then applies:

[(1, 1)] ∧
(
[(1, 0)] ∨ [(0, 1)]

)
= [(1, 1)] ∩

(
[(1, 0)] + [(0, 1)]

)
= [(1, 1)] ∩ [(1, 1)] = [(1, 1)]

and at the same time(
[(1, 1)] ∧ [(1, 0)]

)
∨
(
[(1, 1)] ∧ [(0, 1)]

)
=
(
[(1, 1)] ∩ [(1, 0)]

)
+
(
[(1, 1)] ∩ [(0, 1)]

)
= [(0, 0)] + [(0, 0)] = [(0, 0)].

holds true. This is a contradiction to distributivity.
The non-distributivity is probably the best-known property of quantum logic. A classic

physical example of this is Heisenberg’s uncertainty principle, according to which it is not
possible to determine the position and the momentum at the same time, as the measurement
influences the system. To be precise, let there be three propositions a, b, c, which correspond
to a momentum measurement a and a position measurement that are divided into a left
interval b and a right interval c. Then, according to Heisenberg’s uncertainty principle,
the terms a ∧ (b ∨ c) and (a ∨ b) ∧ (a ∨ c) could produce different results since in the
second term, we always have a momentum and a position measurement at the same time.
Therefore, this represents another contradiction to distributivity.

For this reason, we use a weakened form of distributivity in the form of the following
definition of

orthomodularity: a ≤ b =⇒ a ∨ (a⊥ ∧ b) = b. (4)

Specifically, there is a connection between the orthomodularity and the Hilbert space, which
was proven by Solér [24] and states that the pre-Hilbert space is complete if and only if
the propositions a, b satisfy the orthomodular law (4). Because of this orthomodularity
property, we will use so-called orthomodular lattices in the following. This leads to the main
result that Birkhoff and von Neumann [1] as well as Piron [2] have proven in the form of
the aforementioned connection of the lattice L and the Hilbert space.

2.1.3. Projective Geometry of Quantum Logic

After having introduced some basic algebraic concepts of quantum logic, we will
introduce the axiomatic theory presented by von Neumann for the remainder of this
section, leading to the foundation of a projective geometry. Our exposition of this is based
on the book by Chiara et al. [3].

As for a beginning, let us point out that the quantum logical states have associated state
vectors in terms of wave functions that form, in general, an infinite-dimensional complex
Hilbert space H. The wave functions are the reason the corresponding Hilbert space is
called phase space. Thereby, a distinction is made between the pure states, which are unit
vectors of the Hilbert space, and the already mentioned mixed states, which are weighted
combinations of pure states that will be represented by density operators ρ of the Hilbert
space. However, it has already been shown that this can be realized with (not necessarily

Mathematics 2024, 12, 1646 5 of 21

complex) finite-dimensional spaces of at least rank four, see for example, [2]. This means
for the case Ω = Rn that the elements of H(Ω) are the vector subspaces of Rn.

In the following, we will replace H(Ω) with the set C(H) of closed subspaces of H.
Each pure state or unit vector ψ enables a projection P[ψ], which is the projection onto the
one-dimensional closed subspace [ψ] ∈ C(H) corresponding to ψ. However, as for the
mixed states, it should be noted that not every possible density operator can be represented
by a projection P[ψ].

The mentioned one-to-one connection by Piron’s result, between the state space and
the phase space, relies on the fact that one can map one-dimensional subspaces of the
Hilbert space into one point (atom) and the linear subspaces of the Hilbert space onto linear
sets, i.e., straight lines through at least two points. Consequently, we have a one-to-one
correspondence between the set Π(H) of all projection operators and the set C(H) of closed
subspaces of H. This leads to a projection from the phase space into the state space since the
projective space C(H) consists of the states of the system. The resulting projective geometry
is the main reason why quantum logic is used in general.

2.1.4. Construction of the Projection Operators and the Probability Measure

The aforementioned Hilbert space formalism allows us to use corresponding mul-
tidimensional models and assign probabilities to them. For this purpose, we consider
the variables A1, . . . , An, n ∈ N, which take on one of the finitely many values λ1, . . . , λm,
m ∈ N, in a measurement that defines the state of the system. Thereby, Ai will be called
observables and the output of the measurement of an observable leads to an event E, which
we will interpret as a projection.

As for the relation between a physical measurement and its mathematical realization,
this means that every measurement will be represented by a self-adjoint operator on the
Hilbert space, which one refers to as observable. The eigenvectors of such an operator
form an orthonormal basis for the Hilbert space, and each possible result of this measure-
ment corresponds to one of the vectors that form the basis. The individual events are
subspaces of the Hilbert space, and we associate each subspace (or the corresponding event
E) with a projector PE, which projects vectors into the corresponding subspace and fulfills
PE = P2

E = PH
E , where PH

E represents the Hermitian transpose of PE.
This projector allows us to assign an expected value to an observable, i.e., that the

observable is in a state, which is represented by the pure state ψ. That means, if ψ is any
unit vector, we can define a probability measure p[ψ] as

p[ψ](PE) := ⟨PEψ | ψ⟩ = ψ⊺P⊺
Eψ = ψ⊺PEψ = ψ⊺P2

Eψ = ψ⊺P⊺
EPEψ

= ⟨PEψ | PEψ⟩ = ∥PEψ∥2.
(5)

For practical applications of quantum logic, it appears to be essential to create appropriate
projectors. So far, we have only indicated some properties that they must fulfill, but not
how to construct one. We will now do this as a first step for projectors on pure states. If we
explain the projection operator on the one-dimensional subspace [ψ] belonging to the pure
state ψ as P[ψ](x) = | ψ⟩⟨ψ | x⟩ = ψψ⊺x for all x ∈ H, we obtain the notation

p[ψ](PE) = ⟨PEψ | ψ⟩ = ∑
i,j

pijψjψi = Tr(PEψψ⊺) = Tr
(
PEP[ψ]

)
, (6)

where PE = (pij), ψ = (ψ1, ψ2, . . .)⊺ and Tr is the trace functional, which is more common
in quantum mechanics. This means PE will have value 1 in the state ψ or, in other words,
we have the certain verification of an event that belongs to an arbitrarily closed subspace E
by a pure state ψ iff ψ is an element of E ∈ C(H):

p[ψ](PE) = 1 iff ψ ∈ E iff PEψ = ψ. (7)

Mathematics 2024, 12, 1646 6 of 21

This representation can also be extended to mixed states. To achieve this, we consider a
mixed state as a superposition of several pure states ψi and can thus explain the density
operator δ mentioned above as

ρ = ∑
i

tiP[ψi]
, ti ∈ [0, 1], ∑

i
ti = 1. (8)

This allows us to specify the corresponding probability measure as a convex combination:

p(PE) = ∑
i

tip[ψi]
(PE) = ∑

i
ti Tr

(
PEP[ψi]

)
= Tr

(
∑

i
tiPEP[ψi]

)
= Tr(ρPE),

ti ∈ [0, 1], ∑
i

ti = 1,
(9)

which is the usual way of representing the probability that the system is in a mixed state
ρ and fulfills an event E by the projection PE according to the Born rule. In particular,
Gleason [25] showed that this representation is the only one that allows probabilities to be
assigned to a subspace in the sense of a positive measure for dimensions greater than two.

2.2. Towards Application of Quantum Logic for Shape Classification

So far, we have looked at the basic properties and some conclusions in quantum logic.
Now we want to connect these to an application and show how to make use of quantum
logic in a shape classification framework as exemplified.

To make this connection more precise, we explain L in a symbolic sense as the col-
lection of all properties of our system S , or in other words, as a collection of “yes” or
“no” experiments. A distinction is not necessary in this sense, since each property can be
queried with a yes or no question and vice versa. If we transfer this to a quantum system,
L corresponds to the collection of all closed subspaces C(H) of our Hilbert space H, and we
say that such an experiment is “true” if the state vector lies in the corresponding closed
subspace E of H. In this case, we say “E is true” and we only deny it with certainty if the
state vector lies in E⊥.

2.2.1. Quantum Logical Meaning of a Shape

By transferring this idea to shapes, we may understand a state vector as a vector that
contains certain predetermined information about the shapes under consideration. Since
our goal is to decide whether a given shape S corresponds to a certain shape class or not,
we can also identify this question as a “yes” or “no” question.

Consequently, we would answer “yes” if the shape under consideration S corresponds
to a specific shape class and if the corresponding state vector lies in a closed subspace of
the Hilbert space. This closed subspace would then have to be associated with this specific
shape class in this sense.

2.2.2. Idea Behind Shape Classification with Quantum Logic

In this context, the quantum logical setting offers the advantage that we can not only
say whether a shape S belongs to a certain class or not, but even with what probability. In
this sense, it should be noted that S could have any shape regardless of the experiment we
conduct. However, if it is a type of shape that we have used to span the Hilbert space, then
S would correspond to a pure state, and we could use Equation (5). Otherwise, if S was a
superposition of the types of shapes we used to construct H, we would use Equation (9).
At this point, it should also be emphasized that when we discuss the Hilbert space spanned
by these types of shapes, we mean a subspace of the Hilbert space of all possible shapes,
which is itself a Hilbert space to apply quantum logic to.

Mathematics 2024, 12, 1646 7 of 21

2.2.3. Necessary Considerations for Shape Classification

If we follow this train of thought further, the underlying projection operator would
have to map a vector onto a one-dimensional subspace belonging to the type of geometric
shape under consideration. This means that we need a separate operator for each type of
shape, i.e., triangles, squares, etc., with which we can decide to what extent the state vector
under consideration corresponds to this type of shape.

In order to express the shape classification task quantum logically, we therefore need a
Hilbert space of shapes on which we can work. We have to span this space with axes that
we associate with certain types of shapes, and to obtain a probability for the classification,
we have to compare the considered shape S with the representatives of these axes.

To achieve this, we first have to convert all shapes into normalized vectors of the
same length, which contain enough information about these spans to make meaningful
decisions. We will divide these vectors into directions that have the greatest influence,
which we realize here by using the principal component analysis. These should then be the
directions that contribute significantly to categorizing a shape as a triangle, for example.
We, therefore, use them to construct our projection operators. We will devote the rest of
this section to realizing this prepared setting.

2.3. Summary of Principal Component Analysis (PCA)

The PCA is a statistical technique to reduce the dimension of a large dataset while
preserving most of the contained information. It maps a large dataset into a smaller number
of new variables called principal components.

The first principal component belongs to the direction where the dataset has the
highest variance, and the second principal component belongs to the direction with the
second-highest variance, and so on. All directions produced this way are orthogonal to
each other, or in terms of quantum mechanics, they are uncorrelated.

Let us recall the PCA method step-by-step. Assume a given dataset consisting of r ∈ N
random vectors X ∈ Rk of length k. The r random vectors will be merged into a matrix
X ∈ Rk×r

X = (X1, X2, . . . , Xr) (10)

The first step in the PCA method is to center the data. Therefore, we calculate the
mean value for each row of X and obtain the mean value vector µ ∈ Rk. Thereafter, we can
subtract µ from each random vector X in X. We will write the subtraction as X − µ.

Second, we compute the covariance matrix C := CXX via

C = cov(X, X) =
1

k − 1
(X − µ)(X − µ)⊺ ∈ Rk×k (11)

As a third step, we calculate the spectral decomposition of the matrix C:

C = VΛV⊺, (12)

where Λ = diag(λ1, λ2, . . . , λk) ∈ Rk×k is the matrix of the sorted λ1 > λ2 > . . . > λk ≥ 0
eigenvalues. The matrix V = (V1, V2, . . . , Vk)

⊺ ∈ Rk×k contains the normalized eigenvectors
Vi with ∥Vi∥ = 1 of C belonging to eigenvalue λi, denoting the corresponding eigenspace.
The vectors Vi will act as the directions mentioned at the beginning of this section.

The fourth and last step will be the calculation of the principal components Y of an
already-centered random vector X

Yi = V⊺
i X = ⟨Vi | X⟩ or Y = V⊺X = ∑

i
ei⟨Vi | X⟩ (13)

with Yi the ith principal component, ei the ith unit vector, and ⟨· | ·⟩ the dot product in a
Hilbert space.

Mathematics 2024, 12, 1646 8 of 21

A useful property of the principal components is that the variance of the ith component
will be the ith eigenvalue, λi

var(Yi) = λi (14)

This will ensure that the first principal component has the largest variation since the
eigenvalues are ordered. One may interpret the ith principal component Yi as the share of
X in the direction Vi.

2.4. Classification by Quantum Logic

In this section, we want to build the bridge between the probability measure of the
quantum logic and the principal components from the previous section. Before we can con-
nect these two components, we want to expand the notation of the principal components.

2.4.1. Expanding the Notation

Consider a set of geometrical objects O with the index set G. The set O consists of the
geometrical shape classes Os and s ∈ G and will be used to store the various classes we
want to classify. In this context, s, t ∈ G refers to two different shape classes if s ̸= t and
refers to the same shape class if s = t.

By using only random vectors Xs of shape class Os with s ∈ G for the PCA formalism,
we obtain the eigenspace Vs and mean vector µs for this specific shape class.

In Figure 1, we illustrate the obtained eigenspaces for a triangle and square. We make
use of the geometrical object sets Os with s ∈ G = {△,□} containing only triangles and
squares. In this sense, V△ is the eigenspace of the triangle and V□ belongs to the square
shape class. Analogously, we depict the mean vector µ.

µ4

V 4
1

V 4
2

µ�

V �
1

V �
2

X

x

y

Figure 1. A visualization of made-up results of the principal component analysis. This two-
dimensional example shows the eigenvectors Vs

1 , Vs
2 and mean vectors µs for two different shapes

from the sets Os for s ∈ G = {△,□}, namely triangle and square. Additionally, we show a random
vector X.

We will adapt the notation even further. In Equation (13), we want to make sure that
we can distinguish between the shape class Ot that provides a random vector Xt and the
eigenspace Vs of another shape class Os, for s, t ∈ G. This will enhance the notation of the
principal component vector.

t
sY = Vs⊺(Xt − µs) =

〈
Vs | Xt − µs

〉
, s, t ∈ G (15)

As an example, △□Y will describe the principal components obtained from a random vector
from the triangle shape class X△ and the square shape class eigenspace V□.

Mathematics 2024, 12, 1646 9 of 21

2.4.2. Probability Measure Constructed by Quantum Logic

The theory of quantum logic, in particular, Equation (5), will build the foundation of
the presented classification approach. This formula allows us to construct a probability
measure p[ψ](PE) for any unit vector ψ and projection operator P .

In our setting, the random vector X of an arbitrary shape class acts as the unit vector
ψ. In Section 2.2, we introduced a projection operator for pure states and a density operator
for mixed states that consist of pure states. The eigenvectors Vi, from the PCA, will take
the role of the pure states. Hence, we need to show that a projection operator P obtained
from the eigenvectors, fulfills the conditions (P is Hermitian and idempotent) presented in
Section 2.1 for a suitable projection operator.

We construct the operator P via

P =
k0

∑
i=1

|Vi⟩⟨Vi| , k0 ∈ [1, k]. (16)

The resulting matrix is symmetric and real-valued, i.e., the condition P = PH is fulfilled
for this operator. To prove the idempotence, we calculate

P2 = PP⊺ =
k0

∑
i,j=1

|Vi⟩ ⟨Vi | Vj⟩︸ ︷︷ ︸
=δij

⟨Vj| =
k0

∑
i,j=1

δij|Vi⟩⟨Vj| =
k0

∑
i=1

|Vi⟩⟨Vi| = P , k0 ∈ [1, k].

As such, our P fulfills all the requirements of a projection operator, and we can now use it
to calculate a probability measure p[X] for a pure state or a normalized random vector, X.

p[X](P) = ⟨PX | X⟩ =
k0

∑
i=1

⟨X | Vi⟩⟨Vi | X⟩ =
k0

∑
i=1

X⊺ViV
⊺
i X =

k0

∑
i=1

(
V⊺

i X
)⊺V⊺

i X

=
k0

∑
i=1

Y⊺
i Yi =

k0

∑
i=1

∥Yi∥2, k0 ∈ [1, k], ∥X∥ = 1

(17)

This formula allows us to compute the probability measure via the principal components.
Therefore, we can check if a normalized random vector X belongs to a certain shape class
Os with s ∈ G by computing the principal components sY according to (15).

Since the maximal dimension of our constructed Hilbert space H is k, we will face
some issues that will be addressed now. As a recall of Equation (7), setting k0 = k will
result in a probability measure of one, since we make use of all principal components. As
we mentioned at the end of Section 2.3, we can interpret the principal component Yi as the
share of X onto the direction Vi. Using k0 = k would lead to the fact that we make use of k
orthogonal directions in a k-dimensional Hilbert space. Hence, the eigenvectors will span
the complete space, regardless of the considered shape class. Computing the probability
measure p[X](Ps) of a random vector X belonging to shape class Os with s ∈ G will lead to
a value of one. To avoid this issue, we changed the condition k0 = [1, k] to k0 = [1, k).

In Figure 1, we visualize this issue. There we have a two-dimensional space with two
results from the PCA, namely the eigenvector spaces from a triangle and a square shape
class, respectively.

Considering the projection of the now normalized random vector X onto the first
eigenvectors of the triangle and square, we can argue that the probability that X will be
labeled as a member of the square shape class is much higher than the probability of being
labeled as a triangle, since the share of X onto V□

1 is bigger than the share onto V△
1 .

If we used both eigenvectors for each shape and computed the probability measure, we
would obtain one for both shape classes since each eigenvector pair is a suitable description
of the two-dimensional plane; therefore, the vector X is fully described by both pairs.

In the end, we will rewrite Equation (17) to be fit for the classification and consider
these remarks:

Mathematics 2024, 12, 1646 10 of 21

p[Xt](Ps) =
k0

∑
l=1

∥∥t
sYl
∥∥2, k0 ∈ [1, k), ∥X∥ = 1, s, t ∈ G (18)

Finally, we expect that our approach will lead to relatively high probability measures
for the case s = t in s

tY since the first principal components should have greater values than
the case s ̸= t for s, t ∈ G.

2.4.3. Quantum Logical Interpretation

A quantum logical interpretation of the combination would be that each of the eigen-
vectors produced from the PCA will represent an assertion about a specific shape class. We
will not know the exact wording of these assertions, but we know two things.

The first thing is that the initial assertion should be the most controversial since the
principal component Y1 varies the most; see (14). Adding more assertions, i.e., increasing
k0, will lead to more and more specific perceptions of a shape. As the variation in the last
assertion is small or negligible, we can safely disregard it.

Second, using all possible assertions, we should be able to confidently tell whether a
random vector X belongs to a specific shape class or not. And, with (18), we can also assign
a percentage value to this “belonging”.

3. The Experiment and the Preparation

We would like to point out, again, that one of the contributions of this paper is the
exposition of the connection between PCA and quantum logic. In this section, we will
dedicate ourselves to having a closer look at a possible way to convert our data into a
format that can utilize this connection.

To be more precise, we will now explain our data format and then move on to illustrate
the preprocessing to generate the random vectors X from our shape dataset. Then, we will
discuss a method of shape classification and provide an algorithmic pipeline. At last, we
will show and discuss the produced results.

3.1. Shape Data

For the start, we want to briefly explain the concept of a shape as we employ it. A
shape S is considered to be realized by a closed curve in a two-dimensional space, S ⊂ R2.
Such a curve is established as a point cloud P ⊂ R2 with n ∈ N points (xi, yi) = pi ∈ P for
i ∈ {1, 2, . . . , n}. The coordinates x and y of a single point are denoted via xi and yi. In this
way, the point cloud P will represent a discrete realization of the shape S.

The Dataset

The core of the used dataset is the geometric shape dataset [26]. This dataset consists of
10,000 pictures per shape and contains pictures of triangles, squares, pentagons, hexagons,
heptagons, octagons, nonagons, circles, and stars (with a centered pentagonal hole) in
different rotations, sizes, positions, and colors of the shapes themselves and the background.
We also used this dataset in a previous paper, see [27]. There, we already transformed the
images into point clouds. These point clouds define the starting point for our preprocessing.

The process we employ to boil down a color image to a point cloud is sketched in
Figure 2 and will be shortly reviewed now. First, we select one color channel of the image
and obtain a gray-scaled version of the image. The second step is the transformation into
a binary black-and-white image. Thereafter, we use the bwboundaries MATLAB R2021b
routine to compute the point clouds.

The reason behind using only one color channel of the image to create a grayscale
image is that the pictures from the dataset were created to have a constant mean value
over the whole image. Doing otherwise, we would end up with no difference between
background and shape in the image, and we would not be able to produce a binary image
for further processing.

Mathematics 2024, 12, 1646 11 of 21

Figure 2. Illustration of basic steps we used to generate point clouds from color images (left). First,
we just use a gray-valued version of the image (middle left) and transform it into a black-and-white
image (middle right). As the last step, we use the MATLAB R2021b routine bwboundaries to create a
point cloud (right); see also [27].

For the stars, the MATLAB routine bwboundaries produced two to three point clouds,
i.e., one point cloud of the star, one pentagon point cloud, and occasionally an image border
point cloud. These point clouds swapped their order from image to image. In the end, we
were unable to automatically select only the useful point cloud. Since the proceeding is
troublesome when producing point clouds from the star images, we chose to ignore these
data and consider only the remaining geometrical shapes of the given dataset.

With the remaining dataset, we have a geometrical shape set

O =
⋃

s∈G
Os with G = {3, 4, 5, 6, 7, 8, 9, ∞} ,

where we denoted the different shapes with their number of vertices. For the circle, we
decided to use here the symbol ∞ to encode the number of vertices.

The point clouds P that result from this process are ordered. Therefore, the point
pi ∈ P is the predecessor of the point pi+1 ∈ P in the images and in the dataset. Since the
geometric shapes have different sizes in the images, the number of points per point cloud
differs for different realizations of a shape class. Therefore, we end up with point clouds
with a size ranging from close to 100 to about 500.

3.2. Preprocessing

The point clouds are the starting point for the preprocessing that produces the random
vectors X. Thus, the aim of the preprocessing is to convert all point clouds into normalized
vectors of the same length, which are supposed to store enough information to make
meaningful classifications possible.

3.2.1. Shape Descriptors and Signature

We will start to convert the point clouds P with their set of two-dimensional coordi-
nates into a one-dimensional object.

This process should encrypt the geometry of the shapes in a meaningful, fast, and
computable way. To this aim, we will adopt the D1 shape descriptors presented in [28].

This shape descriptor will calculate the distance d(·) : R×R → R between a point p
from the point cloud P and a chosen center point pc = (xc, yc), as

d(pi) = ∥pi − pc∥2 with pc =
1
n

n

∑
i=1

pi (19)

We make use of the Euclidean norm ∥ · ∥2 and the barycentre of the point cloud as the
designated center point pc. The center point will thus be calculated by the arithmetic
average of all n points of the point cloud. In Figure 3, we provide a visualization of this
process for a triangle point cloud.

Mathematics 2024, 12, 1646 12 of 21

d
pc

Figure 3. The visualization of a triangle point cloud, the center point pc, and the distance d.

Now, we can create an ordered set of distance samples, also called an ordered collection,

D = {d(p) : p ∈ P} (20)

with a collection size of n, which corresponds to the number of points in the point cloud.
The phrasing “ordered” refers to the fact that we will keep the intrinsic order of the points
from the underlying point cloud P.

In Figure 4, we plotted the ordered samples of a triangle, pentagon, nonagon, and
circle. In these ordered samples, the vertices and the mid-edge points are recognizable
through the higher and lower distance values. Additionally, we notice that the size of the
shape impacts the produced distances d. This indicates that we still need some further
preprocessing, which will be addressed in the next section.

10

15

d
is
ta
n
ce

d

20
22
24
26

d
is
ta
n
ce

d

13

14

15

d
is
ta
n
ce

d

30

31

32

d
is
ta
n
ce

d

Figure 4. We plotted here the ordered D samples for four geometrical shapes. The y-axis shows the
distance, and the x-axis is just an integer that indicates the position in the sample. Therefore, we left
the x-axis empty. From top to bottom, we see the samples of a triangle, pentagon, nonagon, and circle.
Additionally, we show the resource images of the samples on the right side. Compare [27].

3.2.2. Normalization

With the creation of the sample D, we eliminated dependency on rotation and trans-
lation. The sample is still correlated to the size of our shape, as we already mentioned.
For example, bigger shapes or image-filling shapes will produce, on average, larger shape
descriptors d since the distance between the center point and the boundary points is larger;
see Figure 4. The geometrical shapes of the triangle (first row) and nonagon (third row) are
similar in size, and therefore, the range of distance values is roughly similar. The pentagon

Mathematics 2024, 12, 1646 13 of 21

(second row) and circle (fourth row) produce distances that vary around a value of 23 and
31. And these effects occur between the samples within a certain shape class as well.

Since we can have large and small shapes, we want to unitize the samples for the next
preprocessing steps and thus make the samples more comparable with each other. A first
approach to this problem is normalization. Since there are multiple ways of normalization,
we want to present the methods used:

Mean-Normalization To ensure that all collections have the same mean value, we compute
the mean value of a reference collection µDref . The mean value for a collection will be
calculated via

µD =
1
n

n

∑
k=1

d(pk) ∀d(p) ∈ D and p ∈ P (21)

The mean normalization of a collection D can then be calculated by

D̃ =
µDref

µD
D (22)

Max-Normalization Similar to mean normalization, we will store the maximum of a
reference collection max(Dref). Then, we ensure that every collection D will have the
same max value as the reference collection via

D̃ =
max(Dref)

max(D)
D (23)

After the mean-Normalization, all samples from a certain shape class have the same
mean value, which is analogous to the max-Normalization, where all samples will have the
same maximum value.

As for important implementation details, from the 10,000 samples per shape class,
we simply take the first sample as the reference and normalize all other samples of that
shape accordingly. The normalization is performed per shape class; that is, triangles are
normalized with respect to the reference triangle, squares with respect to the reference
square, and so on.

3.2.3. Histogram Technique

After normalization, the samples are no longer dependent on the shape size. However,
the samples still consider the size of our point clouds. As the object size in the image
increases, the number n of points in the point cloud P increases and so does the number of
elements in D. This is why we have different sample sizes up to now.

Another issue is that the single entries do not contain any real information, which
may be crucial for the PCA. The first element in the sample is the normalized distance
from the first point in the point cloud to the center of the shape. This first point could
be anywhere on the shape curve, as we have no control over the original sorting of the
points, nor do we want to, as we do not want to limit the generalization properties of our
approach unnecessarily.

To address these two points, we make use of a histogram technique. The length will
be standardized into predetermined bins, providing an approximate representation of
the distance distribution for each sample, denoted as D. Furthermore, we can store the
results in the elements of a vector, and therefore even the position in a vector will encrypt
information, which we consider helpful for the usage of the PCA. We thus expect that the
distribution of distances for a triangle compared to another triangle has more in common
than the comparison to, e.g., a distribution of distances for a square.

Let us now briefly explain the idea behind the histograms and how to construct them
to obtain a vector from a shape that meets our desired requirements. The main idea of a
histogram, as we use it, is to distribute a sample over k ∈ N bins, where each bin represents
a range of values—in our case, the distances d from a sample D. Then, we can count how

Mathematics 2024, 12, 1646 14 of 21

many elements fall into each of the bins. Therefore, it is crucial that the bins do not overlap
so that all values can only fall into one bin. In the end, we obtain a vector of length k, which
stores the number of elements in each bin. And to keep the results comparable and ensure
that the entries store the same information, it is mandatory to use the same bins for all
histograms of a single shape.

Since the sample size still differs from sample to sample, the bins of larger samples
contain more elements than the bins of smaller samples. To solve this, we can normalize
the histograms so that each histogram sums up to an area of one. And the area can be
calculated as the sum of all products of the number of elements in a bin and the width of
the bin. We make use of this approach because most of the libraries used in programming
have a density option for creating a histogram.

To summarize, with these histograms we have constructed a mathematical object in the
form of a vector with meaningful axis entries from a shape that is independent of rotation,
translation, and the size of the shape. In addition, the resulting vector has a defined length
of k ∈ N, and each dimension of the vector has a relationship to a shape class that may
differ from class to class. This means that we can use them as a starting point for the PCA
analysis presented in Section 2.3.

Summary of Preprocessing

We started with the two-dimensional point cloud obtained from geometrical objects.
From these point clouds, we have calculated the D1-distance. Then, we normalized all
D1-distances within a certain shape class. In the end, we compute a histogram from a
normalized D1-distance. These histograms lay the foundation for the PCA.

3.3. Shape Classification

Our classification process is made up of two parts: the actual classification, where we
determine the extent to which a shape belongs to a certain shape class, and the calculation
of the hit rate to quantify the quality of our classification.

3.3.1. Classification Procedure

The core fundamentals for the classification are provided by Equation (18). If we have a
normalized random vector X (∥X∥ = 1) from an unknown class, we compute the principal
component vector tY obtained from the eigenvector spaces Vt for t ∈ G. Thereafter, we
compute the probability p[X](Pt) for different k0 ∈ [1, k) of X using Equation (18). In the
end, we need to choose the class, in which X has the highest probability.

s = arg max
t∈G

p[X](Pt) = arg max
t∈G

k0

∑
l=1

∥tYl∥2 = arg max
t∈G

k0

∑
l=1

〈
Vt

l | X − µt
〉2, (24)

where we make use of the Euclidean norm for ∥·∥, and since the single term in the sum is
made up of scalars, it simplifies to the square of the terms.

This procedure can be seen in Table 1, where we use the values from Figure 5 to support
this method with numbers. In the image, we show the square of principal components
3
3Y (left) and 3

4Y (right) in percentages. We see that the square of the first component of 3
3Y

contributes 73.14% to the total probability and, on the other hand, the first component of
3
4Y will only contribute 4.12%. Therefore, the outcome of Equation (24) would always be
3, since we obtained the highest probability measure for the projection operator P3 of the
triangle shape class, regardless of the chosen parameter k0.

Mathematics 2024, 12, 1646 15 of 21

Table 1. The probabilities of a triangle random vector X3 ∈ R10 (k = 10) acting on different projection
operators over different values for k0 ∈ [1, k). In the second row, we used the projector P3 obtained
from the triangle eigenvector space, and in the third row, we make use of the projector P4 from the
square shape eigenvectors. For all values of k0, the second row stores the higher values, which would
lead to the conclusion that X is obtained from a triangle point cloud.

k0 1 2 3 4 5 6 7 8 9

p[X3](P3) 73.14 80.09 88.91 88.91 91.08 95.35 97.01 97.30 99.04
p[X3](P4) 4.13 15.78 16.54 16.96 17.11 19.66 88.63 95.14 95.96

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

7
3
.1
4
%

6
.9
5
%

8
.8
2
%

0
.0
0
%

2
.1
7
%

4
.2
6
%

1
.6
7
%

0
.2
9
%

1
.7
4
%

0
.9
6
%

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

4
.1
3
%

1
1
.6
5
%

0
.7
6
%

0
.4
2
%

0
.1
5
%

2
.5
5
%

6
8
.9
7
%

6
.5
1
%

0
.8
2
%

4
.0
5
%

Figure 5. The square of principal components 3
3Y (left) and 3

4Y (right). We notice that a normalized
triangle histogram X to a triangle eigenvector base will produce larger percentages in the first few
components than the normalized triangle histogram that acts on the eigenvector base of a square.

3.3.2. Hit Rate

Consider having multiple shape classes stored in O and each shape class Os for s ∈ G
has m ∈ N random vectors X. We want to know how many vectors are classified into a
specific shape class.

Generally speaking, we will call a classification successful if s = t, and call it fail if s ̸= t
for two shape classes Os and Ot with s, t ∈ G. To quantify the quality of the classification,
we introduce the hit rate h(s, t) : G × G → [0, 1], where we compute the quotient of the
number of vectors of shape class Ot classified as shape class Os over the total number of
elements mt in class Ot:

h(s, t) =
#Xt classified to Os

mt
, s, t ∈ G (25)

The hit rate h(s, t) will be visualized in a matrix-styled plot, see Figure 6. The x-axis
will represent the result of the classification, shape class Os, and the y-axis indicates the
original shape class Ot, for s, t ∈ G = {3, 4, 5, 6, 7, 8, 9, ∞}. The gray value in the entries of
the hit rate matrix encodes the value for the hit rate. A black entry will represent a value of
one for h(s, t), and for a value of zero, we will produce a white entry in the hit rate matrix.

Mathematics 2024, 12, 1646 16 of 21

3 4 5 6 7 8 9 ∞
3

4

5

6

7

8

9

∞
0

0.2

0.4

0.6

0.8

1

Figure 6. The visualization of a hit rate matrix h(s, t) (25). The y-axis shows the source shape class
Ot, and the x-axis presents the result of the classification process, e.g., shape class Os, for s, t ∈ G. We
illustrate the percentage as a gray valued box. Values closer to one, respectively 100%, yield darker
boxes, and lighter boxes indicate lower percentages.

3.4. The Experimental Pipeline

In this section, we want to present the pipelines and algorithms we used to create
our results.

First, we need to preprocess the loaded point cloud as discussed so that they can be
used for the PCA. Algorithm 1 provides an overview of this process.

Algorithm 1: Algorithm for preprocessing the data.
Data: Point clouds of different shapes
Result: for PCA useable random vectors X
loading point clouds;
for every shape class Os with s ∈ G do

for each point cloud P in shape class Os do
Compute features via (19);
Normalize the features via (22) or (23);

end
Compute max and min over all normalized features to unify the k histogram
bins per shape class;

for each normalized sample D̃ in class Os do
Compute the histograms and store them as random vectors X;

end
end

For all shape classes Os with s ∈ G = {3, 4, 5, 6, 7, 8, 9, ∞}, and for all point clouds
belonging to class Os, we produce normalized samples. Then, we computed the max- and
min-values of all normalized samples D̃ of each shape class Os to define the width of the
k = 10 bins. With these bins, we produced the histograms X from the samples D̃. After this
step, the preprocessing is finished.

The next step would be the separation between the training dataset and the test dataset.
We chose a ratio of 7:3. From the 10,000 histograms X in shape class Os, we used 7000 for the
training with PCA, and the remaining ones for testing. These remaining 3000 histograms
will be used to test the matching quality of this approach.

In the third step, we produced the eigenspaces Vs and mean values µs with the
PCA and the histograms labeled for training. The PCA is performed separately for each
shape class Os with s ∈ G. We stored the produced eigenspaces and mean values for the
classification process later on.

Mathematics 2024, 12, 1646 17 of 21

The fourth step calculates the classification via (15). This is illustrated in Algorithm 2.
Here, we normalize the histograms labeled for testing again, so that ∥X∥2 = 1. We will make
use of the 2-norm for this since ∥·∥ in (18) refers to the induced norm from the inner product.
In this case, it is the 2-norm since we are using the Hilbert space Rk. Thereafter, we compute
the principal values t

sY for all combinations of s, t ∈ G, using Equation (15).

Algorithm 2: Compute the probability and construct the hit rate matrix.
Data: For testing random labeled vectors X, stored mean values µ and

eigenspaces V of shape classes in O
Result: Hit rate matrix h
for every shape class Ot with t ∈ G and every Xt in Ot do

Normalizing the random vectors Xt;
for every eigenspace (Vs, µs), s ∈ G do

Compute t
sY via (15);

end
for k0 ∈ [1, k) do

Compute the probability measure p[Xt](P) with (18);
Use these results to compute the best classification with (24);
Compute the hit rate h(s, t) via (25);

end
end

With t
sY, we can thus calculate probabilities via (18) and different k0 ∈ [1, k). Thereafter,

we can produce a hit rate matrix using Equations (24) and (25).
Finally, we would like to emphasize the two main properties that the generated

random vectors X should have. All vectors must have the same length, and each dimension
should encrypt some information.

Since we do not make use of any complex calculation, the presented framework is
quite fast. We need only 10 s from loading the point clouds to produce an image of the hit
rate matrix, regardless of the chosen normalization.

The GitHub link to our experiment can be found in the section “Data Availability
Statement”.

3.5. Experiments

For conducting the experiments, we would like to formulate two theses. First, we
would like to see that we are actually able to distinguish between different shape classes in O.
Second, we would like to see that this prediction improves with an increasing value for k0.

For this aim, we will make use of the presented pipeline and switch between the two
normalizations, namely mean-Normalization and max-Normalization.

The resulting hit rate matrices for different k0 ∈ [1, k) and k = 10 are depicted in
Figures 7 and 8. There, we increase k0 ∈ [1, 10) row-wise from the top left image down to
the bottom right image. Now, we will examine the hit rate matrices with respect to our
two theses.

Both figures have a visible diagonal line, which is more dominant for shapes with
a higher number of nodes, i.e., hexagon up to circle. The mean-normalization tends to
have more problems with low node shape classes than the max-normalization because the
diagonal line is faintly recognizable.

Concerning the second hypothesis, we notice that the diagonal becomes more and
more dominant if we increase the value of k0. It is remarkable that we achieve the best
results for values of k0 ∈ {7, 8}. However, we observe for k0 = 9 an overall increase in
the number of failed classifications. These failed attempts are more spread over multi-
ple shape classes in the max-normalization and fixed to the hexagon shape class for the
mean-normalization.

Mathematics 2024, 12, 1646 18 of 21

In addition to the failed classifications, we notice other side effects and attempt to give
an explanation for these.

We start with a potential explanation for the failed classifications. One reason could
be the inherent structure of the principal component calculation. Therefore, we subtract
the mean value µs of a specific shape class Os with s ∈ G from a random vector X. As a
result, the random vector X belonging to the shape class Os should be closer to the origin
of the eigenvector space spanned by this shape class than the random vectors of the other
shape classes. Since points close to the origin are more sensitive to small errors, a small
error could already change the share of different eigenvectors considerably and, therefore,
the principal components, too. Random vectors of other shape classes may not have this
problem because their mean value differs from this sketched scenario. Therefore, random
vectors of other shape classes than the one used for testing tend to stay away from the
sensitive origin region. In consequence, these random vectors vary less in the principal
components and may even be higher.

3 4 5 6 7 8 9 ∞
3
4
5
6
7
8
9

∞

3 4 5 6 7 8 9 ∞ 3 4 5 6 7 8 9 ∞

3
4
5
6
7
8
9

∞

3
4
5
6
7
8
9

∞

Figure 7. Hit rate matrices (25) for different values of k0 ∈ [1, k), k = 10. Row-wise, from the top left
image down to the bottom right image, we are increasing the value k0. Starting at one and ending at
nine. The D samples were normalized with the mean-Normalization.

Mathematics 2024, 12, 1646 19 of 21

3 4 5 6 7 8 9 ∞
3
4
5
6
7
8
9

∞

3 4 5 6 7 8 9 ∞ 3 4 5 6 7 8 9 ∞

3
4
5
6
7
8
9

∞

3
4
5
6
7
8
9

∞

Figure 8. Hit rate matrices (25) for different values of k0 ∈ [1, k), k = 10. Row-wise, from the top left
image down to the bottom right image, we are increasing the value k0, starting at one and ending at
nine. The D samples were normalized with the max-Normalization.

Another effect is that with increasing values of k0, the eigenvalues converge to zero.
The latter used eigenvectors are, therefore, not meaningful enough. And so, these eigenvec-
tors do not add much to the information describing the testing shape, but allow random
vectors from other shapes to increase their probability measure. Ending up with the failed
classifications in the bottom left images in the presented figures.

To summarize, on the one hand, we notice that an interpretable, meaningful classifica-
tion is possible. Even with this relatively simple approach, we can partially obtain correct
classifications. Note that an advantage of such a simple approach is, for example, that it
can be easily extended to 3D shape point clouds. On the other hand, we know that the
presented preprocessing can be optimized in some aspects for better shape classification.

4. Conclusions and Future Work

In the first part of the article, we presented the main theoretical aspects. We illuminated
the mathematical backbone of quantum logic, principal component analyses (PCA), and
the connection between these two topics. With the presented formalism, the reader can
use other methods, which provide Hermitian and idempotent operators, to establish a
connection to quantum logic.

The presented theory is general enough to work with mixed states, e.g., with triangle-
square hybrid shapes, but the formalism of the PCA inherently refers to pure states without
putting in adjustments. One still has to find out, which may be a topic for future work,

Mathematics 2024, 12, 1646 20 of 21

how to mix eigenvector spaces, e.g., of triangles and squares, while keeping the general
procedure of calculating probabilities via the eigenvector spaces.

The presented preprocessing may be optimized in future work for better results. In
this paper, the main idea was to study a first approach to work on a meaningful task in
image processing with the theoretical aspects of quantum logic. Especially, we think that
the classification results can be improved with better preprocessing. The usage of the
histograms, while at first glance adequate, seems not to preserve the inherent structure
of the point clouds adequately enough. For example, one may have different point cloud
distributions that could lead to the same histogram.

Another point for optimization is the described classification proceeding. We labeled
a random vector to the shape class with the highest probability and ended up in some cases
with a failed classification. This process leaves the question of whether the correct shape
class was close to or far from the final one. With this in mind, we think that a ranking of
the classification results would be more useful than committing to one shape class.

A final point that we would like to discuss in the future for optimizing our approach
is that we did not fully utilize the possibilities of PCA formalism. The ordered eigenvalues
allow us to reduce the eigenspaces to only necessary directions, and with the quantum logic,
we can also quantify the error by doing so. This reduction could thus be explored more con-
sequently in our presented pipeline, which could lead to some better classification results.

Author Contributions: Conceptualization, A.K. and M.K.; methodology, A.K.; software, A.K.; valida-
tion, A.K., M.K. and M.B.; formal analysis, M.K. and A.K.; investigation, A.K.; resources, A.K., M.K.
and M.B.; data curation, A.K.; writing—original draft preparation, A.K. and M.K.; writing—review
and editing, A.K., M.K. and M.B.; visualization, A.K.; supervision, A.K., M.K. and M.B.; project
administration, A.K., M.K. and M.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset of all images can be found via [26]. The code is available
at: https://github.com/koehlale/A_First_Approach_to_Quantum_Logical_Shape_Classification_
Framework, accessed on 16 February 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Birkhoff, G.; Von Neumann, J. The Logic of Quantum Mechanics. Ann. Math. 1936, 37, 823–843. [CrossRef]
2. Piron, C. Axiomatique de la théorie quantique. Les Rencontres Physiciens-Math. Strasbg.-RCP25 1973, 16, 1–13. Available online:

http://www.numdam.org/item/RCP25_1973__16__A10_0/ (accessed on 6 May 2024).
3. Dalla Chiara, M.L.; Giuntini, R.; Greechie, R. Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics; Springer Science &

Business Media: Dordrecht, The Netherlands, 2013; Volume 22. [CrossRef]
4. Rieffel, E.; Polak, W. An introduction to quantum computing for non-physicists. ACM Comput. Surv. (CSUR) 2000, 32, 300–335.

[CrossRef]
5. Busemeyer, J.; Zheng, W. Data fusion using Hilbert space multi-dimensional models. Theor. Comput. Sci. 2018, 752, 41–55.

[CrossRef]
6. Huber-Liebl, M.; Römer, R.; Wirsching, G.; Schmitt, I.; Wolff, M. Quantum-inspired cognitive agents. Front. Appl. Math. Stat. 2022,

8, 909873. [CrossRef]
7. Wolff, M.; Huber, M.; Wirsching, G.; Römer, R.; Graben, P.B.; Schmitt, I. Towards a Quantum Mechanical Model of the Inner

Stage of Cognitive Agents. In Proceedings of the 2018 9th IEEE International Conference on Cognitive Infocommunications
(CogInfoCom), Budapest, Hungary, 22–24 August 2018; pp. 147–152. [CrossRef]

8. Schmitt, I.; Romer, R.; Wirsching, G.; Wolff, M. Denormalized quantum density operators for encoding semantic uncertainty in
cognitive agents. In Proceedings of the 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom),
Debrecen, Hungary, 11–14 September 2017; pp. 165–170. [CrossRef]

9. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202.
[CrossRef] [PubMed]

10. Duan, B.; Yuan, J.; Yu, C.H.; Huang, J.; Hsieh, C.Y. A survey on HHL algorithm: From theory to application in quantum machine
learning. Phys. Lett. A 2020, 384, 126595. [CrossRef]

11. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901,
2, 559–572. [CrossRef]

https://github.com/koehlale/A_First_Approach_to_Quantum_Logical_Shape_Classification_Framework
https://github.com/koehlale/A_First_Approach_to_Quantum_Logical_Shape_Classification_Framework
http://doi.org/10.2307/1968621
http://www.numdam.org/item/RCP25_1973__16__A10_0/
http://dx.doi.org/10.1007/978-94-017-0526-4
http://dx.doi.org/10.1145/367701.367709
http://dx.doi.org/10.1016/j.tcs.2017.12.007
http://dx.doi.org/10.3389/fams.2022.909873
http://dx.doi.org/10.1109/CogInfoCom.2018.8639892
http://dx.doi.org/10.1109/CogInfoCom.2017.8268235
http://dx.doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
http://dx.doi.org/10.1016/j.physleta.2020.126595
http://dx.doi.org/10.1080/14786440109462720

Mathematics 2024, 12, 1646 21 of 21

12. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441.
[CrossRef]

13. Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2002. [CrossRef]
14. Chen, J.; Jenkins, W.K. Facial recognition with PCA and machine learning methods. In Proceedings of the 2017 IEEE 60th

International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017. [CrossRef]
15. Howley, T.; Madden, M.G.; O’Connell, M.L.; Ryder, A.G. The Effect of Principal Component Analysis on Machine Learning

Accuracy with High Dimensional Spectral Data. In Applications and Innovations in Intelligent Systems XIII; Springer: London, UK,
2005; pp. 209–222. [CrossRef]

16. Bouwmans, T.; Javed, S.; Zhang, H.; Lin, Z.; Otazo, R. On the Applications of Robust PCA in Image and Video Processing. Proc.
IEEE 2018, 106, 1427–1457. [CrossRef]

17. Patil, U.; Mudengudi, U. Image fusion using hierarchical PCA. In Proceedings of the 2011 International Conference on Image
Information Processing, Shimla, India, 3–5 November 2011. [CrossRef]

18. Reich, D.; Price, A.L.; Patterson, N. Principal component analysis of genetic data. Nat. Genet. 2008, 40, 491–492. [CrossRef]
[PubMed]

19. McVean, G. A Genealogical Interpretation of Principal Components Analysis. PLoS Genet. 2009, 5, e1000686. [CrossRef] [PubMed]
20. Nobre, J.; Neves, R.F. Combining Principal Component Analysis, Discrete Wavelet Transform and XGBoost to trade in the

financial markets. Expert Syst. Appl. 2019, 125, 181–194. [CrossRef]
21. Le, T.H.; Le, H.C.; Taghizadeh-Hesary, F. Does financial inclusion impact CO2 emissions? Evidence from Asia. Financ. Res. Lett.

2020, 34, 101451. [CrossRef]
22. Wirsching, G. Quantum-Inspired Uncertainty Quantification. Front. Comput. Sci. 2022, 3, 662632. [CrossRef]
23. Stubbe, I. The Geneva School Approach to the Axiomatic Foundations of Physics. DEA Dissertation, Université Catholique de

Louvain, Ottignies-Louvain-la-Neuve, Belgium, 1999; Excerpt from DEA dissertation “Physics and Categories”. Available online:
https://www-lmpa.univ-littoral.fr/~stubbe/PDF/DEAChapterOne.pdf (accessed on 2 May 2024).

24. Soler, M.P. Characterization of Hilbert spaces by orthomodular spaces. Commun. Algebra 1995, 23, 219–243. [CrossRef]
25. Gleason, A.M. Measures on the closed subspaces of a Hilbert space. In The Logico-Algebraic Approach to Quantum Mechanics;

Springer: Dordrecht, The Netherlands, 1975; pp. 123–133. [CrossRef]
26. Korchi, A.E. 2D geometric shapes dataset. Mendeley Data 2020, V1. [CrossRef]
27. Köhler, A.; Rigi, A.; Breuss, M. Fast Shape Classification Using Kolmogorov-Smirnov Statistics. Comput. Sci. Res. Notes 2022,

3201, 172–180. [CrossRef]
28. Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D. Matching 3D models with shape distributions. In Proceedings of the

Proceedings International Conference on Shape Modeling and Applications, Genova, Italy, 7–11 May 2001; pp. 154–166.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1007/b98835
http://dx.doi.org/10.1109/mwscas.2017.8053088
http://dx.doi.org/10.1007/1-84628-224-1_16
http://dx.doi.org/10.1109/jproc.2018.2853589
http://dx.doi.org/10.1109/iciip.2011.6108966
http://dx.doi.org/10.1038/ng0508-491
http://www.ncbi.nlm.nih.gov/pubmed/18443580
http://dx.doi.org/10.1371/journal.pgen.1000686
http://www.ncbi.nlm.nih.gov/pubmed/19834557
http://dx.doi.org/10.1016/j.eswa.2019.01.083
http://dx.doi.org/10.1016/j.frl.2020.101451
http://dx.doi.org/10.3389/fcomp.2021.662632
https://www-lmpa.univ-littoral.fr/~stubbe/PDF/DEAChapterOne.pdf
http://dx.doi.org/10.1080/00927879508825218
http://dx.doi.org/10.1007/978-94-010-1795-4_7
http://dx.doi.org/10.17632/wzr2yv7r53.1
http://dx.doi.org/10.24132/CSRN.3201.22
http://dx.doi.org/10.1109/sma.2001.923386

	Introduction
	Description of Our Model
	Quantum Logic
	Fundamental Lattice Setting of Quantum Logic
	Reasoning Behind the Projective Geometry of Quantum Logic
	Projective Geometry of Quantum Logic
	Construction of the Projection Operators and the Probability Measure

	Towards Application of Quantum Logic for Shape Classification
	Quantum Logical Meaning of a Shape
	Idea Behind Shape Classification with Quantum Logic
	Necessary Considerations for Shape Classification

	Summary of Principal Component Analysis (PCA)
	Classification by Quantum Logic
	Expanding the Notation
	Probability Measure Constructed by Quantum Logic
	Quantum Logical Interpretation

	The Experiment and the Preparation
	 Shape Data
	Preprocessing
	Shape Descriptors and Signature
	Normalization
	Histogram Technique

	Shape Classification
	Classification Procedure
	Hit Rate

	The Experimental Pipeline
	Experiments

	Conclusions and Future Work
	References

