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Abstract: Under the effect of the Rosenblatt process, time-delay systems of nonlinear stochastic delay
differential equations are considered. Utilizing the delayed matrix functions and exact solutions for
these systems, the existence and Hyers–Ulam stability results are derived. First, depending on the
fixed point theory, the existence and uniqueness of solutions are proven. Next, sufficient criteria
for the Hyers–Ulam stability are established. Ultimately, to illustrate the importance of the results,
an example is provided.
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1. Introduction

Many researchers have paid significant attention to stochastic delay differential equa-
tions (SDDEs) and their applications because of their effective modeling in several scien-
tific and engineering fields, such as physics, economics, biology, fluid dynamics, finance,
medicine, and so forth (see, for instance, [1–9]). Recently, determining the exact solutions
of differential systems has been attempted. Specifically, many new results regarding how
to represent solutions for time-delay systems were obtained from the novel study [10,11],
which were applied to stability analysis and control problems (see, [12–17] and the refer-
ences therein).

The Wiener–Ito multiple integral of order q is defined as

Zq
H(ℓ) = a(H, q)

∫
Rq

(∫ ℓ

0

q
∏
j=1

(
ς −ℑj

)−( 1
2+

1−H
q

)
+ dς

)
dG(ℑ1) . . . dG

(
ℑq
)
, (1)

in terms of the standard Wiener process, (G(ℑ))ℑ∈R, where E
(

Zq
H(1)

)2
= 1 and ℑ+ =

max(ℑ, 0) are the conditions under which a(H, q) is a normalizing constant. The process(
Zq

H(ℓ)
)
ℓ≥0

, provided by (1), is called the Hermite process. The Hermite process is the

fractional Brownian motion (fBm) with a Hurst parameter of H ∈
(

1
2 , 1
)

for q = 1, while
it is not Gaussian for q = 2. Additionally, the Hermite process, denoted by (1) for q = 2,
is referred to as the Rosenblatt process. Most of the studies [18–20] involved fBm because
of its self-similarity, long-range dependence, and more straightforward calculus of the
Gaussian. But, fBm fails in the concrete case of having non-Gaussianity smooth-tongued in

Mathematics 2024, 12, 1729. https://doi.org/10.3390/math12111729 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12111729
https://doi.org/10.3390/math12111729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2222-7973
https://orcid.org/0009-0007-4039-4525
https://orcid.org/0000-0002-7020-3466
https://orcid.org/0000-0003-3574-2939
https://doi.org/10.3390/math12111729
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12111729?type=check_update&version=1


Mathematics 2024, 12, 1729 2 of 15

the models. In that situation, the Rosenblatt process is applicable. Non-Gaussian processes
like the Rosenblatt process have numerous intriguing characteristics such as stationarity of
the increments, long-range dependence, and self-similarity (for more details, see [21–29]).
Therefore, it seems interesting to study a new class of stochastic differential equations
driven by the Rosenblatt process.

On the other hand, studying the stability of (SDDEs) solutions is essential, and Hyers–
Ulam stability (HUS) is a crucial topic. In 1940, Ulam [30] created the first proposal that
functional equations are stable, during a lecture at Wisconsin University. In 1941, Hyers [31]
provided a solution to this problem, after which HUS was established. In addition to
providing a solid theoretical foundation for the well-posedness and HUS for SDDEs,
the study of HUS for SDDEs also provides a solid theoretical foundation for the approximate
solution of SDDEs. When it is rather difficult to acquire a precise solution for the system
with HUS, we may substitute an approximate solution for an accurate one, and the HUS
can, to a certain extent, ensure the dependability of the estimated solution.

Recently, many researchers have examined the HUS of diverse kinds of stochastic
differential equations (see, [32–35] and the references therein).

However, as far as we know, the standard literature has not dealt with the existence
and HUS of second-order nonlinear SDDEs driven by the Rosenblatt process. Therefore,
in this study, we try, for the first time, to analyze such a topic.

Our study focuses on determining the existence and HUS of the nonlinear SDDEs
driven by the Rosenblatt process, taking into account the previous research.

ℵ′′(ℓ) +Dℵ(ℓ− ζ) = ℏ(ℓ,ℵ(ℓ)) + ∆(ℓ,ℵ(ℓ))dZH(ℓ)
dℓ , ℓ ∈ ∓ := [0, ϖ],

ℵ(ℓ) ≡ ψ(ℓ), ℵ′(ℓ) ≡ ψ′(ℓ), ℓ ∈ ∓1 := [−ζ, 0],
(2)

where ℵ(ℓ) ∈ Rn represents the state vector, ζ > 0 denotes a delay, ϖ > (m − 1)ζ,
m = 1, 2, . . . , ψ ∈ C([−ζ, 0],Rn), D ∈ Rn×n is any matrix, and ℏ ∈ C(∓×Rn,Rn) is
a provided function. In the separable Hilbert space Rn, let ℵ(·) have value, and let the norm
be ∥·∥ and the inner product be ⟨·, ·⟩ with parameter H ∈

(
1
2 , 1
)

, ZH(ℓ) is a Rosenblatt
process on an another real separable Hilbert space (A, ∥·∥A, ⟨·, ·⟩A). Furthermore, consider

∆ ∈ C
(
∓×Rn, L0

2
)
, where L0

2 = L2

(
Q

1
2 A,Rn

)
.

The remaining sections of this paper are structured as follows: In Section 2, we present
some notations and necessary preliminaries. In Section 3, by utilizing Krasnoselskii’s fixed
point theorem, some sufficient conditions are established for the existence and uniqueness
of solutions to the system (2). In Section 4, we prove the Hyers–Ulam stability of (2)
via Grönwall’s inequality lemma approach. Finally, we provide a numerical example to
illustrate the effectiveness of the derived results.

2. Preliminaries

During the entire paper, consider (Σ,ð,P) to represent the complete probability space
with a probability measure P on Σ and a filtration {ðℓ| ℓ ∈ ∓} produced by
{ZH(s)| s ∈ [0, ℓ]}. For some 1 < µ < ∞, consider the Hilbert space Lµ(Σ,ðϖ,Rn)
to express all ðϖ-measurable µth-integrable variables having values in Rn with norm
∥ℵ∥µ

Lµ = E∥ℵ(ℓ)∥µ, where the expectation E is defined by Eℵ =
∫

Σ ℵdP. Assume that A
and B are two Banach spaces, Q ∈ Lb(A,A) indicates an operator on A that is self-adjoint
trace class and non-negative, and Lb(A,B) is the space of the bounded linear operators
from A to B. Let L0

2 = L2

(
Q

1
2 A,B

)
be the space of all Q-Hilbert–Schmidt operators from

Q
1
2 A into B, equipped with the norm

∥Ξ∥2
L0

2
=
∥∥∥ΞQ

1
2

∥∥∥2
= Tr

(
ΞQΞT

)
.
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Provided a norm ∥Ξ∥Q =
(
supℓ∈∓ E∥Ξ(ℓ)∥µ)1/µ, let Q := C([−ζ, ϖ], Lµ(Σ,ðϖ,P,Rn))

be the Banach space of all µth-integrable and ðϖ-adapted processes Ξ. A norm ∥·∥ on Rn

can be represented by the matrix norm

∥D∥ = max

{
n

∑
i=1

|di1|,
n

∑
i=1

|di2|, . . . ,
n

∑
i=1

|din|
}

,

where D : Rn −→ Rn. Furthermore, consider

C1(∓, Lµ(Σ,ðϖ,P,Rn))

=
{
ℵ ∈ C(∓, Lµ(Σ,ðϖ,P,Rn)) : ℵ′ ∈ C(∓, Lµ(Σ,ðϖ,P,Rn))

}
.

Finally, we assume the initial values

∥ψ∥µ
C = sup

s∈∓1

E∥ψ(s)∥µ and
∥∥ψ′∥∥µ

C = sup
s∈∓1

E
∥∥ψ′(s)

∥∥µ.

Some of the basic definitions and lemmas employed in this study are discussed.

Definition 1 ([13]). Let the n × n identity matrix and null matrix be symbolized by I and Θ,
respectively. Then, for ι = 0, 1, 2, . . . , the delayed matrix functions Hζ(Dℓ) and Mζ(Dℓ) are
defined, respectively, by

Hζ(Dℓ) :=



Θ, − ∞ < ℓ < −ζ,
I, − ζ ≤ ℓ < 0,
I−D ℓ2

2! , 0 ≤ ℓ < ζ,
...

...

I−D ℓ2

2! +D2 (ℓ−ζ)4

4!

+ · · ·+ (−1)ιDι (ℓ−(ι−1)ζ)2ι

(2ι)! , (ι − 1)ζ ≤ ℓ < ιζ,

(3)

and

Mζ(Dℓ) :=



Θ, −∞ < ℓ < −ζ,
I(ℓ+ ζ), −ζ ≤ ℓ < 0,
I(ℓ+ ζ)−D ℓ3

3! , 0 ≤ ℓ < ζ,
...

...

I(ℓ+ ζ)−D ℓ3

3! +D2 (ℓ−ζ)5

5!

+ · · ·+ (−1)ιDι (ℓ−(ι−1)ζ)2ι+1

(2ι+1)! , (ι − 1)ζ ≤ ℓ < ιζ,

(4)

Lemma 1 ([13]). The solution of (2) can be expressed in the following form:

ℵ(ℓ) = Hζ(D(ℓ− ζ))ψ(0) +Mζ(D(ℓ− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(ℓ− 2ζ − ς))ψ(ς)dς

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))ℏ(ς,ℵ(ς))dς

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℵ(ς))dZH(ς).

Lemma 2 ([29]). If σ : ∓ −→L0
2 satisfies∫ ϖ

0
∥σ(ς)∥2

L0
2
dς < ∞,
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then

E
∥∥∥∥∫ ℓ

0
σ(ς)dZH(ς)

∥∥∥∥2

≤ 2Hℓ2H−1
∫ ℓ

0
∥σ(ς)∥2

L0
2
dς.

Lemma 3 ([36]). For Λ : ∓ −→L0
2, such that

∫ ℓ

0
∥Λ(ς)∥µ

L0
2
dς < ∞,

and applying Hölder’s inequality and the Kahane–Khintchine inequality, there is a constant τµ,
such that

E
∥∥∥∥∫ ℓ

0
Λ(ς)dZH(ς)

∥∥∥∥µ

≤ τµ

{
E
∥∥∥∥∫ ℓ

0
Λ(ς)dZH(ς)

∥∥∥∥2
}µ/2

≤ τµ

{
2Hℓ2H−1

∫ ℓ

0
∥Λ(ς)∥2

L0
2
dς

}µ/2

≤ τµ

(
2Hℓ2H−1

)µ/2(∫ ℓ

0
dς

)µ/2−1 ∫ ℓ

0

(
∥Λ(ς)∥2

L0
2

)µ/2
dς

= τµ(2H)µ/2ℓµH−1
∫ ℓ

0
∥Λ(ς)∥µ

L0
2
dς.

Definition 2 ([37]). When considering a specific constant κ > 0, and a function Π ∈ C(∓,Rn)
fulfilling

E
∥∥Π′′(ℓ) +DΠ(ℓ− ζ)− ℏ(ℓ, Π(ℓ))− ∆(ℓ, Π(ℓ))dZH(ℓ)

∥∥µ ≤ κ, ℓ ∈ [0, ϖ], (5)

implies that there exist a solution ℵ ∈ C(∓,Rn) of (2) and a number W > 0 such that

E∥Π(ℓ)− ℵ(ℓ)∥µ ≤ Wκ, for all ℓ ∈ [0, ϖ].

The system (2) is Hyers–Ulam stable on [0, ϖ].

Remark 1 ([37]). A function Π ∈ C(∓,Rn) is a solution of the inequality (5) if and only if there
exists a function E ∈ C(∓,Rn), such that

(i) E∥E(ℓ)∥µ ≤ κ, ℓ ∈ ∓.
(ii) Π′′(ℓ) = −DΠ(ℓ− ζ) + ∆(ℓ, Π(ℓ))dZH(ℓ) + ℏ(ℓ, Π(ℓ)) + E(ℓ), ℓ ∈ ∓.

Definition 3 ([38]). The Mittag–Leffler function, containing two parameters, is defined as

Eα,ϵ(ℓ) =
∞

∑
ι=0

ℓι

Γ(αι + ϵ)
, α, ϵ > 0, ℓ ∈ C.

If ϵ = 1, then

Eα,1(ℓ) = Eα(ℓ) =
∞

∑
ι=0

ℓι

Γ(αι + 1)
, α > 0.

Lemma 4 ([15]). For any ℓ ∈ [(ι − 1)ζ, ιζ], ι = 1, 2, . . . , we obtain∥∥Hζ(D(ℓ))
∥∥ ≤ E2

(
∥D∥ℓ2

)
,

and ∥∥Mζ(D(ℓ))
∥∥ ≤ (ℓ+ ζ)E2,2

(
∥D∥(ℓ+ ζ)2

)
.
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Lemma 5. (Grönwall’s inequality, [39]). Let ℏ(ℓ) and ℘(ℓ) be nonnegative, continuous functions
on 0 ≤ ℓ ≤ T, for which the inequality

ℏ(ℓ) ≤ η +
∫ ℓ

0
℘(s)ℏ(s)ds, for ℓ ∈ [0, T],

holds, where η ≥ 0 is a constant. Then,

ℏ(ℓ) ≤ η exp
(∫ ℓ

0
℘(s)ds

)
, for ℓ ∈ [0, T].

Lemma 6. (Krasnoselskii’s fixed point theorem, [40]). Assume that J is a closed, bounded, and non-
empty convex subset of a Banach space U . If O1 and O2 are mappings from J into U , such that

(i) O1ℓ+ O2ℵ ∈ J for every pair ℓ, ℵ ∈ J ,
(ii) O2 is a contraction mapping,
(iii) O1 is continuous and compact,

then there is ℑ ∈ J , such that ℑ = O1ℑ+ O2ℑ.

3. Main Results

In this section, we present and prove the existence, uniqueness, and Hyers–Ulam
stability results of (2). To prove our main results, the assumptions listed below are assumed:

(G1): There exist a function ∆ : ∓×Rn −→ L0
2 that is continuous, and a constant

U∆ ∈ Lr2(∓,R+) and r2 > 1, such that

E∥∆(ℓ,ℵ1)− ∆(ℓ,ℵ2)∥
µ

L0
2
≤ U∆(ℓ)E∥ℵ1 − ℵ2∥µ, for all ℓ ∈ ∓, ℵ1,ℵ2 ∈ Rn.

Let µ ∈ [2, ∞) and supℓ∈∓ E∥∆(ℓ, 0)∥µ

L0
2
= W∆ < ∞.

(G2): There exist a function ℏ : ∓ × Rn −→ L0
2 that is continuous, and a constant

Uℏ ∈ Lr2(∓,R+) and r2 > 1, such that

E∥ℏ(ℓ,ℵ1)− ℏ(ℓ,ℵ2)∥µ ≤ Uℏ(ℓ)E∥ℵ1 − ℵ2∥µ, E∥ℏ(ℓ,ℵ)∥µ ≤ Uℏ(ℓ)
(
1 + E∥ℵ∥µ),

for all ℓ ∈ ∓, ℵ1,ℵ2 ∈ Rn.
Using Krasnoselskii’s fixed point theorem, we now prove the existence and unique-

ness results.

Theorem 1. If (G1)–(G2) holds, then there exists a unique mild solution of the nonlinear stochas-
tic system (2), provided that

2µ−1W2 + W3 < 1, (6)

where

W2 :=
τµ(2H)µ/2ϖ

µ(H+1)− 1
r2

(µr1 + 1)
1
r1

(
E2,2

(
∥D∥ϖ2

))µ
∥U∆∥Lr2 (∓,R+),

and

W3 :=
ϖ

µ+ 1
r1

(µr1 + 1)
1
r1

(
E2,2

(
∥D∥ϖ2

))µ
∥Uℏ∥Lr2 (∓,R+),

for 1
r1
+ 1

r2
= 1, r1, r2 > 1.

Proof. We deal with the set

Tϱ =

{
ℵ ∈ Q : ∥ℵ∥µ

Q = sup
ℓ∈∓

E∥ℵ(ℓ)∥µ ≤ ϱ

}
,
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for each positive number ϱ. Let ℓ ∈ ∓. Applying Lemma 1, we then transform problem (2)
into a fixed point problem and define an operator F : Q −→ Q by

(Fℵ)(ℓ) = Hζ(D(ℓ− ζ))ψ(0) +Mζ(D(ℓ− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(ℓ− 2ζ − ς))ψ(ς)dς

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))ℏ(ς,ℵ(ς))dς

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℵ(ς))dZH(ς),

for ℓ ∈ ∓. Decomposing the operator F, the operators L1 and L2 can be described on Tϱ,
as provided below:

(L1ℵ)(ℓ) = Hζ(D(ℓ− ζ))ψ(0) +Mζ(D(ℓ− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(ℓ− 2ζ − ς))ψ(ς)dς (7)

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))ℏ(ς,ℵ(ς))dς,

(L2ℵ)(ℓ) =
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℵ(ς))dZH(ς). (8)

At this point, we observe that Tϱ is a convex set, closed and bounded of Q. Consequently,
our proof consists of three essential steps:

Step 1. We show the existence of ϱ > 0, such that L1ℵ+ L2ℑ ∈ Tϱ for all ℵ, ℑ ∈ Tϱ.
For each ℓ ∈ ∓ and ℵ, ℑ ∈ Tϱ, and using (7) and (8), we obtain

∥L1ℵ+ L2ℑ∥
µ
Q

= sup
ℓ∈∓

E∥(L1ℵ+ L2ℑ)(ℓ)∥µ

≤ 5µ−1
[∥∥Hζ(D(ℓ− ζ))

∥∥µE∥ψ(0)∥µ +
∥∥Mζ(D(ℓ− ζ))

∥∥µE
∥∥ψ′(0)

∥∥µ

+∥D∥µE
∥∥∥∥∫ 0

−ζ
Mζ(D(ℓ− 2ζ − ς))ψ(ς)dς

∥∥∥∥µ

(9)

+E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))ℏ(ς,ℵ(ς))dς

∥∥∥∥µ

+E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℑ(ς))dZH(ς)

∥∥∥∥µ
]

= ∑5
n=1In.

From Lemma 4, we have

I1 = 5µ−1∥∥Hζ(D(ℓ− ζ))
∥∥µE∥ψ(0)∥µ

≤ 5µ−1
(
E2

(
∥D∥(ℓ− ζ)2

))µ
E∥ψ∥µ

C,

I2 = 5µ−1∥∥Mζ(D(ℓ− ζ))
∥∥µE

∥∥ψ′(0)
∥∥µ

≤ 5µ−1
(
ℓE2,2

(
∥D∥ℓ2

))µ
E
∥∥ψ′∥∥µ

C,
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I3 = 5µ−1∥D∥µE
∥∥∥∥∫ 0

−ζ
Mζ(D(ℓ− 2ζ − ς))ψ(ς)dς

∥∥∥∥µ

≤ 5µ−1∥D∥µζµ−1E∥ψ∥µ
C

∫ 0

−ζ

∥∥Mζ(D(ℓ− 2ζ − ς))
∥∥µdς

≤ 5µ−1∥D∥µζµ
(
ℓE2,2

(
∥D∥ℓ2

))µ
E∥ψ∥µ

C,

I4 = 5µ−1E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℑ(ς))dZH(ς)

∥∥∥∥µ

= 5µ−1E

{∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℑ(ς))dZH(ς)

∥∥∥∥2
}µ/2

.

Applying Lemmas 2 and 3, we obtain

I4 ≤ 5µ−1τµ

{
E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℑ(ς))dZH(ς)

∥∥∥∥2
}µ/2

≤ 5µ−1τµ

{
2Hℓ2H−1

∫ ℓ

0
E
∥∥Mζ(D(ℓ− ζ − ς))∆(ς,ℑ(ς))

∥∥2
L0

2
dς

}µ/2

≤ 5µ−1τµ

(
2Hℓ2H−1

)µ/2
{∫ ℓ

0
E
∥∥Mζ(D(ℓ− ζ − ς))∆(ς,ℑ(ς))

∥∥2
L0

2
dς

}µ/2

≤ 5µ−1τµ

(
2Hℓ2H−1

)µ/2

×


(∫ ℓ

0

(
E
∥∥Mζ(D(ℓ− ζ − ς))∆(ς,ℑ(ς))

∥∥2
L0

2

)µ/2
dς

)2/µ(∫ ℓ

0
dς

) µ−2
µ


µ/2

≤ 5µ−1τµ(2H)µ/2ϖµH−1
∫ ℓ

0
E
∥∥Mζ(D(ℓ− ζ − ς))∆(ς,ℑ(ς))

∥∥µ

L0
2
dς.

Using Lemma 4 and (G1), we obtain

I4 ≤ 5µ−1τµ(2H)µ/2ϖµH−1
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
E∥∆(ς,ℑ(ς))∥µ

L0
2
dς

≤ 5µ−1τµ(2H)µ/2ϖµH−1

×2µ−1
{∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
E∥∆(ς,ℑ(ς))− ∆(ς, 0)∥µ

L0
2
dς

+
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
E∥∆(ς, 0)∥µ

L0
2
dς

}
≤ (10)µ−1τµ(2H)µ/2ϖµH−1 (10)

×
{∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
U∆(ς)E∥ℑ(ς)∥µdς

+W∆

∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
dς

}
≤ (10)µ−1τµ(2H)µ/2ϖµH−1

{
∥ℑ∥µ

Q

∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
U∆(ς)dς

+
ϖµ+1W∆

µ + 1

(
E2,2

(
∥D∥ϖ2

))µ
}

.
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Additionally, using Hölder inequality and (G1), we obtain

∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
U∆(ς)dς

≤
(∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µr1
dς

) 1
r1
(∫ ℓ

0
Ur2

∆ (ς)dς

) 1
r2

(11)

≤
(
E2,2

(
∥D∥ϖ2

))µ
(∫ ℓ

0
(ℓ− ς)µr1dς

) 1
r1
(∫ ℓ

0
Ur2

∆ (ς)dς

) 1
r2

≤ ϖ
µ+ 1

r1

(µr1 + 1)
1
r1

(
E2,2

(
∥D∥ϖ2

))µ
∥U∆∥Lr2 (∓,R+).

Substituting (11) into (10), we obtain

I4 ≤ (10)µ−1τµ(2H)µ/2ϖµH−1

×

 ϱϖ
µ+ 1

r1

(µr1 + 1)
1
r1

(
E2,2

(
∥D∥ϖ2

))µ
∥U∆∥Lr2 (∓,R+) +

ϖµ+1W∆

µ + 1

(
E2,2

(
∥D∥ϖ2

))µ


= (10)µ−1W2ϱ +

(10)µ−1τµ(2H)µ/2ϖµ(H+1)W∆

µ + 1

(
E2,2

(
∥D∥ϖ2

))µ
.

Furthermore, using (11) and (G2), we obtain

I5 = 5µ−1E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))ℏ(ς,ℵ(ς))dς

∥∥∥∥µ

≤ 5µ−1
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
E∥ℏ(ς,ℵ(ς))∥µdς

≤ 5µ−1
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
Uℏ(ς)

(
1 + E∥ℵ∥µ)dς

≤ 5µ−1(1 + ϱ)ϖ
µ+ 1

r1

(µr1 + 1)
1
r1

(
E2,2

(
∥D∥ϖ2

))µ
∥Uℏ∥Lr2 (∓,R+)

= 5µ−1(1 + ϱ)W3.

From I1 to I5, (9) becomes

∥L1ℵ+ L2ℑ∥
µ
Q

≤ 5µ−1
{(

E2

(
∥D∥(ℓ− ζ)2

))µ
E∥ψ∥µ

C

+
(
ℓE2,2

(
∥D∥ℓ2

))µ
E
∥∥ψ′∥∥µ

C

+∥D∥µζµ
(
ℓE2,2

(
∥D∥ℓ2

))µ
E∥ψ∥µ

C

+2µ−1W2ϱ +
2µ−1τµ(2H)µ/2ϖµ(H+1)W∆

µ + 1

(
E2,2

(
∥D∥ϖ2

))µ

+(1 + ϱ)W3}

≤ 5µ−1
{

θ(ϖ) + ϱ
(

2µ−1W2 + W3

)
+ W3

}
,
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where

θ(ℓ) =
(
E2

(
∥D∥(ℓ− ζ)2

))µ
E∥ψ∥µ

C +
(
ℓE2,2

(
∥D∥ℓ2

))µ
E
∥∥ψ′∥∥µ

C

+∥D∥µζµ
(
ℓE2,2

(
∥D∥ℓ2

))µ
E∥ψ∥µ

C

+
2µ−1τµ(2H)µ/2ℓµ(H+1)W∆

µ + 1

(
E2,2

(
∥D∥ℓ2

))µ
.

As a result, from (6), we obtain L1ℵ+ L2ℑ ∈ Tϱ for some ϱ sufficiency large.
Step 2. We show that L1 : Tϱ −→ Q is a contraction. For each ℓ ∈ ∓ and ℵ, ℑ ∈ Tϱ,

using (7) and (G2), we obtain

E∥(L1ℵ)(ℓ)− (L1ℑ)(ℓ)∥µ

= E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))[ℏ(ς,ℵ(ς))− ℏ(ς,ℑ(ς))]dς

∥∥∥∥µ

≤ E∥ℵ − ℑ∥µ
Q

∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
Uℏ(ς)dς

≤ W3∥ℵ − ℑ∥µ
Q.

As we can see from (6), noting W3 < 1, that L1 is a contraction mapping.
Step 3. We show that L2 : Tϱ −→ Q is a continuous compact operator. First, we verify

the continuity of L2. Consider ℵn ∈ Tϱ with ℵn −→ ℵ as n −→ ∞ in Tϱ. Thus, using
Lebesgue’s dominated convergence theorem and (8), we obtain, for each ℓ ∈ ∓,

E∥(L2ℵn)(ℓ)− (L2ℵ)(ℓ)∥µ

≤ τµ(2H)µ/2ϖµH−1
∫ ℓ

0

∥∥Mζ(D(ℓ− ζ − ς))
∥∥µE∥∆(ς,ℵn(ς))− ∆(ς,ℵ(ς))∥µ

L0
2
dς

≤ τµ(2H)µ/2ϖµH−1
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
U∆(ς)

×∥ℵn − ℵ∥µ
Qdς −→ 0, as n −→ ∞.

This proves the continuity of L2 : Tϱ −→ Q. Thereafter, we show that L2 is uniformly
bounded on Tϱ. For each ℓ ∈ ∓, ℵ ∈ Tϱ, we have

∥L2ℵ∥
µ
Q = sup

ℓ∈∓
E∥(L2ℵ)(ℓ)∥µ

≤ sup
ℓ∈∓

{
E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℵ(ς))dZH(ς)

∥∥∥∥µ
}

≤ 2µ−1W2ϱ +
2µ−1τµ(2H)µ/2ϖµ(H+1)W∆

µ + 1

(
E2,2

(
∥D∥ϖ2

))µ
,

this indicates that, on Tϱ, L2 is uniformly bounded. Showing that L2 is equicontinuous is
still necessary. For each ℓ2, ℓ3 ∈ ∓, 0 < ℓ2 < ℓ3 ≤ ϖ and ℵ ∈ Tϱ, using (8), we obtain

(L2ℵ)(ℓ3)− (L2ℵ)(ℓ2)

=
∫ ℓ3

0
Mζ(D(ℓ3 − ζ − ς))∆(ς,ℵ(ς))dZH(ς)

−
∫ ℓ2

0
Mζ(D(ℓ2 − ζ − ς))∆(ς,ℵ(ς))dZH(ς)

= Ψ1 + Ψ2,



Mathematics 2024, 12, 1729 10 of 15

where

Ψ1 =
∫ ℓ3

ℓ2

Mζ(D(ℓ3 − ζ − ς))∆(ς,ℵ(ς))dZH(ς),

and

Ψ2 =
∫ ℓ2

0

[
Mζ(D(ℓ3 − ζ − ς))−Mζ(D(ℓ2 − ζ − ς))

]
∆(ς,ℵ(ς))dZH(ς).

Thus

E∥(L2ℵ)(ℓ3)− (L2ℵ)(ℓ2)∥µ = E∥Ψ1 + Ψ2∥µ

≤ 2µ−1{E∥Ψ1∥µ + E∥Ψ2∥µ}. (12)

Now, we can check ∥Ψr∥ −→ 0 as ℓ2 −→ ℓ3, when r = 1, 2. For Ψ1, we obtain

E∥Ψ1∥µ = E
∥∥∥∥∫ ℓ3

ℓ2

Mζ(D(ℓ3 − ζ − ς))∆(ς,ℵ(ς))dZH(ς)

∥∥∥∥µ

≤ τµ(2H)µ/2(ℓ3 − ℓ2)
µH−1

∫ ℓ3

ℓ2

E
∥∥Mζ(D(ℓ− ζ − ς))∆(ς,ℵ(ς))

∥∥µ

L0
2
dς

≤ 2µ−1τµ(2H)µ/2(ℓ3 − ℓ2)
µH−1

×
{

ϱ
∫ ℓ3

ℓ2

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
U∆(ς)dς

+
(ℓ3 − ℓ2)

µ+1W∆

µ + 1

(
E2,2

(
∥D∥(ℓ3 − ℓ2)

2
))µ

}
−→ 0, as ℓ2 −→ ℓ3.

For Ψ2, we obtain

E∥Ψ2∥µ

= E
∥∥∥∥∫ ℓ2

0

[
Mζ(D(ℓ3 − ζ − ς))−Mζ(D(ℓ2 − ζ − ς))

]
∆(ς,ℵ(ς))dZH(ς)

∥∥∥∥µ

≤ τµ(2H)µ/2ℓ
µH−1
2

×
∫ ℓ2

0
E
∥∥[Mζ(D(ℓ3 − ζ − ς))−Mζ(D(ℓ2 − ζ − ς))

]
∆(ς,ℵ(ς))

∥∥µ

L0
2
dς

≤ 2µ−1τµ(2H)µ/2ℓ
µH−1
2

×
{

ϱ
∫ ℓ2

0

∥∥Mζ(D(ℓ3 − ζ − ς))−Mζ(D(ℓ2 − ζ − ς))
∥∥µU∆(ς)dς

+W∆

∫ ℓ2

0

∥∥Mζ(D(ℓ3 − ζ − ς))−Mζ(D(ℓ2 − ζ − ς))
∥∥µdς

}
≤ 2µ−1τµ(2H)µ/2ℓ

µH−1
2

×
{

ϱ∥U∆∥Lr2 (∓,R+)

×
(∫ ℓ2

0

(∥∥Mζ(D(ℓ3 − ζ − ς))−Mζ(D(ℓ2 − ζ − ς))
∥∥µ
)r1
)1/r1

dς

+W∆

∫ ℓ2

0

∥∥Mζ(D(ℓ3 − ζ − ς))−Mζ(D(ℓ2 − ζ − ς))
∥∥µdς

}
.

From (4), knowing that Mζ(Dℓ) is uniformly continuous for ℓ ∈ ∓, we obtain∥∥Mζ(D(ℓ3 − ζ − ς))−Mζ(D(ℓ2 − ζ − ς))
∥∥ −→ 0, as ℓ2 −→ ℓ3.

Therefore, we have ∥Ψr∥ −→ 0 as ℓ2 −→ ℓ3, when r = 1, 2, which leads, via (12), to

E∥(L2ℵ)(ℓ3)− (L2ℵ)(ℓ2)∥µ −→ 0, as ℓ2 −→ ℓ3,
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for all ℵ ∈ Tϱ. Then, L2 is compact on Tϱ via the Arzelà-Ascoli theorem (see [40]). As a re-
sult, Fℵ = L1ℵ+L2ℵ has a fixed point ℵ in Tϱ, in accordance with Lemma 6. Furthermore,
ℵ is also a solution of (2) and (L1ℵ+ L2ℵ)(ϖ) = ℵ1. Therefore, (2) has a mild solution.
This completes the proof.

Next, we verify the Hyers–Ulam stability via Grönwall’s inequality lemma approach.

Theorem 2. If the assumptions of Theorem 1 are satisfied, then the system (2) has Ulam–Hyers
stability.

Proof. Assume that ℵ is the unique solution of (2) and Π ∈ C(∓,Rn) is a solution of the
inequality (5) with the aid of Theorem 1. Then

ℵ(ℓ) = Hζ(D(ℓ− ζ))ψ(0) +Mζ(D(ℓ− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(ℓ− 2ζ − ς))ψ(ς)dς

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))ℏ(ς,ℵ(ς))dς

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς,ℵ(ς))dZH(ς).

Based on Remark 1, then

Π′′(ℓ) = −DΠ(ℓ− ζ) + ∆(ℓ, Π(ℓ))dZH(ℓ) + ℏ(ℓ, Π(ℓ)) + E(ℓ), ℓ ∈ ∓,

can be expressed as

Π(ℓ) = Hζ(D(ℓ− ζ))ψ(0) +Mζ(D(ℓ− ζ))ψ′(0)

−D
∫ 0

−ζ
Mζ(D(ℓ− 2ζ − ς))ψ(ς)dς

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))∆(ς, Π(ς))dZH(ς)

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))ℏ(ℓ, Π(ℓ))dς

+
∫ ℓ

0
Mζ(D(ℓ− ζ − ς))E(ς)dς.

In the same manner as in the proof of Theorem 1 and, as a consequence of (9), we have

E∥Π(ℓ)− ℵ(ℓ)∥µ

≤ 3µ−1

{
E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))[∆(ς, Π(ς))− ∆(ς,ℵ(ς))]dZH(ς)

∥∥∥∥µ

+E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))[ℏ(ℓ, Π(ℓ))− ℏ(ℓ,ℵ(ℓ))]dς

∥∥∥∥µ

+E
∥∥∥∥∫ ℓ

0
Mζ(D(ℓ− ζ − ς))E(ς)dς

∥∥∥∥µ
}
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≤ 3µ−1
{

τµ(2H)µ/2ϖµH−1
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
U∆(ς)

×E∥Π(ς)− ℵ(ς)∥µdς

+
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥µ(ℓ− ς)2

))µ
Uℏ(ς)E∥Π(ς)− ℵ(ς)∥µdς

+
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ
E∥E(ς)∥µdς

}
≤
∫ ℓ

0

(
(ℓ− ς)E2,2

(
∥D∥(ℓ− ς)2

))µ(
3µ−1τµ(2H)µ/2ϖµH−1U∆(ς) + 3µ−1Uℏ(ς)

)
×E∥Π(ς)− ℵ(ς)∥µdς

+
3µ−1ϖµ+1κ

µ + 1

(
E2,2

(
∥D∥ϖ2

))µ
.

Applying Grönwall’s inequality (Lemma 5), we obtain

E∥Π(ℓ)− ℵ(ℓ)∥µ ≤ 3µ−1ϖµ+1κ

µ + 1

(
E2,2

(
∥D∥ϖ2

))µ
exp

(
3µ−1(W2 + W3)

)
,

which implies that
E∥Π(ℓ)− ℵ(ℓ)∥µ ≤ Wκ,

where

W :=
3µ−1ϖµ+1

µ + 1

(
E2,2

(
∥D∥ϖ2

))µ
exp

(
3µ−1(W2 + W3)

)
.

Therefore, there exists W, which satisfies Definition 2. This ends the proof.

4. An Example

Consider the following nonlinear stochastic delay system driven by the Rosenblatt
process:

ℵ′′(ℓ) +Dℵ(ℓ− 0.5) = ℏ(ℓ,ℵ(ℓ)) + ∆(ℓ,ℵ(ℓ))dZH(ℓ)
dℓ , for ℓ ∈ ∓ := [0, 1],

ℵ(ℓ) ≡ ψ(ℓ), ℵ′(ℓ) ≡ ψ′(ℓ) for − 0.5 ≤ ℓ ≤ 0,
(13)

where

ℵ(ℓ) =
(
ℵ1(ℓ)

ℵ2(ℓ)

)
, D =

(
1 0
0 0

)
,

and

ℏ(ℓ,ℵ(ℓ)) =
(

(sin ℓ)ℵ1(ℓ)
(sin ℓ)ℵ2(ℓ)

)
, ∆(ℓ,ℵ(ℓ)) =

( √
ℓe−ℓ

4 ℵ1(ℓ)√
ℓe−ℓ

4 ℵ2(ℓ)

)
.

Next, by choosing µ = r1 = r2 = 2, we obtain

E∥∆(ℓ,ℵ)− ∆(ℓ,ℑ)∥2
L0

2
=

(√
ℓe−ℓ

4

)2[
(ℵ1(ℓ)−ℑ1(ℓ))

2 + (ℵ2(ℓ)−ℑ2(ℓ))
2
]

=
ℓe−2ℓ

16
E∥ℵ − ℑ∥2

≤ 1
16

E∥ℵ − ℑ∥2

for all ℓ ∈ ∓, and ℵ(ℓ), ℑ(ℓ) ∈ R2. We set U∆(ℓ) = 1/16, such that U∆ ∈ L2(∓,R+) in
(G1), we have

∥U∆∥L2(∓,R+) =

(∫ 1

0

[
1

16

]2
dς

) 1
2

= 0.0625.



Mathematics 2024, 12, 1729 13 of 15

Thus, selecting H = 0.75 and τµ = 1.15, we get

W2 =
τµ(2H)µ/2ϖ

µ(H+1)− 1
r2

(µr1 + 1)
1
r1

(
E2,2

(
∥D∥ϖ2

))µ
∥U∆∥Lr2 (∓,R+) = 0.065.

Furthermore, we have

E∥ℏ(ℓ,ℵ)− ℏ(ℓ,ℑ)∥2 = sin2 ℓ
[
(ℵ1(ℓ)−ℑ1(ℓ))

2 + (ℵ2(ℓ)−ℑ2(ℓ))
2
]

= Uℏ(ℓ)E∥ℵ − ℑ∥2.

We set Uℏ(ℓ) = sin2 ℓ, such that Uℏ ∈ L2(∓,R+) in (G2), we have

∥Uℏ∥L2(∓,R+) =

(∫ 1

0
sin4 ςdς

) 1
2

= 0.35217.

Hence

W3 =
ϖ

µ+ 1
r1

(µr1 + 1)
1
r1

(
E2,2

(
∥D∥ϖ2

))µ
∥Uℏ∥Lr2 (∓,R+) = 0.21752.

Finally, we calculate that

2µ−1W2 + W3 = 0.3475 < 1,

which follows that all the assumptions of Theorems 1 and 2 hold. Therefore, the system (13)
has a unique mild solution ℵ, and is Hyers–Ulam stable.

5. Conclusions

In this work, based on fixed point theory, we used the solutions of (2) to prove the
existence and uniqueness of solutions. After that, we derived the Hyers–Ulam stability
results using the delayed matrix functions and Grönwall’s inequality. Finally, we verified
the theoretical results by providing an example with a numerical simulation, which showed
that our results applied to not only all non-singular matrices, but also all singular and
arbitrary matrices, not necessarily squares. This is a novel study to prove the well-posedness
and Hyers–Ulam stability of (2) using the delayed matrix functions.

In this study, further studies will focus on the obtained results to ascertain the existence
and Hyers–Ulam stability of different types of stochastic delay systems, such as fractional
or impulsive fractional stochastic delay systems driven by the Rosenblatt process.
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