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Abstract: This paper aims to study the asymptotic properties of nonoscillatory solutions (eventually
positive or negative) of a class of third-order canonical neutral differential equations. We use Riccati
substitution to reduce the order of the considered equation, and then we use the Philos function
class to obtain new criteria of the Kamenev type, which guarantees that all nonoscillatory solutions
converge to zero. This approach is characterized by the possibility of applying its conditions to a wider
area of equations. This is not the only aspect that distinguishes our results; we also use improved
relationships between the solution and the corresponding function, which in turn is reflected in a
direct improvement of the criteria. The findings in this article extend and generalize previous findings
in the literature and also improve some of these findings.
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1. Introduction

One type of functional differential equation (FDE) that accounts for the temporal
memory of phenomena is the delay differential equation (DDE). Thus, it is simple to
understand how these equations are applied in a wide spectrum of fields, including as
biological, engineering, and physical models, as well as in other sciences [1,2].

A variety of inquiries concerning oscillatory behavior and asymptotic features of DDE
solutions are addressed by oscillation theory, a subfield of qualitative theory. The basic task
of oscillation theory is to identify the criteria that eliminate the nonoscillatory solutions. A
variety of findings, techniques, and strategies for examining the oscillation of DDEs were
gathered in monographs [3–6].

The investigation of oscillation for solutions of ordinary, partial, and fractional FDEs
with delay, neutral delay (NDDE), mixed delay, and damping is a recent, significant ex-
pansion and enhancement of the oscillation theory. It is known that differential equations
with delay have received the most attention, particularly for non-canonical cases. For in-
stance, refer to [7–15] for delay, advanced, and neutral equations, respectively. Furthermore,
Refs. [16–21] show how investigations of odd-order equations have evolved. Moreover,
one may trace the variation of fractional DDEs in Survey [22]. Whereas [23–25] dealt
with damping equations, and [26–29] studied mixed equations. Over the past 20 years,
functional dynamic equations have also drawn a lot of attention; see, for instance, [30–32].
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In this paper, we present new criteria for the oscillation of quasi-linear third-order
neutral DDEs: (

a(s)
(
(x(s) + η(s)x(g(s)))′′

)r)′
+ q(s)xr(τ(s)) = 0, (1)

where s ≥ s0, and r is the ratio of any two positive odd integers. Here, in this work, the
following assumptions are satisfied:

(I) a ∈ C1([s0, ∞), (0, ∞)), a′(s) ≥ 0, and T (s0, ∞) = ∞, where

T (l, s) =
∫ s

l

1
a1/r(θ)

dθ; (2)

(II) η, q ∈ C([s0, ∞), [0, ∞)) with 0 ≤ η(s) ≤ η0 < ∞ and q(s) does not vanish eventually;

(III) g, τ ∈ C([s0, ∞),R), g(s) ≤ s, τ(s) ≤ s, and lims→∞ g(s) = lims→∞ τ(s) = ∞.

For the solution of (1) on [sx, ∞), we refer to a real-valued function x ∈ C([sx, ∞),R),
sx ≥ s0, which satisfies (1) on [sx, ∞), and has the properties (x + η · (x ◦ g)) ∈ C2([sx, ∞),R)
and

(
a ·
(
(x + η · (x ◦ g))′′

)r)
∈ C([sx, ∞),R). We only consider those solutions x(s) of (1)

satisfying sup{|x(s)| : s ≥ S} > 0 for all S ≥ sx, and we assume that (1) has such solutions.
A solution of (1) is said to be oscillatory if it has arbitrarily large zeros in [s0, ∞), and is
called nonoscillatory otherwise. Equation (1) is said to be oscillatory if all of its solutions
are oscillatory.

In the study of neutral equations, the corresponding function z to the solution x,
defined as

z(s) := x(s) + η(s)x(g(s)), (3)

is vital.
Numerous studies have been conducted on third-order functional differential equa-

tions and the oscillation behavior of solutions; see [33–40]. There exists a theoretical and
applicable interest in the problem of oscillatory properties of neutral DDEs; see Hale [1] for
some important applications in various applied sciences.

In what follows, we survey some of the most important research that handles the
study of third-order NDDEs using different techniques and some different restrictions to
obtain conditions that ensure that the solution is oscillatory or tends to zero to cover the
the largest area when applied to special cases.

Baculikova and Dzurina [41] tested the asymptotic features of a pair of third-order
NDDEs, (

a(s)
(
(x(s)± η(s)x(g(s)))′′

)r)′
+ q(s)xr(τ(s)) = 0, s ≥ s0, (4)

where 0 ≤ η(s) ≤ η < 1. They established novel sufficient conditions that confirm that all
nonoscillatory solutions of (4) converge to zero.

Thandapani and Li [42] studied the oscillatory features of the third-order NDDE
(1), where g′(s) ≥ g0 > 0, τ ◦ g = g ◦ τ and 0 ≤ η(s) ≤ η < ∞. By using the Riccati
transformation, they established some sufficient criteria, which confirm that any solution
of (1) is oscillatory or tends to zero.

Graef et al. [43] discussed the oscillatory properties of a class of solutions of third-order
nonlinear NDDEs: ((

(x(s) + η(s)x(g(s)))′′
)r)′

+ q(s)xr(τ(s)) = 0

where a = 1 and η(s) ≥ 1. They presented novel sufficient criteria for any solution of the
studied equation to be either oscillating or converging to zero.

Kumar and Ganesan [44] discussed the third-order nonlinear NDDE in the form(
a(s)φ

(
z′′(s)

))′
+ q(s)φ(x(τ(s))) = 0, s ≥ s0 > 0, (5)
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where φ(u) = |u|r−1u, g′(s) ≥ g0 > 0 and τ ◦ g = g ◦ τ. The third- and first-order equation
comparison principles provide the foundation for the obtained results. Below, we present
some results obtained in previous studies to facilitate the reader’s understanding.

Theorem 1 ([42]). Let r ≥ 1, τ ∈ C1([s0, ∞)) and τ′ > 0. Assume that

∫ ∞

s0

∫ ∞

v

(
1

a(g(u))

∫ ∞

u
Q(θ)dθ

)1/r
dudv = ∞,

holds and τ(s) ≤ g(s). Moreover, assuming there is a function ρ ∈ C1([s0, ∞), (0, ∞)), for all
s1 ≥ s0 large enough, there exists s1 ≥ s0 where

lim sup
s→∞

∫ s

s2

ρ(l)Q(l)
2r+1 −

(
1 + ηr

0
g0

)(
(ρ′(l))+

)r+1

(r + 1)r+1(ρ(l)β1(τ(l), s1)τ′(l))r

dl = ∞,

for Q =min{q(s), q(g(s))}, (ρ′(s))+ := max{0, ρ′(s)} and β1(s, s1) =
∫ s

s1
1la1/r(θ)dθ.

Then, (1) is almost oscillatory.

Theorem 2 ([44]). Let τ(s) ≤ g(s) ≤ 1. Assuming that 0 < r ≤ 1,

∫ s

s1

g′(v)
∫ ∞

v

(
g′(u)

a(g(u))

∫ ∞

u
Q(t)dt

)1/r

dudv = ∞

and the first-order DDE

w′(s) +
g0

go + ηr
0

Q1(s)w
(

g−1(τ(s))
)
= 0

oscillates, then any positive solution of (5) meets lims→∞ x(s) = 0, where g−1(s) is an inverse
function of g(s), and

Q1(s) = Q(s)
(∫ τ(s)

s1

(T (l, t)− T (l, t1))dt
)

.

Our goal in this study was to examine the asymptotic properties of a class of neutral
third-order NDDEs. Based on the improved relationship between x and z that was derived
in [45], we obtained new relationships between x and z. The new relationship is character-
ized by taking into account both cases η ≤ 1 and η > 1; this was not common in previous
third-order studies. We present Kamenev-type criteria that ensure that all solutions of the
neutral DDE, (1), either converge to zero or are oscillatory. We begin by deducing some
new relationships that help improve the approach. Then, we use the Philos function class
to obtain the required conditions. The criteria we obtain improve and extend some results
from previous studies. Finally, we employ the results in the special case of our studied
equation.

2. Preliminaries

We begin with lemmas, notations that are required throughout this paper. For con-
venience, we use the symbol P to state the category of all eventually positive solutions
to (1), the symbol P↓ to denote the class of solutions x ∈ P , whose corresponding func-
tion confirms z′(t) < 0, and the symbol P↑ to denote the class of solutions x ∈ P whose
corresponding function confirms z′(t) > 0.

Lemma 1 ([41] (Lemma 1)). Assume that x ∈ P . Then, z meets one of the following possible
cases, eventually:

(i) z > 0, z′ > 0 and z′′ > 0;
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(ii) z > 0, z′ < 0 and z′′ > 0.

Lemma 2 ([41] (Lemma 2)). Suppose that x ∈ P↓. If

∫ ∞

s0

∫ ∞

v

(
1

a(u)

∫ ∞

u
q(θ)dθ

)1/r
dudv = ∞, (6)

then lims→∞ x(s) = lims→∞ z(s) = 0.

Lemma 3 ([41] (Lemma 3)). Suppose that u ∈ C2([s0, ∞),R). Assume that u(s) > 0, u′(s) ≥
0 and u′′(s) ≤ 0, on [s0, ∞). Then, there exist a s1 ≥ s0 for each k1 ∈ (0, 1) such that

u(τ(s))
u(s)

≥ k1
τ(s)

s
,

where s ≥ s1.

Lemma 4 ([46]). Suppose that u ∈ Cm+1([s0, ∞),R), u(j)(s) > 0, for j = 0, 1, . . . , m, and
u(m+1)(s) ≤ 0. Then, there exist a s1 ≥ s0, for each k2 ∈ (0, 1), such that

u(s)
u′(s)

≥ k2

m
s,

where s ≥ s1.

Notation 1. For simplicity, let G[0](s) := s, G[j](s) = G
(

G[j−1](s)
)

, G[−j](s) = G−1
(

G[−j+1](s)
)

,
for j = 1, 2, . . ..

Lemma 5 ([45]). Suppose that x ∈ P↑ ∪ P↓. Then,

x >
m

∑
k=0

(
2k

∏
n=0

η
(

g[n]
)) z

(
g[2k]

)
η
(

g[2k]
) − z

(
g[2k+1]

), (7)

eventually, where m > 0, m ∈ Z.

Let ℜ be class of functions, the function K ∈ ℜ, where K ∈ C(H,R), H = {(s, θ, ℓ) :
s0 ≤ ℓ ≤ θ ≤ s ≤ ∞}, if K satisfies the following hypotheses:

(1) K(s, s, ℓ) = 0, K(s, ℓ, ℓ) = 0, K(s, θ, ℓ) ̸= 0, for ℓ < θ < s;
(2) K(s, θ, ℓ) possesses the partial derivative ∂K/∂θ on H with the condition that ∂K/∂θ

can be integrated locally in terms of θ in H and

∂K(s, θ, ℓ)
∂θ

= h(s, θ, ℓ)K(s, θ, ℓ), (8)

for some h ∈ C(H,R).

This class of functions is defined by Philos [47].

Notation 2. During the main results, we need to define the following abbreviations:

ψ(s) =
∫ s

s0

T (s0, u)du,

Θ1(s) =
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](τ(s))
))( 1

η
(

g[2k](τ(s))
) − 1

)
ψ
(

g[2k](τ(s))
)

ψ(τ(s))
,
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Θ2(s) =
m

∑
k=1

(
2k−1

∏
j=1

1
η
(

g[−j](τ(s))
))
1 − 1

η
(

g[−2k](τ(s))
) ψ

(
g[−2k](τ(s))

)
ψ
(

g[−2k+1](τ(s))
)
,

Θ(s) =


1, for η = 0
Θ1(s), for 0 < η < 1
Θ2(s), for η > ψ

(
g[−2k](τ(s))

)
/ψ
(

g[−2k+1](τ(s))
)

,

and

M0 =
r+1

∑
j=0

(
r + 1

r − j + 1

)
(−1)r−j+1γr−j+1λj Γ(γ + j − r)Γ(λ − j + 1)

Γ(γ + λ − r + 1)
, for r ∈ Z+,

where γ, λ ∈ (r, ∞),

Γ(θ) =
∫ +∞

0
xθ−1e−xdx, θ > 0,

and
k0 =

1

(r + 1)(r+1)
.

3. Main Results

We present new conditions that guarantee that each solution to DDE (1) oscillates or
converges to zero.

Theorem 3. Suppose that (6) holds and the function K ∈ ℜ. In the event that a function,
ρ ∈ C1([s0, ∞),R+), is present and satisfies ρ′(s) ≥ 0 such that

lim sup
s→∞

∫ s

ℓ
K(s, θ, ℓ)ρ(θ)

(
kr

1kr
2

τ2r(θ)

(2θ)r q(θ)Θr(θ)− k0a(θ)
(

h(s, θ, ℓ) +
ρ′(θ)

ρ(θ)

)r+1
)

dθ > 0, (9)

for any k1, k2 ∈ (0, 1), then the solution x(s) oscillates or tends to zero.

Proof. Suppose that x ∈ P . Suppose that there is an s ≥ s1 such that x(s) > 0, x(g(s)) >
0, and x(τ(s)) > 0. Clearly, z(s) > 0, s ≥ s1. From Lemma 1, we can see that (i) or (ii) is
satisfied.

Assume that (ii) is satisfied. Since (6) holds, following from Lemma 2 that lims→∞ x(s) = 0.
Now, assume that (i) is satisfied. We have

z′(s) ≥
∫ s

s0

a1/r(u)z′′(u)
a1/r(u)

du ≥ a1/r(s)z′′(s)
∫ s

s0

1
a1/r(u)

du

≥ a1/r(s)z′′(s)T (s0, s), s ≥ s1

therefore, we find(
z′(s)

T (s0, s)

)′
=

T (s0, s)z′′(s)− z′(s)a−1/r(s)
T 2(s0, s)

=
a1/r(s)T (s0, s)z′′(s)− z′(s)

a1/r(s)T 2(s0, s)
≤ 0, s ≥ s1. (10)

Since

z(s) ≥
∫ s

s0

T (s0, u)z′(u)
T (s0, u)

du, for s ≥ s1

by using (10), we obtain

z(s) ≥ z′(s)
T (s0, s)

∫ s

s0

T (s0, u)du ≥ z′(s)
T (s0, s)

ψ(s)
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and so(
z(s)
ψ(s)

)′
=

ψ(s)z′(s)− z(s)T (s0, s)
ψ2(s)

=
T −1(s0, s)ψ(s)z′(s)− z(s)

T −1(s0, s)ψ2(s)
≤ 0, s ≥ s1. (11)

From (3), we have
x(s) = z(s)− η(s)x(g(s)).

Now, assume that η < 1. Since z(s) satisfies (i), following Lemma 5, that (7) holds.
Using g[2k+1](s) ≤ g[2k](s) ≤ s, z′(s) > 0 and (11), we obtain

z
(

g[2k+1](s)
)
≤ z
(

g[2k](s)
)
≤ z(s), s ≥ s1

and

z
(

g[2k](s)
)
≥

ψ
(

g[2k](s)
)

z(s)

ψ(s)
, for k = 0, 1, . . . .

Thus, we see that (7) becomes

x(s) >
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](s)
)) z

(
g[2k](s)

)
η
(

g[2k](s)
) − z

(
g[2k](s)

)
>

m

∑
k=0

(
2k

∏
n=0

η
(

g[n](s)
))( 1

η
(

g[2k](s)
) − 1

)
z
(

g[2k](s)
)

> z(s)
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](s)
))( 1

η
(

g[2k](s)
) − 1

)
ψ
(

g[2k](s)
)

ψ(s)
, s ≥ s1.

Using this inequality in (1), we obtain(
a(s)

(
(x(s) + η(s)x(g(s)))′′

)r)′
≤ −q(s)zr(τ(s))Θr(s), s ≥ s1. (12)

Now, assume that η > 1. It follows from the (3) that

x(s) =
1

η(g−1(s))

(
z
(

g−1(s)
)
− x
(

g−1(s)
))

=
z
(

g−1(s)
)

η(g−1(s))
− 1

η(g−1(s))η
(

g[−2](s)
)(z

(
g[−2](s)

)
− x
(

g[−2](s)
))

=
z
(

g−1(s)
)

η(g−1(s))

− 1
η(g−1(s))η

(
g[−2](s)

)(z
(

g[−2](s)
)
− 1

η
(

g[−3](s)
)(z

(
g[−3](s)

)
− x
(

g[−3](s)
)))

=
z
(

g−1(s)
)

∏1
j=1 η

(
g[−j](s)

) − z
(

g[−2](s)
)

∏2
j=1 η

(
g[−j](s)

)
+

1

∏3
j=1 η

(
g[−j](s)

)(z
(

g[−3](s)
)
− x
(

g[−3](s)
))

, s ≥ s1,

and so on. Thus, we have

x(s) >
m

∑
k=1

(
2k−1

∏
j=1

1
η
(

g[−j](s)
))(z

(
g[−2k+1](s)

)
− 1

η
(

g[−2k](s)
) z
(

g[−2k](s)
))

, s ≥ s1. (13)
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From the facts that g[−2k] ≥ g[−2k+1] ≥ s, z′ > 0 and (11), we arrive at

z
(

g[−2k+1](s)
)
≥ z(s), s ≥ s1 (14)

and

z
(

g[−2k](s)
)
≤

ψ
(

g[−2k](s)
)

z
(

g[−2k+1](s)
)

ψ
(

g[−2k+1](s)
) , s ≥ s1. (15)

Using (14) and (15) in (13), we obtain

x(s) > z(s)
m

∑
k=1

(
2k−1

∏
j=1

1
η
(

g[−j](s)
))
1 − 1

η
(

g[−2k](s)
) ψ

(
g[−2k](s)

)
ψ
(

g[−2k+1](s)
)
, s ≥ s1

and so

x(τ(s)) > z(τ(s))
m

∑
k=1

(
2k−1

∏
j=1

1
η
(

g[−j](τ(s))
))
1 − 1

η
(

g[−2k](τ(s))
) ψ

(
g[−2k](τ(s))

)
ψ
(

g[−2k+1](τ(s))
)
, s ≥ s1.

From the above inequality and (1), we obtain (12), therefore,(
a(s)

(
(x(s) + η(s)x(g(s)))′′

)r)′
≤ 0. (16)

Using (16), a′(s) ≥ 0, and z′′(s) > 0, we have z′′′(s) ≤ 0. Therefore, there exists an
s2 ≥ s1 such that z(s) satisfies

z(τ(s)) > 0, z′(s) > 0, z′′(s) > 0, z′′′(s) ≤ 0, s ≥ s2.

We define ω(s) as follow:

ω(s) = ρ(s)
a(s)(z′′(s))r

(z′(s))r , s ≥ s2. (17)

We see that ω(s) > 0 and

ω′(s) = ρ′(s)
a(s)(z′′(s))r

(z′(s))r

+
ρ(s)(z′(s))r(a(s)(z′′(s))r)′ − rρ(s)a(s)(z′′(s))r(z′(s))r−1z′′(s)

(z′(s))2r , s ≥ s2.

By using (12) and (17), we have

ω′(s) ≤ ρ′(s)
ω(s)
ρ(s)

− ρ(s)
q(s)zr(τ(s))Θr(s)

(z′(s))r − r
ω(r+1)/r(s)

a1/r(s)ρ1/r(s)
, s ≥ s2. (18)

By using Lemma 3 with u(s) = z′(s), there exists a s3 ≥ s2 such that

z′(τ(s))
z′(s)

≥ k1
τ(s)

s
, s ≥ s3 ≥ s2. (19)

By using Lemma 4, we have

z(s)
z′(s)

≥ 1
2

k2s, s ≥ s3. (20)
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From (19) and (20), we obtain

1
z′(s)

≥ k1
τ(s)

sz′(τ(s))
≥ k1k2

τ2(s)
2s

1
z(τ(s))

, s ≥ s3. (21)

Using (18) and (21), we obtain

ω′(s) ≤ ρ′(s)
ω(s)
ρ(s)

− kr
1kr

2
τ2r(s)
(2s)r ρ(s)q(s)Θr(s)− r

ω(r+1)/r(s)
a1/r(s)ρ1/r(s)

, s ≥ s3

and so

kr
1kr

2
τ2r(s)
(2s)r ρ(s)q(s)Θr(s) ≤ −ω′(s) + ρ′(s)

ω(s)
ρ(s)

− r
ω(r+1)/r(s)

a1/r(s)ρ1/r(s)
, s ≥ s3. (22)

Multiplying the above inequality by K(s, θ, ℓ) and integrating from ℓ ≥ s3 to s, we
obtain ∫ s

ℓ
K(s, θ, ℓ)kr

1kr
2

τ2r(θ)

(2θ)r ρ(θ)q(θ)Θr(θ)dθ

≤ −
∫ s

ℓ
K(s, θ, ℓ)ω′(θ)dθ +

∫ s

ℓ
K(s, θ, ℓ)ρ′(θ)

ω(θ)

ρ(θ)
dθ (23)

−r
∫ s

ℓ

K(s, θ, ℓ)ω(r+1)/r(θ)

a1/r(θ)ρ1/r(θ)
dθ, ℓ ≥ s3.

By using (8), for all s ≥ ℓ, we have

∫ s

ℓ
K(s, θ, ℓ)kr

1kr
2

τ2r(θ)

(2θ)r ρ(θ)q(θ)Θr(θ)dθ

≤
∫ s

ℓ
K(s, θ, ℓ)

((
h(s, θ, ℓ) +

ρ′(θ)

ρ(θ)

)
ω(θ)− r

ω(r+1)/r(θ)

a1/r(θ)ρ1/r(θ)

)
dθ, s ≥ ℓ. (24)

Set

F(ϑ) =
(

h(s, θ, ℓ) +
ρ′(θ)

ρ(θ)

)
ϑ − r

ϑ(r+1)/r

a1/r(θ)ρ1/r(θ)
, s ≥ ℓ.

A simple calculation implies when

ϑ = k0ρ(θ)a(θ)
(

h(s, θ, ℓ) +
ρ′(θ)

ρ(θ)

)r

, s ≥ ℓ

F(ϑ) has the maximum

k0ρ(θ)a(θ)
(

h(s, θ, ℓ) +
ρ′(θ)

ρ(θ)

)r+1

, s ≥ ℓ

that is,

F(ϑ) ≤ Fmax = k0ρ(θ)a(θ)
(

h(s, θ, ℓ) +
ρ′(θ)

ρ(θ)

)r+1

, s ≥ ℓ. (25)

Using (24) and (25), we have

0 ≥
∫ s

ℓ
K(s, θ, ℓ)kr

1kr
2

τ2r(θ)

(2θ)r ρ(θ)q(θ)Θr(θ)dθ

−
∫ s

ℓ
K(s, θ, ℓ)k0ρ(θ)a(θ)

(
h(s, θ, ℓ) +

ρ′(θ)

ρ(θ)

)r+1

dθ, s ≥ ℓ
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and so∫ s

ℓ
K(s, θ, ℓ)ρ(θ)

(
kr

1kr
2

τ2r(θ)

(2θ)r q(θ)Θr(θ)− k0a(θ)
(

h(s, θ, ℓ) +
ρ′(θ)

ρ(θ)

)r+1
)

dθ ≤ 0, s ≥ ℓ.

Taking the super limit, we obtain

lim sup
s→∞

∫ s

ℓ
K(s, θ, ℓ)ρ(θ)

(
kr

1kr
2

τ2r(θ)

(2θ)r q(θ)Θr(θ)− k0a(θ)
(

h(s, θ, ℓ) +
ρ′(θ)

ρ(θ)

)r+1
)

dθ ≤ 0, s ≥ ℓ.

This contradicts (9) and the proof is complete.

Theorem 4. Assume that (6) holds and

K(s, θ, ℓ) = (s − θ)σ(θ − ℓ)ϑ,

where σ, ϑ are constants greater than r. If there is a ρ ∈ C1([s0, ∞),R+) satisfying ρ′(s) ≥ 0 such
that

lim sup
s→∞

∫ s

ℓ
(s − θ)σ(θ − ℓ)ϑρ(θ)Φ(s, l, θ)dθ > 0 (26)

for any k1, k2 ∈ (0, 1), then, the solution x(s) is oscillatory or converges to zero, where

Φ(s, l, θ) := kr
1kr

2
τ2r(θ)

(2θ)r q(θ)Θr(θ)− k0a(θ)
(

ϑs − (σ + ϑ)θ + σℓ

(s − θ)(θ − ℓ)
+

ρ′(θ)

ρ(θ)

)r+1

.

Proof. Suppose that x ∈ P . Suppose that there is an s ≥ s1 such that x(s) > 0, x(g(s)) >
0, and x(τ(s)) > 0. Clearly, z(s) > 0, s ≥ s1. Since

K(s, θ, ℓ) = (s − θ)σ(θ − ℓ)ϑ, s ≥ ℓ,

by using (8), we have

h(s, θ, ℓ) =
ϑs − (σ + ϑ)θ + σℓ

(s − θ)(θ − ℓ)
, s ≥ ℓ.

Now, as in the proof of Theorem 3, we arrive at

lim sup
s→∞

∫ s

ℓ
(s − θ)σ(θ − ℓ)ϑρ(θ)Φ(s, l, θ)dθ ≤ 0, s ≥ ℓ.

This contradicts (26) and the proof is complete.

Theorem 5. Assume that (6) holds and

K(s, θ, ℓ) = (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λ,

where γ, λ are constants greater than r. If there exists a function ρ ∈ C1([s0, ∞),R+) satisfying
ρ′(s) ≥ 0 such that

lim sup
s→∞

∫ s

ℓ
(T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λρ(θ)Ψ(s, l, θ)dθ > 0 (27)
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for any k1, k2 ∈ (0, 1), then, the solution x(s) is oscillatory or converges to zero, where

Ψ(s, l, θ) : = kr
1kr

2
τ2r(θ)

(2θ)r q(θ)Θr(θ)

−k0a(θ)
(

λT (s0, s)− (γ + λ)T (s0, θ) + γT (s0, ℓ)
a1/r(θ)(T (s0, s)− T (s0, θ))(T (s0, θ)− T (s0, ℓ))

+
ρ′(θ)

ρ(θ)

)r+1

.

Proof. Suppose that x ∈ P . Suppose that there is an s ≥ s1 such that x(s) > 0, x(g(s)) >
0, and x(τ(s)) > 0. Clearly, z(s) > 0, s ≥ s1. Since

K(s, θ, ℓ) = (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λ, s ≥ ℓ,

by using (8), we have

h(s, θ, ℓ) =
λT (s0, s)− (γ + λ)T (s0, θ) + γT (s0, ℓ)

a1/r(θ)(T (s0, s)− T (s0, θ))(T (s0, θ)− T (s0, ℓ))
, s ≥ ℓ.

Now, as in the proof of Theorem 3, we arrive at

lim sup
s→∞

∫ s

ℓ
(T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λρ(θ)Ψ(s, l, θ)dθ ≤ 0, s ≥ ℓ.

This contradicts (27) and the proof is complete.

Corollary 1. Suppose that (6) holds, r is an odd natural number and ρ(s) = 1. If there exist two
constants γ, λ > r such that

lim sup
s→∞

∫ s
ℓ (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λkr

1kr
2

τ2r(θ)
(2θ)r q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, ℓ))γ+λ−r > k0M0 (28)

for any k1, k2 ∈ (0, 1), then, the solution x(s) is oscillatory or converges to zero.

Proof. As in Theorem 5 with ρ(s) = 1, we have to sufficiently prove that (28) leads to (27).
From ∫ 1

0
yγ−1(1 − y)λ−1dy =

Γ(γ)Γ(λ)
Γ(γ + λ)

.

Using y = ϱ/δ, we obtain∫ δ

0
(δ − ϱ)γ+j−r−1ϱλ−jdϱ =

∫ 1

0
δγ+λ−r(1 − y)γ+j−r−1yλ−jdy

= δγ+λ−r Γ(γ + j − r)Γ(λ − j + 1)
Γ(γ + λ − r + 1)

. (29)

Let ϱ = T (s0, θ)− T (s0, ℓ) and δ = T (s0, s)− T (s0, ℓ). Then, by (9),∫ s

ℓ
a(θ)(T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λ𭟋(s, l, θ)dθ

=
∫ δ

0
(δ − ϱ)γ−r−1ϱλ−r−1(λ(δ − ϱ)− γϱ)r+1dϱ, (30)

where

𭟋(s, l, θ) :=
(

λT (s0, s)− (γ + λ)T (s0, θ) + γT (s0, ℓ)
a1/r(θ)(T (s0, s)− T (s0, θ))(T (s0, θ)− T (s0, ℓ))

)r+1
, s ≥ ℓ,
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and

(λ(δ − ϱ)− γϱ)r+1 =
r+1

∑
j=0

(−1)j
(

r + 1
j

)
(λ(δ − ϱ))j(γϱ)r+1−j. (31)

From (30) and (31), we have∫ s

ℓ
a(θ)(T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λ𭟋(s, l, θ)dθ

=
r+1

∑
j=0

(
r + 1

r − j + 1

)
(−1)r−j+1γr−j+1λj

∫ δ

0
ϱλ−j(δ − ϱ)γ+j−r−1dϱ (32)

= (T (s0, s)− T (s0, ℓ))γ+λ−r M0, s ≥ ℓ.

Hence, by (28) and (32), (27) holds. The proof is complete.

Corollary 2. Suppose that (6) holds, r is an odd natural number, and ρ(s) = 1. If there exist two
constants γ, λ > r such that

lim sup
s→∞

∫ s
ℓ (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λ τ2r(θ)

θr q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, ℓ))γ+λ−r > 2rk0M0, (33)

then, the solution x(s) is oscillatory or converges to zero.

Proof. We shall show (33) implies (28). Note that (33) implies(
k1k2

2

)r
q(s)Θr(θ)

(
τ2(s)

s

)r

=

(
k
2

)r
q(s)Θr(θ)

(
τ2(s)

s

)r

, (34)

where k = k1k2. Conversely, (33) suggests, for k ∈ (0, 1),

lim sup
s→∞

∫ s
ℓ (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λ τ2r(θ)

θr q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, ℓ))γ+λ−r >
1
kr 2rk0M0, s ≥ ℓ. (35)

Combining (34) and (35), we obtain that (28) holds. Hence, by Corollary 1, we complete the
proof.

Example 1. For the third-order NDDE(
x(s) +

1
2

x
( s

2

))′′′
+

κ

s3 x
( s

2

)
= 0, s > 1. (36)

Note that r = 1, a(s) = 1, η(s) = 1/2 < 1, q(s) = κ/s3, κ > 0, g(s) = s/2, and τ(s) = s/2.
Condition (6) is satisfied, where

∫ ∞

s0

∫ ∞

v

(
1

a(u)

∫ ∞

u
q(θ)dθ

)1/r
dudv =

∫ ∞

s0

∫ ∞

v

∫ ∞

u

κ

θ3 dθdudv = ∞.

Note that
T (s0, s) =

∫ s

s0

dθ

a1/r(θ)
=
∫ s

s0

dθ = (s − s0) = (s − 1).
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We may choose γ = 4, λ = 5, then

M0 =
r+1

∑
j=0

(
r + 1

r − j + 1

)
(−1)r−j+1γr−j+1λj Γ(γ + j − r)Γ(λ − j + 1)

Γ(γ + λ − r + 1)

=
1+1

∑
j=0

C1−j+1
1+1 (−1)1−j+141−j+15j Γ(4 + j − 1)Γ(5 − j + 1)

Γ(4 + 5 − 1 + 1)
= 4.1664 × 10−2

and so

2rk0M0 = (2)
(

1
4

)(
4.1664 × 10−2

)
= 2.0832 × 10−2.

Now,

ψ
(

g[2k](τ(s))
)
=

s2

24k+3 ,

Θ1(s) =
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](τ(s))
))( 1

η
(

g[2k](τ(s))
) − 1

)
ψ
(

g[2k](τ(s))
)

ψ(τ(s))

=
20

∑
k=0

(
1
2

)2k+1

(1)
s2

24k+3
23

s2 =
20

∑
k=0

(
1
2

)2k+1 1
24k

≈ 0.50794 := µ0,

Moreover, for s > ℓ > 1, the left side of (33) is

lim sup
s→∞

∫ s
ℓ (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λ τ2r(θ)

θr q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, ℓ))γ+λ−r

= lim sup
s→∞

µ0κ

4(s − ℓ)8

∫ s

ℓ

(s − θ)4(θ − ℓ)5

θ2 dθ

=
µ0

1120
κ.

Therefore, from Corollary 2, it confirms that every positive solution of (36) approaches zero and that
κ ⪆ 45.934.

Example 2. Consider the third-order NDDEs

((
x(s) +

1
3

x
( s

2

))′′′
)3
+

κ

s6 x3
( s

2

)
= 0, s > 1. (37)

Note that r = 3, a(s) = s, η(s) = 1/3 < 1, q(s) = κ/s6, κ > 0, g(s) = s/2, and τ(s) = s/2.
Condition (6) is satisfied, where

∫ ∞

s0

∫ ∞

v

(
1

a(u)

∫ ∞

u
q(θ)dθ

)1/r
dudv =

∫ ∞

s0

∫ ∞

v

(
1
u

∫ ∞

u

κ

`6 dθ

)1/3
dudv = ∞.

Note that
T (s0, s) =

∫ s

s0

dθ

a1/r(θ)
=

3
2

(
s2/3 − 1

)
.



Mathematics 2024, 12, 1734 13 of 16

We may choose γ = 4, λ = 5, then

M0 =
r+1

∑
j=0

(
r + 1

r − j + 1

)
(−1)r−j+1γr−j+1λj Γ(γ + j − r)Γ(λ − j + 1)

Γ(γ + λ − r + 1)

=
3+1

∑
j=0

C3−j+1
3+1 (−1)3−j+143−j+15j Γ(4 + j − 3)Γ(5 − j + 1)

Γ(4 + 5 − 3 + 1)
= 27.5

and so
2rk0M0 = 23 1

(4)4 (27.5) = 0.85938.

Now,

ψ
(

g[2k](τ(s))
)
=

9
10

s5/3

2(10k+5)/3
,

Θ1(s) =
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](τ(s))
))( 1

η
(

g[2k](τ(s))
) − 1

)
ψ
(

g[2k](τ(s))
)

ψ(τ(s))

=
20

∑
k=0

(
1
3

)2k+1

(2)
s5/3

2(10k+5)/3
25/3

s5/3 =
20

∑
k=0

(
1
3

)2k+1

(2)
1

210k/3

≈ 0.67410 := µ0,

and, for s > ℓ > 1, the left side of (33) takes

lim sup
s→∞

∫ s
ℓ (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, ℓ))λ τ2r(θ)

θr q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, ℓ))γ+λ−r

= lim sup
s→∞

(
3
2

)9 µ3
0κ

26
(
s2/3 − ℓ2/3

)6

∫ s

ℓ

(
s2/3 − θ2/3

)4(
θ2/3 − ℓ2/3

)5

θ3 dθ

=

(
3
2

)9 µ3
0κ

26(20)
.

Hence, by Corollary 2, it confirms that every nonoscillatory solution of (37) converges to zero
provided that κ ⪆ 93.412.

Remark 1. Consider the NDDE(
x(s) +

1
2

x
( s

4

))′′′
+

κ

s3 x
( s

2

)
= 0, s > 1. (38)

We find that Theorem 1 in [42] and Theorem 2 in [44] cannot be applied to this equation because
τ(s) = s/2 > g(s) = s/4. While using the results we obtained, we find that the solutions of (38)
are oscillatory or tend to zero. Therefore, our results improve the results in [42,44].

Remark 2. We note that additional conditions were mentioned in [42,44], including the composition
condition (τ ◦ g = g ◦ τ), which is a harsh condition on the delay functions, while we were able
to dispense with these conditions in our results. We also note that the results we obtained are
considered an expansion and extension of both [41,43], as we find that in [41], (1) was studied when
0 ≤ η(s) ≤ η < 1, and we find in [43] that Equation (1) was studied when a = 1 and η(s) ≥ 1,
while in our study, Equation (1) was studied when 0 ≤ η(s) ≤ η0 < ∞.

Remark 3. From Example 1 in [41], we find that every nonoscillatory solution of (37) converges to
zero provided that κ > 93/2. However, by using our criterion (33), we find that every nonoscillatory
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solution of (37) converges to zero provided that κ > 93.412. Hence, our findings enhance those
presented in [41].

4. Conclusions

It is known that studying the solution behavior of odd-order differential equations
is more difficult than studying even-order equations. This is due to several reasons, one
of which is the ability to obtain relationships between the different derivatives of positive
solutions, as well as the multiplicity of derivative possibilities for positive solutions. Based
on the improved relationship between x and z that was derived in [45], we obtained new
relationships between x and z. The new relationship takes into account the cases η ≤ 1
and η > 1, and this was not usual in previous studies of neutral third-order differential
equations. Using the appropriate Riccati substitution, we obtained the Riccati inequality
and then applied the Philos approach to obtain new criteria for the asymptotic behavior of
the studied equation. The new criteria ensure that all nonoscillatory solutions converge
to zero. The results provided in this work improve and extend the well-known results in
previous works; for instance, see [41–44]. It would also be of interest to use this approach
to study the equation(

a(s)
(
(x(s) + η(s)x(g(s)))(n−1)

)r)′
+ q(s)xr(τ(s)) = 0,

where n ≥ 3.

Author Contributions: Conceptualization, H.S.A., W.A., A.M., O.M. and E.M.E.; Methodology,
H.S.A., W.A., A.M., O.M. and E.M.E.; Investigation, H.S.A., W.A., A.M., O.M. and E.M.E.; Writing—
original draft, H.S.A. and A.M.; Writing—review & editing, W.A., O.M. and E.M.E. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R157), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors gratefully acknowledge the editor and the anonymous reviewers
for their comments that improved the final version of the manuscript. Princess Nourah bint Abdul-
rahman University Researchers Supporting Project number (PNURSP2023R157), Princess Nourah
bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hale, J.K. Functional differential equations. In Oxford Applied Mathematical Sciences; Springer: New York, NY, USA, 1971; Volume 3.
2. Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer Nature Singapore Pte Ltd.: Singapore, 2021.
3. Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker:

New York, NY, USA, 1987.
4. Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991.
5. Erbe, L.H.; Kong, Q.; Zhong, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995.
6. Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic

Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002.
7. Dzurina, J.; Jadlovska, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron.

J. Qual. Theory Differ. Equ. 2020, 46, 1–14. [CrossRef]
8. Dzurina, J.; Jadlovska, I. Kneser-type oscillation criteria for second-order half-linear delay differential equations. Appl. Math.

Comput. 2020, 380, 125289.
9. Jadlovska, I. Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations. Appl. Math. Lett.

2020, 106, 106354. [CrossRef]
10. Jadlovska, I. New criteria for sharp oscillation of second-order neutral delay differential equations. Mathematics 2021, 9, 2089.

[CrossRef]
11. Dzurina, J.; Grace, S.R.; Jadlovska, I.; Li, T. Oscillation criteria for second-order Emden-Fowler delay differential equations with a

sublinear neutral term. Math. Nachr. 2020, 5, 910–922. [CrossRef]

http://doi.org/10.14232/ejqtde.2020.1.46
http://dx.doi.org/10.1016/j.aml.2020.106354
http://dx.doi.org/10.3390/math9172089
http://dx.doi.org/10.1002/mana.201800196


Mathematics 2024, 12, 1734 15 of 16

12. Thandapani, E.; Tamilvanan, S.; Jambulingam, E.S. Oscillation of third order half linear neutral delay differential equations. Int.
J. Pure Appl. Math. 2012, 77, 359–368.

13. Bohner, M.; Grace, S.R.; Jadlovska, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual.
Theory Differ. Equ. 2017, 60, 1–12. [CrossRef]

14. Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp oscillation criteria for second-order neutral delay differential equations. Math.
Methods Appl. Sci. 2020, 17, 10041–10053. [CrossRef]

15. Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for
oscillation. Appl. Math. Lett. 2021, 118, 107172. [CrossRef]

16. Almarri, B.; Moaaz, O.; Anis, M.; Qaraad, B. Third-Order Neutral Differential Equation with a Middle Term and Several Delays:
Asymptotic Behavior of Solutions. Axioms 2023, 12, 166. [CrossRef]

17. Gopal, T.; Ayyappan, G.; Graef, J.R.; Thandapani, E. Oscillatory and asymptotic behavior of solutions of third-order quasi-linear
neutral difference equations. Math. Slovaca 2022, 72, 411–418. [CrossRef]

18. Jadlovska, I.; Chatzarakis, G.E.; Dzurina, J.; Grace, S.R. On sharp oscillation criteria for general third-order delay differential
equations. Mathematics 2021, 9, 1675. [CrossRef]

19. Thandapani, E.; Göktürk, B.; Özdemir, O.; Tunç, E. Oscillatory behavior of semi-canonical nonlinear neutral differential equations
of third-order via comparison principles. Qualit. Theo. Dyn. Syst. 2023, 22, 30. [CrossRef]

20. Dzurina, J.; Thapani, E.; Tamilvanan, S. Oscillation of solutions to third order half-linear neutral differential equations. Electron. J.
Differ. Equ. 2012, 2012, 29.

21. Su, M.; Xu, Z. Oscillation criteria of certain third order neutral differential equations. Differ. Equ. Appl. 2012, 4, 221–232. [CrossRef]
22. Alzabut, J.; Agarwal, R.P.; Grace, S.R.; Jonnalagadda, J.M.; Selvam, A.G.M.; Wang, C. A survey on the oscillation of solutions for

fractional difference equations. Mathematics 2022, 10, 894. [CrossRef]
23. Graef, J.R.; Özdemir, O.; Kaymaz, A.; Tunc, E. Oscillation of damped second-order linear mixed neutral differential equations.

Monatsh. Math. 2021, 194, 85–104. [CrossRef]
24. Yang, D.; Bai, C. On the oscillation criteria for fourth-order p-Laplacian differential equations with middle term. J. Funct. Space

2021, 2021, 1–10. [CrossRef]
25. Zeng, Y.; Li, Y.; Luo, L.; Luo, Z. Oscillation of generalized neutral delay differential equations of Emden-Fowler type with with

damping. J. Zhejiang Univ.-Sci. A 2016, 43, 394–400.
26. Santra, S.S.; Scapellato, A. Some conditions for the oscillation of second-order differential equations with several mixed delays. J.

Fix. Point. Theory. A 2022, 24, 18. [CrossRef]
27. Santra, S.S.; El-Nabulsi, R.A.; Khedher, K.M. Oscillation of second-order differential equations with multiple and mixed delays

under a canonical operator. Mathematics 2021, 9, 1323. [CrossRef]
28. Santra, S.S.; Khedher, K.M.; Yao, S.W. New aspects for oscillation of differential systems with mixed delays and impulses.

Symmetry 2021, 13, 780. [CrossRef]
29. Tunç, E.; Özdemir, O. Comparison theorems on the oscillation of even order nonlinear mixed neutral differential equations. Math.

Method. Appl. Sci. 2023, 46, 631–640. [CrossRef]
30. Hassan, T.S.; Sun, Y.; Menaem, A.A. Improved oscillation results for functional nonlinear dynamic equations of second order.

Mathematics 2020, 8, 1897. [CrossRef]
31. O’Regan, D.; Hassan, T.S. Oscillation criteria for solutions to nonlinear dynamic equations of higher order. Hacet. J. Math. Stat.

2016, 45, 417–427. [CrossRef]
32. Hassan, A.M.; Ramos, H.; Moaaz, O. Second-Order Dynamic Equations with Noncanonical Operator: Oscillatory Behavior.

Fractal Fract. 2023, 7, 134. [CrossRef]
33. Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I.; Li, T.; Tun ç, E. Oscillation criteria for third-order Emden–Fowler differential equations

with unbounded neutral coefficients. Complexity 2019, 2019, 5691758. [CrossRef]
34. Dzurina, J.; Grace, S.R.; Jadlovska, I. On nonexistence of Kneser solutions of third-order neutral delay differential equations. Appl.

Math. Lett. 2019, 88, 193–200. [CrossRef]
35. Moaaz, O.; Alnafisah, Y. An improved approach to investigate the oscillatory properties of third-order neutral differential

equations. Mathematics 2023, 11, 2290. [CrossRef]
36. Moaaz, O.; Awrejcewicz, J.; Muhib, A. Establishing new criteria for oscillation of odd-order nonlinear differential equations.

Mathematics 2020, 8, 937. [CrossRef]
37. Moaaz, O.; Dassios, I.; Muhsin, W.; Muhib, A. Oscillation theory for non-linear neutral delay differential equations of third order.

Appl. Sci. 2020, 10, 4855. [CrossRef]
38. Moaaz, O.; Qaraad, B.; El-Nabulsi, R.A.; Bazighifan, O. New results for kneser solutions of third-order nonlinear neutral

differential equations. Mathematics 2020, 8, 686. [CrossRef]
39. Muhib, A.; Abdeljawad, T.; Moaaz, O.; Elabbasy, E.M. Oscillatory properties of odd-order delay differential equations with

distribution deviating arguments. Appl. Sci. 2020, 10, 5952. [CrossRef]
40. Pátíková, Z.; Fišnarová, S. Use of the modified Riccati technique for neutral half-linear differential equations. Mathematics 2021,

9, 235. [CrossRef]
41. Baculíková, B.; Džurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226.

[CrossRef]

http://dx.doi.org/10.14232/ejqtde.2017.1.60
http://dx.doi.org/10.1002/mma.6677
http://dx.doi.org/10.1016/j.aml.2021.107172
http://dx.doi.org/10.3390/axioms12020166
http://dx.doi.org/10.1515/ms-2022-0028
http://dx.doi.org/10.3390/math9141675
http://dx.doi.org/10.1007/s12346-022-00731-6
http://dx.doi.org/10.7153/dea-04-13
http://dx.doi.org/10.3390/math10060894
http://dx.doi.org/10.1007/s00605-020-01469-6
http://dx.doi.org/10.1155/2021/5597947
http://dx.doi.org/10.1007/s11784-021-00925-6
http://dx.doi.org/10.3390/math9121323
http://dx.doi.org/10.3390/sym13050780
http://dx.doi.org/10.1002/mma.8534
http://dx.doi.org/10.3390/math8111897
http://dx.doi.org/10.15672/HJMS.20164512495
http://dx.doi.org/10.3390/fractalfract7020134
http://dx.doi.org/10.1155/2019/5691758
http://dx.doi.org/10.1016/j.aml.2018.08.016
http://dx.doi.org/10.3390/math11102290
http://dx.doi.org/10.3390/math8060937
http://dx.doi.org/10.3390/app10144855
http://dx.doi.org/10.3390/math8050686
http://dx.doi.org/10.3390/app10175952
http://dx.doi.org/10.3390/math9030235
http://dx.doi.org/10.1016/j.mcm.2010.02.011


Mathematics 2024, 12, 1734 16 of 16

42. Thandapani, E.; Li, T. On the oscillation of third-order quasi-linear neutral functional differential equations. Arch. Math. 2011, 47,
181–199.

43. Graef, J.R.; Tunç, E.; Grace, S. Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation. Opusc.
Math. 2017, 37, 839–852. [CrossRef]

44. Kumar, M.S.; Ganesan, V. On the oscillatory behavior of solutions of third order nonlinear neutral differential equations. Malaya J.
Mat. 2019, 2019, 596–599.

45. Moaaz, O.; Cesarano, C.; Almarri, B. An improved relationship between the solution and its corresponding function in neutral
fourth-order differential equations and its applications. Mathematics 2023, 11, 1708. [CrossRef]

46. Kiguradze, I.T.; Chanturia, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Diferential Equations; Trans lated from
the 1985 Russian original; Kluwer Academic: Dordrecht, The Netherlands, 1993.

47. Philos, C.G. Oscillation theroms for linear differential equations of second order. Arch. Math. 1989, 53, 482–492. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.7494/OpMath.2017.37.6.839
http://dx.doi.org/10.3390/math11071708
http://dx.doi.org/10.1007/BF01324723

	Introduction
	Preliminaries
	Main Results
	Conclusions
	References

