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Abstract: The main concept involved in this study explains the theme of complex t-intuitionistic 
fuzzy graphs (CTIFGs), which act as a powerful tool in analyzing and displaying the relationships 
among various applications that are difficult to recognize. The manuscript also demonstrates the 
capability of CTIFGs to create complex associations with multiple domains when considering a 
physical situation. Following this, the basic set of operations for CTIFGs is projected. The ideas on 
isomorphism and homomorphism of the CTIFGs are also presented. Moreover, the manuscript de-
scribes the importance of the above-mentioned technique in an effective way, giving a solution to 
the practical application associated with rubber processing industrial wastewater. The contributing 
factors and corresponding interdependencies are considered when calibrating the complex nature 
of industrial wastewater associated with the CTIFGs. The results highlight the adaptability and pos-
sible efficiencies of CTIFGs, which act as a decision-making tool and also indicate their importance 
for policy planners in important societal issues. 
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1. Introduction 
1.1. Fuzzy Set and Graphs  

Real-world problems can be meticulously addressed with the support of mathemat-
ical concepts using the applications associated with fuzzy graph theory. In [1], Zadeh de-
picts the importance of assigning membership values running from zero to one, which are 
used for understanding the set theory, where judgment, fuzziness, and human opinion 
are enforced for predictions. The fuzzy-based mathematical concept emerged in the 1960s 
and 1970s, and various research in the field of applications-focused theory in the area of 
tube trains, video cameras, and washing machines was conducted. Simultaneously, for-
mal theories are used to obtain the qualitative outcome. The review paper [2] highlights 
the significant factors associated with fuzzy set theory, where natural and formal models 
are used to predict uncertainties with the support of modeling. The fuzzy set in this work 
is denoted in the form of 𝐴 = {𝛼, 𝜇 (𝛼)|𝛼 𝜖 𝐴} 
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The pairs indicate the fuzzy set, 𝜇 (𝛼) epresents membership value, and it is denoted 
as 0 ≤ 𝜇 (𝛼) ≤ 1. 

The work in [3] described the role of variables linked with a potential prospective 
distribution and a probability distribution. The work of Zadeh and their teammates has 
demonstrated an idea in decision-making using the probability and possibility concept. 
They have established unique concepts in the name of the Zadeh fuzzy set, n-dimensional 
fuzzy set, and finite value fuzzy sets [4]. For an assigned methodology, introducing the 
algorithms supported by fuzzy graph theory gives the output on evaluating the multiple 
species-based fishery dynamics and will also provide a systematic introductory interpre-
tation in the form of patterns. Fuzzy means it is represented as not having a clear vision 
in normal conditions. Most of the daily life problems can be modeled using fuzzy graphs 
[5]. 

The linear Diophantine fuzzy graphs play a significant role in categorizing the prop-
erties of various applications. Some of the most predominant outcomes are in the field of 
bridges, trees, forests, cut vertices, and cycles [6]. An algorithm is commonly involved in 
evaluating the number of components associated with rooted trees that are covered using 
fuzzy graphs and in addition, it also determines the complexity analysis [7]. There might 
be alternative solutions for the algorithms that are favored. The application of optimiza-
tion with the support of algorithms will be an alternative and more advantageous than 
the application of neural network-based fuzzy models [8]. The application of a fuzzy 
model can even predict the functioning of the human heart and can be easily plotted using 
graphs for easy understanding the graphs [9]. Fuzzy methods play a significant role in 
compiling graphical content, which includes edge weight for balance, edge connectedness 
for continuity, edge existence for surveying, and vertex existence and are plotted in order 
to give concluding remarks in fuzziness [10,11]. These data are normally used in main-
taining the ranking by fuzzy numbers. The introduction of a fuzzy hyper-based wiener 
index helps in calibrating various graphical similarities [12]. The role of the fuzzy cogni-
tive map and its associated structure of output concepts minimizes all concepts of com-
plicated connections in the graph [13]. 

1.2. Intuitionistic Fuzzy Set and Graphs 
The advanced stage of conventional fuzzy set theory and the corresponding graphs 

are representations through intuitionistic fuzzy sets (IFSs) and (IFGs) intuitionistic fuzzy 
Graphs. Given the flexibility in making models, the Krassimir Atanassov pattern was in-
troduced in 1980 when it addressed the inclusion and removal of a set of values. In cases 
where decisions are made in critical situations, the IFS models are considered as suitable 
solutions for correcting alternatives through graphical representation [14–16]. In decision-
making, initially, the level of resistance is measured, and then the membership value per-
spectives and non-membership value viewpoints are considered when making flexible 
decisions with more information through the graphs [17,18].  

In the case of technical content, the mathematical concept associated with IFSs and 
IFGs plays a significant role in developing algorithms and aggregation strategies. The ma-
jor components involved in accurate modeling are networking, utilizing image recogni-
tion, clustering of data, and control systems, which provide significant changes to the de-
cision-making process [19]. Framing a hypothesis for the IFG graph deliberately signifies 
the self-complimentary displays [20]. The importance of IFG components is examined and 
explained with the support of various typical examples [21]. In IFGs, the applicability of 
the vertex set is assessed through the upgraded algorithm [22]. Product operations are 
defined in the IFG with the support of graphs [23]. With the energy of a fuzzy graph, it is 
further transformed into the IFG concept for effective outcomes [24]. The combined effect 
of fuzzy and IFG clustering roles significantly considers the clustering of vertices [25]. 
Connectivity plays a predominant role in the study of IFGs, which has been discussed 
briefly [26]. Connectivity indexing supports IFG research by giving better outputs [27]. 
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Multi-person thinking, multi-criteria-based decision-making support, and reliability 
scores are the outcomes of the intuitionistic fuzzy model [28].  

1.3. Complex Fuzzy Sets (CFS) and Complex Fuzzy Graphs (CIFG) 
In complex fuzzy theory, 𝜇(𝑥) has been highlighted as the membership function that 

covers the unit circle of the complex plane that has range values higher than [0, 1] with r 
as an identifier. Meanwhile 𝜇(𝑥) indicates the complex-valued function, which is repre-
sented as 𝑣(𝑥)𝑒 , 𝑖 = √−1 as a membership grade. In due course, amplitude term 𝑣(𝑥), 
has been disclosed with the unit interval [0, 1], and similarly, the phase term represented 
as a periodic term has (𝑥) with the interval [0, 2𝜋], as both the components united to form 
a membership in the CFS. With uniqueness in the phase term terminology, the CFS model 
is elevated. Membership degree has been utilized as the complex plane where the unit 
circle consists of additional components diverging for the fuzzy characterization in the 
CFS module. The importance of intersection in the compound, discussions in the comple-
ment, and support of unions comes from the complex parameters associated with the CFS 
examples for simplification, as discussed by Ramot et al. [29]. The reputation of CFS and 
their systematic analysis are detailed in a clear sketch by Yazdanbakhsh and Dick [30]. 
The non-membership degree developed by Alkouri and Salleh [31] connecting the CIFS 
and CFS database is given as 𝑣(𝑥) = 𝑠𝑒  and is further transformed to restriction 𝑟 + 𝑠 ≤ 
1. In this case, the role of managing periodicity and considering uncertainty are significant 
factors that boost the knowledge concurrently. 

Hesitation in concluding the decision may be reduced with the support of complex-
valued truth factors and considering falsity membership degrees for effective discussion. 
Meanwhile, the application of physical phenomena such as wave functions, problem-solv-
ing situations, and resistance in the electrical sector significantly express uncertainty. Even 
though CIFS and CFS work together concept-wise in the field of cylindrical extensions, 
followed by projections and distant measurements, the individuality differs in the part of 
introducing a group of phase words, as CFS will always have one more additional term. 
The concept of IFG and its extensive application and evidence have been cited [32–35]. 
The recent research work by Asima Razzaque [36] in the area of TIFGs reveals solutions 
to complicated problems with the support of multiple factors considering the physical 
situations. Under a fundamental set of working conditions, the ideas of homomorphism 
and isomorphism were experimented with. Specifically, the work proposed a systematic 
view of the elimination of poverty in an identified community. In their new definition of 
SA, Shao et al. [37] discussed how applications were used in water supply systems and 
the degree of connectedness in IFGs. The first of its kind, the new video processing algo-
rithm by Chen, Zhihua et al. [38] uses temporal intuitionistic fuzzy sets to enhance films 
via suitable examples in interval-valued IFGs and introduce some of the specific concepts 
in Xiaoli Qiang et al. [39], such as covering, matching, and paired domination via strong 
arc [40,41]. Interval-valued (S, T)-fuzzy graphs that are regular and fully regular were first 
conceptualized by Rashmanlou and Borzooei. Talebi, Kosari, and Shi et al. model chal-
lenges associated with this network and provide solutions to some of them, including the 
neutrality state [42], thus extending the energy idea on the fuzzy graph picture. Guan et 
al. [43] examine domination in intuitionistic fuzzy directed graphs (IFDGs) to discover 
dominant nodes with implications for social networks and network security. Imran et al. 
[44] create novel operations on intuitionistic fuzzy graphs that use the Sombor index to 
improve internet routing efficiency and reliability.  

Sakander Hayat et al. [45] present two novel temperature-based topological indices 
for predicting the physicochemical features of polycyclic aromatic hydrocarbons, which 
apply to silicon carbide nanotubes. Sakander Hayat et al. use eigenvalue-based graphical 
indices to forecast the thermodynamic parameters of polycyclic aromatic hydrocarbons, 
with an emphasis on polyacenes [46]. Sakander Hayat et al. compare temperature-based 
graphical indicators to determine total π-electron energy in benzenoid hydrocarbons [47]. 
Sakander Hayat et al. [48] investigate structure-property modeling using temperature-
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based topological indices to predict the thermodynamic characteristics of benzenoid hy-
drocarbons. Sakander Hayat [49] uses distance-based graphical indices to forecast the 
thermodynamic parameters of benzene hydrocarbons, displaying a variety of applica-
tions. Sakander Hayat et al. investigate the statistical importance of valency-based topo-
logical descriptors in predicting the thermodynamic parameters of benzenoid hydrocar-
bons [50].  

In this study, the CTIFG outperforms IFSs in handling ambiguity and uncertainty. 
This tactic is beneficial since it provides an adaptable approach to managing the ambiguity 
and uncertainty that accompany decision-making. Due to their efforts to bridge the gap 
between classical computational models used in technology and the sciences and symbolic 
models used in expert systems, complicated ITF models are becoming more and more 
valuable.  

The CTIFG theory is a useful instrument for defining and elucidating difficult and 
ambiguous issues that emerge in real-world situations. This phenomenon can be ex-
plained by its capacity to convey the innate qualities of complexity, imprecision, ambigu-
ity, and predictableness that are associated with the items that fall under these categories. 
However, in order to address the actual issues pertaining to membership and non-mem-
bership functions, these approaches must be rewritten using particular numerical values. 
We introduced the idea of a CTIFG, which makes use of the linear t-norm and t-conform 
operators, to get around this restriction. The implementation of the CTIFG was prompted 
by the need for an organized and flexible technique to manage ambiguity and facilitate 
decision-making under the direction of established parameters. 

Here, the use of the parameter “t” makes the process easier to understand by defining 
specific standards for determining the level of membership or non-membership. It be-
comes necessary to base decisions on varying degrees of confidence in several real-life 
scenarios. The goal of adding the parameter “t” to the CTIFG is to get around the IFG’s 
limitations. This parameter provides distinct thresholds for decision-making, improves 
customization, decreases uncertainty, and gives exact control over stringency. Because of 
the aforementioned advantages, the CTIFG is an extremely useful method for illustrating 
uncertainty and assisting in informed decision-making in situations where a customized 
and controlled approach to uncertainty management is required. When classical IFG is 
insufficient, the CTIFG makes complicated decision environments easier to grasp and ma-
nipulate. 

In the context of difficult decision-making, the impact of complex, ambiguous rela-
tionships cannot be overstated. These graphs provide decision-makers with strong tools 
for evaluating and analyzing various options by providing a detailed description of the 
intricate interaction between input and output factors. Decision-makers can determine 
choices fully and systematically by taking into account several criteria and their interde-
pendencies, thanks to complex fuzzy connections. This makes it easier to handle complex 
decision-making challenges holistically. Decision-making has advanced significantly with 
the help of this sophisticated technique, especially when complex membership, non-mem-
bership, and parameter t are present. It opens the door for improved decision-making 
precision and denotes a departure from the constraints of binary logic. 

1.4. Motivation for the Research 
• The main reason for employing CTIFGs is their ability to manage complex and un-

certain situations with hesitant and variable elemental interactions. 
• These graphs, which incorporate the “t” parameter, provide a framework for evalu-

ating and simulating various degrees of connection confidence and uncertainty. 
• A technique for managing the conjunction and disjunction of uncertain information 

is provided by including t-norms and t-conforms. This approach is specifically in-
tended for decision-making scenarios involving a variety of inputs along with results 
in real-world scenarios.  
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• This methodology is utilized in various domains, such as risk assessment, decision 
analysis, and systems optimization, where the aim is to attain a trade-off between 
pragmatic utility and unresolved relationships. 

1.5. Novelties of the Work  
• The “t” parameter is a threshold of reluctance that allows for the formation of a new, 

structured representation of ambiguous connections. 
• Adding the “t” option can improve the representation of interactions in which choos-

ing nodes and their edges is contingent upon adhering to a protective confidence 
level. 

• This approach would enable a more methodical treatment of ambiguity by providing 
a more exact difference between effective and sensitive relationships. 

• Multi-layered analysis, in which distinct graph layers are linked to different param-
eter values “t”, is possible with a CTIFG. Using this method would allow for a com-
plete analysis of the graph’s relationships while accounting for varying levels of as-
surance. It makes the fundamental framework easier to comprehend. 

1.6. Primary Goals for This Article Are to Make the Following Contributions 
• Propose the idea of the CTIFG. This phenomenon is advantageous in that it offers a 

flexible paradigm for describing the uncertainty and ambiguity inherent in decision-
making. Moreover, it plays a significant role in various disciplines such as computer 
science, economics, chemistry, medicine, and engineering.  

• Examine and demonstrate several important characteristics of the recently defined 
CTIFG set theory procedures. These functions make it possible to integrate data, in-
vestigate relationships, and support well-informed decision-making in a variety of 
application domains. 

• Explain what homomorphism and isomorphism of CTIFG mean, and give examples 
of some recently defined important characteristics. This idea is utilized to make con-
ducting comparative analysis and data transmission more comfortable in situations 
where there are uncertain and hesitant graph topologies. 

• Introduce the concept of the complement of a CTIFG and demonstrate several essen-
tial aspects of this approach. The concept of uncertainty highlights inverse linkages 
that the initial graph might not have made clear. Applications for this technology 
include analyzing decisions, network verification, and error detection. 

• Utilizing the recently defined technique, determine the essential elements for miti-
gating poverty within a certain community. By strengthening representation, identi-
fying vulnerable populations, assigning resources, monitoring and assessing results, 
and developing thoughtful policies, this strategy will aid in the reduction of rubber 
processing industrial wastewater.  

• Examines the complexities and uncertainties surrounding industrial wastewater, cul-
minating in an evaluation of its roots, evolution, and effects. 

1.7. Strengths and Weaknesses 
Finally, while complex t-intuitionistic fuzzy networks provide an effective frame-

work for representing ambiguity and uncertainty in graph theory, they also present com-
putational difficulties and necessitate meticulous parameter adjustment for best interpre-
tation and performance. Their strengths are their strong mathematical foundation and 
their capacity to deal with a variety of uncertainty types; their shortcomings are their in-
creased computing complexity and interpretability problems. 

1.8. Structure of the Paper 
A quick overview of the CTIFG (see Table 1) is followed by the remainder of the 

article, which is organized as follows: The “Preliminaries of CTIFGs” section offers some 
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basic definitions to aid the reader in understanding the uniqueness of the work that is 
described in this article. Numerous set-theoretical operations of CTIFGs are examined and 
illustrated graphically in the section “Operations on CTIFGs”. The definitions of 
homomorphisms and isomorphisms of CTIFGs are given in the section “Isomorphism of 
CTIFGs”. The freshly defined approach is used to create a mechanism for lowering 
poverty in a particular society in the “Application of CTIFGs” section. The final portions 
of the paper are titled “Comparative analysis” and “Conclusion”, respectively, and they 
include some comparative analysis and specific findings.  

Table 1. The list of abbreviations used in this article is shown in the table below. 

IFS Intuitionistic Fuzzy Set 
TIFS t-Intuitionistic Fuzzy Set 
CIFS Complex Intuitionistic Fuzzy Set 
IFG Intuitionistic Fuzzy Graph 
CTISs Complex t-Intuitionistic Subset 
CTIFGs Complex t-Intuitionistic Fuzzy Graphs 

2. Preliminaries CTIFGs 

Definition 1. Given a universal set U, let G be its intuitionistic fuzzy set (IFS) and t∈ [0, 1]. 
Known as a t-intuitionistic fuzzy set (TIFS), the 𝐼𝐹𝑆Ğ𝔱 of U is defined as ϻĞ𝔱(ʊ ) = ∧ {ϻĞ𝔱(ʊ ), 𝔱}, 
and ϼĞ𝔱(ʊ ) =∨ {ϼĞ𝔱(ʊ ), 1 − 𝔱} ,∀ ʊ ∈ 𝑈 . The form of TIFS is Ğ𝔱 = ʊ , ϻĞ𝔱(ʊ ), ϼĞ𝔱(ʊ ): ʊ ∈𝑈  where ϻĞ𝔱 𝑎𝑛𝑑 ϼĞ𝔱 are functions that assign a degree of truth membership and falsity mem-
bership, respectively. Moreover, the functions ϻĞ𝔱 𝑎𝑛𝑑 ϼĞ𝔱  satisfy the condition 0 ≤ϻĞ𝔱(ʊ )+ϼĞ𝔱(ʊ ) ≤ 1.  

Definition 2. A complex intuitionistic fuzzy set (CIFS) A, defined on a universe of discourse X is 
an objective of the form Ą = ʊ , ϻĞĄ𝔱(ʊ )𝑒 ϻ ĞĄ𝔱(ʊ ), ϼĞĄ𝔱(ʊ )𝑒 ϼ Ğ𝔱(ʊ ) , here  𝑖 =√−1, (ϻĞĄ𝔱(ʊ ),  ϼĞĄ𝔱(ʊ ))  ∈ 0,1 , 0 ≤ ϻ𝜛ĞĄ𝔱(ʊ ), ϼ𝜍ĞĄ𝔱(ʊ ) ≤ 2𝜋.  
Definition 3. For a given simple graph 𝒢 = (V,E), let Ğ𝔱 = (Ą𝔱, Ɓ𝔱) be a t-intuitionistic fuzzy 
graph (TIFG). The notation Ğ𝔱 = (Ą𝔱, Ɓ𝔱)  denotes a CTIFG, where Ą𝔱 =(ʊ , ϻĞĄ𝔱(ʊ )𝑒 ϻ ĞĄ𝔱(ʊ ),  ϼĞĄ𝔱(ʊ )𝑒 ϼ ĞĄ𝔱(ʊ )): ʊ ∈ 𝑉   is a CTIFS on V and Ɓ𝔱 =ʊ , ʊ , ϻĞƁ𝔱 ʊ , ʊ 𝑒 ϻ ĞƁ𝔱 ʊ , ʊ , ϼĞƁ𝔱 ʊ , ʊ 𝑒 ϼ ĞƁ𝔱 ʊ , ʊ : ʊ , ʊ ∈ 𝐸   is a CTIFS on E ⊆ 𝑉 × 𝑉, 
such that ∀(ʊ , ʊ ) ∈ 𝐸. 

ϻĞĄ𝔱 ʊ , ʊ 𝑒 ϻ ĞĄ𝔱 ʊ , ʊ  ≤ ∧ {ϻĞĄ𝔱(ʊ ), ϻĞĄ𝔱 ʊ }𝑒  ∧{ϻ ĞĄ𝔱(ʊ ), ϻ ĞĄ𝔱 ʊ }
 

ϼĞƁ𝔱 ʊ ,  ʊ 𝑒 ϼ ĞƁ𝔱 ʊ ,ʊ ≤ ∨ {ϼĞƁ𝔱(ʊ ), ϼĞƁ𝔱 ʊ }𝑒 ∨ {ϼ ĞƁ𝔱(ʊ ), ϼ ĞƁ𝔱 ʊ } 
for all ʊ , ʊ ∈ 𝑉. 
Example 1. Examine the 𝐺 = (𝑉, 𝐸) in which 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝐸 = {𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑑𝑎}. Let A 
be a complex t-intuitionistic subset (CTIS) of V and B be a CTIS of 𝐸 ⊆  𝑉 ×V, as given at 𝔱 = 0.80 in Figure 1. 

Ą . = ⎩⎪⎨
⎪⎧(𝑎, 0.6 𝑒  . , 0.4𝑒  .  )(𝑏, 0.7𝑒 . , 0.3𝑒 . ),(𝑐, 0.8𝑒 . , 0.2𝑒 . )(𝑑, 0.6𝑒 . , 0.4𝑒 . ) ⎭⎪⎬

⎪⎫
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and 

Ɓ . = ⎩⎪⎨
⎪⎧(𝑎𝑏, 0.6𝑒 . , 0.4𝑒 . )(𝑏𝑐, 0.7𝑒 . , 0.3𝑒 . )(𝑐𝑑, 0.6𝑒 . , 0.4𝑒 . )(𝑑𝑎, 0.5𝑒 . , 0.3𝑒 . )⎭⎪⎬

⎪⎫
 

 
Figure 1. CTIFG, where 𝒢 . . 

Definition 4. Let Ğ𝔱 = (Ą𝔱, Ɓ𝔱) be a CTIFG. Then ℋ𝔱 = (Ą𝔱, Ɓ𝔱) is considered a complex intui-
tionistic subgraph (CTISG) if Ą𝔱 ⊆ Ą𝔱 and Ɓ𝔱 ⊆ Ɓ𝔱. 
Definition 5. A CTIFG Ğ𝔱 = (Ą𝔱, Ɓ𝔱) is termed a complete CTIFG if it satisfies the following 
conditions:  ϻĞƁ𝔱(ʊ , ʊ )𝑒 ϻ ĞƁ𝔱(ʊ ,ʊ ) = ∧ ϻĞĄ𝔱(ʊ ), ϻĞĄ𝔱(ʊ ) 𝑒  ∧ ϻ ĞĄ𝔱(ʊ ),ϻ ĞĄ𝔱(ʊ )

 

ϼĞƁ𝔱(ʊ , ʊ )𝑒 ϼ ĞƁ𝔱(ʊ , ʊ ) = ∨ ϼĞĄ𝔱(ʊ ), ϼĞĄ𝔱(ʊ )  𝑒  ∨ ϼ ĞĄ𝔱(ʊ ), ϼ ĞĄ𝔱(ʊ ) , ∀ (ʊ , ʊ ) ∈ 𝐸. 
Example 2. Figure 2 illustrates the entire -CTIFG Ğ . . 

 
Figure 2. CTIFG Ğ . . 
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Definition 6. In CTIFGs, the order is defined as follows 

𝑂 Ğ𝔱 = ⎝⎜⎜
⎛ ϻĞĄ𝔱(ʊ ) 𝑒  ∑ ϻ ĞĄ𝔱(ʊ )ʊ ∈  ʊ ∈ ,ϼĞ𝐴𝔱(ʊ )ʊ ∈ 𝑒  ∑ ϼ ĞĄ𝔱(ʊ )ʊ ∈ ⎠⎟⎟

⎞
 

Example 3. The order of the CTIFG Ğ𝔱 is (2.7𝑒 . , 1.3𝑒 . ) from Example 1. 

Definition 7. The CTIFG has a size defined by 

𝑆 Ğ𝔱 = ⎝⎜⎜
⎛ ϻĞĄ𝔱(ʊ , ʊ )𝑒  ϻ ĞĄ𝔱(ʊ ,ʊ )

(ʊ ,ʊ )∈ ,ϼĞĄ𝔱(ʊ , ʊ )𝑒  ϼ ĞĄ𝔱(ʊ ,ʊ )
(ʊ ,ʊ )∈ ⎠⎟⎟

⎞
 

Definition 8. In CTIFGs, the degree of vertex ʊ in Ğ𝔱 is defined as follows,  

1. 𝑑𝑒𝑔Ğ𝔱(ʊ ) = 𝑑𝑒𝑔ϻĞƁ𝔱 (ʊ ), 𝑑𝑒𝑔ϼĞƁ𝔱 (ʊ )  

𝑑𝑒𝑔Ğ𝔱(ʊ ) = ⎝⎜⎜
⎛ ϻĞƁ𝔱(ʊ , ʊ )𝑒  ϻ ĞƁ𝔱(ʊ ,ʊ )(ʊ ,ʊ )∈ ,ϼĞƁ𝔱(ʊ , ʊ )(ʊ ,ʊ )∈ 𝑒  ϼ ĞƁ𝔱(ʊ ,ʊ ) ⎠⎟⎟

⎞
 

2. The minimum degree 𝛿 Ğ𝔱  of CTIFG is given by  𝛿(Ğ𝔱) = 𝛿ϻĞƁ𝔱 Ğ𝔱 𝑒 ( ϻ ĞƁ𝔱 Ğ𝔱 , 𝛿ϼĞƁ𝔱 Ğ𝔱 𝑒 ( ϼ ĞƁ𝔱 Ğ𝔱  

𝛿 Ğ𝔱 = ⎝⎜
⎛∧ 𝑑𝑒𝑔 ϻĞƁ𝔱 (ʊ ) 𝑒  ∧{  ϻ ĞƁ𝔱 (ʊ )},∧ 𝑑𝑒𝑔 ϼĞƁ𝔱 (ʊ ) 𝑒  ∧  ϼ ĞƁ𝔱 (ʊ ) ⎠⎟

⎞ ʊ ∈ 𝑉 

3. The maximum degree ∆ Ğ𝔱  of CTIFG is given by  ∆ Ğ𝔱 = ∆ϻĞƁ𝔱 Ğ𝔱 e (∆ϻ ĞƁ𝔱 Ğ𝔱 , ∆ϼĞƁ𝔱 Ğ𝔱 e (∆ϻ ĞƁ𝔱 Ğ𝔱  

∆ Ğ𝔱 = ⎝⎜
⎛⋁ degϻĞƁ𝔱 (ʊ ) e ⋁{  ϻ ĞƁ𝔱 (ʊ )} ,,⋁ deg ϼĞƁ𝔱 (ʊ ) e ⋁  ϼĞƁ𝔱 (ʊ ) ⎠⎟

⎞ ʊ ∈ 𝑉 

Example 4. From Example 1, The degree of a vertex in Ğ𝔱 is  

𝑑𝑒𝑔Ğ𝔱(𝑎) = (1.1𝑒 . , 0.7𝑒 . ); 𝑑𝑒𝑔Ğ𝔱(𝑏) = (1.3𝑒 . , 0.7𝑒 . );  
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𝑑𝑒𝑔Ğ𝔱(𝑐) = (1.3𝑒 . , 0.7𝑒 . );  𝑑𝑒𝑔Ğ𝔱(𝑑) = (1.1𝑒 . , 0.7𝑒 . ). 

3. Operations on CTIFG 
3.1. Cartesian Product of CTIFG  

Definition 9. Let Ğ𝔱 = (Ą𝔱, Ɓ𝔱) and Ğ𝔱′ = (Ą𝔱, Ɓ𝔱) be any two CTIFGs of G = (V, E) and G’= (V’, 
E’), respectively. The Cartesian product Ğ𝔱 × Ğ𝔱′  of two CTIFG, Ğ𝔱  and Ğ𝔱′  is defined by (Ą𝔱 × Ą𝔱,  Ɓ𝔱 × Ɓ𝔱) , where Ą𝔱 × Ą𝔱  and Ɓ𝔱 × Ɓ𝔱   are CTISs on 𝑉 × 𝑉 ={(ʊ , ⍵ ), (ʊ , ⍵ ): ʊ , ʊ ∈ 𝑉; ⍵  , ⍵ ∈ 𝑉 }  and 𝐸 × 𝐸 = {(ʊ , ⍵ ), (ʊ , ⍵ ): ʊ =ʊ , ʊ  , ʊ ∈ 𝑉, (⍵ , ⍵ ) ∈ 𝐸 } 𝑈 {(ʊ , ⍵ ), (ʊ , ⍵ ): ⍵ = ⍵ , ⍵  ,  ⍵ ∈ 𝑉 , (ʊ , ʊ ) ∈𝐸} 𝑈 {(ʊ , ⍵ ), (ʊ , ⍵ ): ⍵ ≠ ⍵ , ʊ ≠ ʊ , (⍵ , ⍵ ) ∈ 𝐸 , (ʊ , ʊ ) ∈ 𝐸}, respectively, which sat-
isfy the following conditions. 

1. ∀ (ʊ , ⍵ ) ∈  𝑉 × 𝑉  

(a) ϻĞĄ𝔱×Ą 𝔱 (ʊ , ⍵ ) 𝑒 ϻ ĞĄ𝔱×Ą 𝔱 (ʊ , ⍵ ) = ∧ ϻĞĄ𝔱(ʊ ), ϻĞĄ 𝔱 (⍵ ) 𝑒  ∧ ϻ ĞĄ𝔱 (ʊ ), ϻ ĞĄ𝔱 (⍵ )
 

(b) ϼĞĄ𝔱×Ą 𝔱 (ʊ ,  ⍵ )𝑒 ϼ ĞĄ𝔱×Ą 𝔱 (ʊ , ⍵ ) = ∨ ϼĞĄ𝔱(ʊ ),  ϼ𝜗ĞĄ 𝔱 (⍵ ) 𝑒  ∨ ϼ ĞĄ𝔱 (ʊ ), ϼ ĞĄ 𝔱 (⍵ )
 

2. If ʊ = ʊ  and ∀ (⍵ , ⍵ ) ∈ 𝐸   

(a) ϻĞƁ𝔱×Ɓ 𝔱 (ʊ ,  ⍵ ), (ʊ , ⍵ ) 𝑒 ϻ ĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )
 

= ∧ ϻĞĄ𝔱 (ʊ ), ϻĞƁ 𝔱 (⍵ , ⍵ ) 𝑒  ∧ ϻ ĞĄ𝔱 (ʊ ),ϻ ĞƁ 𝔱 (⍵ ,⍵ )
 

(b) ϼĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϼ ĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )
 

= ∨ ϼĞĄ𝔱 (ʊ ), ϼĞƁ 𝔱 (⍵ , ⍵ ) 𝑒 ∨ ϼ ĞĄ𝔱 (ʊ ),ϼ ĞƁ 𝔱 (⍵ ,⍵ )
 

3. If ⍵ = ⍵  and ∀ (ʊ , ʊ ) ∈ 𝐸  

(a) ϻĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ ,  ⍵ ) 𝑒 ϻ ĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )   
= ∧ ϻĞƁ𝔱 (ʊ , ʊ ), ϻĞĄ 𝔱 (⍵ ) 𝑒 ∧ ϻ ĞƁ𝔱 (ʊ ,ʊ ),ϻ ĞĄ 𝔱 (⍵ )    

(b) ϼĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒  ϼ ĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )   
= ∨ ϼĞƁ𝔱 (ʊ1, ʊ2), ϼĞĄ 𝔱 (⍵ ) 𝑒  ∨ ϼ ĞƁ𝔱 (ʊ1,ʊ2), ϼ ĞĄ 𝔱 (⍵ )   

Example 5. Figures 3 and 4 illustrate two CTIFGs, Ğ𝔱 and Ğ𝔱′, which are the elements of consid-
eration. The Cartesian product Ğ . ×Ğ . ’, which corresponds to them, is seen in Figure 5. 

 

Figure 3. CTIF Ğ . . 

𝑣 (0.6𝑒  . , 0.4𝑒  . ) 𝑢 (0.5𝑒  . , 0.5𝑒  . ) 

 (0.5𝑒  . , 0.4𝑒  . ) 
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Figure 4. CTIF Ğ′ . . 

 
Figure 5. Shows their corresponding Cartesian product Ğ . ×Ğ . ’. 

Definition 10. The degree of a vertex in Ğ𝔱 × Ğ𝔱′ is defined as follows: for any (ʊ , ⍵ ) ∈ 𝑉 × 𝑉 ,  
𝑑𝑒𝑔 𝒢𝔱×𝒢𝔱 (ʊ , ⍵ ) = ⎝⎜

⎛𝑑𝑒𝑔 ϻĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϻ ĞƁ𝔱×Ɓ 𝔱 (ʊ ,⍵ ),(ʊ ,⍵ ) ,,𝑑𝑒𝑔 ϼĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϼ ĞƁ𝔱×Ɓ 𝔱 (ʊ ,⍵ ),(ʊ ,⍵ ) ⎠⎟
⎞

 

where 𝑑𝑒𝑔 ϻĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϻ ĞƁ𝔱×Ɓ 𝔱 (ʊ ,⍵ ),(ʊ ,⍵ )
 

= ∑ ∧ ϻĞĄ𝔱 (ʊ ), ϻĞƁ 𝔱 (⍵ , ⍵ )ʊ ʊ ,(⍵ ,⍵ )∈   𝑒 ∑ ∧ ϻ ĞĄ𝔱 (ʊ ),ϻ𝜛 ĞƁ 𝔱 (⍵ ,⍵ )ʊ ʊ ,(⍵ ,⍵ )∈    

+ ∑ ∧ ϻĞƁ𝔱 (ʊ , ʊ ), ϻĞĄ𝔱 𝔱 (⍵ ) ⍵ ⍵ ,(ʊ ,ʊ )∈  𝑒 ∑ ∧ ϻ ĞƁ𝔱 (ʊ ,ʊ ), ϻ ĞĄ𝔱 𝔱 (⍵ ) ⍵ ⍵ ,(ʊ ,ʊ )∈  
  

and  
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𝑑𝑒𝑔 ϼĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒  ϼ ĞƁ𝔱×Ɓ 𝔱 (ʊ ,⍵ ),(ʊ ,⍵ )
  

= ∑ ∨ ϼĞĄ𝔱 (ʊ ), ϼĞƁ 𝔱 (⍵ , ⍵ )ʊ ʊ ,(⍵ ,⍵ )∈  𝑒  ∑ ∨ ϼ ĞĄ𝔱 (ʊ ), ϼ  ĞƁ 𝔱 (⍵ ,⍵ )ʊ ʊ ,(⍵ ,⍵ )∈    

+ ∑ ∨ ϼĞƁ𝔱 (ʊ , ʊ ), ϼĞĄ𝔱 𝔱 (⍵ ) ⍵ ⍵ ,(ʊ ,ʊ )∈   𝑒  ∑ ∨ ϼ ĞƁ𝔱 (ʊ ,ʊ ), ϼ  ĞĄ𝔱 𝔱 (⍵ ) ⍵ ⍵ ,(ʊ ,ʊ )∈  
  

Theorem 1. Two CTIFGs are Cartesian products, and the result is another CTIFG. 

Proof. For A × A  the condition is obvious. Assuming that ʊ ∈ V and (⍵ , ⍵ ) ∈ E   
then, ϻĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) e  ϻ ĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )

 

= ∧ ϻĞĄ𝔱 (ʊ ), ϻĞƁ 𝔱 (⍵ , ⍵ ) e  ∧ ϻ ĞĄ𝔱 (ʊ ),ϻ ĞƁ 𝔱 (⍵ ,⍵ )
 

≤ ∧ ϻĞĄ𝔱 (u ),∧ {ϻĞĄ𝔱 (⍵ ), ϻĞĄ𝔱 (⍵ )} e  ∧ ϻ ĞĄ𝔱 ( ),∧ {ϻ ĞĄ𝔱 (⍵ ),ϻ  ĞĄ𝔱 (⍵ )}
 ≤ ∧ ∧ ϻĞĄ𝔱 (ʊ ), ϻĞĄ𝔱 (⍵ ) , ∧ ϻĞĄ𝔱 (ʊ ), ϻĞĄ𝔱 (⍵ )  

e  ∧ ∧  ϻ ĞĄ𝔱 (ʊ ),ϻ ĞĄ𝔱 (⍵ ) ,∧ {ϻ ĞĄ𝔱 (ʊ ),ϻ ĞĄ𝔱 (⍵ )
 

= ∧ ϻĞĄ𝔱×Ą 𝔱 (ʊ , ⍵ ), ϻĞĄ𝔱×Ą 𝔱 (⍵ , ⍵ ) e ∧ ϻ ĞĄ𝔱×Ą 𝔱 (ʊ ,⍵ ), ϻ ĞĄ𝔱×Ą 𝔱 (⍵ ,⍵ )
 

Conseqʊently, ϻĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) e  ϻ ĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )
 

≤ ∧ ϻĞĄ𝔱×Ą 𝔱 (ʊ , ⍵ ), ϻĞĄ𝔱×Ą 𝔱 (⍵ , ⍵ ) e ∧ ϻ ĞĄ𝔱×Ą 𝔱 (ʊ ,⍵ ), ϻ ĞĄ𝔱×Ą 𝔱 (⍵ ,⍵ )   
if ʊ ∈ V, (⍵ , ⍵ ) ∈ E . Similarly for, ϼĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) e  ϼ ĞƁ𝔱×Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )

 

≤ ∨ ϼĞĄ𝔱×Ą 𝔱 (ʊ , ⍵ ), ϼĞĄ𝔱×Ą 𝔱 (⍵ , ⍵ ) e ∨ ϼ ĞĄ𝔱×Ą 𝔱 (ʊ ,⍵ ), ϼ ĞĄ𝔱×Ą 𝔱 (⍵ ,⍵ )   
if ʊ ∈ V, (⍵ , ⍵ ) ∈ E . Likewise, we can demonstrate it for w ∈ V ,(ʊ , ʊ ) ∈ E. □ 

3.2. Composistion of CTIFG 

Definition 11. The composition Ğ𝔱 ∘ Ğ𝔱′ of two CTIFGs, Ğ𝔱 and Ğ𝔱′, is a CTIFG and defined as 
a pair (Ą𝔱 ∘ Ą𝔱,  Ɓ𝔱 ∘ Ɓ𝔱) . Where (Ą𝔱 ∘ Ą𝔱)  and (Ɓ𝔱 ∘ Ɓ𝔱)  are CTISs on 𝑉 × 𝑉 ={(ʊ , ⍵ ), (ʊ , ⍵ ): ʊ , ʊ ∈ 𝑉; ⍵ , ⍵ ∈ 𝑉 }  and  𝐸 × 𝐸 = {(ʊ , ⍵ ), (ʊ , ⍵ ): ʊ = ʊ , ʊ , ʊ ∈𝑉, (⍵ , ⍵ ) ∈ 𝐸 } 𝑈 {(ʊ , ⍵ ), (ʊ , ⍵ ): ⍵ = ⍵ , ⍵ , ⍵ ∈ 𝑉 , (ʊ , ʊ ) ∈𝐸} 𝑈 {(ʊ , ⍵ ), (ʊ , ⍵ ): ⍵ ≠ ⍵ , ʊ ≠ ʊ , (⍵ , ⍵ ) ∈ 𝐸 , (ʊ , ʊ ) ∈ 𝐸}, respectively, which sat-
isfies the following condition 

1. ∀((ʊ , ⍵ ) ∈  𝑉 ∘ 𝑉  
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(a) ϻ ĞĄ𝔱∘Ą 𝔱 (ʊ ,  ⍵ )𝑒  ϻ ĞĄ𝔱∘Ą 𝔱 (ʊ ,⍵ ) = ∧ ϻĞĄ𝔱 (ʊ ), ϻĞĄ 𝔱 (⍵ ) 𝑒  ∧ ϻ ĞĄ𝔱 (ʊ ),ϻ ĞĄ 𝔱 (⍵ )
 

(b) ϼĞĄ𝔱∘Ą′𝔱 (ʊ , ⍵ )𝑒  ϼ ĞĄ𝔱∘Ą′𝔱 (ʊ , ⍵ ) = ∨ ϼĞĄ𝔱 (ʊ ),  ϼĞĄ′𝔱 (⍵ ) 𝑒  ∨ ϼ ĞĄ𝔱 (ʊ ), ϼ ĞĄ′𝔱 (⍵ )
 

2. If ʊ = ʊ  and ∀ (⍵ , ⍵ ) ∈ 𝐸 ,  

(i) ϻĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒  ϻ ĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )
 

= ∧ ϻĞĄ𝔱 (ʊ ), ϻĞƁ 𝔱 (⍵ , ⍵ ) 𝑒 ∧ ϻ ĞĄ𝔱 (ʊ ), ϻ ĞƁ 𝔱 (⍵ ,⍵ )
 

(ii) ϼĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒  ϼ ĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ),(ʊ ,⍵ )
 

= ∨ ϼĞĄ𝔱 (ʊ ), ϼĞƁ 𝔱 (⍵ , ⍵ ) 𝑒 ∨ ϼ ĞĄ𝔱 (ʊ ), ϼ ĞƁ 𝔱 (⍵ , ⍵ )
 

3. If ⍵ = ⍵  and ∀ (ʊ , ʊ ) ∈ 𝐸,  

(a) ϻĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϻ ĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ),(ʊ ,⍵ )
 = ∧ ϻĞƁ𝔱 (ʊ , ʊ ), ϻĞĄ 𝔱 (⍵ ) 𝑒  ∧ ϻ ĞƁ𝔱 (ʊ ,ʊ ),ϻ ĞĄ 𝔱 (⍵ )

 

(b) ϼĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϼ ĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ),(ʊ ,⍵ )
 = ∨ ϼĞƁ𝔱 (ʊ , ʊ ), ϼĞĄ 𝔱 (⍵ ) 𝑒  ∨ ϼ ĞƁ𝔱 (ʊ ,ʊ ),ϼ ĞĄ 𝔱 (⍵ )

 

4. If ⍵ ≠ ⍵  and ∀ (ʊ , ʊ ) ∈ 𝐸,  

(a) ϻĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒  ϻ ĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ),(ʊ , ⍵ )
 = ∧ ϻĞƁ𝔱 (ʊ , ʊ ), ϻĞĄ 𝔱 (⍵ ), ϻĞĄ 𝔱 (⍵ ) 𝑒∧ ϻ ĞƁ𝔱 (ʊ ,ʊ ), ϻ ĞĄ 𝔱 (⍵ ), ϻ ĞĄ 𝔱 (⍵ )

 

(b) ϼĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒  ϼ ĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ),(ʊ ,⍵ )
 = ∨ ϼĞƁ𝔱 (ʊ , ʊ ), ϼĞĄ 𝔱 (⍵ ), ϼĞĄ 𝔱 (⍵ ) 𝑒  ∨ ϼ ĞƁ𝔱 (ʊ ,ʊ ), ϼ ĞĄ 𝔱 (⍵ ), ϼ ĞĄ 𝔱 (⍵ )

 

Example 6. Consider the two CTIFG Ğ𝔱 and Ğ𝔱′ illustrated in Figure 6. Then, their correspond-
ing composition Ğ𝔱′ ∘ Ğ𝔱′ is in Figure 7. 

 

Figure 6. Ğ .  𝑎𝑛𝑑 Ğ′ . . 

𝑎 (0.5𝑒  . , 0.1𝑒  . ) 

𝑏 (0.7𝑒  . , 0.4𝑒  . ) 

𝑢 (0.6𝑒  . , 0.3𝑒  . ) 

𝑣 (0.4𝑒  . , 0.5𝑒  . ) 

(0.5𝑒 . ,0.4𝑒 . ) 

(0.4𝑒 . ,0.5𝑒 . ) 
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Figure 7. Ğ .  ∘ Ğ′ . . 

Definition 12. The following defines the degree of a vertex in Ğ𝔱 ∘ Ğ𝔱′ for any  

(ʊ , ⍵ ) ∈ 𝑉 × 𝑉 ; 𝑑𝑒𝑔Ğ𝔱∘Ğ𝔱  (ʊ , ⍵ ) = ⎝⎜
⎛𝑑𝑒𝑔 ϻĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϻ ĞƁ𝔱∘Ɓ 𝔱 (ʊ ,⍵ ),(ʊ ,⍵ )  ,,𝑑𝑒𝑔 ϼĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒  ϼ ĞƁ𝔱∘Ɓ 𝔱 (ʊ ,⍵ ),(ʊ ,⍵ ) . ⎠⎟

⎞
 

where 𝑑𝑒𝑔 ϻĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϻ ĞƁ𝔱∘Ɓ 𝔱 (ʊ ,⍵ ),(ʊ ,⍵ )  
 

= ∑ ∧ ϻĞĄ𝔱 (ʊ ), ϻĞƁ 𝔱 (⍵ , ⍵ ) 𝑒 ∑ ∧ ϻ ĞĄ𝔱 (ʊ ), ϻ ĞƁ 𝔱 (⍵ ,⍵ )ʊ ʊ ,(⍵ ,⍵ )∈   ʊ ʊ ,(⍵ ,⍵ )∈  +  

 ∑ ∧ ϻĞƁ𝔱 (ʊ , ʊ ), ϻĞĄ 𝔱 (⍵ ) 𝑒  ∑ ∧ ϻ ĞƁ𝔱 (ʊ ,ʊ ), ϻ ĞĄ 𝔱 (⍵ )   ⍵ ⍵ ,(ʊ ,ʊ )∈    ⍵ ⍵ ,(ʊ ,ʊ )∈  +
 ∑ ∧ ϻĞƁ𝔱 (ʊ , ʊ ), ϻĞĄ 𝔱 (⍵ ), ϻĞĄ 𝔱 (⍵ ) 𝑒  ∑ ∧ ϻ ĞƁ𝔱 (ʊ ,ʊ ), ϻ ĞĄ 𝔱 (⍵ ), ϻ ĞĄ 𝔱 (⍵ ) ⍵ ⍵ ,(ʊ ,ʊ )∈   ⍵ ⍵ ,(ʊ ,ʊ )∈     

and  𝑑𝑒𝑔 ϼĞƁ𝔱∘Ɓ 𝔱 (ʊ , ⍵ ), (ʊ , ⍵ ) 𝑒 ϼ ĞƁ𝔱∘Ɓ 𝔱 (ʊ ,⍵ ),(ʊ ,⍵ )  
 

= ∨ ϼĞĄ𝔱 (ʊ ), ϼĞƁ 𝔱 (⍵ , ⍵ ) 𝑒 ∑ ∨ ϼ ĞĄ𝔱 (ʊ ), ϼ ĞƁ 𝔱 (⍵ ,⍵ )ʊ ʊ ,(⍵ ,⍵ )∈   
ʊ ʊ ,(⍵ ,⍵ )∈  

+ ∨ ϼĞƁ𝔱 (ʊ , ʊ ), ϼĞĄ 𝔱 (⍵ ) 𝑒  ∑ ∨ ϼ ĞƁ𝔱 (ʊ ,ʊ ),ϼ ĞĄ 𝔱 (⍵ )   ⍵ ⍵ ,(ʊ ,ʊ )∈    ⍵ ⍵ ,(ʊ ,ʊ )∈   
+ ∨ ϼĞƁ𝔱 (ʊ , ʊ ), ϼĞĄ 𝔱 (⍵ ), ϼĞĄ 𝔱 (⍵ ) 𝑒  ∑ ∨ ϼ ĞƁ𝔱 (ʊ ,ʊ ),ϼ ĞĄ 𝔱 (⍵ ),ϼ ĞĄ 𝔱 (⍵ ) ⍵ ⍵ ,(ʊ ,ʊ )∈  

 ⍵ ⍵ ,(ʊ ,ʊ )∈   
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3.3. Union of CTIFG  

Definition 13. Let G= (V, E) and G’= (V’, E’) be any two CTIFGs, such that Ğ𝔱 = (Ą𝔱, Ɓ𝔱) and Ğ𝔱′ = (Ą𝔱, Ɓ𝔱). The union Ğ𝔱 ∪ Ğ𝔱′ of these two CTIFGs is defined, under certain assumptions, 
as(Ą𝔱 ∪ Ą𝔱, Ɓ𝔱 ∪ Ɓ𝔱) , where Ą𝔱 ∪ Ą𝔱  and Ɓ𝔱 ∪ Ɓ𝔱,  respectively, represent CTIS on 𝑉 ∪ 𝑉   and 𝐸 ∪ 𝐸 , which satisfies the following condition, 

(1) If ʊ ∈ 𝑉 and ʊ ∉ 𝑉  

(a) ϻĞĄ𝔱∪Ą 𝔱  (ʊ )𝑒  ϻ ĞĄ𝔱∪Ą 𝔱 (ʊ ) = ϻĞĄ𝔱 (ʊ )𝑒  ϻ ĞĄ𝔱 (ʊ )
 

(b) ϼĞĄ𝔱∪Ą 𝔱  (ʊ )𝑒  ϼ ĞĄ𝔱∪Ą 𝔱 (ʊ ) = ϼĞĄ𝔱 (ʊ )𝑒  ϼ ĞĄ𝔱 (ʊ )
 

(2) If ʊ ∉ 𝑉 and ʊ ∈ 𝑉  

(a) ϻĞĄ𝔱∪Ą 𝔱 (ʊ )𝑒  ϻ ĞĄ 𝔱 (ʊ )
= ϻĞĄ 𝔱 (ʊ )𝑒  ϻ ĞĄ 𝔱 (ʊ )

 

(b) ϼĞĄ𝔱∪Ą 𝔱  (ʊ )𝑒  ϼ ĞĄ𝔱∪Ą 𝔱 (ʊ )
= ϼĞĄ 𝔱 (ʊ )𝑒  ϼ ĞĄ 𝔱 (ʊ )

 

(3) If ʊ ∈ 𝑉 ∩ 𝑉  

(a) ϻĞĄ𝔱∪Ą 𝔱 (ʊ )𝑒  ϻ ĞĄ𝔱∪Ą 𝔱 (ʊ ) = ∨ {ϻĞĄ𝔱 (ʊ ), ϻĞĄ 𝔱 (ʊ )}𝑒  ∨{ϻ ĞĄ𝔱 (ʊ ),ϻ ĞĄ 𝔱 (ʊ )}
 

(b) ϼĞĄ𝔱∪Ą 𝔱 (ʊ ) 𝑒  ϼ ĞĄ𝔱∪Ą 𝔱 (ʊ ) = ∧ {ϼĞĄ𝔱 (ʊ ), ϼĞĄ 𝔱 (ʊ )}𝑒  ∧ {ϼ ĞĄ𝔱 (ʊ ),ϼ ĞĄ 𝔱 (ʊ )}
 

(4) If (ʊ , ⍵ ) ∈ 𝐸 and (ʊ , ⍵ ) ∉ 𝐸  

(a) ϻĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϻ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ ) = ϻĞƁ𝔱 (ʊ , ⍵ )𝑒 ϻ ĞƁ𝔱 (ʊ ,⍵ ) 
 

(b) ϼĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ )
= ϼĞƁ𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ𝔱 (ʊ ,⍵ )

 

(5) If (ʊ , ⍵ ) ∉ 𝐸 and (ʊ , ⍵ ) ∈ 𝐸  

(a) ϻĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ )𝑒 ϻ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ )
= ϻĞƁ 𝔱 (ʊ , ⍵ )𝑒 ϻ ĞƁ 𝔱 (ʊ ,⍵ )

 

(b) ϼĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ )𝑒 ϼ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ )
= ϼĞƁ 𝔱 (ʊ , ⍵ )𝑒 ϼ ĞƁ 𝔱 (ʊ ,⍵ )

 

(6) If (ʊ , ⍵ ) ∈ 𝐸 ∩ 𝐸  

(a) ϻ ĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ )𝑒 ϻ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ )
  

= ∨ {ϻĞƁ𝔱 (ʊ , ⍵ ), ϻĞƁ 𝔱 (ʊ , ⍵ )}𝑒∨ {ϻ ĞƁ𝔱 (ʊ ,⍵ ), ϻ ĞƁ 𝔱 (ʊ ,⍵ )}
 

(b) ϼĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ )𝑒 ϼ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ )
  

= ∧ {ϼĞƁ𝔱 (ʊ , ⍵ ), ϼĞƁ 𝔱 (ʊ , ⍵ )}𝑒∧ {ϼ ĞƁ𝔱 (ʊ ,⍵ ),ϼ ĞƁ 𝔱 (ʊ ,⍵ )}
 

Example 7. Consider the two 0.7𝑒 . -CTIFG Ğ𝔱 and Ğ𝔱′ shown in Figures 8 and 9. Figure 10 
depicts the graphical representation of the union. Ğ . ∪ Ğ′ .  of two 0.7-CTIFG Ğ .  𝑎𝑛𝑑 Ğ′ . . 
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Figure 8. ICTF𝐺 Ğ . . 

 
Figure 9. ICTF𝐺 Ğ′ . . 

 
Figure 10. Ğ . ∪ Ğ′ . . 

Definition 14. The degree of vertex (ʊ , ⍵ ) at a CTIFG for any (ʊ , ⍵ ) ∈ 𝑉 × 𝑉  

𝑑𝑒𝑔Ğ𝔱∪Ğ𝔱 (ʊ , ⍵ ) = ⎝⎜⎜
⎛𝑑𝑒𝑔 ϻĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ ) 𝑒  ϻ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ ) ,,𝑑𝑒𝑔 ϼĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ ) 𝑒  ϼ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ ) ⎠⎟⎟

⎞
 

where 
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𝑑𝑒𝑔 ϻĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϻ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ )
 

= ∑ ϻĞƁ𝔱 (ʊ , ⍵ )(ʊ , ⍵ )∈  ,(ʊ , ⍵ )∉  𝑒 ∑ ϻ ĞƁ𝔱 (ʊ ,⍵ )(ʊ ,⍵ )∈  ,(ʊ ,⍵ )∉     

+ ∑ ϻĞƁ 𝔱 (ʊ , ⍵ )𝑒 ∑ ϻ ĞƁ 𝔱 (ʊ ,⍵ ) (ʊ ,⍵ )∉ ,(ʊ ,⍵ )∈   (ʊ , ⍵ )∉ ,(ʊ ,⍵ )∈    

+ ∑ ∨ {ϻĞƁ𝔱 (ʊ , ⍵ ), ϻĞƁ 𝔱 (ʊ , ⍵ )}𝑒  ∑  ∨{ϻ ĞƁ𝔱 (ʊ ,⍵ ), ϻ ĞƁ 𝔱 (ʊ ,⍵ )} (ʊ ,⍵ )∈ ∩   (ʊ , ⍵ )∈ ∩  , 

and 𝑑𝑒𝑔 ϼĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵ )
 

= ∑ ϼĞƁ𝔱 (ʊ , ⍵ )(ʊ ,⍵ )∈  ,(ʊ ,⍵ )∉  𝑒 ∑ ϼ ĞƁ𝔱 (ʊ , ⍵ )(ʊ ,⍵ )∈  ,(ʊ ,⍵ )∉    

+ ∑ ϼĞƁ′𝔱 (ʊ , ⍵ )𝑒 ∑ ϼ ĞƁ′𝔱 (ʊ , ⍵ ) (ʊ ,⍵ )∉ ,(ʊ ,⍵ )∈   (ʊ ,⍵ )∉ ,(ʊ ,⍵ )∈    

+ ∑  ∧ {ϼĞƁ𝔱 (ʊ , ⍵ ), ϼĞƁ 𝔱 (ʊ , ⍵ )}𝑒 ∑  ∧{ϼ ĞƁ𝔱 (ʊ ,⍵ ), ϼ ĞƁ 𝔱 (ʊ ,⍵ )} (ʊ ,⍵ )∈ ∩   (ʊ ,⍵ )∈ ∩   

3.4. Join of CTIFG 

Definition 15. Consider two CTIFGs Ğ𝔱 = (Ą𝔱, Ɓ𝔱) and Ğ𝔱′ = (Ą𝔱, Ɓ𝔱). The CTIFGs’ join oper-
ation Ğ𝔱 + Ğ𝔱′  is described as (Ą𝔱 + Ą𝔱, Ɓ𝔱 + Ɓ𝔱  ), where Ą𝔱 + Ą𝔱   produces a CTIFG on 𝑉 ∪ 𝑉  
and Ɓ𝔱 + Ɓ𝔱  forms a CTIFG on 𝐸 ∪ 𝐸 ∪ 𝐸 , subject to certain requirements. 

(1) If ʊ ∈ 𝑉 and ʊ ∉ 𝑉  

(a) ϻĞĄ𝔱 Ą 𝔱 (ʊ )𝑒 ϻ ĞĄ𝔱 Ą 𝔱 (ʊ )
= ϻĞĄ𝔱 (ʊ ) 𝑒 ϻ ĞĄ𝔱 (ʊ )

 

(b) ϼĞĄ𝔱 Ą 𝔱 (ʊ )𝑒 ϼ ĞĄ𝔱 Ą 𝔱 (ʊ ) = ϼĞĄ𝔱 (ʊ )𝑒 ϼ ĞĄ𝔱 (ʊ )
 

(2) If ʊ ∉ 𝑉 and ʊ ∈ 𝑉  

(a) ϻĞĄ𝔱 Ą 𝔱 (ʊ )𝑒 ϻ ĞĄ𝔱 Ą 𝔱 (ʊ )
= ϻ𝜗Ą𝔱 (ʊ )𝑒 ϻ ĞĄ 𝔱 (ʊ )

 

(b)  ϼĞĄ𝔱 Ą 𝔱 (ʊ )𝑒 ϼ ĞĄ𝔱 Ą 𝔱 (ʊ )
= ϼ𝜗Ą𝔱 (ʊ )𝑒 ϼ ĞĄ 𝔱 (ʊ )

 

(3) If ʊ ∈ 𝑉 ∩ 𝑉  

(a) ϻĞĄ𝔱 Ą 𝔱 (ʊ ) 𝑒 ϻ ĞĄ𝔱 Ą 𝔱 (ʊ )
= ∨ {ϻĞĄ𝔱 (ʊ ), ϻĞĄ 𝔱 (ʊ )}𝑒 ∨{ϻ ĞĄ𝔱 (ʊ ), ϻ ĞĄ 𝔱 (ʊ )}

 

(b) ϼĞĄ𝔱 Ą 𝔱 (ʊ )𝑒 ϼ ĞĄ𝔱 Ą 𝔱 (ʊ )
= ∧ {ϼĞĄ𝔱 (ʊ ), ϼĞĄ 𝔱 (ʊ )}𝑒  ∧{ϼ ĞĄ𝔱 (ʊ ),ϼ ĞĄ 𝔱 (ʊ )}

 

(4) If (ʊ , ⍵ ) ∈ 𝐸 and (ʊ , ⍵ ) ∉ 𝐸  

(a) ϻĞƁ𝔱 Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϻ ĞƁ𝔱 Ɓ 𝔱 (ʊ ,⍵ )
= ϻĞƁ𝔱 (ʊ , ⍵ )𝑒  ϻ ĞƁ𝔱 (ʊ ,⍵ )

 

(b) ϼĞƁ𝔱 Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ𝔱 Ɓ 𝔱 (ʊ ,⍵ )
= ϼĞƁ𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ𝔱 (ʊ ,⍵ )

 

(5) If (ʊ , ⍵ ) ∉ 𝐸 and (ʊ , ⍵ ) ∈ 𝐸  

(a) ϻĞƁ𝔱 Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϻ ĞƁ𝔱 Ɓ 𝔱 (ʊ ,⍵ )
=  ϻĞƁ 𝔱 (ʊ , ⍵ )𝑒  ϻ ĞƁ 𝔱 (ʊ ,⍵ )

 

(b) ϼĞƁ𝔱 Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ𝔱 Ɓ 𝔱 (ʊ ,⍵ )
= ϼ𝜗ĞƁ 𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ 𝔱 (ʊ ,⍵ )
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(6) If (ʊ ) ∈ 𝐸 ∩ 𝐸  

(a) ϻĞƁ𝔱 Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϻ ĞƁ𝔱 Ɓ 𝔱 (ʊ ,⍵ )
 =  ∨{ϻĞƁ𝔱 (ʊ , ⍵ ), ϻĞƁ 𝔱 (ʊ , ⍵ )}𝑒 ∨{ϻ ĞƁ𝔱 (ʊ ,⍵ ),ϻ ĞƁ 𝔱 (ʊ ,⍵ )}

 

(b) ϼĞƁ𝔱 Ɓ 𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ𝔱 Ɓ 𝔱 (ʊ ,⍵ )
 =  ∧{ϼĞƁ𝔱 (ʊ , ⍵ ), ϼĞƁ 𝔱 (ʊ , ⍵ )}𝑒 ∧{ϼ ĞƁ𝔱 (ʊ ,⍵ ), ϼ ĞƁ 𝔱 (ʊ ,⍵ )}

 

(7) If (ʊ , ⍵ ) ∈ 𝐸   

(a) ϻĞƁ𝔱 Ɓ 𝔱 (ʊ , ⍵ ) 𝑒 ϻ ĞƁ𝔱 Ɓ 𝔱 (ʊ ,⍵ )
= ∨ {ϻĞĄ𝔱 (ʊ ), ϻĞĄ 𝔱 (⍵ )}𝑒  ∨{ϻ ĞĄ𝔱 (ʊ ),ϻ ϻĞĄ 𝔱 (⍵ )}

 

(b) ϼĞƁ𝔱 Ɓ 𝔱 (ʊ , ⍵ )𝑒 ϼ ĞƁ𝔱 Ɓ 𝔱 (ʊ ,⍵ )
= ∧ {ϼĞĄ𝔱 (ʊ ), ϼϻĞĄ 𝔱 (⍵ )}𝑒  ∧{ϼ ĞĄ𝔱 (ʊ ), ϼ ϻĞĄ 𝔱 (⍵ )}

  

Example 8. The graphical depiction of CTIFG Ğ𝔱 + Ğ𝔱′ in Figure 11 is from Example 7. 

 
Figure 11. Ğ . + Ğ . ′. 
Definition 16. Consider the following two CTIFGs Ğ𝔱 and Ğ𝔱′. The vertex degree in the CTIFG Ğ𝔱 + Ğ𝔱′ is described below. For any (ʊ , ⍵ ) ∈ 𝑉 × 𝑉 . 

𝑑𝑒𝑔Ğ𝔱 Ğ𝔱 (ʊ , ⍵ ) = ⎝⎜
⎛𝑑𝑒𝑔 ϻĞƁ𝔱 Ɓ 𝔱 ((ʊ , ⍵ ), (ʊ , ⍵ )) 𝑒 ϻ ĞƁ𝔱 Ɓ 𝔱 ((ʊ ,⍵ ),(ʊ ,⍵ ))  

𝑑𝑒𝑔 ϼĞƁ𝔱 Ɓ 𝔱 ((ʊ , ⍵ ), (ʊ , ⍵ )) 𝑒 ϼ ĞƁ𝔱 Ɓ 𝔱 ((ʊ ,⍵ ),(ʊ ,⍵ )) ⎠⎟
⎞

 

where  
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𝑑𝑒𝑔 ϻĞƁ𝔱 Ɓ 𝔱 ((ʊ , ⍵ ), (ʊ , ⍵ )) 𝑒 ϻ ĞƁ𝔱 Ɓ 𝔱 ((ʊ ,⍵ ),(ʊ ,⍵ ))  
 

= ϻĞĄ𝔱∪Ą 𝔱 (ʊ )ʊ ∈ ×  𝑒  ∑ ϻ ĞĄ𝔱∪Ą 𝔱 (ʊ )ʊ ∈ ×  

+ ϻĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵  )ʊ ,⍵ ∈ ∩   𝑒 ∑ ϻ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵  )ʊ ,⍵ ∈ ∩   

+  ∨ {ϻĞĄ𝔱 (ʊ ), ϻĞĄ 𝔱 (⍵ )} ʊ ,⍵ ∈   𝑒 ∑  ∨{ϻ ĞĄ𝔱 (ʊ ),ϻ ĞĄ 𝔱 (⍵ )} (ʊ ,⍵ )∈  
 

and 𝑑𝑒𝑔 ϼĞƁ𝔱 Ɓ 𝔱 ((ʊ , ⍵ ), (ʊ , ⍵ )) 𝑒 ϼ ĞƁ𝔱 Ɓ 𝔱 ((ʊ ,⍵ ),(ʊ ,⍵ ))  
 

= ϼĞĄ𝔱∪Ą 𝔱 (ʊ )ʊ ∈ ×  𝑒  ∑ ϼ ĞĄ𝔱∪Ą 𝔱 (ʊ )ʊ ∈ ×  

+ ϼĞƁ𝔱∪Ɓ 𝔱 (ʊ , ⍵  )ʊ ,⍵ ∈ ∩   𝑒 ∑ ϼ ĞƁ𝔱∪Ɓ 𝔱 (ʊ ,⍵  )ʊ ,⍵ ∈ ∩   

+  ∨ {ϼĞĄ𝔱 (ʊ ), ϼĞĄ 𝔱 (⍵ )} ʊ ,⍵ ∈   𝑒 ∑  ∨{ϼ ĞĄ𝔱 (ʊ ), ϼ ĞĄ 𝔱 (⍵ )} (ʊ ,⍵ )∈  
 

Theorem 2. For any two CTIFGs Ğ𝔱 = (Ą𝔱, Ɓ𝔱) and Ğ′𝔱 = (Ą𝔱, Ɓ𝔱) of G = (V,E) and G’ = (V’,E’), 
respectively, where 𝑉 ∩ 𝑉 ≠ ∅ , their union Ğ𝔱 ∪ Ğ′𝔱 = (Ą𝔱 ∪ Ą𝔱, Ɓ𝔱 ∪ Ɓ𝔱) is a CTIFG of G = 
G∪G′ iff 𝒢𝔱 and 𝒢𝔱  are CTIFG of G and G’, respectively. 

Proof. Let us assume a CTIFG, Ğ𝔱 ∪ Ğ′𝔱. Let (ʊ , ⍵ ) ∈ 𝐸, (ʊ , ⍵ ) ∉ 𝐸 , and (ʊ , ⍵ ) ∈ 𝑉 − 𝑉 .  

Consider ϻĞƁ𝔱 (ʊ , ⍵ )e  ϻ ĞƁ𝔱 (ʊ , ⍵ ) = ϻĞƁ𝔱∩Ɓ 𝔱 (ʊ , ⍵ ) e  ϻ ĞƁ𝔱∩Ɓ 𝔱 (ʊ ,⍵ )
 

≤ ∧ {ϻ ĞĄ𝔱∩Ą 𝔱 (ʊ ), ϻ ĞĄ𝔱∩Ą 𝔱 (⍵ )}e  ∧ {ϻ  ĞĄ𝔱∩Ą 𝔱 (ʊ ),ϻ  ĞĄ𝔱∩Ą 𝔱 (⍵ )}
 

=∧ {ϻ ĞĄ𝔱 (ʊ ), ϻ ĞĄ𝔱 (⍵ )}e  ∧ {ϻ  ĞĄ𝔱 (ʊ ),ϻ  ĞĄ𝔱 (⍵ )}
 

Consequently, ϼĞƁ𝔱 (ʊ , ⍵ )e  ϼ ĞƁ𝔱 (ʊ , ⍵ ) = ϼĞƁ𝔱∩Ɓ 𝔱 (ʊ , ⍵ ) e  ϼ ĞƁ𝔱∩Ɓ 𝔱 (ʊ ,⍵ )
 

≤  ⋁ {ϼ ĞĄ𝔱∩Ą 𝔱 (ʊ ), ϼ ĞĄ𝔱∩Ą 𝔱 (⍵ )}e  ⋁ {ϼ  ĞĄ𝔱∩Ą 𝔱 (ʊ ),ϼ  ĞĄ𝔱∩Ą 𝔱 (⍵ )}
 

= ⋁ {ϼ ĞĄ𝔱 (ʊ ), ϼ ĞĄ𝔱 (⍵ )}e  ⋁ {ϼ  ĞĄ𝔱 (ʊ ),ϼ  ĞĄ𝔱 (⍵ )}
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This establishes Ğ𝔱 = (Ą𝔱, Ɓ𝔱) as a CTIFG. Similarly, we conclude that Ğ′𝔱 = (Ą𝔱, Ɓ𝔱) 
is a CTIFG of 𝐺  . Assuming Ğ𝔱  and Ğ′𝔱  and understanding that the merging of two 
CTIFGs generates a CTIFG, it follows that Ğ𝔱 ∪ Ğ′𝔱.                                 □  

4. Isomorphism of CTIFGs 
This section introduces the concepts of homomorphism and isomorphism of CTIFG 

and explores the essential properties of these ideas. 

Definition 17. Let Ğ𝔱 = (Ą𝔱, Ɓ𝔱) and Ğ′𝔱  = (Ą𝔱, Ɓ𝔱) be any two CTIFG of G = (V, E) and G’ = 
(V’, E’) respectively. A homomorphism 𝜃 from CTIFG Ğ′𝔱 and Ğ′𝔱 is a mapping 𝜃: 𝑉 → 𝑉  sat-
isfying the following conditions: 

1. ϻ ĞĄ𝔱 (ʊ ) 𝑒  ϻ  ĞĄ𝔱 (ʊ ) ≤ ϻ ĞĄ𝔱 𝜃(ʊ ) 𝑒  ϻ ĞĄ𝔱 (ʊ )
 

ϼ𝜍 ĞĄ𝔱 (ʊ ) 𝑒  ϼ  ĞĄ𝔱 (ʊ ) ≤ ϼĞĄ𝔱 𝜃(ʊ ) 𝑒  ϼ ĞĄ𝔱 (ʊ )
 ; ∀ʊ ∈ 𝑉. 

2. ϻĞƁ𝔱 (ʊ , ⍵ )𝑒  ϻ ϼĞƁ𝔱 (ʊ ,⍵ ) ≤ ϻĞƁ 𝔱 𝜃(ʊ ), 𝜃(⍵ )  𝑒  ϻ ĞƁ 𝔱 (ʊ ), (⍵ ) , ϼĞƁ𝔱 (ʊ , ⍵ )𝑒  ϼ ĞƁ𝔱 (ʊ ,⍵ ) ≤ ϼĞƁ 𝔱 (𝜃(ʊ ), 𝜃(⍵ ))𝑒  ϼ ĞƁ 𝔱 (ʊ ), (⍵ )
; ∀(ʊ , ⍵ ) ∈ 𝐸. 

Definition 18. A weak isomorphism 𝜃: 𝑉 → 𝑉 , from CTIFG Ğ𝔱 to Ğ′𝔱 must meet the following 
conditions the following condition: 

ϻ ĞĄ𝔱 (ʊ )𝑒  ϻ ĞĄ𝔱 (ʊ ) ≤ ϻ ĞĄ𝔱 𝜃(ʊ ) 𝑒  ϻ ĞĄ𝔱 (ʊ ) , 
ϼĞĄ𝔱 (ʊ )𝑒 ϼ ĞĄ𝔱 (ʊ ) ≤ ϼĞĄ𝔱 𝜃(ʊ ) 𝑒  ϼ ĞĄ𝔱 (ʊ )

; ∀ʊ ∈ 𝑉. 

Definition 19. A strong co-isomorphism is defined as a bijective mapping 𝜃: 𝑉 → 𝑉  between any 
two CTIFGs, Ğ𝔱  = (Ą𝔱, Ɓ𝔱) and Ğ′𝔱  = (Ą𝔱, Ɓ𝔱) of G = (V,E) and G’ = (V’,E’), respectively, that 
meets the following conditions: 

1. ϻ ĞĄ𝔱 (ʊ )𝑒  ϻ  ĞĄ𝔱 (ʊ ) ≤ ϻĞĄ𝔱 𝜃(ʊ ) 𝑒ϻ ĞĄ𝔱 (ʊ )
,  ϼ ĞĄ𝔱 (ʊ )𝑒 ϼ  ĞĄ𝔱 (ʊ ) ≤ ϼĞĄ𝔱 𝜃(ʊ ) 𝑒  ϼ ĞĄ𝔱 (ʊ )

 ; ∀ʊ ∈ 𝑉. 

2. ϻĞƁ𝔱 (ʊ , ⍵ )𝑒 ϻ ĞƁ𝔱 (ʊ ,⍵ ) ≤ ϻĞƁ 𝔱 𝜃(ʊ ), 𝜃(⍵ )  𝑒 ϻ ĞƁ 𝔱 (ʊ ), (⍵ ) ,  ϼĞƁ𝔱 (ʊ , ⍵ )𝑒 ϼ ĞƁ𝔱 (ʊ , ⍵ ) ≤ ϼĞƁ 𝔱 𝜃(ʊ ), 𝜃(⍵ ) 𝑒 ϼ ĞƁ 𝔱 (ʊ ), (⍵ ) , ∀(ʊ , ⍵ ) ∈ 𝐸. 

3. ϻĞƁ𝔱 (ʊ , ⍵ )𝑒 ϻ ĞƁ𝔱 (ʊ , ⍵ ) = ϻĞƁ 𝔱 𝜃(ʊ ), 𝜃(⍵ ) 𝑒 ϻ ĞƁ 𝔱 (ʊ ), (⍵ ) ,  ϼĞƁ𝔱 (ʊ , ⍵ )𝑒 ϼ ĞƁ𝔱 (ʊ ,⍵ ) = ϼĞƁ 𝔱 𝜃(ʊ ), 𝜃(⍵ ) 𝑒 ϼ ĞƁ 𝔱 (ʊ ), (⍵ ) , ∀(ʊ , ⍵ ) ∈ 𝐸. 

Definition 20. An isomorphism between CTIFGs Ğ𝔱  = (Ą𝔱, Ɓ𝔱) and Ğ′𝔱  = (Ą𝔱, Ɓ𝔱) is a bijec-
tive homomorphism mapping 𝜃: 𝑉 → 𝑉  (written as Ğ𝔱  ≈ Ğ′𝔱) that satisfies the following condi-
tion: 

1. ϻĞĄ𝔱 (ʊ )𝑒 ϻ ĞĄ𝔱 (ʊ ) ≤  ϻĞĄ𝔱 𝜃(ʊ ) 𝑒ϻ ĞĄ𝔱 (ʊ ) ,  
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ϼĞĄ𝔱 (ʊ )𝑒 ϼ ĞĄ𝔱 (ʊ ) ≤ ϼĞĄ𝔱 𝜃(ʊ ) , ∀ʊ ∈ 𝑉. 

2. ϻĞƁ𝔱 (ʊ , ⍵ )𝑒  ϻ ĞƁ𝔱 (ʊ ,⍵ ) = ϻĞƁ 𝔱 𝜃(ʊ ), 𝜃(⍵ ) 𝑒 ϻ ĞƁ 𝔱 (ʊ ), (⍵ ) , ϼĞƁ𝔱 (ʊ , ⍵ )𝑒 ϼ ĞƁ𝔱 (ʊ ,⍵ ) = ϼĞƁ 𝔱 𝜃(ʊ ), 𝜃(⍵ ) , ∀(ʊ , ⍵ ) ∈ 𝐸. 

Example 9. Take into consideration Ğ𝔱 and Ğ′𝔱 as displayed in Figures 12 and 13 based on the 
following figures. 

  
Figure 12. CT𝐼𝐹𝐺 Ğ′ . . 

  
Figure 13. CTIF Ğ′ . . 

According to definition (20), the mapping ζ(a) = g, ζ(b) = f, and ζ(c) = e gives us Ğ .  ≈Ğ′ .  . 
Theorem 3. The characteristics of an equivalence relation are satisfied by the connection of iso-
morphism between CTIFGs. 

Proof. Both symmetry and reflexivity are clear. The isomorphism of Ğ𝔱  onto Ğ′𝔱  and Ğ′𝔱  onto Ğ′′𝔱  , respectively, are denoted by the notations 𝜑: 𝑉 → 𝑉   and 𝜃: 𝑉 → 𝑉  . Ac-
cordingly, 𝜃 ∘ 𝜑: 𝑉 → 𝑉  is a bijective map from 𝑉  to 𝑉 , and it is defined as follows: 

(𝜃 ∘ 𝜑)(ʊ ) = 𝜃 𝜑(ʊ ) , ∀ʊ ∈ 𝑉. 
For a map 𝜑: 𝑉 → 𝑉 defined by 𝜑(ʊ ) = ⍵ , ∀ʊ ∈ 𝑉, it is an isomorphism.  
Considering definition (20), we have  ϻĞĄ𝔱 (ʊ )𝑒 ϻ ĞĄ𝔱 (ʊ ) = ϻĞĄ𝔱 𝜑(ʊ ) 𝑒 ϻ ĞĄ𝔱 (ʊ ) = ϻĞĄ𝔱 (⍵ )𝑒 ϻ ĞĄ𝔱 (ʊ ) , ∀ʊ ∈ 𝑉 (1)
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 ϼĞĄ𝔱 (ʊ )𝑒 ϼ Ą𝔱(ʊ ) = ϼĞĄ𝔱 𝜑(ʊ ) 𝑒 ϼ ĞĄ𝔱 (ʊ ) = ϼĞĄ𝔱 (⍵ )𝑒 ϼ ĞĄ𝔱 (⍵ ), ∀ʊ ∈ 𝑉  (2)

and ϻĞƁ𝔱 (ʊ , ʊ )𝑒 ϻ ĞƁ𝔱 (ʊ ,ʊ ) = ϻĞƁ 𝔱 𝜑(ʊ ), 𝜑(ʊ ) 𝑒 ϻ ĞƁ 𝔱 (ʊ ), (ʊ )
 

= ϻĞƁ 𝔱 (⍵ , ⍵ )𝑒 ϻ ĞƁ 𝔱 (⍵ ,⍵ ), ∀(ʊ , ʊ ) ∈ 𝐸 
(3)

ϼĞƁ𝔱 (ʊ , ʊ )𝑒 ϼ ĞƁ𝔱 (ʊ ,ʊ ) = ϼĞƁ 𝔱 𝜑(ʊ ), 𝜑(ʊ ) 𝑒 ϼ ĞƁ 𝔱 (ʊ ), (ʊ )   
= ϼĞƁ 𝔱 (⍵ , ⍵ )𝑒 ϼ ĞƁ 𝔱 (⍵ ,⍵ )∀(ʊ , ʊ ) ∈ 𝐸 

(4)

In the same way, we obtained that ϻĞĄ𝔱 (⍵ )𝑒 ϻ ĞĄ𝔱 (⍵ ) = ϻĞĄ𝔱 (𝑣 )𝑒 ϻ ĞĄ𝔱 ( ), ∀ ⍵ ∈ 𝑉   (5)

ϼĞĄ𝔱 (⍵ )𝑒 ϼ ĞĄ𝔱 (⍵ ) = ϼĞĄ𝔱 (𝑣 )𝑒 ϼ ĞĄ𝔱 ( ), ∀ ⍵ ∈ 𝑉   (6)

and  ϻĞƁ 𝔱 (⍵ , ⍵ )𝑒 ϻ ĞƁ 𝔱 (⍵ ,⍵ ) = ϻĞƁ 𝔱 (𝑣 , 𝑣 )𝑒 ϻ ĞƁ 𝔱 ( , ), ∀(⍵ , ⍵ ) ∈ 𝐸   (7)

ϼĞƁ 𝔱 (⍵ , ⍵ )𝑒 ϼ ĞƁ 𝔱 (⍵ ,⍵ ) = ϼĞƁ 𝔱 (𝑣 , 𝑣 )𝑒 ϼ ĞƁ 𝔱 ( , ), ∀(⍵ , ⍵ ) ∈ 𝐸   (8)

By using the relations (1), (3), and 𝜑(ʊ ) = ⍵  , ∀ ʊ ∈ 𝑉, we have  ϻĞĄ𝔱 (ʊ )𝑒ϻ ĞĄ𝔱 (ʊ ) = ϻĞĄ𝔱 𝜑(ʊ ) 𝑒 ϻ ĞĄ𝔱 (ʊ )
 

= ϻĞĄ𝔱 (⍵ )𝑒 ϻ ĞĄ𝔱 (⍵ )
 

= ϻĞĄ𝔱 𝜃(⍵ ) 𝑒 ϻ ĞĄ𝔱 (⍵ )
 

= ϻĞĄ𝔱 𝜃 𝜑(ʊ ) 𝑒  ϻ ĞĄ𝔱 (ʊ )
 

By using the relations (3), (7), and 𝜑(ʊ ) = ⍵  , ∀ ʊ ∈ 𝑉, we have  ϼĞĄ𝔱 (ʊ )𝑒ϼ ĞĄ𝔱 (ʊ ) = ϼĞĄ𝔱 𝜑(ʊ ) 𝑒 ϼ ĞĄ𝔱 (ʊ )
 

= ϼĞĄ𝔱 (⍵ )𝑒 ϼ ĞĄ𝔱 (⍵ )
 

= ϼĞĄ𝔱 𝜃(⍵ ) 𝑒 ϼ ĞĄ𝔱 (⍵ )
 

= ϼĞĄ𝔱 𝜃 𝜑(ʊ ) 𝑒  ϼ ĞĄ𝔱 (ʊ )
 

When using the relations (4) and (10), the outcome is  
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ϻĞƁ𝔱 (ʊ , ʊ )𝑒 ϻ ĞƁ𝔱 (ʊ ,ʊ ) = ϻĞƁ 𝔱 (⍵ , ⍵ )𝑒 ϻ ĞƁ 𝔱 (⍵ ,⍵ )
 

= ϻĞƁ 𝔱 𝜃(⍵ ), 𝜃(⍵ ) 𝑒ϻ ĞƁ 𝔱 (⍵ ) , (⍵ )
 

= ϻĞƁ 𝔱 𝜃 𝜑(ʊ ) , 𝜃 𝜑(ʊ ) 𝑒 ϻ ĞƁ 𝔱 (ʊ ) , (ʊ )
 

When using the relations (6) and (12), the out come is  ϼĞƁ𝔱 (ʊ , ʊ )𝑒 ϼ ĞƁ𝔱 (ʊ ,ʊ ) = ϼĞƁ 𝔱 (⍵ , ⍵ )𝑒 ϼ ĞƁ 𝔱 (⍵ , ⍵ )
 

= ϼĞƁ 𝔱 𝜃(⍵ ), 𝜃(⍵ ) 𝑒ϼ ĞƁ 𝔱 (⍵ ), (⍵ )
 

= ϼĞƁ 𝔱 𝜃 𝜑(ʊ ) , 𝜃 𝜑(ʊ ) 𝑒 ϼ ĞƁ 𝔱 (ʊ ) , (ʊ )
 

Hence, Ğ𝔱  and Ğ′′𝔱  are isomorphic to each other via 𝜃 ∘ 𝜑 . As a result, the proof is 
finished.  

             □  

Theorem 4. A partial ordering relation between CTIFGs is a weak isomorphism. 

Proof. The reflexivity and transitivity are obvious. To prove anti-symmetry, let 𝜑: 𝑉 → 𝑉  
be a strong isomorphism of Ğ𝔱  onto Ğ′𝔱. Then, 𝜑 is a bijective map defined by 𝜑(ʊ ) = ʊ , 
for all ʊ  ∈ 𝑉 satisfying 

ϻĞĄ𝔱 (ʊ )𝑒 ϻ ĞĄ𝔱 (ʊ ) = ϻĞĄ𝔱 𝜑(ʊ ) 𝑒 ϻ ĞĄ𝔱 (ʊ ) , ∀ʊ ∈ 𝑉  

 ϼĞĄ𝔱 (ʊ )𝑒 ϼ Ą𝔱(ʊ ) = ϼĞĄ𝔱 𝜑(ʊ ) 𝑒 ϼ ĞĄ𝔱 (ʊ ) , ∀ʊ ∈ 𝑉  

and ϻĞƁ𝔱 (ʊ , ʊ )𝑒 ϻ ĞƁ𝔱 (ʊ ,ʊ ) = ϻĞƁ 𝔱 𝜑(ʊ ), 𝜑(ʊ ) 𝑒 ϻ ĞƁ 𝔱 (ʊ ), (ʊ ) , ∀(ʊ , ʊ ) ∈ 𝐸  (9) 

ϼĞƁ𝔱 (ʊ , ʊ )𝑒 ϼ ĞƁ𝔱 (ʊ ,ʊ ) = ϼĞƁ 𝔱 𝜑(ʊ ), 𝜑(ʊ ) 𝑒 ϼ ĞƁ 𝔱 (ʊ ), (ʊ )  ∀(ʊ , ʊ ) ∈ 𝐸  (10) 

Let 𝜃: 𝑉 → 𝑉 be a strong isomorphism of Ğ𝔱 and Ğ′𝔱 . Then, 𝜃 is a bijective map de-
fined by 𝜃 (ʊ ) = ʊ , for all ʊ  ∈ 𝑉  satisfying ϻĞĄ𝔱 (ʊ )𝑒 ϻ ĞĄ𝔱 (ʊ ) = ϻĞĄ𝔱 θ(ʊ ) 𝑒 ϻ ĞĄ𝔱 (ʊ ) , ∀ʊ ∈ 𝑉   

 ϼĞĄ𝔱 (ʊ )𝑒 ϼ Ą𝔱(ʊ ) = ϼĞĄ𝔱 θ(ʊ ) 𝑒 ϼ ĞĄ𝔱 (ʊ ) , ∀ʊ ∈ 𝑉   

and ϻĞƁ𝔱 (ʊ , ʊ )𝑒 ϻ ĞƁ𝔱 (ʊ ,ʊ ) = ϻĞƁ 𝔱 θ(ʊ ), θ(ʊ ) 𝑒 ϻ ĞƁ 𝔱 (ʊ ), (ʊ ) , ∀(ʊ , ʊ ) ∈ 𝐸′ (11)

ϼĞƁ𝔱 (ʊ , ʊ )𝑒 ϼ ĞƁ𝔱 (ʊ ,ʊ ) = ϼĞƁ 𝔱 𝜃(ʊ ), 𝜃(ʊ ) 𝑒 ϼ ĞƁ 𝔱 (ʊ ), (ʊ )  ∀(ʊ , ʊ ) ∈ 𝐸′  (12)



Mathematics 2024, 12, 1950 23 of 30 
 

 

Only in cases when Ğ𝔱 and Ğ′𝔱 have an equal number of edges and corresponding 
edges with the same weight do the inequalities (9), (10), (11), and (12) hold on the finite 
sets 𝑉 and 𝑉 . 𝒢𝔱 and 𝒢𝔱  are hence the same. As a result, Ğ𝔱 and Ğ′′𝔱 are strongly isomor-
phized by 𝜑 ◦ 𝜃. The proof is now complete.         □ 

5. Real World Applications of Rubber Industrial Waste Water  
This paper focuses on the application of industrial wastewater that has been treated 

at different parameters using CTIFGs. The major physicochemical parameters that are 
considered for stabilizing the rubber industrial waste water are turbidity, BOD, and COD, 
where they play an active role in identifying the pollutant level. Using an easy approach 
with the support of an intuitionistic fuzzy graph, the performance of the treatment is as-
sessed.  

5.1. Experiment Description 
In this experiment, the CTIFGs play a significant role in investigating the rubber in-

dustrial wastewater parameters. The CTIFGs are incorporated with decision-making sup-
port, which enables the evaluation of complicated data sets and typically estimates the 
importance of effluent parameters such as Biological Oxygen Demand (BOD), Chemical 
Oxygen Demand (COD), pH, alkalinity, nitrogen, phosphorous, and turbidity.  

The CTIFGs in this stage outlined the truth-membership and the falsity-membership 
roles for the characterization of parameters connected with the degree of alignment or the 
factors considering divergence.  

Findings 
1. CTIFGs can initiate the identification of the critical factors that directly contribute to 

the treatment of rubber industry effluent for fixing the decision-making components 
in association with complex parameters related to the effluents.  

2. CTIFGs can flexibly used to examine the comparison among effluent parameters and 
give prior importance to interventions that allow the decision-making module to ef-
fectively identify more competitive decisions. 

3. The parameter that highlights ‘t’ in CTIFGs naturally causes the decision-makers to 
plot a graph associated with location-specific regional knowledge on effluent and to 
identify the typical problem associated with the domain, which naturally leads to 
identifying the optional targeted interventions and simultaneously giving preference 
for effluent treatment. 

4. The visualization of CTIFGs naturally provides a view of the complex relationships 
interlinked between the various effluent characterizations that are directly contrib-
uting to the formation of an effective pollution-free treated effluent that favors a toxic 
free zone environment.  

5.2. Application of CTIFGs in Evaluating the Rubber Industrial Effluents  
The pollutants in the synthesis of rubber industry naturally emit a larger volume of 

wastewater that is naturally treated before being subjected to final disposal in water bod-
ies. The need for rubber and allied products is increasing day by day due to its vast appli-
cations. Addressing the mixed composition of waste materials in the rubber-synthesized 
effluent needs a meticulous treatment strategy that naturally controls the pollutants. Us-
ing the CTIFG, the role of decision-making parameters associated with effluent gives a 
clear picture of how to eliminate the pollutant. In addition to this, the importance of indi-
vidual physicochemical parameters linked with the effluent is to be evaluated with the 
support of decision-making strategies, and necessary treatment strategies are also sug-
gested. The important key factor associated with rubber effluent is BOD. 
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Regarding BOD (𝑃 )  , COD (𝑃 ) , pH(𝑃 ) , alkalinity (𝑃 ) , nitrogen (𝑃 ) , phospho-
rous (𝑃 ), and turbidity (𝑃 ), let ℳ = {𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑃 } be the physicochemical pa-
rameters that strongly contribute to the elimination of pollutants in the effluent. The val-
ues in each corner stone represents the characteristics of effluent and their linkage are 
connected with t-intuitionistic values. CTIFGs play an active role in covering the truth-
membership factor and falsity-membership functions, which highlight the relationship 
among positive node and negative node of a single parameter. The parameter ’t’ permits 
the decision-making process to give valuable suggestions through the CTIFGs, which will 
be a focused result for further processing. In addition, it will give an indication of risk 
factors and the possibility of uncertaininity. This process will give a clear picture through 
visual representation for an effective pollutant removal strategy. The important factors 
associated with the work are directly interlinked with truth-membership and falsity-
membership, which determine certain features that are connected with the range of con-
fidence level and concern confidence level. The importance of parameter ‘t’ in this stage 
normally covers the entire circumference and sensitivity parameters. The change in ‘t’ val-
ues at consecutive zones in the intuitionistic graphs determines the factor of acceptance of 
values at one end and simultaneously accepting the rejection of values at the other end. In 
addition to this, they also cover the factors of risk and uncertainity. During customization 
with CTIFGs, the role of ‘t’ plays a significant role as it may focus on numerous factors 
associated with the parameter in a concluding favorable path and, at the same time, con-
sider the opposing point of view. These concepts may be crucial when facing unacceptable 
effluent discharge. Finalizing the threshold value with the CTIFGs is comfortable in iden-
tifying the sensitivity levels of the effluents. Table 2 displays the set of CIF and 0.8-CTIFs 
connected to the vertices and graphical representation given in Figure 14. 

 
Figure 14. Graphical representation of CTIFGs. 

Algorithm to Investigate Rubber Industrial Wastewater Parameters Using CTIFGs 
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Step 1. Define parameters ℳ = {𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑃 } (𝑃  is BOD, 𝑃  is COD, 𝑃  is pH, 𝑃   is alkalinity, 𝑃   is nitrogen, 𝑃   is phosphorus, and 𝑃   is turbidity). Initialize the 
CTIFGs framework. 
Step 2. Obtain effluent data from rubber industry samples. Preprocess data (manage miss-
ing values and outliers). Normalize the data for consistency. 
Step 3. Establish truth-membership (t), indeterminacy (i), and falsity-membership (f) for 
each parameter. 
Step 4. Use CTIFGs to determine parameter relevance. Calculate the alignment and diver-
gence for each parameter.  
Step 5. Use CTIFGs to compare parameters, prioritize actions, and emphasize the rele-
vance of parameter t when visualizing effluent concerns. 
Step 6. Use CTIFGs to visualize parameter correlations, make graphs and charts, detect 
issues, and recommend targeted remedies. 
Step 7. Implement recommended treatment procedures, regularly check efficacy, and 
adapt tactics in response to data and feedback.  
 

Table 2. Edges of CTIFS. 

Edges Complex 0.8-IFS 
R1 (0.6𝑒 . , 0.3𝑒  . ) 
R2   (0.8𝑒 . , 0.2𝑒  . ) 
R3   (0.6𝑒 . , 0.4𝑒  . ) 
R4   (0.7𝑒 . , 0.3𝑒  . ) 
R5   (0.8𝑒 . , 0.2𝑒  . ) 
R6   (0.6𝑒 . , 0.4𝑒  . ) 
R7   (0.7𝑒 . , 0.3𝑒  . ) 
R8   (0.6𝑒 . , 0.4𝑒  . ) 
R9   (0.5𝑒 . , 0.5𝑒  . ) 𝑅  (0.6𝑒 . , 0.3𝑒  . ) 𝑅  (0.5𝑒 . , 0.4𝑒  . ) 𝑅  (0.6𝑒 . , 0.4𝑒  . ) 𝑅  (0.7𝑒 . , 0.3𝑒  . ) 𝑅  (0.8𝑒 . , 0.4𝑒  . ) 𝑅  (0.6𝑒 . , 0.5𝑒  . ) 𝑅  (0.6𝑒 . , 0.4𝑒  . ) 𝑅  (0.6𝑒 . , 0.4𝑒  . ) 𝑅  (0.6𝑒 . , 0.4𝑒  . ) 𝑅  (0.7𝑒 . , 0.3𝑒  . ) 𝑅  (0.6𝑒 . , 0.4𝑒  . ) 𝑅  (0.6𝑒 . , 0.4𝑒  . ) 

Table 2 displays the values identified in the edge 𝑅 , which normally connects the 
physicochemical parameters that determine the removal of pollutants in rubber industrial 
wastewater. In the assigned framework of the module, the edge 𝑅 = (0.7𝑒 . , 0.3𝑒  . ) 
and its truth membership value is 0.7𝑒 .  and the corresponding falsity membership is 0.3𝑒  .  these values indicate the correlation efforts. The outcome of this module con-
nected with ‘t’ highlights an 80% possible reduction in pollutant removal. 

Table 3 focuses on the application part (1) that correlated with the definition (8), and 
the respective outcomes are described.  
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Table 3. Table of truth and falsity membership degree of each factor. 

Factor  Degree of Each Factor  
P1 deg (𝑃 ) = (4.1𝑒  . , 2.3𝑒  . ) 
P2 deg (𝑃 ) = (3.5𝑒  . , 2.5𝑒  . ) 
P3 deg (𝑃 ) = (4.2𝑒  . , 2.5𝑒  . ) 
P4 deg (𝑃 ) = (3.6𝑒  . , 2.5𝑒  . ) 
P5 deg (𝑃 ) = (3.5𝑒  . , 2.5𝑒  . ) 
P6 deg (𝑃 ) = (3.8𝑒  . , 2.2𝑒  . ) 
P7 deg (𝑃 ) = (4.1𝑒  . , 3.0𝑒  . ) 
The score value of each edge has been defined based on the below-mentioned equa-

tion.  

𝑆𝑉 = ϻ + (1 − ϼ) + (𝜛 + (1 − 𝜍) ), 1 ≤ 𝑗 ≤ 7.  

With respect to Table 3 and using the scoring function formula, the results are ob-
tained and have been highlighted in Table 4. The values in Table 4 are further considered 
for the visual depiction that has been represented in Figure 15, which is supported 
through the score function. Turbidity value 𝑃 = 5.1046  is obtained as the greatest value 
that naturally highlights the most influential factor for the removal of pollutants in the 
rubber industrial wastewater that is represented in terms of (parameter ‘t’). Table 4 clearly 
illustrates that the respective values associated with the module have a huge impact on 
treating industrial wastewater. 

Table 4. Score value of CTIFGs. 

Factor Score Value of CTIFG 
BOD (𝑃 ) 4.3025 
COD(𝑃 ) 4.2031 
pH(𝑃 ) 4.7600 
Alkalinity(𝑃 ) 4.5230 
Nitrogen(𝑃 ) 4.4244 
Phosphorous(𝑃 ) 4.4799 
Turbidity(𝑃 ) 5.1046 

 
Figure 15. Graphical representation of score values of CTIFGs. 
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5.3. Performance Comparative Analysis 
The CTIFGs play a significant role in fine-tuning the uncertainity module corre-

sponding to individual parameters. A range of parameters, when subjected to diverse rep-
resentation, gives a systematic and optimistic problem-solving source. The CTIFGs role is 
crucial in observing the change in degrees of vagueness and unwillingness. The graphical 
representation clearly highlights the uniformity in all elements that are considered equal 
links in the study, which correlates with the independence of truth, followed by falsity 
membership levels. In connection with this, the truth membership has been assigned a 0.6 
value, which suggests a strong link; meanwhile, the falsity membership is assigned a 0.4 
value, which implies a weak link among elements. The determination of uncertainity 
among the parameters in the linking factor shows consistency across and in all dimen-
sions, highlighting greater accuracy in defining solutions for the removal of industrial pol-
lution. The score values corresponding to the parameters associated with CTIFGs are 
highlighted in Table 4 and are graphically illustrated in Figure 15. 

5.4. Sensitivity Analysis 
The sensitivity analysis of the study is focused on considering the parameter ‘t’ in the 

CTIFGs that normally highlight the importance of the removal of pollutants from indus-
trial wastewater. The major source incorporated in this analysis normally covers ‘t’, which 
facilitates the decision-makers to observe a balanced view on each elemental acceptance 
and rejection, which systematically observes the role of different levels of uncertainity and 
risk. The importance of decision-makers in the experimentation on varying situations is 
commonly associated with the value of ‘t’, which highlights the important key factors in 
suggesting the favorite confidence levels. The flexibility in the experimentation promotes 
effective decision-making support in unpredicted contexts and varying situations, which 
normally plays a significant path in handling the difficulties aligned with the pollutant 
removal from the rubber industrial wastewater. Further, the ability to adapt to ‘t’ helps 
the treatment of industrial effluent from a different perspective connected to risk and un-
certainity; in this case, the decision-maker’s role plays a major part in prioritizing the op-
erations. 

6. Conclusions 
The concept of CTIFGs has been presented in this study, and the fundamentals re-

lated to the rubber industrial wastewater physicochemical parameters have been clearly 
investigated. The CTIFGs comprise various studies and demonstrations that are incorpo-
rated in the graphical format, which is a representation of various sets of theoretical oper-
ations such as the Cartesian product, compositions, unions, and joints. In addition to that, 
a graphical representation of the above-mentioned operations is also depicted. The homo-
morphism and isomorphism concepts in the CTIFGs have been neatly presented. With the 
support of these advanced techniques, the application part has been studied to evaluate 
the pollutant removal from industrial rubber wastewater.  

Current pollution prevention strategies have given a wide-ranging statement on the 
standard for effluent disposal and the norms have been followed in this observational 
study; when the value of parameter ‘t’ near 0 is used, distinct specificity is lacking. At the 
same time, a most relevant and superficial link has been generated for effective pollutant 
removal when the parameter ‘t’ value is associated closer to 1. It is clear that the parameter 
‘t’ value in the CTIFGs indicates the level of degree of confidence or considers doubt on 
the rate of success relevant to the removal of pollutants from the industrial wastewater. 
These two factors play a significant role in classifying the metrics that determine the 
strongest association or considering the negligible impact pertaining to the desired out-
come. Meanwhile, by engaging with this calibrated parameter, the decision-maker’s role 
may be accurately observed with regard to how the values on uncertainty are clearly por-
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trayed, and at the same time, it also predicts the impacts on the analytical outcomes. The-
ses factors naturally result in obtaining a more complex and, at the same time, an adapta-
ble strategical framework, which has been predicted for clearly addressing the fact on 
complex challenges that is associated with the removal of pollutant from industrial 
wastewater. 

In future, the topological indicies of CTIFGs will be studied with suitable real time 
applications in decision-making problems like neural networks, Machine learning, and 
Artificial Intelligence. 
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