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Abstract: This research aims to introduce and examine a new type of polynomial called the ∆h

Legendre–Appell polynomials. We use the monomiality principle and operational rules to define the
∆h Legendre–Appell polynomials and explore their properties. We derive the generating function
and recurrence relations for these polynomials and their explicit formulas, recurrence relations, and
summation formulas. We also verify the monomiality principle for these polynomials and express
them in determinant form. Additionally, we establish similar results for the ∆h Legendre–Bernoulli,
Euler, and Genocchi polynomials.
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1. Introduction and Preliminaries

Complex system behavior has been modeled and described by special polynomials
in a variety of domains, including quantum mechanics and statistical mechanics. These
unique polynomials have also been used to describe and analyze complex systems in a
number of other domains, such as quantum mechanics and statistics. Polynomial sequences
are indispensable in several branches of mathematics, such as algebraic combinatorics,
entropy, and combinatorics. The Legendre, Chebyshev, Laguerre, and Jacobi polynomials
are a few examples of polynomial sequences that are solutions to particular ordinary
differential equations in approximation theory and physics. Legendre polynomials are a
class of orthogonal polynomials with important applications in physics and mathematics.
The French mathematician Edmond Legendre, who first introduced them in the 19th
century, is the reason behind their name. The Legendre differential equation, a second-
order linear differential equation, has solutions that lead to the Legendre polynomials.
They are often represented as Sn(u) [1], where n is a non-negative integer that denotes the
degree of the polynomial. They are defined on the interval [0,+∞). There are numerous
noteworthy characteristics of Legendre polynomials: On the interval [0,+∞), the Legendre
polynomials form an orthogonal set with regard to the weight function e−u. This indicates
that, with the exception of situations in which the polynomials have the same degree,
the integral of the sum of two distinct Laguerre polynomials with the weight function
equals zero. Moreover, the Legendre polynomials satisfy a recurrence relation, enabling
the computation of higher-degree polynomials from lower-degree ones. This characteristic
helps with efficient polynomial generation and numerical computations. Furthermore,
the generating function of these polynomials permits the expansion of some functions
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into a sequence of Legendre polynomials. This characteristic helps in differential equation
solving and yields closed-form solutions. Application areas for the Legendre polynomials
include the solutions of the Schrodinger equation for the hydrogen atom and other quantum
systems with spherical symmetry in mathematics, physics, and engineering. Furthermore,
issues involving diffusion equations, wave propagation, and heat conduction give rise to
these polynomials.

Mathematical physics two-variable special polynomials have been the subject of much
recent research. A class of polynomials known as two-variable special polynomials has
certain attributes, for example, [2,3]. They have numerous uses in mathematics and other
fields and are frequently researched in the area of algebraic geometry. Bivariate Chebyshev,
Hermite, Laguerre, and Laguerre polynomials are a few notable examples of two-variable
special polynomials. They are widely used in signal processing, numerical analysis, and
approximation theory. Bivariate Chebyshev polynomials are symmetric polynomials with
applications in least squares fitting and interpolation. Hermite polynomials of two variables
have applications in quantum mechanics, statistical mechanics, and waveguide theory.
Bivariate Hermite polynomials are often used in the study of harmonic oscillators in two
dimensions. Bivariate Legendre polynomials are a two-variable extension of the Legendre
polynomials. They satisfy a bivariate analogue of the Legendre differential equation and
have applications in quantum mechanics, potential theory, and random matrix theory.
Bivariate Legendre polynomials are particularly useful in studying the behavior of systems
with two degrees of freedom. These polynomials satisfy a certain orthogonality condition
with respect to a weight function and are thus extensively studied in mathematical physics,
probability theory, and approximation theory. The significance of these two-variable
special polynomials lies in their usefulness in solving problems in various mathematical
and scientific domains. They provide a rich framework for expressing and analyzing
multivariate functions and have specific properties that make them suitable for specific
applications. It is well known that huge classes of partial differential equations, which
are frequently encountered in physical issues, can be solved analytically by innovative
methods made possible by the special polynomials of two variables. The two-variable
Legendre polynomials Sω(u, v) [4] are of enormous mathematical significance and have
applications in physics, which makes their introduction intriguing.

The two-variable Legendre polynomials (2VLeP) Sω(u, v) are specified by means of
the following generating equation:

evξ J0(2ξ
√
−u) =

∞

∑
ω=0

Sω(u, v)
ξω

ω!
, (1)

where J0(uξ) is the 0th order ordinary Bessel function of first kind [5] defined by

Jω(2
√

u) =
∞

∑
ν=0

(−1)ν (
√

u)ω+2ν

ν! (ω + ν)!
. (2)

also note that
exp(−γD−1

u ) = J0(2
√

γu), D−ω
u {1} :=

uω

ω!
(3)

is the inverse derivative operator.
Or, alternatively, by

evξC0(−uξ2) =
∞

∑
ω=0

Sω(u, v)
ξω

ω!
, (4)

where C0(uξ) is the 0th order Tricommi function of the first kind [5] with

C0(−uξ2) = eD−1
u ξ2

. (5)
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Thus, in view of Equation (3) or (5), the generating expression for Legendre polynomials
can be cast as:

evξ eD−1
u ξ2

=
∞

∑
ω=0

Sω(u, v)
ξω

ω!
. (6)

Very recently, a large interest has been shown by mathematicians to introduce ∆h forms
of special polynomials. Some extensions of the special polynomials were studied in [1,5–10].
After that, by using the classical finite difference operator ∆h, a new form of the special poly-
nomials, known as the ∆h special polynomials of different polynomials, were introduced
in [11,12]. These ∆h special polynomials have been studied because of their remarkable
applications in different branches of mathematics, physics, and statistics.

These ∆h Appell polynomials are represented as:

A[h]
ω (u) := Aω(u), ω ∈ N0 (7)

and defined by
u∆h

{
A[h]

ω (u)
}
= ωh Aω−1(u), ω ∈ N, (8)

where ∆h is the finite difference operator:

u∆hH[h](u) = H(u + h)−H(u). (9)

The ∆h Appell polynomials Aω(u) are specified by the following generating function [12]:

γ(ξ)(1 + hξ)
u
h =

∞

∑
ω=0

A[h]
ω (u)

ξω

ω!
, (10)

where
γ(ξ) =

∞

∑
ω=0

γω,h
ξω

ω!
, γ0,h ̸= 0. (11)

Therefore, motivated by the results in [4,11–13], here we introduced the two-variable
∆h Legendre–Appell polynomials:

γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
(12)

through the generating function concept.
This article is designed as follows: Section 2 discusses how the Legendre–Appell poly-

nomials are generated and explores recurrence relations that govern their behavior. Section
3 presents formulas for summing or evaluating these Legendre–Appell polynomials over
certain ranges or with specific constraints. These formulas can be useful for calculating the
values of the polynomials efficiently. Section 4 discusses the monomiality principle, which
relates to how Legendre–Appell polynomials behave under certain operations. The deter-
minant form for these polynomials is also established. In Section 5, Symmetric identities
for these polynomials are derived. The conclusion section summarizes the findings of the
article and discusses implications, applications, and potential future research directions re-
lated to Legendre–Appell polynomials. Each of these sections likely delves deeper into the
mathematical properties and characteristics of Legendre–Appell polynomials, providing
insights into their behavior and utility in various mathematical contexts.

2. Two-Variable ∆h Legendre–Appell Polynomials

The significance of this section lies in its exploration of a novel class of two-variable
∆h Legendre–Appell polynomials and its establishment of essential properties associated
with them. The research expands the existing knowledge base and opens doors to new
avenues of inquiry within polynomial theory and its applications.

The construction of the generating function for these ∆h Legendre–Appell polynomi-
als, denoted as SA

[h]
ω (u, v), marks a crucial step forward in understanding the behavior
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and properties of these polynomials. Generating functions serve as powerful tools in
combinatorics, analysis, and mathematical physics, providing insights into the structure
and properties of sequences and functions. By proving the existence and constructing the
generating function for ∆h Legendre–Appell polynomials, this section lays the foundation
for further exploration of their properties, such as orthogonality, recurrence relations, and
special function identities.

Moreover, by establishing a connection between the ∆h Legendre–Appell polynomials
and their generating function, this research contributes to the broader mathematical com-
munity’s understanding of polynomial families and their applications. The traits listed in
this section provide valuable insights into the unique characteristics and behaviors of these
polynomials, paving the way for their utilization in various mathematical and scientific
domains. Overall, this section represents a significant advancement in polynomial theory,
offering fresh perspectives and potential applications that warrant further investigation and
exploration. First, we prove the following conclusion to construct the generating function
for these ∆h Legendre–Appell polynomials SA

[h]
ω (u, v) by proving the following result:

Theorem 1. For the two-variable ∆h Legendre–Appell polynomials SA
[h]
ω (u, v), the succeeding

generating relation holds true:

γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
. (13)

Proof. By expanding γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h at u = v = 0 for finite differences by a

Newton series and the order of the product of the developments of the function γ(t)(1 +

hξ)
v
h (1 + hξ2)

D−1
u
h with respect to the powers of ξ, we observe the polynomials SA

[h]
ω (u, v)

expressed in Equation (13) as coefficients of ξω

ω! as the generating function of two-variable

∆h Legendre–Appell polynomials SA
[h]
n (u, v).

Theorem 2. For the two-variable ∆h Legendre–Appell polynomials SA
[h]
ω (u, v), the succeeding

relations hold true:

v∆h
h SA

[h]
ω (u, v) = ω SA

[h]
ω−1(u, v) (14)

u∆h
h SA

[h]
ω (u, v) = ω(ω − 1) SA

[h]
ω−2(u, v), D−1

u → u. (15)

Proof. By differentiating (13) with respect to v by taking into consideration of expression (5),
we have

v∆h

{
γ(t)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

}
= γ(ξ)(1 + hξ)

v+h
h (1 + hξ2)

D−1
u
h − γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

= (1 + hξ − 1)γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h

= hξ γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h .

(16)

By substituting the righthand side of expression (13) in (16), we find

v∆h

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
= h

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω+1

ω!
. (17)

By replacing ω → ω − 1 in the righthand side of previous expression (16) and com-
paring the coefficients of the same exponents of t in the resultant expression, assertion (14)
is deduced.

Further, on similar grounds, expression (15) is established.
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Next, we deduce the explicit form satisfied by these two-variable ∆h Legendre–Appell
polynomials SA

[h]
ω (u, v) by demonstrating the result:

Theorem 3. For the two-variable ∆h Legendre–Appell polynomials SA
[h]
ω (u, v), the explicit relation

holds true:

SA
[h]
ω (u, v) =

v
h

∑
d=0

(
ω

d

)( v
h
d

)
hd A[h]

ω−d(u). (18)

Proof. Expanding generating relation (13) in the given manner:

γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

v
h

∑
d=0

( v
h
d

)
(hξ)d

d!

∞

∑
ω=0

SA
[h]
ω (u, 0)

ξω

ω!
(19)

which can further be written as

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

[ v
h ]

∑
d=0

( v
h
d

)
hd A[h]

ω (u)
ξω+d

ω! d!
. (20)

By replacing ω → ω − d in the righthand side of the previous expression, it follows
that

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

[ v
h ]

∑
d=0

( v
h
d

)
hd A[h]

ω (u)
ξω

(ω − d)! d!
. (21)

On multiplying and dividing by ω! on the righthand side of previous expression (21)
and comparing the coefficients of the same exponents of ξ on both sides, assertion (18) is
deduced.

Theorem 4. Further, for the two-variable ∆h Legendre–Appell polynomials SA
[h]
ω (u, v), the explicit

relation holds true:

SA
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
γν,h S

[h]
ω−ν(u, v). (22)

Proof. Expanding generating relation (13) in view of expressions (8) and (13) with γ(ξ) = 1
in the given manner:

γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ν=0

γν,h
ξν

ν!

∞

∑
ω=0

S[h]ω (u, v)
ξω

ω!
, (23)

which can further be written as

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

∞

∑
ν=0

γν,h S
[h]
ω (u, v)

ξω+ν

ω!ν!
. (24)

By replacing ω → ω − ν in the righthand side of the previous expression, it follows that

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
=

∞

∑
ω=0

ω

∑
ν=0

γν,h S
[h]
ω−ν(u, v)

ξω

(ω − ν)! ν!
. (25)

On multiplying and dividing by ω! on the righthand side of previous expression (25)
and comparing the coefficients of the same exponents of ξ on both sides, assertion (22)
is deduced.

3. Summation Formulae

This section establishes the summation formulae, or sigma notation, essential in
mathematical analysis. These formulae provide systematic methods for computing sums
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involving special polynomials, facilitating the evaluation of complex expressions encoun-
tered in various mathematical contexts. By leveraging these formulae, mathematicians
can identify patterns and uncover hidden symmetries within polynomial structures, en-
hancing understanding and fostering innovative applications in combinatorics, probability
theory, and mathematical physics. Additionally, the study of summation formulae aids in
developing efficient computational techniques, enabling researchers to address challenging
problems precisely. These expressions concisely represent the sum of a sequence of terms,
providing a convenient way to compute the total of a series of numbers or expressions.
Thus, we demonstrate the summation formulae by proving the following results:

Theorem 5. For ω ≥ 0, we have

SA
[h]
ω (u, v + 1) =

ω

∑
ν=0

(
ω

ν

)(
−1

h

)
ν

(−h)ν
SA

[h]
ω−ν(u, v). (26)

Proof. By (13), we have

∞
∑

ω=0
SA

[h]
ω (u, v + 1) ξω

ω! −
∞
∑

ω=0
SA

[h]
ω (u, v) ξω

ω! = γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h

(
(1 + hξ)

1
h − 1

)
=

∞
∑

ω=0
SA

[h]
ω (u, v) ξω

ω!

(
∞
∑

ν=0

(
− 1

h

)
ν
(−h)ν ξν

ν! − 1
)

=
∞
∑

ω=0

(
ω

∑
ν=0

(ω
ν )
(
− 1

h

)
ν
(−h)ν

SA
[h]
ω−ν(u, v)

)
ξω

ω! −
∞
∑

ω=0
SA

[h]
ω (v, u) ξω

ω! .

(27)

Comparing the coefficients of ξ, we obtain (26).

Theorem 6. For ω ≥ 0, we have

SA
[h]
ω (u, v) =

ω

∑
ν=0

[ ω−ν
2 ]

∑
j=0

(
−v

h

)
ω−2j−ν

(−h)ω−j−ν
(
−u

h

)
j
(−1)j Aν,h

ω!
(ω − 2j − ν)!(j!)2ν!

. (28)

Proof. Using (13), we have

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
= γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

= γ(ξ)
∞

∑
ω=0

(
−v

h

)
ω
(−h)ω ξω

ω!

∞

∑
j=0

(
−u

h

)
j
(−1)j(−h)j ξ2j

j!j!

=
∞

∑
ν=0

Aν,h
ξν

ν!

∞

∑
ω=0

[ ω
2 ]

∑
j=0

(
−v

h

)
ω−2j

(−h)ω−j
(
−u

h

)
j
(−1)j ξω

(ω − 2j)!(j!)2

=
∞

∑
ω=0

ω

∑
ν=0

[ ω−ν
2 ]

∑
j=0

(
−v

h

)
ω−2j−ν

(−h)ω−j−ν
(
−u

h

)
j
(−1)j Aν,h

ξω

(ω − 2j − ν)!(j!)2ν!
. (29)

Equating the coefficients of ξ, we obtain (28).

Now, we investigate the connection between the Stirling numbers of the first kind and
two-variable ∆h Legendre polynomials.

[log(1 + ξ)]ν

ν!
=

∞

∑
i=ν

S1(i, ν)
ξ i

i!
, | ξ |< 1. (30)

From the above definition, we have

(v)i =
i

∑
ν=0

(−1)i−νS1(i, ν)vν. (31)
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Theorem 7. For ω ≥ 0, we have

SA
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
SA

[h]
ω−ν(u, 0)

ν

∑
j=0

vjS1(ν, j)hν−j. (32)

Proof. From (13), we have

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
= e

v
h log(1+hξ)γ(ξ)(1 + hξ2)

D−1
u
h

= γ(ξ)(1 + hξ2)
D−1

u
h

∞

∑
j=0

(v
h

)j [log(1 + hξ)]j

j!

=
∞

∑
ω=0

SA
[h]
ω (u, 0)

ξω

ω!

∞

∑
ν=0

ν

∑
j=0

(v
h

)j
S1(ν, j)hν ξν

ν!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
SA

[h]
ω−ν(u, 0)

ν

∑
j=0

(v
h

)j
S1(ν, j)hν

)
ξω

ω!
. (33)

Comparing the coefficients of ξ, we obtain the result.

Theorem 8. For ω ≥ 0, we have

SA
[h]
ω (u, v) =

ω

∑
l=0

ω−l

∑
ν=0

ω!
(ω − ν − l)!(ν + l)!

hν
SA

[h]
ω−ν−l(u, 0)S1(ν + l, l)vl . (34)

Proof. From (13), we have

∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!
= γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

=
∞

∑
ω=0

SA
[h]
ω (u, 0)

ξω

ω!

∞

∑
ν=0

(
−v

h

)
ν
(−h)ν ξν

ν!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)(
−v

h

)
ν
(−h)ν

SA
[h]
ω−ν(u, 0)

)
ξω

ω!
. (35)

Comparing the coefficients of ξ, we obtain

SA
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)(
−v

h

)
ν
(−h)ν

SA
[h]
ω−ν(u, 0). (36)

Using, equality (31) in previous expression, we obtain

SA
[h]
ω (u, v) =

(
ω

∑
ν=0

(
ω

ν

)
(−h)ν

SA
[h]
ω−ν(u, 0)

)(
ν

∑
l=0

(−1)ν−lS1(ν, l)(−h)−lvl

)

=
ω

∑
l=0

ω

∑
ν=l

ω!
(ω − ν)!ν!

(−h)ν−l
SA

[h]
ω−ν(u, 0)(−1)ν−lS1(ν, l)vl

=
ω

∑
l=0

ω−l

∑
ν=0

ω!
(ω − ν − l)!(ν + l)!

(−h)ν
SA

[h]
ω−ν−l(u, 0)(−1)νS1(ν + l, l)vl . (37)

This completes the proof of the theorem.
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Theorem 9. For ω ≥ 0, we have

SA
[h]
ω (u, v + s) =

ω

∑
l=0

ω−l

∑
ν=0

ω!
(ω − ν − l)!(ν + l)!

hν
SA

[h]
ω−ν−l(u, v)S1(ν + l, l)sl . (38)

Proof. Taking v + s instead of v in (13), we have

∞

∑
ω=0

SA
[h]
ω (u, v + s)

ξω

ω!
= γ(ξ)(1 + hξ)

v+s
h (1 + hξ2)

D−1
u
h

=

(
∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!

)(
∞

∑
ν=0

(
− s

h

)
ν
(−h)ν ξν

ν!

)
. (39)

Using the Cauchy rule and after comparing the coefficients of ξ on both sides of the
resulting equation, we have

SA
[h]
ω (u, v + s) =

ω

∑
ν=0

(
ω

ν

)(
− s

h

)
ν
(−h)ν

SA
[h]
ω−ν(u, v). (40)

Then, using (31) for
(
− s

h
)

ν
, we obtain (38).

4. Monomiality Principle and Determinant Form

The monomiality principle is a fundamental concept in polynomial theory. It states
that any polynomial can be expressed uniquely as a combination of simple algebraic
terms called monomials. This representation simplifies the polynomial structure and
facilitates their analysis in various mathematical contexts. The principle plays a crucial
role in practical applications across scientific and engineering fields, such as computational
mathematics, signal processing, and physics, where polynomials are used to model complex
systems and phenomena. This highlights the broad applicability and significance of the
monomiality principle in advancing both theoretical understanding and practical problem-
solving capabilities. The exploration and utilization of the monomiality principle, along
with operational guidelines and other properties of hybrid special polynomials, have
been the focus of extensive study. Originating from Steffenson’s concept of poweroids
in 1941 [14], the notion of monomiality was further elaborated upon by Dattoli [15,16].
Central to this framework are the Ĵ and K̂ operators, which serve as multiplicative and
derivative operators, respectively, for a polynomial set gk(u1)k∈N.

These operators adhere to the following expressions:

gk+1(u1) = Ĵ {gk(u1)} (41)

and
k gk−1(u1) = K̂{gk(u1)}. (42)

Consequently, when these multiplicative and derivative operations are applied to the
polynomial set gk(u1)m∈N, they yield a quasi-monomial domain. Of particular importance
is the following formula:

[K̂, Ĵ ] = K̂Ĵ − Ĵ K̂ = 1̂, (43)

which exhibits a Weyl group structure.
Assuming the set {gk(u1)}k∈N is quasi-monomial, the operators Ĵ and K̂ can be

leveraged to derive the significance of this set. Thus, the following axioms hold true:
For Ĵ and K̂ to exhibit differential traits, gk(u1) satisfies the differential equation:

Ĵ K̂{gk(u1)} = k gk(u1). (44)
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The expression
gk(u1) = Ĵ k {1} (45)

represents the explicit form, with g0(u1) = 1 and the expression

ewĴ {1} =
∞

∑
k=0

gk(u1)
wk

k!
, |w| < ∞ , (46)

demonstrates generating expression behavior and is obtained by applying identity (45).
In this section, we will discuss the results of our validation efforts. These results aim

to strengthen the reliability and usefulness of the ∆h Legendre–Appell polynomials as
important mathematical tools. As a result, we will be verifying the monomiality principle
for the ∆h Legendre–Appell polynomials SA

[h]
ω (u, v) by presenting the following results:

Theorem 10. The ∆h Legendre–Appell polynomials SA
[h]
ω (u, v) satisfy the succeeding multiplica-

tive and derivative operators:

M̂SA =

(
v

1 + v∆h
+

2 D−1
u v∆h

h + v∆h
2 +

γ
′
( v∆h

h )

γ( v∆h
h )

)
(47)

and
ˆDSA =

v∆h
h

. (48)

Proof. In consideration of expression (5), taking derivatives with respect to v of expres-
sion (13), we have

v∆h

{
γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

}
= γ(ξ)(1 + hξ)

v+h
h (1 + hξ2)

D−1
u
h − γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

= (1 + hξ − 1)γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h

= hξ γ(ξ)(1 + hξ)
v
h (1 + hξ2)

D−1
u
h ,

(49)

thus, we have

v∆h
h

[
γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

]
= ξ

[
γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

]
, (50)

which gives the identity

v∆h
h

[
SA

[h]
ω (u, v)

]
= ξ

[
SA

[h]
ω (u, v)

]
. (51)

Now, differentiating expression (13) with respect to ξ, we have

∂

∂ξ

{
γ(ξ)(1 + hξ)

v
h (1 + hξ2)

D−1
u
h

}
=

∂

∂ξ

{
∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!

}
, (52)

(
v

1 + hξ
+ 2

D−1
u ξ

1 + hξ2 +
γ′(ξ)

γ(ξ)

){
∞

∑
ω=0

SA
[h]
ω (u, v)

ξω

ω!

}
=

∞

∑
ω=0

ω SA
[h]
ω (u, v)

ξω−1

ω!
. (53)

On the usage of identity expression (51) and replacing ω → ω + 1 in the righthand
side of previous expression (53), assertion (47) is established.

Further, in view of identity expression (51), we have

v∆h
h

[
SA

[h]
ω (u, v)

]
=
[
ω SA

[h]
ω−1(u, v)

]
, (54)
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which gives an expression for the derivative operator (48).

Next, we deduce the differential equation for the ∆h Legendre–Appell polynomials

SA
[h]
ω (u, v) by demonstrating the succeeding result:

Theorem 11. The ∆h Legendre–Appell polynomials SA
[h]
ω (u, v) satisfy the differential equation:(

v
1 + v∆h

+
2 D−1

u v∆h

h + v∆h
2 +

γ
′
( v∆h

h )

γ( v∆h
h )

− ωh
v∆h

)
SA

[h]
ω (u, v) = 0. (55)

Proof. Inserting expression (47) and (48) in the expression (44), the assertion (55) is proved.

Next, we give the determinant form of ∆h Legendre–Appell polynomials SA
[h]
ω (u, v)

in terms of ∆h Legendre polynomials S[h]ω (u, v) by proving the result listed below:

Theorem 12. The ∆h Legendre–Appell polynomials SA
[h]
ω (u, v) give rise to the determinant

represented by:

SA
[h]
ω (u, v) =

(−1)ω

(γ0,h)
ω+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 S[h]1 (u, v) S[h]2 (u, v) · · · S[h]ω−1(u, v) S[h]ω (u, v)

γ0,h γ1,h γ2,h · · · γω−1,h γω,h

0 γ0,h (2
1)γ1,h · · · (ω−1

1 )γω−2,h (ω
1 )γω−1,h

0 0 γ0,h · · · (ω−1
2 )γω−3,h (ω

2 )γω−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( ω

ω−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (56)

where
γω,h, ω = 0, 1, · · · are the coefficients of Maclaurin series of

1
γ(ξ)

.

Proof. Multiplying both sides of Equation (13) by 1
γ(ξ)

= ∑∞
ω=0 γω,h

ξω

ω! , we find

∞

∑
ω=0

S[h]ω (u, v)
ξω

ω!
=

∞

∑
ω=0

∞

∑
ν=0

γν,h
ξν

ν! SA
[h]
ω (u, v)

ξω

ω!
, (57)

which, on using the Cauchy product rule, becomes

S[h]ω (u, v) =
ω

∑
ν=0

(
ω

ν

)
γν,h SA

[h]
ω−ν(u, v). (58)

This equality results in a set of ν equations with variables S[h]ω (u, v), where ω = 0,
1, 2, · · · . Solving this set using Cramer’s rule, and exploiting the denominator as the
determinant of a lower triangular matrix with a determinant of (γ0,h)

ω+1, while transposing
the numerator and subsequently substituting the i-th row with the (i + 1)-th position for
i = 1, 2, · · · , n − 1 produces the desired outcome.

5. Examples

The Appell polynomial family is diverse, spanning various members derived by se-
lecting an appropriate function γ(ξ). Each member boasts unique characteristics, including
distinct names, generating functions, and associated numerical properties. These polyno-
mials find applications across numerous mathematical domains due to their versatility and
rich properties. The selection of γ(ξ) plays a crucial role in defining the specific polynomial
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within the family, allowing for tailored solutions to various problems in mathematics and
physics. Understanding the generating functions associated with these polynomials is
essential for their practical utilization, enabling efficient computation and analysis. In the
following sections, we delve into the intricacies of the generating functions that underpin
the diverse set of Appell polynomials, shedding light on their mathematical elegance and
practical significance in a wide array of applications. The generating function for the ∆h

Bernoulli polynomials β
[h]
ω (v) is given by

log(1 + hξ)
1
h

(1 + hξ)
1
h − 1

(1 + hξ)
v
h =

∞

∑
ω=0

β
[h]
ω (v)

ξω

ω!
, | ξ |< 2π. (59)

The generating expression for ∆h Euler polynomials E[h]
ω (v) is given by

2

(1 + hξ)
1
h + 1

(1 + hξ)
v
h =

∞

∑
ω=0

E[h]
ω (v)

ξω

ω!
, | ξ |< π. (60)

The generating expression for ∆h Genocchi polynomials G[h]
ω (v) is given by

2 log(1 + hξ)
1
h

(1 + hξ)
1
h + 1

(1 + hξ)
v
h =

∞

∑
ω=0

G[h]
ω (v)

ξω

ω!
, | ξ |< π. (61)

For h → 0, these polynomials reduce to the Bω(v), Eω(v) and Gω(v) polynomials [17].
The Bernoulli, Euler, and Genocchi numbers have found numerous applications in

various areas of mathematics, including number theory, combinatorics, and numerical
analysis. These applications extend to practical mathematics, where these polynomials and
numbers are utilized to solve problems and derive mathematical formulas.

For instance, the Bernoulli numbers appear in various mathematical formulas, such as
the Taylor expansion, trigonometric and hyperbolic tangent and cotangent functions, and
sums of powers of natural numbers. These numbers play a crucial role in number theory,
providing insights into patterns and relationships among integers.

Similarly, the Euler numbers arise in the Taylor expansion and have close connec-
tions to trigonometric and hyperbolic secant functions. They have applications in graph
theory, automata theory, and calculating the number of up/down ascending sequences,
contributing to the analysis of structures and patterns in discrete mathematics.

Moreover, the Genocchi numbers find utility in graph theory and automata theory.
They are particularly valuable in counting the number of up/down ascending sequences,
which involves studying the order and arrangement of elements in a sequence. Therefore,
these ∆h polynomials and numbers of Bernoulli, Euler, and Genocchi play a significant role
in various mathematical domains, allowing for the exploration of mathematical relation-
ships, the derivation of formulas, and the analysis of patterns and structures.

By appropriately choosing the function γ(ξ) in Equation (13), we can establish the
following generating functions for the ∆h Legendre-based Bernoulli SB

[h]
ω (u, v), Euler

SE
[h]
ω (u, v), and Genocchi SG

[h]
ω (u, v) polynomials:

log(1 + hξ)

h(1 + hξ)
1
h − h

(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SB
[h]
ω (u, v)

ξω

ω!
, (62)

2

(1 + hξ)
1
h + 1

(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SE
[h]
ω (u, v)

ξω

ω!
, (63)

and
2 log(1 + hξ)

h(1 + hξ)
1
h + h

(1 + hξ)
v
h (1 + hξ2)

D−1
u
h =

∞

∑
ω=0

SG
[h]
ω (u, v)

ξω

ω!
. (64)
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Further, in view of expression (22) and Table 1, the polynomials SB
[h]
ω (u, v), SE

[h]
ω (u, v)

and SG
[h]
ω (u, v) satisfy the following explicit form:

SB
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
Bν,h SA

[h]
ω−ν(u, v), (65)

SE
[h]
ω (u, v) =

n

∑
ν=0

(
ω

ν

)
Eν,h SA

[h]
ω−ν(u, v) (66)

and

SG
[h]
ω (u, v) =

ω

∑
ν=0

(
ω

ν

)
Gν,h SA

[h]
ω−ν(u, v). (67)

Furthermore, in view of expressions (56), the polynomials SB
[h]
ω (u, v), SE

[h]
ω (u, v) and

SG
[h]
ω (u, v) satisfy the following determinant representations:

SB
[h]
ω (u, v) =

(−1)ω

(γ0,h)
ω+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 B[h]
1 (u, v) B[h]

2 (u, v) · · · B[h]
ω−1(u, v) B[h]

ω (u, v)

γ0,h γ1,h γ2,h · · · γω−1,h γω,h

0 γ0,h (2
1)γ1,h · · · (ω−1

1 )γω−2,h (ω
1 )γω−1,h

0 0 γ0,h · · · (ω−1
2 )γω−3,h (ω

2 )γω−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( ω

ω−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (68)

SE
[h]
ω (u, v) =

(−1)ω

(γ0,h)
ω+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 E[h]
1 (u, v) E[h]

2 (u, v) · · · E[h]
ω−1(u, v) E[h]

ω (u, v)

γ0,h γ1,h γ2,h · · · γω−1,h γω,h

0 γ0,h (2
1)γ1,h · · · (ω−1

1 )γω−2,h (ω
1 )γω−1,h

0 0 γ0,h · · · (ω−1
2 )γω−3,h (ω

2 )γω−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( ω

ω−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (69)

and

SG
[h]
ω (u, v) =

(−1)ω

(γ0,h)
ω+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 G[h]
1 (u, v) G[h]

2 (u, v) · · · G[h]
ω−1(u, v) G[h]

ω (u, v)

γ0,h γ1,h γ2,h · · · γω−1,h γω,h

0 γ0,h (2
1)γ1,h · · · (ω−1

1 )γω−2,h (ω
1 )γω−1,h

0 0 γ0,h · · · (ω−1
2 )γω−3,h (ω

2 )γω−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( ω

ω−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (70)
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Table 1. Several members of the Appell polynomials family.

S. No. Appell Polynomials Generating Function A(ξ)

I. The Bernoulli polynomials [11]
ξ

eξ − 1
euξ= ∑∞

ω=0 Bω(u)
ξω

ω! A(ξ) = ξ
eξ−1

II. The Euler polynomials [11]
2

eξ + 1
euξ= ∑∞

ω=0 Eω(u)
ξω

ω! A(ξ) = 2
eξ+1

III. The Genocchi polynomials [11]
2ξ

eξ + 1
euξ= ∑∞

ω=0 Gω(u)
ξω

ω! A(ξ) = 2ξ
eξ+1

6. Conclusions

The introduction and exploration of ∆h Legendre–Appell polynomials mark a signifi-
cant advancement in polynomial theory, particularly in quantum mechanics and entropy
modeling. Integrating the monomiality principle and operational rules, these polynomials
offer fresh insights into uncharted mathematical territory. This research provides explicit
formulas and elucidates fundamental properties, deepening our understanding of Leg-
endre polynomials and linking them to established polynomial categories, enriching the
mathematical landscape.

Future research could delve into structural properties and algebraic aspects, uncover-
ing deeper insights and potential applications. Exploring their applicability in quantum
mechanics and mathematical physics may reveal new research directions and practical
implications. Additionally, bridging the gap between mathematical theory and real-world
applications could maximize their potential, especially in statistical mechanics, information
theory, and computational science. Collaborative interdisciplinary efforts could unlock the
full potential of ∆h hybrid polynomials across diverse domains.

Therefore, introducing and investigating hybrid ∆h polynomials represent a significant
milestone, fostering new research avenues and applications in various mathematical and
scientific fields. Continued exploration and collaboration are essential for realizing their
full potential and understanding their broader implications.
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