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Abstract: Process algebras have been developed within computer science and engineering to address
complicated computational and manufacturing problems. The process algebra described herein
was inspired by the Process Theory of Whitehead and the theory of combinatorial games, and
it was developed to explicitly address issues particular to organisms, which exhibit generativity,
becoming, emergence, transience, openness, contextuality, locality, and non-Kolmogorov probability
as fundamental characteristics. These features are expressed by neurobehavioural regulatory systems,
collective intelligence systems (social insect colonies), and quantum systems as well. The process
algebra has been utilized to provide an ontological model of non-relativistic quantum mechanics
with locally causal information flow. This paper provides a pedagical review of the mathematics of
the process algebra.
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1. Introduction: Why Process?

The goal of this paper is to present a pedagogical overview of the process algebra
approach, as inspired by the writings of the process philosopher, Alfred North Whitehead,
which has particular application to the study of living systems. It is expected that the reader
will be unfamiliar with the ideas of Whitehead, and certainly with this version of a process
algebra, there being many others in the literature, which were all designed for different
purposes and to address different problems than those being considered here [1–3]. It
provides an overview of the core concepts and the core constructions. It is not meant to be
deep or exhaustive. More details may be found in [4–10] or the forthcoming book [11] if
the reader is interested.

Any field of endeavour, no matter how sophisticated, risks becoming a victim of
its own success. Science is no exception. Success in one domain of application can lead
to overconfidence and a tendency toward overgeneralization. That approach is then
imposed upon other domains, even when the fit may not be good. The consequences range
from misunderstanding to catastrophe. Examples of catastrophic failures to accurately
comprehend a situation abound, especially in medicine and structural engineering.

For more than two millennia, our theoretical understanding of the world around us
has been grounded in the concept of ‘object’. The concept of an (ideal) object presumes the
following characteristics:

1. It exists independently from any other entity—it can be isolated and treated as a
whole unto itself.

2. It is eternal—it does not become, it merely is.
3. It is passive—it reacts, it does not act; it lacks intentions.
4. Its behavior is rational, that is, conforming to the usual rules of logic.
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5. Its properties are non-contextual.
6. History is irrelevant—the future of an object depends at most upon its present state.

Mathematical entities constitute ideal objects. This gives them power. The closest
entities to ideal in the natural world consist of inanimate matter, the main subject for physics,
so that the fruitful interplay between mathematics and physics is not that surprising.

Biological organisms and their subsystems, unfortunately, did not get the memo. They
depart from this ideal of an object in almost every way imaginable. Consider some of the
features observed in neural systems:

1. Neural systems are born, develop, age, and die.
2. Neural activity and connectivity is transient, and any internal representations are

metastable; their participants are fungible [12–19].
3. Large-scale behavior is generated [12].
4. Neural activity is stochastic [20,21].
5. Neural activity is contextual [22–26].
6. Neural systems are open systems [23–25,27–31].
7. Meaning-laden information is more important than energy or entropy [28–31].
8. Behavior is grounded in finite duration transients, not instantaneous states [28–34].
9. Neural systems anticipate [27].
10. History is fundamental to understanding their activity.

Collective intelligence systems such as social insect colonies exhibit many similar
charcteristics at a macroscopic level [35].

Physics has acquired great mastery over the realm of inanimate matter, which is
governed mostly by simple laws such as the conservation of mass energy, linear momentum,
angular momentum, the non-decrease in entropy, and action–reaction. Biological organisms
do not care so much for those laws. They generally possess adequate resources. Reactions
are not proportional to actions. Anyone with a cat knows that it can sleep through all sorts
of noise—music, kids, housekeeping—but crack open a tin of food and it arrves in the blink
of an eye. Organisms behave according to goals, responding to signals based upon their
salience and meaning. These ideas are foreign to mathematics and physics. Behavior can
be determined by the forms of things, not merely their motion or substance. Moreover,
randomness is everywhere.

One of the great challenges of biology is to understand how stable patterns of form,
function, and behavior emerge from this flux. It is a challenge to mathematicians to develop
mathematical entities and theories that can address situations in which entities come into
being, persist for a finite duration, and then fade away; when their constituents are in
constant flux, so that their phase spaces are themselves dynamic entities; when interactions
are in continual flux; when properties are generated and contextual, and thus also in flux;
when probabilities are generated and non-stationary; when the presence of an environment
is essential to their function; when meaning and form play a greater role than structure and
geometry; when the fundamental objects of study are not instantaneous states but rather
behavioral acts, which are finite duration transients.

Reductionism as an explanatory paradigm fails—the presence of “on the fly” genera-
tivity, fungibility, emergence, downward and horizontal causation, and contextuality all
point to the necessity to approach the study of nervous systems (and organisms generally)
simultaneously across multiple spatiotemporal scales ranging from neurotransmitters and
receptors, cellular membranes, individual neural and glial cells, local cell assemblies, global
cellular networks, somatic states, observable individual behavior, and individual subjec-
tive experience to dyadic relationships, familial relationships, social groups, communities,
societies, and cultures. The belief that this complexity can be captured by a single partial
differential equation (or some stochastic variant thereof), restricted to a single level, seems
naïve at best. A new set of concepts and mathematics seems required if we are to deal
with the nature of organisms and of biological systems beyond cartoon-like engineering
stereotypes. One such concept is that of process.
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Process is a term that possesses many meanings. In biology, “a process means any of
the various biological activities occurring within an organism” [36]. In physics, “a process
is a series of progressive and interdependent steps by which an end is attained” [36].
In engineering, a process is a set of transformations that take input elements and create
products while respecting constraints, requiring resources, within an environment and
satisfying a specific mission. The CPRET acronym [37] refers to Constraints, Products,
Resources, Input Elements, and Transformations. These are (taken from [37]:

1. Constraints: imposed conditions, rules or regulations.
2. Products: everything generated by transformations. The products can be of the

desired or not desired type.
3. Resources: human resources, energy, time and other means required to carry out

the transformations.
4. Input elements: whatever is submitted to transformations for producing the products.
5. Transformations: operations organized according to a logic aimed at optimizing the

attainment of specific products from the input elements with the allocated resources
and in compliance with the imposed constraints.

There is an abundant literature dealing with the above interpretations of process, all of
them grounded upon the concept of an object. There is an alternative approach which takes
process itself as the ground. This is the Process Theory of Alfred North Whitehead, which is
described in detail in his book, Process and Reality. In Whitehead’s Process Theory, a process
is a generator of events, which causes them to come into being, and eventually to fade away.
A process is a generator of space and time, not an entity within space and time. Whitehead
referred to his theory as a philosophy of organisms because organisms are the quintessential
exemplars of process. Organisms act —they have intention, they do something. A process
too does something—which makes it wholly distinct from mathematical structures, which
simply are. Social insect colonies provide another example of process. A social insect colony
is capable of complex decision making in the service of salient ethological needs—nest
selection, foraging, mate selection, colony-level reproduction. Nest selection takes the form
of a plebiscite, moving to a site once a quorum of workers choosing that site exceeds a
certain threshold [38,39]. There is no central authority, and the individual workers forming
the quorum change from time to time. Each decision is made ‘on the fly’, never to be
repeated exactly.

A process is in most respects the antithesis of an object. It is presumptuous to assume
that a formal framework grounded in the concept of object will be adequate to describe its
antithesis—rather a new kind of framework is needed. The process algebra described here
is an attempt to provide such a framework. It draws upon some innovative approaches in
mathematics which sadly remain out of the manstream.

Fortunately, the past century has seen a fruitful interplay between mathematics, logic, and
computer science, resulting in the concept of the combinatorial game, which is used in gener-
ating models in mathematical logic [40,41] and in the analysis of real-world games [42–44]; the
concept of Lindenmeyer systems [45] to model aspects of development; the development
of process algebras in computer science [1–3]; and the development of methods to deal
with dynamical transients [29–34,46]. It also witnessed the appearance of innovations in
philosophy, which attempted to move beyond object-based mechanistic constructs. The
central figures include Bergson [47], Heidegger [48], and most importantly, Alfred North
Whitehead [49]. These ideas were later taken up by several researchers, most notably Pri-
gogine and Stengers [50], Shimony [51], Hansen [52], Stapp [53], Chew [54], Finkelstein [55],
Cahill [56], Hiley [57], and others [58]. The present work develops a process algebra which
is specifically inspired by Whitehead’s philosophy and the concept of combinatorial game
as developed by Conway [43].

Unfortunately, Whitehead’s writing is dense, turgid, and full of off-putting terminol-
ogy. It is best to read scholars such as Hansen [52], Epperson [59], and Stengers [60,61]
before tackling Whitehead directly. Nevertheless, Whitehead’s philosophy is rich, profound,
masterfully reasoned, and exhaustive (if not exhausting).
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For Whitehead, becoming is logically prior to being, and the study of becoming forms
the core of his ideas. Although the entities which become may have spatial and temporal
extension, the act of becoming forms a complete, indivisible whole. Any partitioning of
becoming is purely heuristic. The primitive entities that arise because of this becoming are
termed actual occasions, and these too form complete wholes. Divisions of actual occasions
into smaller units are again merely heuristic.

Hansen describes the core of Whitehead’s idea as follows:

So, one central point in Whitehead’s system is that processes are themselves
active—the temporal modalities are a function of the happening of processes
themselves—the basic realities in the world pass from potentiality through actual-
ity into pastness. Each process is a unit of becoming, and according to Whitehead,
it “becomes in solido”; it is not some temporally extended entity placed on an axis
of time along which it could be played, like an audiotape, one stage or movement
after the other. The idea is not that it is of zero extension like a point. It is the more
radical idea that it is something different from extension—something out of which
extension is manifested. Within this relational system, according to its properties,
it may become meaningful to assign the process a finite extension. . . . The other
equally important element in Whitehead’s processual and relational account of
time is the relationships with other processes. They are deeply involved in the
very sense of the modalities. . . . These include relations between “parent” and
“child” processes—causal relations in which the outcome of a parent process adds
to the beginning conditions of each of its child processes. Each child process can
have many parent processes and vice versa.

Whitehead’s picture implies that such branching and rejoining is generally the
case. What it means for something to have already happened, Whitehead says, is
that it has produced a determinate result—to terminate is to be determinate—but
this result should not be understood substantially. “Result” means it is available
to be part of the initial conditions for new processes. Or perhaps better, it is
taken in by these processes—the terminated parent processes are indeed said to
be there, in some sense and to some degree “repeated” within the actively new
process. It is really all that the new process can “be” apart from its own core of
creativity [52] (pp. 153–154).

Whitehead posits that this generative activity of process serves as the ground for
extension, for the origins of space and time. The “modalities are not really situated in space
and time at all, but in the concrete processes whose web of relations gives rise to space and
time [52] (p. 154)”. Others writers have argued for the same [10,62].

Each process receives something from all the processes within its universe, meaning
all those processes which serve as its parents (i.e., lie in its direct causal past), and it
subsequently “leaves its mark” on all its children (i.e., those processes in its direct causal
future). Whitehead makes the point that no two processes may share their entire universes
(i.e., possess the exact same past), for that would make them the same process. Additionally,
no process ever exactly repeats itself —there is a universal irreversibility and no backward
causation. This failure of exact repetition is a feature of organisms [12,26,29–31] and is a
core feature of functional constructivism [29–31].

Actual occasions or actual entities constitute the facts, made determinate in their becom-
ing by means of process, which serve as the basis for the next generation of actual occasions.

Prehension is the act of taking up the data inherent in an actual occasion, interpreting
and analyzing it, and incorporating the results into the actualization or formation or
concrescence of a new actual occasion.

A nexus is an interaction conglomerate of actual entities.
Whitehead assumes that process generates actual entities which become objectified,

concrete (concrescence being the process of being made concrete), and thus provide data
in the next instance of becoming. He also assumes the existence of a continuum structure
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for the collection of all potentialities. Note that this continuum is not real in the sense of
the entities represented all being actual—it is not the atemporal space–time continuum
of events. It is instead more akin to a mathematical collection of possibilities and their
interrelationships. Whitehead points out that this continuum is not a ‘fact’ prior to the
world, as it would be if it were an atemporal listing of all its events. It is derivative, arising
from the concrete nature of the world which then sets the limits on what is possible.

Actual entities atomize the extensive continuum. This continuum is merely
the potentiality for division; an actual entity affects this division. . .With the
becoming of any actual entity what was previously potential in the space–time
continuum is now the primary real phase in something actual. For each process
of concrescence, a regional standpoint in the world, defining a limited potentiality
for objectifications, has been adopted. In the mere extensive continuum, there is
no principle to determine what regional quanta shall be atomized so as to form
the real perspective standpoint for the primary data constituting the basic phase
in the concrescence of an actual entity [49] (p. 104).

Whitehead’s entities are fundamentally open systems and must be understood as such
from the get-go. The study of process is thus the study of relations among processes. A
process must always be studied in relation to its environment of processes.

For Whitehead, becoming involves two types of fluency: concrescence, which leads to
the creation of an actual occasion, and transition, which converts an occasion into a kind of
datum which can be used in other instances of becoming.

Concrescence is a concept of fundamental importance in Whitehead’s metaphysics.
“‘Concrescence’ is the name for the process in which the universe of many things acquires an
individual unity in a determinate relegation of each item of the ‘many’ to its subordination
in the constitution of the novel ‘one’” [49] (p. 321). The following point is very important,
since Whitehead does not separate out things from concrescences. There is no thing which
undergoes concrescence; rather, it is a concrescence alone which is a thing. And by making
a concrescence the prototype for an entity, he marks a fundamental departure from the
notion of entity as object toward that of entity as process.

For Whitehead,

The term ‘event’ is used in a more general sense. An event is a nexus of actual
occasions inter-related in some determinate fashion in some extensive quantum:
it is either a nexus in its formal completeness or it is an objectified nexus. One
actual occasion is a limiting type of event. The most general sense of the meaning
of change is ‘the differences between actual occasions in one event’. For example,
a molecule is a historic route of actual occasions, and such a route is an ‘event’.
Now, the motion of the molecule is nothing other than the differences between
the successive occasions of its life-history with respect to the extensive quanta
from which they arise; and the changes in the molecule are the consequential
differences in the actual occasions [49] (pp. 124–125).

Actual occasions do not do anything. They do not move, they do not change state, they
do not interact. Processes do those things. Actual occasions are more akin to the tokens
on a scratchpad. They come into being, their information is utilized by some processes,
then they fade away. Period. Actual occasions may be likened to the bits in a computer
register, the difference being that in a register, the physical locations of these bits are fixed
in advance, whereas the becoming of actual occasions generates the physical locations at
which they appear. In the process algebra, space–time is generated by process, it is not a
pre-existing container in which events take place.

2. Metaphor of the Tossed Coin

The concept of process described above is quite abstract, and its depiction in the
writings of Whitehead even more so. Nevertheless, a simple concrete example can serve as



Mathematics 2024, 12, 1988 6 of 36

an illustration of some of these ideas, bearing in mind that this example is not meant to be
representative or canonical but rather merely illustrative.

The example to be considered is that of a tossed coin. An outcome measurement for
a tossed coin is either a head (H) or a tail (T). The criterion for such a measurement is
the presence of a static coin resting on the surface of a measuring platform such that the
upward-facing side of the coin contains either a head or a tail. Now imagine a device that
consists of three components. There is a tall vertical post along which a platform can be
moved up or down. The upward surface of the platform has a dampening pad so that if a
falling coin lands upon it, its motion will be rapidly dampened, and the coin will fall over
with one or the other side facing upwards. The third component resides at the top of the
post and tosses a coin vertically into the air above the platform, following which the coin
freely falls, engaging in random (or at least chaotic) multi-axial rotations, until it reaches
the platform. The platform height can be adjusted to intersect the trajectory of the coin at
any point. The angle of the platform with the vertical can also be adjusted in the range of,
say, ±45 degrees. A coin landing on the angled pad will still come to rest with one face up.

The motion of the coin prior to contacting the surface of the platform is presumed to
be effectively random (chaotic), or random, and the coin is presumed to be fair. In these
circumstances, the measurements obtained will either be H or T, and they will occur with
equal frequency, 1/2. Note that for any angle chosen for the platform, the coin will always
come to rest with either a head or tail facing away from the platform surface, so that the
measurements obtained will also be either H or T, with equal probability 1/2.

The choice of the height and angle of the platform rest entirely with the observer. In
all cases, measurement values will be either H or T with equal probability 1/2.

These measurement values can be predicted with high accuracy by a simple Bernoulli
model. If the only thing of interest is the probabilities of these measurement values, then
this Bernoulli theory can be considered to be complete. The addition of ‘hidden variables’
will not improve the calculation of these probabilities in any way, which again supports the
conclusion that this theory is complete.

However, if we ask a different question, such as what is the direction, while the coin is
in motion, of a normal vector pointing outward from the surface having the head, then the
Bernoulli theory tells us nothing at all. The idea of completeness is relative entirely to the
specific measurement being described.

If we ask what is the value, H or T, while the coin is in motion, we find that there is no
answer, since a measurement of head or tail has meaning only under the condition that the
coin is at rest with one side facing upwards on the platform. In no other case is the idea of head
or tail meaningful. Does that mean that the coin does not exist between measurements? Not
at all. It only means that a measurement need not exist until a measurement has taken place.
In this case, we see that a measurement is not something that is attributable to the tossed
coin itself but rather is attributable to the specific measurement procedure or process being
imposed upon the tossed coin. The tossed coin is a disposer or generator of measurements
but only when the tossed coin interacts with the platform during the measurement process.
Prior to a measurement, the tossed coin has physical existence and indeed is undergoing
extremely complicated motion. In its condition of tossed motion, the coin is a process.

The tossed coin nicely expresses Bohr’s idea of the contextuality of measurement with-
out recourse to any form of mystical thinking. A measurement is not the thing measured.
A measurement is simply the outcome of an interaction between some entity and some
measurement entity according to some predetermined set of conditions.

A coin may be an ideal classical object, but a tossed coin is not. A tossed coin is a
process that is able to generate actual occasions corresponding to instances in the motion
of the coin. The interaction between the tossed coin process and the measuring platform
(itself a process) forms a new process which generates actual occasions corresponding to
measurement values. The static coin may be said to possess definite values of H or T, but
the tossed coin does not. Nevertheless, the tossed coin generates measurement values
when coupled with a measurement process. The idea of a generator of measurements no
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longer appears so mysterious. Neither does the appearance of contextuality nor the idea of
non-commutativity (successive measurements of the very same system will not necessarily
yield the same answer as that of the first measurement or might not be possible at all). In
the case of the tossed coin, angle measurements commute neither among themselves nor
with any dynamical measurements, since an angle measurement terminates the motion of
the coin (thus inactivating the tossed coin process), so subsequent measurements cannot be
carried out. The coin must be tossed again, reactivating the process. Thinking of the tossed
coin as a process rather than as an object eliminates the mysticism which seems to pervade
much of the thinking in quantum mechanics and puts reality back into the picture.

Natural processes are of course much more complex than a tossed coin. Nevertheless,
treating the tossed coin as an example of process makes the idea of generated states and
measurements no longer perplexing. The idea of an actual occasion too is much broader
and deeper than merely the instantaneous states of a tossed coin or measurement values,
but the tossed coin provides a concrete starting point for generalizing to more complex and
abstract situations.

Five things can be noted from the example of the tossed coin.

1. Probability is meaningless unless something actually happens.
2. A theory can provide a complete description of measurements without providing a

description of the entity being measured.
3. Theories vary according to that which they are meant to describe—theories are contextual
4. Measurements are not ‘states’. Measurements do not reveal measurement values.

Entities and interactions create measurement values.
5. The act of measuring is an interrogation of an entity—it does not determine the entity.

Measuring is an act, a construct, a practice, and thus affected by worldview.

These insights are important for understanding the concept of process and for clearly
distinguishing process from the concept of object. Measurement is important, but the choice
of measurement determines what can and cannot be said about an entity. Think of the
proverbial five blind people and an elephant. If they are all forced to wear gloves, might
that not influence the observations that they can make? The conceit of quantum mechanics
(and to some extent physics more generally) is that the particular choices of measurements
that have been made provide a complete set of all that we need and shall ever need. A
physicist might care only about the motion of the center of gravity of an entity, but if the
observed entity is a falling cat, and the observer is a veterinarian, the vet might care more
about the location of its claws then its center of gravity!

3. Process in the Process Algebra

The process algebra presented here was originally developed in the context of non-
relativistic quantum mechanics (NRQM) to provide a realist or ontological model of quan-
tum mechanics (i.e., a model of quantum mechanics in which something actually takes
place, as opposed to merely being a description of probabilities), in which information
flows between entities (or events) in a purely locally causal manner [4–7], and its concepts
have been used to tackle a variety of subjects in the foundations of physics [8–10] as well
as in the study of contextuality in decision making by social insect colonies [63,64]. It
was inspired by empirical observations of process in neurobiology, social insect colonies,
and psychiatric illness, by the mathematics of combinatorial games, which can generate
mathematical structures, by interpolation, which can create continuity from discreteness,
and by Whitehead’s theory of process, which provides the philosophical ground upon
which all of this is based. In the process algebra, Whitehead’s actual occasions are rep-
resented by informons. The change in term is intentional and emphasizes that informons
are mathematical entities inspired by Whitehead’s theory, but they are not actual occasions
themselves nor do they represent all the characteristics of actual occasions as described
in Process and Reality. To do otherwise would be a formidable undertaking well beyond
the scope of this more modest model. The choice of the term informon is to emphasize the
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important role that information plays in the process algebra, and that actual occasions are
to be viewed as tokens of meaning-laden information rather than merely physical entities.

Processes are generators of actual occasions—they actually do something, which makes
them challenging to represent mathematically. Nevertheless, if we shift our attention from
the process itself, and focus instead on the history of consecutive actions of a process, and
later to the set of all possible histories which can be generated by a process (given certain
conditions being held fixed—generalized boundary conditions), then we have shifted
from process to a mathematical object upon which we may begin to carry out an analysis.
Conway made a similar shift in perspective when studying combinatorial games, but there
he identified a game with its history, while here we wish to keep the distinction clear.
Processes are not objects, although histories are. Histories of the consecutive actions of a
process are called causal tapestries, while complete sets of such histories form process-covering
graphs, and configuration space-covering graphs when interactions are involved. These will be
defined more formally below.

In Whitehead’s process theory, an actual occasion simply is not until concrescence
is complete and it is. Only then does it acquire actuality, fact-ness. Once it has passed
on its information, an actual occasion no longer exists and merely was. The moment at
which concrescence is complete forms an instant of time. The act of concrescence, however,
possesses a duration, representing an instance of time, the duration of the actual occasion.
Each process creates a generation of informons. Each informon is created during a round,
and the act of concrescence takes place over a series of short rounds, during each of which,
information from an informon from the prior generation is incorporated into a nascent
informon. At any moment, reality consists of a collection of prior informons, a process,
and a collection of nascent informons which are in the process of being created. With each
round, the set of nascent informons increases. Once the nascent generation is complete,
the set of prior informons is eradicated, the set of nascent informons becomes the next
set of prior informons, and the process begins creating the next set of nascent informons.
The moment of completion again forms an instant of time, while the entire act of creation
forms a duration of time: the duration of the generation. If two informons lie in different
generations, I1, I2 the gap is the sum of the durations of the generations lying between I1
and I2. Note that the gap between a prior and a nascent generation is 0. A causal sequence
of informons n1, n2, n3, n4, . . . corresponds to the sequence of durations d1, d2, d3, d4 . . .. The
gap between n1 and n4 is d2 + d3, which gives the duration between the completion of n1
and the initiation of n4.

Processes can exist in one of two existential states: active, meaning they can generate
informons, or inactive, meaning that they cannot generate informons. If P denotes an active
process, then P̄ denotes its inactive form.

Processes are also understood to be generators of properties (think again of the tossed
coin and its relationship to measurement), which become expressed as a result of an
interaction with a measurement process. Since this is a mathematical model, we assume
that each property P (or at least its value) can be represented as an element of some
mathematical structure, CP . For convenience, we may group these properties as a vector
p = (p1, p2, . . . , pn), where each pi ∈ Ci represents a value of some property Pi.

A process is thus characterized by several parameters.

1. N, the total number of informons in each generation.
2. R̄, the total number of rounds per generation cycle.
3. R, the number of informons generated in each round. Hence, N = RR̄.
4. s, the number of short rounds per round.
5. r, the number of prior informons which may condition the creation of a single actual

occasion. Often, we will assume that s = Rr, so s can be dropped.
6. r′, the number of nascent informons to which each prior informon may contribute as

a condition (in many cases, r = r′ or r = r′ = N).
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7. p, the set of properties disposed by the process—often p will consist of a set of subsets,
each subset corresponding to a specific property and the elements of each subset
corresponding to the measured values so disposed.

8. S, the strategy utilized by the process in its acts of prehension and concrescence.
9. tΠ, which sets the temporal scale between generation cycles.
10. lΠ, which sets the spatial scale between informons within a causal tapestry.
11. A process may be denoted as N

r′ Π
R
r (p,S, tΠ, lΠ).

In general, the parameters N, R, R̄, r, r′, s,S, tΠ, lΠ will be fixed for a given process and
only the properties will vary. In that case, we will refer to a process as Pp for simplicity.

A process is said to be primitive if R = 1, that is, only a single informon is generated
per round; otherwise, it is complex.

The propagation of information in the creation of informons is held to be strictly
causal and local, meaning that any speed which might be attributed to this propagation
never exceeds that of light. The actions of processes are always held to be consistent with
special relativity.

The simplest process is the zero process, O = Ō, which, as one might imagine, does
nothing at all.

3.1. Process Algebra

Whitehead argued that interactions between processes play a fundamental role in
their actions. The process algebra provides a general framework within which these
interactions can be described and analyzed. Broadly speaking, there are three different
kinds of interactions: couplings, entanglements, and proper interactions. Coupling occurs
when two processes generate informons within the same spatial region and must avoid
one another, but no exchange of information or interaction takes place. Entanglement occurs
when the generation of informons by two processes becomes correlated, but no exchange
of information or interaction takes place. Interaction occurs when two processes alter each
other’s properties.

The process algebra was inspired by combinatorial game theory and the different
ways in which games can be played [42–44]. A play of a game is akin to an instance in
the creation of an informon. The process algebra accounts for three fundamental aspects
of generation:

1. The relative timing of the generation of informons: Sequential meaning alternating,
possibly randomly, from one process to another, or Concurrent meaning informons
corresponding to each process are generated together.

2. The flow of information from prior to nascent informons: this may be Exclusive,
meaning information propagates only among informons corresponding to the same
process, or Free, meaning information may propagate among informons corresponding
to different processes.

3. The relationship between processes: Independent, Coupled, Entangled, or Interacting.

The process algebra has 11 operators reflecting the nuances of these different modes
of interaction. They are outlined below:

1. Independent: ,
2. Coupled: ∗
3. Succession (concatenation): ·
4. Free sequential (free sum): ⊕̂
5. Exclusive sequential (exclusive sum): ⊕
6. Free concurrent (free product): ⊗̂
7. Exclusive concurrent (exclusive product): ⊗
8. Free sequential interactive (free interactive sum): �̂
9. Exclusive sequential interactive (exclusive interactive sum): �
10. Free concurrent interactive (free interactive product): �̂
11. Exclusive concurrent interactive (exclusive interactive product): �
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The basic rules for applying these operations in combining processes are the following:

1. The independent operator ‘,’ is used when two or more processes act completely
independently of one another.

2. ∗ is used when two independent processes begin generating informons within the
same spatial region and must ensure that they do not attempt to generate informons
at the same location.

3. Concatenation is used to designate the progression of processes generation by genera-
tion (thus marking changes in state and progression in time).

4. The free sum is only used for single systems and combining states which possess
identical property sets (pure states).

5. The exclusive sum is used for single systems and combining states which possess
distinct property sets (mixed states).

6. The free product is used for multiple systems which possess distinct character (scalar,
spinorial, vectorial, and so on) such as coupling a boson and a fermion. It is unclear
whether two bosons might couple via a free product.

7. The exclusive product is used for multiple systems which possess the same character
such as coupling two bosons or two fermions.

The most accurate representation of a nexus of interacting processes is by means
of a connection or nexus graph in which vertices are labeled by processes, and the edges
between any two vertices are labeled by the connector linking the represented processes.
This is really the only way to properly represent the connections between any but a trivial
collection of processes.

The relationships among these various operations are subtle. The following list is
illustrative rather than exhaustive [4,11]. In the list, + refers to any sum, but of the same
type, while × refers to any product, but again of the same type.

The two connectors, ∗ and ·, do not describe any information flow between processes
(although · reflects a causal relationship between antecedant and subsequent processes) and
serve more as logical connectives. Nevertheless, we can assume the following as reasonable:

1. φ, φ = φ ∗ φ = φ;
2. φ, ψ = ψ, φ;
3. φ ∗ ψ = ψ ∗ φ;
4. φ, (ψ, ρ) = (φ, ψ), ρ;
5. φ ∗ (ψ ∗ ρ) = (φ ∗ ψ) ∗ ρ;
6. φ · (ψ · ρ) = (φ · ψ) · ρ;
7. φ+(ψ ∗ ρ) = (φ+ψ) ∗ (φ+ ρ) and φ⊗ (ψ ∗ ρ) = (φ⊗ψ) ∗ (φ⊗ ρ), but more precisely

they refer to triples in the graphical representation.

The connectives ⊕, ⊕̂,⊗, and ⊗̂ all refer to information flow between the informons
generated by processes. The following follow easily from their definitions.

1. φ + ψ = ψ + φ;
2. φ× ψ = ψ× φ;
3. φ · ψ 6= ψ · φ;
4. φ + (ψ + ρ) = (φ + ψ) + ρ;
5. φ× (ψ× ρ) = (φ× ψ)× ρ;
6. φ× (ψ + ρ) = (φ× ψ) + (φ× ρ);
7. φ⊕ ψ 6= φ⊕̂ψ;
8. φ⊗ ψ 6= φ⊗̂ψ;
9. φ + (ψ, ρ) = (φ + ψ) ∗ (φ + ρ);
10. φ× (ψ, ρ) = (φ× ψ) ∗ (φ× ρ);
11. φ⊕̂(ψ⊕ ρ) = (φ⊕̂ψ)⊕ (φ⊕̂ρ);
12. φ⊕ (ψ⊕̂ρ) 6= (φ⊕ ψ)⊕̂(φ⊕ ρ)
13. Neither φ⊗̂(ψ⊗ ρ) nor φ⊗ (ψ⊗̂ρ) simplify or expand. They refer to distinct triples in

the graphical representation.
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Changes in the states of processes from one generation to the next are represented by
concatenation. For a single process, there are several possibilities:

1. P→ P (P · P), persistence.
2. P→ P̄ (P · P̄) or P̄→ P (P̄ · P), change of status.
3. Pp → Pp′ , (Pp · Pp′ ), change of state.
4. P→ P′ (P · P′), replacement by a different process.

The latter three require P to be participating in an interaction.

3.2. Informons

Informons are the process algebra representation of Whitehead’s actual occasions.
Intrinsic components represent the physical pole of actual occasions, while extrinsic com-
ponents represent the mental pole. These are simplifications of Whitehead’s concepts but
suffice here. An informon has the following form:

[n] < mn, φn; pn, Γn > {Gn}, where

1. n is a heuristic label.
2. pn, Γn are intrinsic components. pn is a vector of properties which links the informon

to its generating process. It too is heuristic. Γn is the information associated with
the informon, which is propagated and incorporated into nascent informons by
the generating process. Γn is a feature of the informon itself and is represented by
an element in some mathematical structure (think of the representation of various
fundamental particles: scalar (Higgs), vector (photon), spinor (electron), or tensor
(graviton), for example.

3. mn, φn are the extrinsic components imposed by an external observer or process (real
or imagined for heuristic purposes). mn is a map from each informon to some formal
causal space M (for example, a manifold with a pseudo-metric ρ and compatible
partial order). φn is a mapping onM belonging to a Banach, Hilbert, or other function
space, which is denotedH(M). It provides an interpolation from or interpretation of
the information of the informons [65].

4. Gn is a causally ordered set of prior informons called the content of the informon n.
It consists of all prior informons which propagated information that was (or will be)
incorporated into n. It is also introduced for heuristic purposes, but it does convey
important information regarding the process.

A bare informon is an informon minus the extrinsic components.

3.3. Causal Tapestry

Histories of a process are represented by sets of informons called causal tapestries. A
causal tapestry is a set of informons which can represent a round, a generation, or a history
of generations.

Definition 1. A causal tapestry C is a tuple (I, F, G,P , p, d,M, I, Φ, ρ), where

1. I is a set of informons.
2. F is a directed graph with vertices I called the information flow.
3. G is a non-directed graph with vertices I called the skeleton.
4. P is a set of processes.
5. p is a map from F ∪ G → P such that if (x, y) ∈ F and either {x, z} or {y, z} lies in G, then

p((x, y)) = p({x, z}) = p({z, y}).
6. d is a signed metric on I such that if (x, y) ∈ F then d(x, y) ≥ 0 and if {x, y} ∈ G then

d(x, y) < 0.
7. M is a causal structure with causal order �, pseudo-metric ρ, value space I.
8. m : I →M, which is called theM interpretation.
9. The mapping Φ(m) = ∑n∈I φn(m) is called the globalH(M) interpretation. It is thus an

interpolation lying within a function space whose base space isM.
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10. (n, m) ∈ F implies mm � mn.
11. For all n, m ∈ I, d(n, m) = ρ(mn, mm).

A bare, unadorned, or uninterpreted causal tapestry is a causal tapestry composed of bare
informons. Bare informons and bare causal tapestries represent reality ‘as it is’ devoid of
any observer’s interpretation of same.

F represents the flow of information induced by the processes that generated the causal
tapestry, while G associates the informons that comprise a single generation. G conveys
topological or metric, but not causal, relations between the informons of a generation.

A morphism between (uninterpreted) causal tapestries (I1, F1, G1, p1,P1, d1) and
(I2, F2, G2, p2,P2, d2) is a tuple (Θ, Π, Λ) such that

1. Θ : I1 → I2.
2. Π : P1 → P2.
3. Λ : R→ R.

such that

1. (x, y) ∈ F1 ⇒ (Θ(x), Θ(y)) ∈ F2.
2. {x, y} ∈ G1 ⇒ {Θ(x), Θ(y)} ∈ G2.
3. There is an induced map Θ̂ on F1 ∪ G1 given by Θ̂((x, y)) = (Θ(x), Θ(y)) and

Θ̂({x, y}) = {Θ(x), Θ(y)}.
4. For x ∈ F1 ∪ G1, Πp1(x) = p2(Θ̂(x)).
5. For x ∈ F1 ∪ G1, Λd1(x) = d2(Θ̂(x)).

If the tapestries share the same interpretation manifold, the morphism has a natu-
ral extension.

The usual notions of embedding, quotient, and isomorphism apply.
Given two causal tapestries C and C1, we may form a sum of the two, C ⊕ C1, whose

set of informons is the union of the two sets, the order is the order theoretic sum, and
the metric ρ⊕ equals ρ and ρ1 when restricted to the appropriate subsets of informons.
However, in general, there is no unique way to extend the metric to the entire sum. If we
restrict ourselves to topological causal tapestries, then the sum is well defined. This again
suggests that metricity is not a fundamental intrinsic characteristic of causal tapestries.
We may also define a product of two causal tapestries C ⊗ C1, which is the Cartesian
product of the sets of informons, with order given as the order product, and metric
given as a vector quantity, each component applying to only one causal tapestry. That is,
ρ⊗((n, n1), (m, m1)) = (ρ(n, m), ρ1(n1, m1)).

In the setting of causal tapestries with interpretations, two additional parameters
become important as they determine the effectiveness of the interpolation procedure
involved in creating the globalH(M) interpretation. In particular, they determine whether
or not the set of informons can serve as an interpolation set for a class of global interpretation
functions [66,67].

Definition 2. Suppose one has a causal tapestry C and consider a single generation I of informons.

1. Local density δL: The embedding {mn|n ∈ C} of informons of C in the structureM, in addi-
tion to being discrete, will occupy a collection of sites which are distributed inM. Surround
these embedding points by some hypervolume. This may be a hypercube or hypersphere or
some other standard form. Keep the form fixed and find the form with the smallest volume
V containing these embedding points. Define the local density δL as N/V. This may be
performed for each generation within a causal tapestry. One can average over these local
densities, δ̂L = ∑n δLn/N̂, where δLn is the local density of generation n and N̂ is the total
number of generations within the tapestry.

2. Global density δG: If we wish to form the globalH(M) interpretation for the causal tapestry
I as a whole, then we need to determine the density over the entirety of the tapestry. Again,
one surrounds the embeddings points of the entirety of the tapestry informons with some
hypervolume of minimal volume VT containing all of these points, and then it calculates
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the global density δG = N′/VT , where N′ is the total number of informons. This need not
equal the average density since local hypervolumes might overlap, thus overestimating the
global density. Note that this also implies that the total number of informons scales with time,
not volume.

3.4. Separability

An important question is to determine when two processes can be considered to
interact. Leibniz’s idea of the identity of indiscernables is taken as a basic princple, so that
in general, two processes cannot contribute information to the same informon. Thus, if two
processes are generating informons which are sufficiently at a distance from one another,
no such possibility can arise. Such processes are considered to be separable. If, however, two
processes are generating informons within the same region so that they might abut one
another or interleave amongst one another, then they are inseparable. Separable processes
might interact, but inseparable processes always interact, even if only by coupling. To make
this idea more formal, we need some definitions. There are two central considerations:
how far do informons disperse in space–time, and how far can information propagated by
a process travel in the course of a round. This is easiest to deal with in the context of an
interpretation. An interpretation-free version can be defined but would take us beyond the
scope of this basic review.

Assume that we have an interpretation spaceM with metric ρ.

Definition 3. Suppose one has a causal tapestry C and consider a single generation I of informons.

1. Dispersal: Let P denote a process. Assume one is given an initial causal tapestry C which
embeds intoM. Consider first of all the set of all potential embedding points for informons
created by propagating information from informons of C. These will occupy a region ofM
surrounding the embedding points of I informons. Since we are considering all potentialities,
rather than merely realized informons, this region can be expected to be expansive rather
than discrete. This subspace ofM is called the domain of dispersal from the initial causal
tapestry, which is denoted DC(P). In most cases, we shall assume that the spread of informons
topologically and geometrically does not depend upon the specifics of the initial causal tapestry,
essentially assuming spatial invariance. In that case, we can reasonably assume that if we
determine the domain of dispersal D[n] from a single initial informon [n], then we can find that
for the entire initial tapestry by suitable transformations of D[n]. That is, there will exist some
transformation g onM so that for any point m ∈ M, we find a related domain of dispersal
by gm(D[n]). Then, DC = ∪n∈Cgm(D[n]). The range of dispersal RDC(P) of P is defined
as RD = sup[n]∈C{supm∈D[n]

ρ(mn, m)}. The range of dispersal is the greatest distance an
informon may be created from some initial causal tapestry.

2. Influence: Assume the same conditions as for Dispersal. This time, we consdier all potential
locations to which the process may propagate information from an initial causal tapestry. This
new set for the initial causal tapestry is called the domain of influence, which is denoted IC(P).
This set may be constructed analogous to the domain of dispersal above, together with an
analogous range of influence, RIC(P).

Definition 4. Two processesP1 andP2 are said to be absolutely independent if DC(P1)∩DC(P2) =
∅. Under such a condition, it is impossible for the two processes to enter into any interaction. We
denote them as P1,P2.

Definition 5. Two processes P1 and P2 are said to be separable or informationally independent if
IC(P1) ∩ IC(P2) = ∅. Under such a condition, it is impossible for the two processes to enter into
any information exchange, although they still might interact.

Theorem 1. Let the two processes P1 and P2 be separable and not subprocesses of a single state.
Suppose that in generation n, DC(P1) ∩ DC(P2) 6= ∅. Then, during that generation, the two
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processes must become non-separable. We denote this by P1 ∗ P2. Such processes are called weakly
entangled.

Proof. If at generation n, DC(P1) ∩ DC(P2) 6= ∅, then it is possible for either process to
generate an informon within the range of dispersal. If that is the case, and the processes do
not represent subprocesses of a single state of a process, then it is not permitted for them to
generate actual occasions and attribute them to the same space–time location. They must
remain distinct. Since the two processes are separable, a priori there need be no relationship
between the timings of their generations, only the requirement that they cannot generate to
the same location. Thus, they may generate synchronously, sequentially, sometimes, or all
of the time. This is represented in the process algebra by P1 ∗ P2.

Note that IC(P1) ⊂ DC(P1). The flow of information is bound by special relativity,
but this is not a constraint on the location of the creation of inforons since they are not
propagated, they simply become.

Now, if IC(P1) ∩ IC(P2) 6= ∅, then it becomes possible for one process to send infor-
mation to actual occasions of the other process. While information need not be transferred,
there is a sense in which the two processes must ‘sense’ one another. This means that there
is at least a primitive awareness of ‘two-ness’. This means that these processes may become
coupled, either P1 ⊕ P2 or P1 ⊗ P2. Of course, it is possible that they remain P1 ∗ P2, but
these new possibilities emerge.

This proves the following theorem.

Theorem 2. Let the two processes P1 and P2 be coupled, that is, P1 ∗P2. Suppose that in generation
n, IC(P1) ∩ IC(P2) 6= ∅. Then, they become strongly entangled, denoted as P1OP2, where O could
represent ⊕, ⊕̂⊗, ⊗̂ depending upon the circumstances.

Two processes start out spatially separated and independent P1,P2. As they approach,
they eventually encroach upon each other’s region of dispersal, becoming P1 ∗ P2. If
they continue to approach one another, their timings become organized either sequentially
(P1⊕P2 or P1⊕̂P2) (two states) or concurrently (P1⊗P2 or P1⊗̂P2) (two separate processes).
Finally, they may interact (P1 � P2 or P1�̂P2 or P1 � P2 or P1�̂P2).

3.5. Rules and Strategies

Processes do something—they generate actual occasions. Representing this in the
process algebra requires representing this act of generation. To do so, we must describe
exactly how the process goes about carrying out such an action. Continuing the analogy
with combinatorial games, we must specify the strategy that the process uses to create its
informons. Strategies are purely heuristic tools to enable modeling the actions of processes.
From an observational standpoint, the main entity of interest is the global interpretation
of the causal tapestry. The usefulness of the concept of strategy arises from the concept of
epistemological equivalence. If our principal concern is the global interpretation, then any
strategies that give rise to the same global interpretation can be utilized. The notion of
epistemological equivalence is similar to that of gauge invariance. In studying process, we
study classes of epistemologically equivalent strategies.

Strategies, while heuristic in terms of modeling, are nevertheless fundamental in
terms of the actions undertaken by any given process. Without a strategy, there is no way
to determine what it is that a process does in creating informons nor in determining the
flow of information among informons. Two general statements can be made regarding
strategies. First of all, the strategy associated with a process remains constant unless there is
an interaction with one or more other processes. This is a straightforward generalization of
Newton’s First Law of Motion. Related to it is the suggestion that if two or more processes
activate from the same history, then their local interpretations extend to the same global
interpretation. Another way of expressing this is that each local frame of reference extends
to the same global frame. This is a generalization of the concept of an inertial frame. If two
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global frames give rise to two distinct frames of reference, then the associated processes
must have different histories. This is essentially saying that if two systems are moving
relative to one another, then they must possess different histories. The emphasis here shifts
from motion per se to history as the more fundamental concept. Two frames are said to
be inertial relative to one another if there is an inertial transformation mapping one to the
other. Inertial here means Galilean or Lorentzian. If no such transformation exists, then
they are said to be non-inertial relative to one another.

Given a fixed prior causal tapestry C, a process P may generate different causal
tapestries having different local interpretations with each activation of the process. This
set of causal tapestries generated by the process P with initial causal tapestry C is denoted
HP(C). To this set, there corresponds a set of global functions, Σ(P) = {ΦC |C ∈ HP(C)}

It is possible that these local interpretations give rise to different global interpretations.
That results in a degree of inconsistency or incoherence in the generation of informons by a
given process. Thus, we will be interested only in coherent processes, namely the following:

Definition 6. A process P is said to be coherent if given any initial causal tapestry C, and any two
causal tapestries C1, C2 ∈ HP, then ΦC1(z) = ΦC2(z).

Definition 7. (Deterministic process) A process P is said to be deterministic if given any initial
causal tapestry C, the set HP(C) = {C ′} consists of a single causal tapestry. Otherwise, the process
is said to be non-deterministic.

Definition 8. (Ontic equivalence [OE ]): Two processes P1 and P2 are said to be ontic-equivalent
if they generate the same collections of causal tapestries, that is, for any initial causal tapestry C,
HP1(C) = HP2(C).

Definition 9. (Strong epistemic equivalence [SEE ]): Two processes P1 and P2 are said to be strong
epistemic equivalent if for every causal tapestry C, the corresponding process covering maps (defined
in a later section) are identical, i.e., PC(P1) = PC(P2). In other words, the two games generate the
same set of wave functions on the subspace ofM.

Definition 10. (Weak epistemic equivalence [WEE ]) (also Ψ-epistemic equivalent): Two processes
P1 and P2 are said to be weak epistemic equivalent if, for every causal tapestry C, in the asymptotic
limit N, r → ∞ (and sometimes tP, lP → 0), we have PC(P1) = PC(P2).

Clearly, if two processes P1 and P2 are strong epistemic equivalent, then they are weak
epistemic equivalent. It is also easy to see that that if two processes are ontic equivalent,
then they are also strong epistemic equivalent.

Thus, we have that process equivalence implies ontic equivalence implies strong
epistemic equivalence implies weak epistemic equivalence or symbolically,

OE → SEE → WEE

Two strategies are said to be epistemologically equivalent if the two processes im-
plemented utilizing these strategies are themselves epistemologically equivalent. We can
model any process by utilizing an epistemologically equivalent process.

As an example, a basic strategy which has been shown to give rise to non-relativistic
quantum mechanics is that of the Bounded Radiative Uniform Sinc Path Integral Strategy
(PI) [4,5,10]. The path integral strategy is specified by the parameters R, r, N, d, tP, lP
and by

1. ∆̂ (distance bound): arbitrary, determines maximum causal distance of information
transmission.

2. ρ̂ (approximation measure): arbitrary, set by the observer according to mathematical
or experimental considerations.

3. δ̂ (approximation accuracy): arbitrary but bounded by experimental measurements.
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4. ω̂ (band limit frequency): bounded by upper limits of energy and momentum of the
quantum system.

5. L (Lagrangian): determined by the particulars of the quantum system.
6. p (set of properties): here energy, momentum.

The informons of the causal tapestry In will be embedded into a sub-lattice of a
space-like hyper-surface (or time slice) {ntP} ×R3 inM, where tP is Planck time andM
is Minkowski four-space. The embedding lattice in M will thus take the general form
(ntP, ilP, jlP, klP), where lP is Planck length, for integers n, i, j, k. The embedding point in
M of an informon n will be denoted mn.

The path integral strategy for a single short round proceeds as follows:

1. Player I moves first. Player I non-deterministically chooses any informon [n] from the
current tapestry Cm which has not previously been played in this round.

2. If there is an informon [n′] currently in play in the new tapestry Cm+1, then Player II
tests whether d(n, n′) < ∆̂ in the new tapestry I ′. If the bound is exceeded, then play
reverts back to step 1 and Player 1 begins again; otherwise, it proceeds. If there is no
current informon, then Player II chooses a label n′ not previously used and selects a
lattice site α = ((m + 1)tP, i′lP, j′lP, k′lP) not previously used such that d(mn, α) < ∆̂.

3. Player I next updates the content set. If the new informon already possesses a content
set Gn′ , then Player I replaces Gn′ with Gn′ ∪ Ĝn ∪ {[n]} (Ĝn is an order theoretic upset
of Gn) and checks to ensure that all necessary order conditions are satisfied. If the
new informon is nascent, then Player I simply sets Gn′ = Ĝn ∪ {[n]}. The content
set determines what prior information is permitted in constructing tokens. It only
includes informons from the past causal cone of the informon. In the case of NRQM, it
turns out that only informons from the current tapestry are needed, since the relevant
information is already incorporated into theirH(M) interpretations. Thus, it suffices
if Gn′ or ∅ is replaced with Gn′ ∪ {[n]} or {[n]}, respectively. Note that in this case,
the causal consistency criteria are trivially satisfied.

4. Player II next determines the causal manifold embedding. If the nascent informon
n′ already possesses a causal manifold embedding, then Player II does nothing.
Otherwise, Player II sets mn′ = α.

5. Player I next constructs a token representing the information passing from n to n′ and
to be used to form the local Hilbert space contribution at n′. Denote this token as Tn′n.

Let S̃[n′, n] = ( d(n′ ,n)2

2m + V(n))tP. Let Tn denote the set of tokens on n. Let Γn denote
the sum of the tokens on n, that is, Γn = ∑{Tnm|Tnm ∈ Tn}. The relationship between
these two is Γn = (1/A3)Φn(mn), where A is the path integral normalization factor
described by Feynman and Hibbs [68], which is appropriate to the current Lagrangian
and initial and boundary conditions. The reason for this will become apparent later.
Define the propagator Pn′n = (l3

P/A3)eiS̃[mn′ ,mn ]/h̄. Then, Player I places a token
Tn′n = Pn′nΓn on the site m. If there already is a set Tn′ of tokens on informon n′, then
replace it by Tn′ ∪ {Tn′n}.

6. Finally, Player II must determine the H(M) interpretation. If z = (t, x, y, z) and
mn′ = (ntP, mlP, rlP, slP), then define Tmn′ sinctP ,lP(z) =

sinc
(

π(t− ntP)

tP

)
sinc

(
π(x−mlP)

lP

)
×sinc

(
π(y− rlP)

lP

)
sinc

(
π(z− slP)

lP

)
Player II constructs the H(M) interpretation by coupling the tokens on the site
to a suitable interpolation function, which in the current strategy utilizes a sinc
function given as A3Tmn sinctP lP(z). If the new informon has just been formed, then
theH(M) interpretation is given as Φn′(z) = Tn′n A3Tmn′ sinctP ,lP(z). If the informon
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already possesses aH(M) interpretation, Φn′(z), then replace it by the newH(M)
interpretation Φn′(z) + Tn′n A3Tmn′ sinctP ,lP(z).
In other words, add the new token to the collection, sum the token values, and couple
the sum to the interpolation wavelet.

7. If no further tokens can be added (either no other contributing sites exist or an external
limit has been reached), then the round ends and a new round begins.

Play continues until the allotted number of allowed game steps has been reached. At
the end of play, a new causal tapestry C ′m+1 has been created and the old causal tapestry
Cm is eliminated, formally becoming a part of C p

m+1, the collection of prior tapestries. Any
relevant information from Cm now resides within the content sets of the informons of Cm+1.
Let n′ denote an informon of Cm+1. Let Ln′ denote the set of all informons from Cn that
contribute tokens to the formation of n′. Equally, Ln′ is the set of all informons from Cn
that form vertices in Gn′ . The local H(M) interpretation of n′ may now be written as
Φn′(z) = ∑n∈Ln′

Tn′n A3Tmn′ sinctP ,lP(z).
The global H(M) interpretation on M is formed by summing the local contribu-

tions over all of Cm+1, that is Φm+1(z) = ∑n′∈Cm+1
Φn′(z). One may restrict this to the

t = (m + 1)tP hyper-surface, obtaining, as will be shown below, a highly accurate approx-
imation to the standard quantum mechanical wave function on the hyper-surface. Note
that fixing t = m + 1 causes the time-based sinc term to take the value 1, and one indeed
obtains a function on the hyper-surface. This approximation will be less accurate when
extended to the entirety ofM. To achieve greater accuracy requires either summing over
the content sets of Cm+1, i.e., Φc,m+1

n′ (z) = ∑n∈Gn′ ,n
′∈In′

Φn(z) or over all of Cm+1 ∪ Cp,

Φp,m+1
n′ (z) = ∑n∈Cm+1∪Cp Φn(z).

Three broad categories can be considered:

1. Prior driven: In a prior-driven process, the focus during each round is on the distri-
bution of information by a prior informon at its dissolution. During such a round, a
prior informon is selected and suitable target nascent informons are then selected to
receive information. At the end of the round, the chosen prior is eliminated.

2. Posterior driven: In a posterior-driven process, the focus during each round is on the
nascent informon. At the end of the round, the nascent informon is complete and
receives no further information.

3. Incremental: In an incremental process, during each round, a packet of information is
transmitted from one prior informon and incorporated into a nascent informon.

3.6. Process Covering Graph

The determination of probabilities and statistics for various events requires an account-
ing of all possible histories that can be generated by a given process. This is achieved by
means of various covering graphs. Let us first consider a single primitive process. Three
different levels of analysis may be considered: micro, the level of short rounds; meso, the
level of rounds; and macro, the level of generations. We expand the label of each informon
to indicate which short round, round, or generation the informon arises. An informon with
this descriptor is denoted as [n; k] < mn, φn;k; pn, Γn;k > {Gn;k}.

The micro-process covering graph (denoted mP(P, I)), where P is the process and C
is the prior causal tapestry, consists of chains of pairs

([n; 0] < mn, φn,0; pn, Γn,0 > {Gn,0}, [m; ik] < mm, φm;ik ; pm, Γm;ik > {Gm;ik})

where [n; 0] is an informon of the prior tapestry and [m, ik] is a partial informon to which
[n; 0] contributes information in the k-th short round of the i-th round. Adjacent pairs imply
that they were created in successive short rounds. One such sequence is included for every
possible generation.
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The meso-process covering graph (denoted MP(P, I)) consists of a chain of infor-
mons as they appear in each round during the construction of a generation. An arrow
[n; i] < mn,φn; pn, Γn > {Gn} → [m; i + 1] < mm, φm;i+1; pm, Γm;i+1 > {Gm;i+1} means that
these two informons were generated in successive rounds.

An active primitive process P acting on a tapestry C generates a sequence (correspond-
ing to the succession of rounds) of partial causal tapestries ∅, C ′1, C ′2, C ′3 . . ., which were each
formed from the previous tapestry by the inclusion of an informon, C ′i = I ′i−1 ∪ {ni}.
The sequence of partial tapestries forms an ordered set with edges labeled by infor-
mons n1, n2, . . . , nk, . . ., where (C ′i−1

ni→ I ′i ), and having a maximal element, the final
causal tapestry. Letting P act upon C again will generate a different ordered set of
tapestries with edges n′1, n′2, . . . , n′k, . . .. Two distinct global interpretations will be gen-
erated: Φ1(z) = ∑ni

φni (z) and Φ2(z) = ∑n′i
φn′i

(z).
The union of all possible tapestry sequences forms the process sequence tree of P with

initial tapestry C, which is denoted Σ(P, C). This is the analogue of the game tree in
combinatorial game theory. Associate to P a set HP of elements ofH(M) consisting of all
global interpretations constructed from every maximal tapestry in the sequence tree.

For fixed initial causal tapestry C, and some primitive process P ∈ P , where P is
the set of primitive processes, define the Process-Covering Map (PCM) PC : P → H(M)
by PC(P) = HP. Technically, PC(P) is a set-valued map, so one should write PC : P →
P(H(M)), whereP(H(M)) is the power set onH(M), butH(M) is simpler. By allowing
C to vary, one obtains an operator interpretation for the PCM, which is discussed below.

The PCM is now extended to include sums and products.
Consider an independent exclusive sum ⊕iwiPi of primitive processes Pi acting on the

causal tapestry C. Since this is an exclusive sum, the informons of the nascent causal tapestry
C1 will lie in distinct subsets, C i

1, each corresponding to a specific subprocess Pi. Let jn = i if
n ∈ C i

1. Since this is an independent sum, the actions of each subprocess can be considered
independently of the others. Then, the global interpretation Φ(z) = ∑n∈C1

wjn φn(z) =

∑i wi{∑n∈C i
1

φn(z)} = ∑i wiΦi(z) where Φi(z) is the global interpretation corresponding
to the process Pi. Applying this to each path of the sequence tree, it follows easily that

P(⊕iwiPi) = ∑
i

wiP(Pi) (1)

where for two sets of functions A, B, the sum A + B = { f + g| f ∈ A, g ∈ B}.
It is not difficult to show that this also holds true for free sums, but in this case, these

subsets may overlap and informons must be artificially divided to reflect the contributions
from each subprocess. Nevertheless,

P(⊕̂iwiPi) = ∑
i

wiP(Pi). (2)

Note that although ⊕iwiPi and ⊕̂iwiPi are Ψ-epistemic equivalent, they possess very
different interpretations on the causal manifold M and may possess quite distinct se-
quence trees. The local interpretations will also differ even though the asymptotic global
interpretations are the same.

It is not possible, in general, to describe interactive sums, which must be determined
from their sequence trees.

The case of products is more complicated. First, consider an independent exclusive
product ⊗iPi of primitive processes Pi. During each round, a set of informons {ni} will be
generated together with the set of their local interpretations, {φni (z)}. The most natural
phenomenological representation is to consider the co-product of the spaces H(M) corre-
sponding to each subprocess. This maintains the point of view of individual entities. The
usual approach would be to consider a product of the spaces, but this approach may fail in
the process algebra, and so a more subtle version of the PCM must be employed.
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Each edge in the sequence tree may be given by a tuple (n1, n2, . . . , nj) of informons.
There will be corresponding tuples of causal manifold points (mn1 , mn2 , . . . , mnj), and there
will also be local Hilbert space contributions (φn1(z), φn2(z), . . . , φnj(z)). The vertices of
the sequence tree may be recursively defined in the co-product case as Cn → Cn ∪i {ni

k} and

in the product case as C1
n × · · · × Cn

n → (C1
n ∪ {n1

k})× · · · × (Cn
n ∪ {n

j
k}). Since this product

is independent, exclusive, it follows easily that

P(⊗iPi) = P(P1)⊕P(P2)⊕ · · · ⊕P(Pj) (3)

in the co-product case (where⊕means a formal sum of functions, not a pointwise sum) and

P(⊗iPi) = {(Φn1(z), Φn2(z), . . . , Φnj(z))| over all instances of P} =

P(P1)×P(P2)× · · · ×P(Pj) (4)

in the product case, where ×means a set product, not a pointwise product. If the subpro-
cesses represent different states of a single process, then the co-product can be replaced
by sums.

It can also be shown that, as for sums, the free product satisfies

P(⊗̂iPi) = P(P1)×P(P2)× · · · ×P(Pj) (5)

so that ⊗iPi and ⊗̂iPi are also Ψ-epistemic equivalent.
Again, there is no general formulation in the case of interactions.

3.7. Process and Operators

Recall that a causal tapestry C consists of informons, each of which has the form
[n] < (mn, φn(z); pn, Γn,> {Gn}. The function φn(z) provides a local contribution from n
to a global function ΦC(z) defined on the causal manifoldM by ΦC(z) = ∑n∈C φn(z). This
defines a mapping T from the space of causal tapestries C to the Hilbert spaceH(M) by

T(C) = ΦC(z). (6)

The PCM was defined as a map P : Pp ×C→ P(H(M)) (the power set onH(M)).
If we fix some process P ∈ Pp, then we can define a tapestry covering map (TCM) PP :
C→ P(H(M)) in the obvious manner.

Define a generalized operator G on H(M) as a mapping G : H(M) → P(H(M))
such that G( f + g) ⊂ G( f )+G(g) and let G(H(M)) denote the set of generalized operators
onH(M).

For a fixed primitive process P, define a generalized operator GP onH(M) such that
for every f ∈ H(M), GP( f ) = ∪C∈T−1( f )PP(I).

One thus obtains the following diagram

C
PP→ P(H(M))

T ↓ ↓ e

H(M)
→
GP P(H(M))

(7)

where e is a map such that h ⊂ e(h).
One cannot guarantee that if two causal tapestries C, C ′ satisfy T(I) = T(I ′), then

PP(I) = PP(I ′). A primitive process P is said to be Ψ-faithful if T(I) = T(I ′) implies that
PP(I) = PP(I ′) for all I , I ′. In the case of a Ψ-faithful process, the diagram reduces to
the simpler form

C
PP→ P(H(M))

T ↓ ↓ id

H(M)
→
GP P(H(M))

(8)
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where id is the identity.
In either case, one can associate each process P with a generalized operator GP

onH(M).
Consider now the situation in which the asymptotic limit has been taken. This corre-

sponds to restricting attention to only those processes corresponding to the asymptote, so
those processes for which N, r = ℵ0 (at least). If we restrict then to the subset Π∞ of such
asymptotic processes, then one must also restrict the space of causal tapestries to C∞, the
subset of causal tapestries that are generated by processes within Π∞

p . Hence, for P ∈ Π∞
p

and C∞ ∈ C∞,

PI∞(P) = {Φ
tP lP(z)}, (9)

a singleton set.
It follows that the previous diagrams simplify to

C∞
PP→ H(M)

T ↓ ↓ e

H(M)
→
GP P(H(M))

(10)

for general processes and for Ψ-faithful processes to

C∞
PP→ H(M)

T ↓ ↓ id

H(M)
→
GP H(M)

(11)

In this situation, the generalized operator GP becomes a standard operator onH(M).
This is the main value for considering Ψ-faithful processes. The extension of these ideas to
sums and simple products is straightforward.

3.8. Process Approach to the Configuration Space

The PCM defined in the previous section essentially provides a space–time repre-
sentation, especially in the case where the co-product representation is used for process
products. The problem with the PCM lies in how the global interpretations are generated.
During each round, a product process ⊗n

i=1Pi will generate a correlated set of informons
Ai = (n1

i , . . . , nn
i ). If C ′ is the causal tapestry consisting of these tuples and formed by a

complete action of ⊗n
i=1Pi, then the globalH(M) interpretation for the product process on

Mn should reasonably be defined as

Ψ̂p(z1, . . . , zn) = ∑
(n1

i ,...,nn
i )∈I ′

Γn1
i
· · · Γnn

i
Tmn1

i
g(z1) · · · Tmnn

i
g(zn) (12)

which is consistent with the formulation of the global interpretation for primitive processes
and where g is the local interpretation function.

Unfortunately, Ψ̂p is inadequate for determining correlations. The problem with Ψ̂p is
that it is based upon a single complete action of the product process, which cannot take
into account the effects of all possible actions of the process. The proper way to generate
a function expressing these correlations is through the configuration space sequence tree.
This generalizes the construction of the sequence tree described in the previous section.
For n subprocesses, each vertex of the sequence tree will be a causal tapestry Cj consisting
of a set of ordered tuples of n informons of the form (n1

i , . . . , nn
i ), which is just a tuple

formed from the informons generated at round i by the generating process. An edge will
consist of an n-tuple of informons (n1

j , . . . , nn
j ) such that if this edge takes Ci → Ci+1, then

Ci+1 = Ci ∪ {(n1
j , . . . , nn

j )}. Let iC denote a causal tapestry formed by completely traversing
a path in the tree. Note that each informon generated by a subprocess Pi in the sequence
tree is generated independently from all of the others generated by Pi, and each edge
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set is generated independently from every other edge set. The causal tapestry iC may be
artificially extended by adding informons from jC so long as we ensure that if we wish to
add an informon (n1

j , . . . , nn
j ) ∈ jC, then it is necessary that for each component informon

nk
j such that there exists an informon (n1

g, . . . , nn
g) ∈ iC with pnk

j
= pnk

g
and mnk

j
= mnk

g
,

then Γnk
j
= Γnk

g
. That is, if we form the projection iC → iCk by mapping each informon

(n1
j , . . . , nn

j )→ nk
j , then iCk forms a consistent causal tapestry in its own right. An informon

of jC which meets this condition is said to be admissible for iC.
Define the consistent union iC 4 jC to be the set iC ∪ {n ∈ jC admissible in iC}. A

causal tapestry C is said to be maximal for a sequence tree if there is no path and no causal
tapestry C ′ generated by this path such that K4 C ′ 6= C.

The configuration space sequence tree is denoted ΣC(C,⊗iPi). A similar construction
holds for the free product as well and will be denoted ΣC(Cn, ⊗̂iPi).

Given a configuration space sequence tree ΣC(C,P), let IM
ΣC(C,P) denote the set of all of

its maximal causal tapestries. We define the configuration space process covering map or
PCMC, denoted PC(⊗iPi, C) (or sometimes PC

C (⊗iPi) or PC(⊗iPi)) to be PC
C (⊗iPi) =

{Φj(z) = ∑
(n1

k ,...,nn
k )∈C ′

Γn1
k
· · · Γnn

k
Tmn1

k
g(z1) · · · Tmnn

k
g(zn)|K′∈ JM

ΣC(C,⊗iPi)
} (13)

It may be the case that the maximal causal tapestries are full product causal tapestries.
In such a case, the asymptotic limit takes the form

PC
In(⊗iPi) = {Ψ1

tP lP
(z1)× · · · ×Ψn

tP lP
(zn)} (14)

Note that the configuration space process covering map is defined over the entirety of
the configuration space sequence tree. Only a single path along the tree is ontological in the
sense that it corresponds to a single generated reality. The configuration space sequence tree
is a purely heuristic tool used to calculate correlations when knowledge of a specific path is
unknown or unknowable or where multiple paths may generated, either sequentially or
concurrently, and one wishes to define some statistical measure on the resulting reality.

Both the process covering space and the configuration space covering space are im-
portant constructions. The process algebra model clearly distinguishes between the con-
struction of a single causal tapestry by a process, which is ontological, and thus a history of
events which were actual or real, and these two spaces, which are purely abstract spaces of
potentialities, of possible causal tapestries which could be generated by a process (but were
not) and which are used epistemologically solely to carry out calculations, particularly
those of probabilities of occurrence of various situations. This suggests that the configu-
ration space of physics should also be considered heuristically, epistemologically, rather
than ontologically.

3.9. Measurement

Measurement, within the Processist worldview, and the process algebra, requires
a process P to be interrogated. This requires a physical context (apparatus) M, which
is itself a process, through which the interrogation takes place, and a detector D, also a
process, which produces an enduring token p representing the outcome (value) of the
measurement. Measurement thus involves the evolution over time of an interaction P�
M�D. Probabilities are an emergent outcome of this interaction and require for their
calculation reference to a heuristic configuration space covering graph. This is, virtually by
definition, a contextual probability which will depend upon M (at least). Unlike in some
objectivist worldviews, the process P is understood not as the possessor of some property
with measured value p but rather as the generator of a collection of potential properties,
which yield a measured value p during one measurement interaction.
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A different measurement interaction could well result in the generation of a different
property with measured value p′. Since P is a generator and not a possessor, this makes
perfect sense.

Measurement is conjectured to occur in three stages:

1. The system process PS and the measurement apparatus process PM begin as indepen-
dent processes, PS,PM.

2. The system and measurement apparatus processes move into spatial positions from
which their generative activities could potentially interfere with one another. This
is the first level of interaction PS ⊗ PM. The requirement for the system process
to navigate the physicality of the measurement apparatus results in a transition
PS →

⊕
n anPS

n, where PS
n are subprocesses which resonate with or are compatible

with eigenstates PM
n of the measurement apparatus. Thus, we have the transitions

PS,PM → PS ⊗ PM →
⊕

n(anPS
n ⊗ PM

n ).
3. In the final stage, the occurrence of an informon triggers a process-altering interac-

tion between system and measurement apparatus processes, which results in the
appearance of a single measured value corresponding to the eigenstate n⊕

n
(anPS

n ⊗ PM
n )→

⊕
n
(anPS

n � PM
n )→ anPS

n � PM
n .

4. The Temporal Structure of Process

Temporality gives rise to order, as does causality. The generation of informons by a
process includes both causality and succession, and thus ideas of order and graphs play
important roles. The role of graphs in describing the structure of complex interactions has
already been alluded to. Here, attention turns to the order structures that can be generated
through the creation of informons. More details can be found elsewhere [10,11]. Since
causal tapestries are defined primarily in terms of graphs, the notion of order will be
expressed in graph theoretic terms as acyclic directed graphs. Recall that a causal tapestry
possesses two graphical substructures: a directed graph representing information flow
(causality and succession) from generation to generation and a non-directed graph which
provides topological and metrical structure within each generation. The focus here is on the
causal substructure. Some insights concerning the topological and metrical substructure
can be found in [11].

Graphs and orders play fundamental roles in the description of processes and causal
tapestries, so it is useful to briefly review some basic concepts.

Definition 11. (Basic Definitions)

1. An undirected graph is a pair (V, E), where V is a set of vertices and E = {{x, y}|x, y ∈ V}
is a set of edges. We denote an edge linking x, y by xEy = yEx.

2. A directed graph is a pair (V, E), where E ⊂ {(x, y, )|x, y ∈ V}. x is called an initial vertex
and y is called a terminal vertex. We shall assume no self loops, that is, no terms of the form
xEx, so that xEy 6= yEx. This accords with the idea that an event cannot be its own cause.

3. A mixed graph is a pair (V, E), where V is a set of vertices and E is a set of edges which can
be undirected {v1, v2} or directed (v1, v2) as necessary. We denote a generic edge in a mixed
graph as [x, y]. By graph, we mean a mixed graph unless otherwise specified.

4. Two elements are comparable if either xEy or yEx. Otherwise, they are incomparable, which
is denoted by x||y.

5. An antichain is a set of pairwise incomparable elements.

Definition 12. A path x ⇒ y in a graph G is a finite sequence of vertices x0, x1, x2, . . . , xk such
that [xi, xi+1] is an edge of G for all i. The length of the path is k, which is equal to the number of
edges. A path of the form x0, x1, . . . , xk, x is termed cyclic. A path is acyclic if it contains no cycles.
A graph is acyclic if it contains no cycles. A path is prime x ⇒ y if there is no z such that x ⇒ z
and z⇒ y. A graph is primitive if every edge is prime.
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Theorem 3. A directed graph is ordered if it is acyclic. If (V, E) is an ordered graph, then the
relation < given by x < y if (x, y) ∈ E is an order on V.

Definition 13. A chain x ⇒ω y in a graph G is an ordinal ω labeled sequence (a map from an
initial segment of an ordinal to V) x0, x1, . . . xωk , xωk+1 . . . such that for successor ordinals i, i + 1,
xiExi+1 and for a limit ordinal ωk, xiExωk for all i < ωk. The latter type of edge is called a jump.
A jump xEy is prime if there is no z 6= x such that there is a jump xEz and edge zEy. Thus, a prime
jump crosses a chain of the form x0, x1, . . . , xω0 , and no larger.

Definition 14. Let G = (V, E) be an ordered graph. The completion of G is a graph Ĝ = (V, Ê)
such that if (x, y) ∈ Ê, then there exists a path x ⇒ y in E. If G is ordered, then so is Ĝ.

Definition 15. An ordered graph G is well ordered if every subgraph possesses a minimal element.
A well-ordered graph is called a causal order. A directed, acyclic graph is called a local causal order
if it can be decomposed into a union of components, each of which is a causal order. Let A be a
subgraph of G. A base is a set of minimal elements B such that for all x ∈ A, either x ∈ B or there
exists a b ∈ B such that b⇒ x.

Definition 16. Let G = (V, E) be a directed graph. The reverse graph GR = (V, ER), where
(x, y) ∈ ER if (y, x) ∈ E. Similarly, given an order O = (V,<), the reverse order is OR = (V,<R),
where x <R y if y < x.

Definition 17. An up-set of a directed graph G is a set of the form {y|x → y}, where x ∈ A, and
A is an antichain. A is called the base of the up-set. An ordered graph is future causal if every up-set
is a causal graph.

Definition 18. Let C be a directed graph. A component A of C is a subgraph of C such that if
x ∈ A, then there exists a y ∈ A and either a path x ⇒ y or y⇒ x.

Definition 19. Let A, B be subgraphs of an ordered graph G. We write A < B if for any x ∈
A, y ∈ B, there either exists a path x ⇒ y or no path y⇒ x. If there are neither paths x ⇒ y nor
y⇒ x, then we write x||y.

Theorem 4. Let A be a component of a causal graph C. Then, there exists a sequence of antichains
A0 < A1 < A2 < . . . in A such that ∪i Ai = A. Moreover, if x ∈ Ai−1 and y ∈ Ai such that
x → y, then x → y is a step.

Proof. Since C is a causal order, it is well ordered and thus so must be any component
A of C. Hence, every path in A has a least element. Let A0 be the set of all such least
elements in A. If A is non-empty, then A0 must be non-empty. For if x ∈ A, and x is not a
least element in A, then there must be a path in A terminating at x, and such a path must
have a least element y. Hence, y ∈ A0. Clearly, there can be no element y ∈ A such that
{y} < A0, since there would then be some element in A0 which is not minimal, which is
a contradiction. Now, let A1 consist of all minimal elements of A \ A0. A0 < A1, since
otherwise, there must be a z ∈ A0 and y ∈ A1 such that y < z, which is a contradiction.
Continuing in this manner, let Ai consist of the set of all minimal elements of A \ ∪j<i Aj.
Using a similar argument, one finds that A0 < A1 < . . . Ai . . .. Clearly, each Ai must be an
antichain. Assume x ∈ Ai−1 and y ∈ Ai such that x → y. Suppose there exists a z such
that x → z → y. z /∈ ∪j<i Aj since if z ∈ Aj<i, and Aj < Ai, then either z → x or x||z,
which is a contradiction. But then y could not be minimal in A \ ∪j<i Aj; hence, y /∈ Ai,
which is a contradiction. Hence, the edge x → y is a step. If A 6= ∪i Ai, then there exists a
y ∈ A \ ∪i Ai. Since A is well ordered, we may assume that such a y is minimal in A \ ∪i Ai.
If {y}|| ∪i Ai and minimal, then by construction, y ∈ A0, a contradiction. Hence, there
must exist z ∈ ∪i Ai and a chain z ⇒ y. Since A is well ordered, this chain must also be
well ordered and thus possesses the order type of some ordinal ωm. Then, by applying
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the construction algorithm to this chain, we find that y ∈ Aj for some j ≤ i + ωm, which is
again a contradiction. Hence, A = ∪i Ai.

Theorem 5. Let C be a causal order. Then, C can be decomposed into a set of disjoint, maxi-
mally connected components Ci, each of which can be decomposed into an ordering of antichains
Ci

0 < Ci
1 < . . ..

Theorem 6. Let C be a future causal graph. Then, C can be decomposed into a chain of antichains
of the form . . . C−n < . . . < C0 < C1 < . . . < Cωm .

Proof. Take any maximal antichain A. Since C is future causal, the upset on A is causal and
thus can be decomposed into a chain of antichains of the form C0 < C1 < C2 < . . . < Cωm .
Consider D = C \ ∪i>=0Ci. Since A is maximal, every element of D must lie below some
element of A; otherwise, it could be added to A to create a larger antichain, which is a
contradiction. Let A′ be a maximal antichain in D. Repeating the argument, we find that
A′ will decompose into a chain of antichains lying below the chain C0 < C1 < C2 < . . . <
Cωm . Thus, we obtain C−k < · · ·C−1 < C0 < C1 < C2 < . . . < Cωm . The argument
may be repeated indefinitely. It will either terminate for some −n or there will be an
infinite backward regression. Nevertheless, there will always be a future-oriented chain of
antichains.

Definition 20. Let G be a directed graph. If A is a subgraph of G, then a base for A, BA is a
maximal set of greatest lower bounds for elements of A. That is,

1. If b ∈ BA, then for all x ∈ A, either b⇒ x and if b⇒ y⇒ x, then y ∈ A, or b||x.
2. If x ∈ A, then either x ∈ BA or there exists b ∈ BA such that b ⇒ x. If BA ⊂ A, then we

say that A is grounded.

Definition 21. Let C be a directed graph. We say that C is well founded if every subgraph A of C
possesses a base.

Theorem 7. Let G be a well-ordered graph. Then, it is well founded.

Proof. Let G be a well-ordered graph and A be any subgraph. By definition, A must
possess a minimal element, so BA is non-empty. Clearly, it must contain all minimal
elements in A. Let x ∈ A be any element not in BA. If there is no b ∈ BA such that b⇒ x,
then there must exist in A an infinite sequence . . . xn → xn−1 → . . . x1 → x; otherwise, we
have a contradiction. But then, this sequence is itself a subgraph of G and so must possess a
minimal element, say xm. Hence, it must terminate, which again is a contradiction. Working
one’s way up this sequence, one must eventually find an xm < xi < x such that xi ∈ A, but
no previous xj can lie in A, so that xj is minima in A. Again, this is a contradiction.

Theorem 8. Let G be a well-founded graph. Assume further that every subgraph is grounded.
Then, G is well ordered.

Proof. Let G be a well-founded graph in which every subgraph is grounded. Let A be
any subgraph. Then, A possesses a base BA ⊂ A. By definition, every b ∈ BA must be a
greatest lower bound for elements of A. By assumption, if b ∈ BA, then b ∈ A. Suppose
that there exists an x ∈ A such that x ⇒ b. Then, b cannot be a lower bound for A, which is
a contradiction. Hence, b must be minimal in A and thus, G is well ordered.

Definition 22. A directed graph G is skeletal if every edge is either prime or a jump.

Definition 23. A skeleton S of a directed graph G is a maximal skeletal subgraph.

Definition 24. A spanning subgraph G′ of G is a subgraph whose vertex set is that of G.
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Definition 25. A directed graph is well founded if every upset is well ordered.

Theorem 9. Let G be a connected, well-founded directed graph. Then, G possesses a connected
spanning skeleton S.

Proof. Let G be a connected, well-founded, directed graph. Let S be the subgraph obtained
by restricting to prime and jump edges. If G consists of a singleton vertex, we are finished.
Otherwise, G must have at least two vertices, x, y. Since G is connected, either x ⇒ y, y⇒ x
or there exists a z such that either x ⇒ z, y⇒ z or z⇒ x, z⇒ y. Assume that the chain is
maximal; otherwise, simply enlarge it until it is maximal. If any chain consists of just a
single prime edge or jump, then S is non-empty. Otherwise, the chains must each consist
of more than two vertices; hence, we may consider the chains formed by eliminating the
initial vertex. Since a chain is an upset, it must be well ordered. Thus, the reduced chain
must possess a minimal element, w. The edge x ⇒ w must therefore be prime; otherwise,
w would not be minimal. Again, we find that S is non-empty. If x ⇒ y is any chain in G,
then again it may be enlarged to a maximal chain which still connects x and y. We can use
ordinal induction up this maximal chain to show that any two elements along the chain
can be connected either by a prime edge or by a jump followed by a sequence of jumps
of lower order and eventually by a sequence of prime edges (i.e., x, y are connected via a
chain in S). Hence, S is a connected spanning skeleton.

5. Order Automata

A simple example of a process strategy is an order automaton. The concept of order
automaton as developed in [69] was an early attempt to explore the idea that the temporal
structure of a space of events might be emergent, arising from the action of dynamics rather
than being a pre-existing container within which events took place. Automata are most
commonly studied within the setting of theories of computation.

Definition 26. Let M be a set of events. Let S be a set of states. The set of states forms a monoid.
This means that we identify one element, 1, called the identity, and a binary operation ∗ on S such
that for any s, t, v ∈ S, s ∗ 1 = 1 ∗ s = s, s ∗ (t ∗ v) = (s ∗ t) ∗ v. An S-automaton over M is a
triple (S, M, f ), where f is a mapping f : M× S→ M, which is called the action such that

1. f (a, 1) = a;
2. f (a, s ∗ t) = f ( f (a, s), t).

We sometimes write as = f (a, s).
Note that each s ∈ S corresponds to a self map fs on M, which is given by fs(a) =

f (s, a).

Definition 27. An order automaton is an S-automaton over M, (S, M, f ), such that the relation
R(S, f ) defined by (a, b) ∈ R(S, f ) if there exists an s ∈ S such that b = f (a, s) is a partial order on
M. We denote it by (S, M, f , R(S, f )) to emphasize the order. We call S an order monoid for M or
say that S generates an order on M.

A sequence of automaton actions

a, f (a, s), f ( f (a, s), t), f ( f ( f (a, s), t), v), . . .

will thus correspond to a chain

a < f (a, s) < f ( f (a, s), t) < f ( f ( f (a, s), t), v) < . . .

in the partial order, so a trajectory on M generated by the automaton corresponds to a chain
in the partial order on M.
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This may serve as a strategy of a process if we interpret M not as a set of events but
simply as a set of labels which we may attach to events. Given a prior event labeled x, this
process generates a nascent event under some action s and assigns it a new label f (x, s).
This will generate a partial order upon the generated events and a mapping between the
ordering on the events and the ordering on their labels. Another way to think of this is to
treat the set of events M merely as a collection of potentialities not of actualized events.
The set M merely represents the set of all potential or possible, unactualized events, and
together with the order structure, the set of all possible, potential, unactualized histories.

Let us now examine the order structures which are created in this manner by order
automata. The proofs of these results can be found in [69]. Some of these results apply
to transfinite sets, but remember that often, we are dealing with heuristic models, not
necessarily realist models.

Theorem 10. For any partially ordered set (X,<), there exists a monoid M and an action f of M
on X such that (M, X, f , R(M, f )) is an order automaton whose order R(M, f ) =<. We shall denote
this as (M, X, f ,<).

Theorem 11. For any set M-automaton on X with action f , the relation R(M, f ) is reflexive
and transitive.

Theorem 12. An M-automaton on X with action f is an M-order automaton on X if the relation
R(M, f ) is antisymmetric.

Order automata are quite common. The only requirement of the action is that for any
two elements x, y ∈ X, the existence of n, m ∈ M such that f (x, n) = y and f (y, m) = x
implies that x = y and n = m = 1.

Ordered sets may be described as abelian or non-abelian depending upon whether the
monoid of its order automaton is abelian or non-abelian. There are some subtle differences
between these two which are not relevant here. Most of the orders that we shall be
considering will be non-abelian. As an example, consider the following:

Theorem 13. Let us define an ordered set X inductively.

1. Let X0 = {x0}.
2. Let X1 = {x0,1, x02}.
3. Set x0 < x01, x02 and leave the other two incomparable.
4. Assume that we have defined sets up to Xn. Define Xn+1 by taking each x ∈ Xn and adding

two elements, x1, x2 to Xn+1, making all elements of Xn+1 incomparable.
5. Take X to be the transitive closure of the order union of the Xi.

This set is a tree in which each node has two forward branches. It is non-abelian.

It is quite simple to show that

Theorem 14. Every linearly ordered set is abelian.

Another example of an abelian order is the set N×N with order given by (x, y) < (w, z)
if and only if x < w and y < z.

Definition 28. Let (X,>) be an ordered set. The forward cone of x ∈ X is the setFx = {z|x ≤ z}.
Conversely, the backward cone of x is the set Bx{z|z ≤ x}.

Non-abelian orders are much more difficult to characterize than abelian orders. A
simple test for being non-abelian is the following.
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Theorem 15. Let (X,<) be an ordered set. If there exist elements x, y ∈ X such that Bx ∩By 6= ∅
but Fx ∩ Fy = ∅, then X is non-abelian.

Definition 29. Let L be a set, finite or infinite. A free monoid F over L consists of the set of all finite
strings of elements of L. The monoid operation is given by concatenation. Thus, an element of F is a
string x1x2X3 · · · xn, where xi ∈ L. The concatenation of two strings x1x2x3 · · · xn, y1y2y3 · · · yn
is the string x1x2x3 · · · xny1y2y3 · · · yn.

A basic result of monoid theory is that every monoid is the homomorphic image of a
free monoid.

Theorem 16. Let (M, X, f , R(M, f )) be an order automaton. Then, there exists a free monoid F and
an action g such that (F, X, g, R(F,g)) is an order automaton and R(M, f ) = R(F,g). That is, their
induced orders are identical.

Definition 30. Let M be a free monoid. The dimension of M is the cardinality of its set of generators
(usually the cardinality of its associated symbol set L).

Definition 31. Let (X,<) be an ordered set. Let

M(X) = {M|(M, X, f ,<) be an order automaton, whereM is a free monoid}

Then, the free dimension of X, dimF(X) = infM∈M(X) dim(M).

Theorem 17. For any ordered set X, dimF(X) exists.

Every partially ordered set can be generated by some order automaton, so we focus
upon those orders which are generated by free order automata. The free dimension provides
a useful parameter for describing the structure of these orders.

Definition 32. Given an ordered set (X,<), x, y ∈ X, y is an immediate successor of x if x < y
and there is no z such that x < z < y. The set of immediate successors of x is denoted Ix. Similarly,
we can define an immediate predecessor of x as an element y such that there is no z with y < z < x.
We denote the set of immediate predecessors of x by Px.

Theorem 18. Let (X,<) be an ordered set and (M, X, f ,<) be a free order automaton. Let A
denote the set of generators of M. For any x ∈ X, Ix ⊂ xA. If dimF(X) = n and card(Ix) = n,
then Ix = xA.

Definition 33. A successor chain is an ascending chain c0 < c1 < c2 < · · · such that ci+1 is an
immediate successor of ci.

We can now describe ordered sets of free dimension 1.

Theorem 19. Let (X,<) be an ordered set. Then, dimF(X) = 1 if and only if X is a disjoint
union of ordered sets Xi, where each element of Xi has at most one immediate successor, there exists
at least one non-trivial interval, and all closed intervals are finite. It is freely generated if and only if
the supremum of the set of cardinalities of the forward cones in X is ℵ0.

Discrete dynamical systems are often given by iterations of a single self map f on
some state set S. f n(a) gives the state of the system at time n given initial state a. We have
the following result

Theorem 20. Let X be a set and f be a self map on X satisfying the conditions

1. For all x ∈ X, if x = x f k for some k > 0, then x = x f k for all k, i.e., x is a fixed point of f .
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2. The functions f k are all distinct for 0 ≤ k < ω.

Then, the monoid M = { f k|0 ≤ k < ω} is a free monoid and (M, X, g, R(F,g)) is a free-order
automaton with action g(x, f k) = x f k for all f k ∈ M.

The generators of a free monoid act more or less independently of one another.

Theorem 21. Let (X,<) be an ordered set and (M, X, f ,<) be a free order automaton on X
inducing the order <. Let A denote the set of generators of M. For each a ∈ A, let Ma denote the
free monoid generated by a. Then, (Ma, X, fa, R(Ma , fa)) is a free order automaton on X generating
a suborder <a of <, where fa is the restriction of f to Ma and <a is R(Ma , fa). Furthermore, < is
the transitive closure of all of the <a.

There is a partial corollary to this.

Theorem 22. Let (X,<) be an ordered set and A be a set of self maps on (X,<). For each
a ∈ A, let Ma denote the monoid generated by a. Define an action fa by f (x, a) = xa for all
x ∈ X. If, for each a, (Ma, X, fa, R(Ma , fa)) is an order automaton, and if the transitive closure of all
R(Ma , fa) exists, then there exists a free monoid M of dimension card(A), and an action f , such that
(M, X, f , R(M, f )) is an order automaton for the transitive closure of all R(Ma , fa).

Theorem 23. Let (X,<) be an ordered set of free dimension n. Then, any element of X has at most
n immediate successors. Moreover, if the dimension is finite, then every non-maximal element has at
least one immediate successor.

There is an approximate corollary to this.

Definition 34. Let (X,<) be an ordered set. For any x ∈ X, let o(x) denote the cardinality of the
set of immediate successors of x. If x is maximal, o(x) = 0, while if x has no immediate successor,
set o(x) = ℵ0. Define o(X) = supx∈X o(x).

Theorem 24. Let (X,<) be an ordered set of finite free dimension, x ∈ X, y ∈ Dx. Then, there
exists a successor chain C ∈ Xx with initial element x and C < y. Likewise, if y ∈ Xx and z ∈ Dy,
then there exists a successor chain C in Xx with initial element y and C < z.

Theorem 25. Let (X,<) be an ordered set. Then, o(X) ≤ dimF(X). If X is finite, then
o(X) = dimF(X).

A useful result is the following, which sheds light on the order structure of process
covering graphs.

Theorem 26. Let (X,<) and (Y,<′) be ordered sets and (Z,< ”) be their order product. Then,

sup{dimF(X), dimF(Y)} ≤ dim f (Z) ≤ dimF(X) + dimF(Y)

If either dimF(X) or dimF(Y) is infinite, then dimF(Z) = dimF(X) + dimF(Y). If both X and
Y are finite sets, then dimF(Z) = dimF(X) + dimF(Y).

Theorem 27. Let (X,<) be an ordered set such that for all x ∈ X, dimF(Fx) ≤ κ. Then,
dimF(X) ≤ κ.

Theorem 28. Let (X,<) be an ordered set with finite free dimension n. Then, there exists an
x ∈ X such that dimF(Fx) = n.

Theorem 29. Let (X,<) be an ordered set. Then, dimF(X) is finite if and only if every forward
cone is countable and o(X) is finite. Furthermore, o(X) ≤ dimF(X) ≤ o(X) + 1.
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In the case of countable free dimension, we have

Theorem 30. Let (X,<) be an ordered set. Then, dimF(X) = ℵ0 if and only if every forward
cone is countable and o(X) = ℵ0.

Now, we can begin to examine the larger structure.

Definition 35. Let (X,>) be an ordered set and (M, X, f ,<) be an order automaton. A basis for
(M, X, f ,<) is a subset B of X of least cardinality such that X = ∪x∈B f (x, M).

Definition 36. Let (X,<) be an ordered set. Given two chains C, D in (X,<), we say that C . D
if D ∩ ∪c∈CFc = ∅.

Theorem 31. Let (X,<) be an ordered set. Then, there exists a basis B for (X,<) such that

1. There exists a set C of chains, C = {cβ|β < α} for some ordinal α;
2. β < γ < α implies cβ . cγ;
3. B = ∪β<αcβ.

Definition 37. Let (X,<) be an ordered set and x ∈ X. A primitive neuron, Xx, is defined
by induction as follows. For n = 0, set X0x = {x}. For n = 1, set X1x = X0x ∪ Ix, where
Ix is the set of immediate successors of x. Assuming that we have defined up to Xnx, then
X(n+1)x = Xnx ∪ Iz∈Xnx . Clearly, Xx ⊂ Fx. We define Dx = F\Xx. The neuron Xx con-
sists of all elements which can be reached from x via a finite chain. Dx is the set of all non-finitely
reachable elements.

The idea of a neuron generalizes the above. It takes its name from its cartoonish
resemblance to a biological neuron.

Definition 38. Let (X,<) be an ordered set. A (first-level) neuron is defined by induction. Let
1X0

x = {x}. Then, set 1X1
x = Ix ∪ Px. Assuming we have defined sets up to level n − 1, set

1Xn
x = ∪y∈1Xn−1

x
Iy ∪ Py. Finally, define 1Xω

x = ∪0≤n<ω1Xn
x .

Theorem 32. Let (X,<) be an ordered set of free dimension n. Let x ∈ X and suppose that for
every y ∈ Fx, Iy has cardinality n. Then, Fx\1Xω

x = ∅.

Theorem 33. Let (X,<) be an ordered set of free dimension n. Assume that for every x ∈ X, Ix
has exactly n distinct elements. Then, there exists a subset C of incomparable elements such that
X = ⊕x∈C1Xω

x , where ⊕ is the order theoretic disjoint sum.

Theorem 34. Let (X,<) be an ordered set, x, y ∈ X. Then, either 1Xω
x = 1Xω

y or 1Xω
x ∩ 1Xω

y = ∅.

Now, things become subtle.

Theorem 35. Let (X,<) be an ordered set. Then, there exists a subset C of X such that, as sets,
X = ∪a∈C1Xω

a .

The point about ‘as sets’ is critical here. These first-level neurons form a partition of
the ordered set X, but in decomposing it in this manner, the order theoretic relationships
between the various first-order neurons are lost. We can only describe the possibilities in
general terms.

Theorem 36. Let (X,<) be an ordered set of finite free dimension. Let x, y ∈ X and assume that
1Xω

x ∩ 1Xω
y = ∅. Suppose that for some w ∈ 1Xω

x and z ∈ 1Xω
y we have w < z. Then, there exists

an infinite successor chain x1, x2, x3, . . . in 1Xω
x such that w < x1 < x2 < · · · < z.
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Theorem 37. Let (X,<) be an ordered set of finite free dimension. For any x, z ∈ X, if z is
maximal in 1Xω

x , then it is maximal in X.

We can summarize this as outlined below.

Theorem 38. Let (X,<) be an ordered set of finite free dimension. Then, there exists a subset C
of elements such that, as a set, X = ∪c∈C1Xω

c , where the 1Xω
c are pairwise disjoint, and for any

x, y ∈ X such that 1Xω
x ∩ 1Xω

y = ∅ and x < y, there exists an infinite ascending chain D in 1Xω
x

such that x < D < y.

Definition 39. Let (X,<) be an ordered set. A set of the form 1Xω
x is called a level 1 neuron,

or simply neuron. Maximal elements are called terminal elements, minimal elements are called
receptors, unbounded ascending chains are called transmitting axons, and unbounded descending
chains are called receiving axons.

A synaptic union bears some similarities to a sum of causal tapestries—it cannot be
defined exactly but must be specified in each individual case.

Definition 40. Let (X,<) be an ordered set of finite free dimension. Let N, M be neurons of X. Y
is a synaptic union of N, M, denoted Y = N �M if Y = N ∪M as sets, and whenever there exist
x ∈ N, y ∈ M such that x < y in X, then there exists a transmitting axon C ∈ X and either a
receiving axon D ∈ X or a receptor z ∈ M such that either x < C < D < y or x < C < z < y.

Thus, we have the following result.

Theorem 39. Let (X,<) be an ordered set of finite dimension. Then, there exists a subset C ∈ X
such that X = ∪a∈C1Xω

a . Thus, every finitely generated ordered set is a synaptic union of neurons.

In the case of free abelian ordered sets, that is, ordered sets having free abelian order
monoids, we can specify the structure more precisely. To do that, it is necessary to generalize
yet again the notion of neuron.

Definition 41. Let (X,<) be an ordered set, x ∈ X. An n-level neuron is defined inductively
as follows:

1. 0 Ix = {x}
2. 0Px = {x}
3. 0Xω

x = {x}
4. 1 Ix = {y|x < y and there exists no z such that x < z < y}
5. 1Px = {y|y < x and there exists no z such that y < z < x}
6. 1X1

x = 1 Ix ∪ 1Px
7. 1Xn

x = ∪a∈1Xn−1
x 1 Ia ∪ 1Pa

8. 1Xω
x = ∪n∈N1Xn

x
9. n Ix = ∪{n−1Xω

y |x < y and for no z with n−1Xω
z ∩ n−1Xω

x = ∅ = n−1Xω
z ∩ n−1Xω

y do we
have x < z < y}

10. nPx = ∪{n−1Xω
y |y < x and for no z with n−1Xω

z ∩ n−1Xω
x = ∅ = n−1Xω

z ∩ n−1Xω
y do we

have y < z < x}
11. nX0

x = n−1Xω
x

12. nXk
x = ∪a∈nXk−1

x
n Ia ∪ nPa

13. nXω
x = ∪k∈NnXk

x

nXω
x is called an n-level neuron.

Finally,
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Theorem 40. Let (X,<) be an ordered set with finite free abelian dimension n, meaning that it
has a free abelian order monoid on n generators, and no smaller number of generators suffices. Let C
be a component of X and let x ∈ C. Then, C = nXω

x .

Thus, an ordered set with free abelian dimension n consists of a union of disjoint
n-level neurons. Unfortunately, we do not have such a nice result in the case of non-abelian
orders, and their characterization remains an open question.

General Process

Let us now turn to consider the general structure of the temporal graph of an arbitrary
process. Consider first a single primitive process. The set of informons created by the
process will change with each generation. We can build a history E as a union over a
sequence of sets, E1, E2, E3, . . ., which list the events generated up to and including the
n-th iteration of the automaton. We thus think of a new kind of set, E(), where () refers
to an index referencing which stage in its construction the set is in. We require that
E1 ⊂ E2 ⊂ E3 ⊂ · · · . If we are talking about En for some n, we may speak about Ei for all
0 ≤ i ≤ n, but we cannot speak about En+1 unless we know that such a set has already been
generated. Across the entire history, E = ∪∞

n=0En. If E has been generated up to generation
n, we may speak of the potentialities for the version En+1, which we denote as P(E) and
which consists of a collection of sets such that if X ∈ P(E), then En ⊂ X. In other words,
every set X is an extension of En. The set of potentialities thus contains all possible causal
tapestries which can be created by the process and thus is closely related to the process
covering graph.

A primitive process (R = 1) generates only one informon per round, so we may label
each informon by the number of its round. Hence, informon [n] is the informon created in
the n-th round. [0] is the initial informon (it may be the empty informon [0] <;> {}).

Beginning with informon [0], the process P will generate informon [1], and informon
[0] will cease to exist. Thus, if we examine what is taking place at any moment, we will
observe a prior informon [n− 1] and a nascent informon [n] that is undergoing a process of
concrescence. The actualized informons [n− 1], [n] exist together for just an instant, while
the process of concrescence forms an instance and takes place over some duration. If we
wish to go to a micro level, we can add a second index to denote which short round the
nascent informon currently is in, bearing in mind that such a decompensation is purely
heuristic. Thus, the completed concrescence or actualization of [n− 1] marks an instant
tn−1, which is also the beginning of the concrescence of [n]. Its completion marks another
instant, tn, and separating them is a duration dn, which corresponds to the instance of
concrescence of [n]. The gap between two informons [n], [m] is the number of actualized
informons along the chain from [m] to [n]. In this example, the gap is 0, since there are no
informons along the chain from [n− 1] to [n].

Theorem 41. Let C be a causal tapestry and P its generating process. Let [n] be a nascent informon
and [m] a prior informon which is propagating information to [n]. Then, an edge ([m], [n]) in the
directed subgraph is primitive.

Proof. By definition, any such edge, if it exists, must be directed. If there were an informon
[v] such that [m], [v], [n] is a path and the edges are both directed, ([m], [v]) and ([v], [n]),
then by definition, [v] would lie in a nascent tapestry to C, but also in a prior tapestry to C ′,
which is impossible since C and C ′ are adjacent tapestries.

This of course is not true if we take a path in the full tapestry because [v] could be
space-like separated from either [m] or [n].

Since the temporal order is associated with a primitive process, the order structure
will obviously be that of a linear order, which is ordered by generation.

[0] < [1] < [2] < [3] < · · ·
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and if di is the duration corresponding to the generation of the i-th informon, we will have

d0 · d1 · d2 · d3 · · · ·

It is possible that orders could have the form

· · ·ω−nω−n+1ω−n+2 · · ·ω−1ω0ω1ω2ω3 · · ·ωm · · ·

Suppose that we have two independent primitive processes. In that case, there is no
interaction of any kind between them and thus no reason a priori to believe that there
should be any relationship between their two temporal orders. The temporal order T of the
pair P1,P2 is simply the disjoint sum of the individual temporal orders, T1 t T2. The same
is true of coupled processes, because there is no requirement of any form of simultaneity,
merely that they must stay out of each other’s way when generating informons.

The case of sums deals with single processes, and so coherence in the temporal
ordering is automatic. The situation changes with products and interactive products. In
these circumstances, informons from all of the participating processes must be generated
simultaneously; otherwise, it would be possible for measurements to be carried out in
which fewer informons than the number of participating processes are detected at the
end of a single round. But that would contradict the number of participants. Thus, in
the situation of products, the temporal orderings of the participating processes become
correlated. This is an important consideration in phenomena such as entanglement. Two
independent entities become entangled, causing previously unsynchronized entities to
synchronize their activities. The result is that they now behave as a single entity. Going
forward, they now possess a single, absolute temporal ordering. Simultaneity is now a
feature of this new entity. This will persist until one of the entities enters into an interaction
with another entity. At that point, because information propagation is local, it is not possible
for information about the new, local, interaction to propagate to the other entity; thus, the
temporal synchronization between the two original entities is lost, synchronization between
the newly interacting entities takes place, and the original entanglement is lost. Of course,
this need not pertain once the product relationship has ended. The situation within complex
products can become quite complicated and will not be discussed further here.

Since r′ is the maximum number of informons to which any given informon may
contribute information in each generation cycle, then each informon can have at most Nr′

immediate successors. Thus, the free dimension could be as high as Nr′ or as low as r′.
Note that at least one informon must pass information to r′ informons in a generation cycle;
otherwise, we could assign r′ a lower value. Thus, the free dimension could lie anywhere
in the range [r′, Nr′]. If C is a causal graph for a causal tapestry generated by some process,
then there will always be a base of initial informons, so that the backward regression will
always terminate after a finite number of generations. Thus, we may begin to observe
the generations of a process with any generation and know that the causal structure will
remain consistent back to its origin.

Since every process has a beginning, every process possesses a base, which is either
a set of null informons or a set of prior informons from the prior causal tapestry which
triggered its activation. Thus, the causal tapestry that it will generate will be composable
into a partially ordered set of antichains. Each adjacent antichain pair will take the form of
a r′-partite graph. Each antichain corresponds to a generation. This ordering will be causal
and thus invariant under Lorentz boosts. Thus, it provides a local, absolute, temporal
ordering. Such local temporal becoming is the thesis of Arthur [70].

Time, in this ordering, is discrete, since each instant of time marks the completion of
concrescence of its generated informons. If two processes are independent of one another,
or even weakly coupled, there is no interchange of information between them, and thus, a
priori, there need be no temporal synchronization of their generation cycles. The relative
temporal difference, reflected in any M interpretation of the causal tapestry, can take any
value. Thus, while each temporal ordering corresponds to discrete time, the range of
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possible relative times is continuous. This is in keeping with Whitehead’s statement of
the difference between actual time and potential or abstract time. Thus, time can be both
continuous and discrete—again, it depends upon what we are referring to.

There are actually two related temporal orderings associated with a process. There
is the instant-based ordering discussed above, which is based upon the termination or
commencement of concrescence of informons by a process. This temporal ordering more
closely resembles the traditional, though misleading, point-based orders of classical and
quantum physics. There is a second temporal ordering, however, which is focused upon the
instances of concrescence and thus the informons themselves. Since infomons are grounded
in instances of temporal becoming, in durations, this is not a point-like order but rather
an example of what is called an interval order. An interval order is defined by Fishburn as
follows [71]:

Definition 42. An interval order is a 4-tuple (V, P, I, F), where

1. V is a non-empty finite set;
2. P is an asymmetric binary relation on V;
3. I is a symmetric, reflexive binary relation on V;
4. F is a mapping from V into the set of positive length, closed real intervals;
5. (V, I) is an interval graph if ∀x, y ∈ V, xIy if and only if F(x) ∩ F(y) 6= ∅;
6. (V, P) is an interval order if ∀x, y ∈ V, xPy if and only if F(x) > F(y).

It is interesting that although any interval order gives rise to exactly one interval graph,
called the symmetric-complement graph, the converse is not true. A given interval graph
may be the symmetric-complement graph of many different interval orders. The ordering
of informons themselves, particularly when these arise from independent processes, is thus
fundamentally ambiguous regardless of the results of special relativity. In the absence of
some primordial über process that somehow synchronizes all processes from the get-go,
temporal orderings that involve independent processes are ambiguous by nature. It is an
interesting question whether the process which generated the original Big Bang would
serve as such an über process. I have not addressed that question in any depth but if it
could, it would then be the source of an underlying, fundamental, absolute, and global
temporal ordering, though one which we would have no means of detecting. Nevertheless,
the processes of Nature could act in accordance with it.

6. Conclusions

The process algebra approach presented here was originally developed to provide
a local, realist model of non-relativistic quantum mechanics [4–10]. It indeed proved to
be capable of approximating the usual wave function to a high degree of accuracy. Its
scope of application has subsequently been expanded to model the behavior of organisms,
keeping with Whitehead’s concept of process. The dynamical characteristics of organisms
provide deep challenges to the development of mathematical methods that promise more
than a cartoon version of living systems. They also provide a wonderful opportunity for
the creation of new mathematics through a serious interaction between mathematicians
and scientists studying living systems, in all of their complexity, much as has taken place
between mathematics and physics over the past three centuries. The essential characteristics
of living systems—generativity, becoming, fungibility, meta-stability, emergence, transience,
transients, openness, contextuality, locality and non-Kolmogorov probability—all pose
deep challenges to our usual mathematical approaches but also great opportunities. Some
inroads have already been made in terms of the study of fractal geometry, non-Kolmogorov
probability and contextuality, and iterated systems like Lindemeyer systems.

Some possible lines of future research are offered here:

1. The study of dynamics systems is dominated by generativity, fungibility, transients,
transience, and contextuality.
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2. Process dynamics appears to sit between fully deterministic and fully random
dynamics—the study of the legitimacy of this idea.

3. The application of the process algebra to the study of neurobiological systems, collec-
tive intelligence or temperament.

4. The study of generated space–time structures—the relationship between the discrete
and interpolated continuous geometries.

5. A study of local, causal temporal orderings, their topological and metrical properties,
and the effect that interactions have on linkages between them.

6. An examination of the relationship between process strategies and the classes of
functions which can be generated by them.

7. The generation of functions appears to be a novel approach distinct from that afforded
by computation theory—the study of the legitimacy of this idea.

8. The study of the relationship between process strategies and the differential/integral
equations for which their generated, interpolated functions serve as solutions.

9. The study of the range and limitations of causally local dynamics.
10. The study of the existence and origin of fundamental scales—whether they can be

found in the mathematics itself or they must be added ad hoc.

Hopefully, some of these questions will catch the interest of mathematicians and lead
to further development and application of the process algebra approach.
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