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Abstract: Diphtheria, a potentially life-threatening infectious disease, is primarily caused by the bac-
terium Corynebacterium diphtheriae. This pathogen induces a range of severe symptoms, including
respiratory distress, cardiac arrhythmias, and, in extreme cases, fatal outcomes. This paper aim to
unravel the transmission dynamics of diphtheria infection within the Caputo fractional derivatives
framework, establishing the solutions’ existence and uniqueness. Through forward normalized sensi-
tivity analysis, we scrutinize the key parameters influencing the basic reproduction number, a pivotal
metric in understanding and controlling the spread of the disease. The results indicate that reducing the
values of the interaction rate, transmission rate, and birth rate plays a key role in curtailing diphtheria
transmission. Furthermore, employing an effective numerical tool, we present graphical representations
that delineate the influence of various crucial model parameters on infection dynamics.

Keywords: diphtheria; mathematical model; existence results; sensitivity analysis; numerical results
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1. Introduction

Diphtheria is a term used to define an infectious disease of acute bacterial infection,
primarily caused by Corynebacterium diphtheriae, that is popularly known for its production
of a bacterial toxin that is cytotoxic to the human body [1,2]. It was one of the deadliest
diseases, especially in children, before the development of its vaccine in 1923 [3], which
subsequently served as a landmark towards a drastic decline in cases of diphtheria globally,
as well as one of the significant success stories of the impact of science on the health of
humanity [4]. The vaccine is part of the routine infancy immunization administered three
times before the first birthday [5]. The booster dose of the vaccine is also available at a later
stage of life when the immunity acquired from the vaccine in infancy against the bacteria
diminishes [6].

Diphtheria infection symptoms typically appear 2–5 days after infection. Mild symp-
toms include a sore throat and fever, while severe symptoms include difficulty breathing,
swallowing, and a barking cough [7]. A severe case of the disease is usually associated
with life-threatening complications when the infection spreads to the vital organs of the
body. These complications range from respiratory distress to cardiac arrhythmias and, in
extreme cases, fatal outcomes [8].

Transmission from the infected to the non-infected person can be direct through contact
with respiratory droplets, typically when the infected person coughs, sneezes, or even talks.
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Indirect transmission occurs through contact with contaminated objects, such as when
sharing cloth, food, or kitchen utensils with the infected ones. Clinically, the diagnosis is
confirmed through a throat swab specimen from the throat or nose to test for the positivity
of the bacteria, and the treatment includes diphtheria antitoxin to halt the bacterial toxin
cytotoxicity and antibiotics to eliminate the bacterial pathogen [9].

Despite the century-long existence of the diphtheria vaccine, which rendered the
disease highly vaccine-preventable and should have supposedly gone into extinction, it
remains an important threat to public health, particularly in countries with low or middle
incomes. A few reasons account for the recurrent outbreak of diphtheria around the globe.
The foremost is the certain number of cases recorded due to failure to receive the scheduled
diphtheria vaccination, as well as the suboptimal immunization program in the healthcare
settings of certain countries [10]. Moreover, the waning in the acquired protective antibody
levels from the infancy-administered vaccine over time has been attributed to the cases of
recurrent outbreaks among healthy adolescents [11,12].

Mathematical models are important for understanding the way infections spread
and enable researchers and policymakers to assess the effectiveness of interventions such
as vaccination campaigns, sanitation improvements, and behavior change initiatives for
infectious diseases. By studying the model outputs, decision-makers can make informed
choices regarding resource allocation and prioritize interventions based on their potential
impact on controlling infection outbreaks, see [13–17]. They serve as valuable scientific
tools for evaluating and comparing mitigation and prevention strategies, as well as for
assessing the impacts of various biological, socio-cultural, and ecological factors of disease
spread. By employing mathematical models, researchers can simulate and analyze the
complex interactions involved in the transmission of infectious diseases [18–22]. These
models consider population dynamics, disease characteristics, environmental factors, and
human behavior. They allow for the exploration of different scenarios, providing valuable
predictions and insights into the potential outcomes of various intervention strategies, see
for example [23–29].

Over the years, the concepts of fractional calculus have generally been applied to
various fields of study since its inception by the famous mathematicians Newton and
Leibniz, see [30–36]. The techniques of fractional derivatives allows for an understanding
of systems and phenomena that exhibit fractal, anomalous, or memory-like behavior. It
provides a mathematical framework to describe processes with long-range dependence,
non-locality, and fractional dynamics. Fractional calculus has proven particularly excellent
in modeling complex systems and phenomena, where traditional calculus fails to capture
the underlying dynamics accurately [37,38]. Recently, Mangal et al. [39], investigated the
impact of booster vaccination and awareness using a fractional-order epidemic model
(FOEM) for highly infectious diseases. The authors conducted stability analysis on the basic
reproduction number and explored the conditions for the occurrence of Hopf bifurcation in
both integer and fractional-order scenarios.

It is evident that the Caputo fractional derivative yields more biologically feasible
behavior regarding the dynamics of infectious diseases and can serve as a robust tool for
modeling physical phenomena, see [39,40] and the references cited therein. Investigating
the dynamics of diphtheria in the framework of Caputo fractional-order derivatives has not
been extensively investigated in this direction. We proposed and investigated the existence
and uniqueness of the Caputo fractional-order diphtheria infection model. In addition, to
assess the various contributions of some parameters associated with the model, a sensitivity
analysis of the corresponding basic reproduction number was examined. Furthermore,
using an effective numerical scheme, the numerical and graphical results were explored to
understand the model dynamical behavior.

Here, we present a summary of the key points regarding the diphtheria model intro-
duced in this study:

• We propose a Caputo fractional-order diphtheria model and conduct a qualitative
analysis of the model.
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• Sensitivity analyses were performed to understand the various effects of parameters
associated with R0. This helps identify the key drivers of the model that should be
targeted for effective control strategies.

• Numerical simulations were employed to demonstrate the theoretical findings of the
diphtheria model, providing insights into the dynamics.

2. Preliminaries Concepts

Some of the foremost theoretical aspects of fractional-order derivatives, which are key
to proving the theoretical analysis of the model, were reviewed in this part.

Definition 1 ([41]). Suppose that χ ∈ L1[0, a] for 0 < t < a. The operator

Iq
0,tχ(t) =

1
Γ(q)

∫ t

0
χ(x)(t − x)q−1dx, q > 0, (1)

is called the Riemann–Liouville fractional integral of the function χ of order q, such that

Γ(q) =
∫ ∞

0
vq−1e−vdv, Re(q) > 0.

Definition 2 ([41]). Suppose that the function χ ∈ C1[0, a], and 0 < q < 1. The operator

CDq
0,tχ(t) =

1
Γ(1 − q)

∫ t

0

1
(t − x)q

d
dt

χ(x)dx, t > 0, (2)

is referred to as the Caputo fractional derivative of order q of the function χ. Also, if q → 1, then
CDq

0,tχ(t) =
d
dt χ(t).

Lemma 1 ([41]). Suppose χ : [0, a] → R is continuous and y ∈ C1[0, a]. Consider{
CDq

0,ty(t) = χ(t), t ∈ [0, a], 0 < q ≤ 1,
y(0) = y0, y0 ∈ R,

(3)

then, y(t) is the solution of problem (3) if y(t) satisfies

y(t) = y0 +
1

Γ(q)

∫ t

0
χ(x)(t − x)q−1dx.

3. Diphtheria Caputo Fractional-Order Epidemic Model Formulation

In real-world applications, epidemiological models using integer-order derivatives
cannot investigate the dynamics between distinct points. Fractional-order derivative
models are regarded as more realistic and practical [42–44] because they incorporate
memory and hereditary properties into systems. They are useful for minimizing the
relative errors caused by incorrectly treated parameters during the modeling process.
Fractional modeling of biological systems offers a more profound insight into the complex
behaviors of communicable diseases. Additionally, fractional-order mathematical models
demonstrate superior alignment with real data compared with models employing integer-
order derivatives, see [45–47].

In the present model, the variables for the diphtheria transmission were defined as
follows, according to [48]. N represents the total population within a defined location
comprising of five cluster of sub-population variables; the susceptible (S), the exposed
(E), the infected (I), the quarantine (Q), and the recovered (R). ‘Susceptible’ refers to the
individuals who are not vaccinated and are thus capable of being infected by diphtheria,
whereas the ‘recovered’ implies individuals that are vaccinated and, therefore, are presumed
to be protected from being infected by diphtheria. The ‘infected’ are those individuals
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who are affected by the diphtheria disease, and their level of contact interactivity with the
susceptible individuals permits the spread of the diphtheria infection.

Moreover, the ’exposed’ are those individuals who are susceptible and have interacted
with an infected individual. As the exposed carries the risk, the extent to which they
develop full-blown diphtheria infection depends on many factors. The most significant
factor is the robust reaction of their built-in immune system, which, if adequate enough,
makes them unlikely to be infected and thus they are presumed to belong to the susceptible
group. If this natural immune reaction is inadequate, the exposed individuals could become
infected after a certain period of time. The ’quarantined’ are those individuals who are
infected by the diphtheria infection and are, therefore, sequestered to receive treatment. The
quarantined individuals may either become fully recovered or become victims of mortality
due to diphtheria disease. The assumptions of this model include that the quarantined
individuals who becomes fully recovered cannot be re-infected anymore because of their
acquired immunity against diphtheria, and that the total population (N) is affected by the
natural death rate.

The aforementioned applications of Caputo derivatives inspired our investigation into
the existence and sensitivity analyses of the dynamics of the diphtheria epidemic, utilizing
mathematical tools derived from fractional calculus. The proposed fractional-order model
in the framework of Caputo fractional derivatives is as follows:

CDq
0,tS = (1 − p)µ − αSI − δS + ϑE,

CDq
0,tE = αSI − (β + ϑ + δ)E,

CDq
0,t I = βE − (γ + δ + θ)I,

CDq
0,tQ = γI − (ϵ + δ)Q,

CDq
0,tR = pµ + ϵQ − δR,

(4)

equipped with

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0, and R(0) = R0 ≥ 0. (5)

The meaning of each state variables and parameters associated with the model (4) is
given in Table 1.

Table 1. The variables and parameters.

Compartment Description

S Susceptible individuals
E Exposed individuals
I Infected individuals
Q Quarantined individuals
R Recovered individuals

Parameters Meanings

p Proportion of vaccinated individuals within the population
µ Birth rate
α Interaction rate between the susceptible and infected individuals
δ Natural mortality rate
ϑ Proportion of the exposed individuals with good immune
β Rate of transmission
γ Rate of treatment
θ Disease induced mortality rate
ϵ Recovery rate

3.1. Analysis of the Caputo Diphtheria Fractional-Order Model

By employing the Banach fixed-point theorem, we investigate the existence and unique-
ness results of the model (4), in this part.
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Recall that X(J ) denote the Banach space of all continuous real-valued function
defined on J = [0, a] with sup norm and M = X(J )×X(J )×X(J )×X(J )×X(J ) with
the norm ∥(S, E, I, Q, R)∥ = ∥S∥ + ∥E∥ + ∥I∥ + ∥Q∥ + ∥R∥, such that ∥S∥ = sup

t∈J
|S(t)|,

∥E∥ = sup
t∈J

|E(t)|, ∥I∥ = sup
t∈J

|I(t)|, ∥Q∥ = sup
t∈J

|Q(t)|, ∥R∥ = sup
t∈J

|R(t)|.

Taking Iq
0 to each equation in system (4) gives

S(t) = S(0) + Iq
0 [(1 − p)µ − αSI − δS + ϑE],

E(t) = E(0) + Iq
0 [αSI − (β + ϑ + δ)E],

I(t) = I(0) + Iq
0 [βE − (γ + δ + θ)I],

Q(t) = Q(0) + Iq
0 [γI − (ϵ + δ)Q],

R(t) = R(0) + Iq
0 [pµ + ϵQ − δR].

(6)

Let us setting 

χ1(t, S) = (1 − p)µ − αSI − δS + ϑE,
χ2(t, E) = αSI − (β + ϑ + δ)E,
χ3(t, I) = βE − (γ + δ + θ)I,
χ4(t, Q) = γI − (ϵ + δ)Q,
χ5(t, R) = pµ + ϵQ − δR.

(7)

It is noteworthy that χj, j = 1, 2, . . . , 5, satisfies the Lipschitz condition if and only
if S(t), E(t), I(t), Q(t), and R(t) have an upper bound. Indeed, let S and S1 be two
functions, then

∥χ1 − χ1∥ = ∥(αI + δ)(S − S1∥,

≤ (α∥I∥+ δ)∥S − S1∥,

putting κ1 = (m1α + δ) where m1 = sup
t∈J

∥I∥, gives

∥χ1 − χ1∥ ≤ κ1∥S − S1∥. (8)

For χ1 and 0 ≤ κ1 < 1, the Lipschitz conditions is satisfied. Repeating the same
strategy as above, we obtain

∥χ2 − χ2∥ ≤ κ2∥E − E1∥,

∥χ3 − χ3∥ ≤ κ3∥I − I1∥,

∥χ4 − χ4∥ ≤ κ4∥Q − Q1∥,

∥χ5 − χ5∥ ≤ κ5∥R − R1∥,

(9)

where κ2 = (β + ϑ + δ), κ3 = (γ + δ + θ), κ4 = (ϵ + δ), and κ5 = δ.
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Thus, in view of Equation (7), we rewrite system (6) as

S(t)− S(0) =
1

Γ(q)

∫ t

0
(t − x)q−1χ1(x, S(t))dx,

E(t)− E(0) =
1

Γ(q)

∫ t

0
(t − x)q−1χ2(x, E(t))dx,

I(t)− I(0) =
1

Γ(q)

∫ t

0
(t − x)q−1χ3(x, I(t))dx,

Q(t)− Q(0) =
1

Γ(q)

∫ t

0
(t − x)q−1χ4(x, Q(t))dx,

R(t)− R(0) =
1

Γ(q)

∫ t

0
(t − x)q−1χ5(x, R(t))dx.

(10)

Recursively, (10) takes the form:

Sn(t) =
1

Γ(q)

∫ t

0
(t − x)q−1χ1(x, Sn−1(t))dx,

En(t) =
1

Γ(q)

∫ t

0
(t − x)q−1χ1(x, En−1(t))dx,

In(t) =
1

Γ(q)

∫ t

0
(t − x)q−1χ1(x, In−1(t))dx,

Qn(t) =
1

Γ(q)

∫ t

0
(t − x)q−1χ1(x, Qn−1(t))dx,

Rn(t) =
1

Γ(q)

∫ t

0
(t − x)q−1χ1(x, Rn−1(t))dx,

associated with S0(t) = S(0), E0(t) = E(0), I0(t) = I(0), Q0(t) = Q(0) and R0(t) = R(0).
Thus, the difference between the successive terms yields

ΨS,n(t) = Sn(t)− Sn−1(t) =
1

Γ(q)

∫ t

0
(t − x)q−1(χ1(x, Sn−1(x))− χ1(x, Sn−2(x)))dx,

ΨE,n(t) = En(t)− En−1(t) =
1

Γ(q)

∫ t

0
(t − x)q−1(χ1(x, En−1(x))− χ1(x, En−2(x)))dx,

ΨI,n(t) = In(t)− In−1(t) =
1

Γ(q)

∫ t

0
(t − x)q−1(χ1(x, In−1(x))− χ1(x, In−2(x)))dx,

ΨQ,n(t) = Qn(t)− Qn−1(t) =
1

Γ(q)

∫ t

0
(t − x)q−1(χ1(x, Qn−1(x))− χ1(x, Qn−2(x)))dx,

ΨR,n(t) = Rn(t)− Rn−1(t) =
1

Γ(q)

∫ t

0
(t − x)q−1(χ1(x, Rn−1(x))− χ1(x, Rn−2(x)))dx.
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Let us consider

Sn(t) =
n

∑
k=0

ΨSn ,k(t),

En(t) =
n

∑
k=0

ΨEn ,k(t),

In(t) =
n

∑
k=0

ΨIn ,k(t),

Qn(t) =
n

∑
k=0

ΨQn ,k(t),

Rn(t) =
n

∑
k=0

ΨRn ,k(t).

(11)

Hence,from the Equations (8) and (9) and the relations ΨS,n−1(t) = Sn−1(t)− Sn−2(t),
ΨE,n−1(t) = En−1(t) − En−2(t), ΨI,n−1(t) = In−1(t) − In−2(t), ΨQ,n−1(t) = Qn−1(t) −
Qn−2(t), ΨR,n−1(t) = Rn−1(t)− Rn−2(t), yields

∥ΨS,n∥ =
κ1

Γ(q)

∫ t

0
∥ΨS,n−1∥(t − x)q−1dx,

∥ΨE,n∥ =
κ1

Γ(q)

∫ t

0
∥ΨE,n−1∥(t − x)q−1dx,

∥ΨI,n∥ =
κ1

Γ(q)

∫ t

0
∥ΨI,n−1∥(t − x)q−1dx,

∥ΨQ,n∥ =
κ1

Γ(q)

∫ t

0
∥ΨQ,n−1∥(t − x)q−1dx,

∥ΨR,n∥ =
κ1

Γ(q)

∫ t

0
∥ΨR,n−1∥(t − x)q−1dx.

(12)

From the above analysis, we state and prove the following theorem:

Theorem 1. Suppose that the function χj : [0, T]× R5 → R, such that χj ∈ C([0, T],R) for
any S(t), E(t), I(t), Q(t), R(t) ∈ C([0, T],R) satisfies the Lipschitz and contraction condition
0 < κj < 1, j = 1, . . . , 5. Then, the diphtheria Caputo fractional-order model (4) possess a unique
solution if

Tq

Γ(q + 1)
κj < 1, j = 1, . . . , 5, (13)

is true for t ∈ [0, T].

Remark 1. The existence and uniqueness results hold significance in epidemiology as these results
are essential while constructing mathematical models that allow for predicting how diseases are
going to spread and help make decisions for public health policies and vaccination distributions, all
of which are necessary for making better decisions. For example, Newton’s second law, F = ma
and transmission dynamics of COVID-19, diphtheria, HIV/AIDS, and many more in applied fields,
such as engineering, physics, and biology.
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Proof. As S(t), E(t), I(t), Q(t), and R(t) are bounded and χj, j = 1, . . . , 5, satisfies the
Lipschitz condition, Equation (12), gives

∥ΨS,n(t)∥ ≤ ∥S0(t)∥
(

Tq

Γ(q + 1)
κ1

)n
,

∥ΨE,n(t)∥ ≤ ∥E0(t)∥
(

Tq

Γ(q + 1)
κ2

)n
,

∥ΨI,n(t)∥ ≤ ∥I0(t)∥
(

Tq

Γ(q + 1)
κ3

)n
,

∥ΨQ,n(t)∥ ≤ ∥Q0(t)∥
(

Tq

Γ(q + 1)
κ4

)n
,

∥ΨR,n(t)∥ ≤ ∥R0(t)∥
(

Tq

Γ(q + 1)
κ5

)n
.

This implies that,

∥ΨS,n∥ ≤ 1
Γ(q)

∫ t

0
(t − x)q−1(χ1(x, Sn(x))− χ1(x, Sn−1(x)))dx,

∥ΨE,n∥ ≤ 1
Γ(q)

∫ t

0
(t − x)q−1(χ1(x, En(x))− χ1(x, En−1(x)))dx,

∥ΨI,n∥ ≤ 1
Γ(q)

∫ t

0
(t − x)q−1(χ1(x, In(x))− χ1(x, In−1(x)))dx,

∥ΨQ,n∥ ≤ 1
Γ(q)

∫ t

0
(t − x)q−1(χ1(x, Qn(x))− χ1(x, Qn−1(x)))dx,

∥ΨR,n∥ ≤ 1
Γ(q)

∫ t

0
(t − x)q−1(χ1(x, Rn(x))− χ1(x, Rn−1(x)))dx.

Using the same procedure recursively, we obtain:

∥ΨS,n(t)∥ ≤ ∥S0(t)∥
(

Tq

Γ(q + 1)
κ1

)n+1
,

∥ΨE,n(t)∥ ≤ ∥E0(t)∥
(

Tq

Γ(q + 1)
κ2

)n+1
,

∥ΨI,n(t)∥ ≤ ∥I0(t)∥
(

Tq

Γ(q + 1)
κ3

)n+1
,

∥ΨQ,n(t)∥ ≤ ∥Q0(t)∥
(

Tq

Γ(q + 1)
κ4

)n+1
,

∥ΨR,n(t)∥ ≤ ∥R0(t)∥
(

Tq

Γ(q + 1)
κ5

)n+1
.

as n → ∞, ∥ΨS,n(t)∥ → 0, ∥ΨE,n(t)∥ → 0, ∥ΨI,n(t)∥ → 0, ∥ΨQ,n(t)∥ → 0, this guarantees
a solution for the proposed model (4). To show that the solution is unique, we proceed as
follows. Let a system of solutions for Equation (4) exist, say S1(t), E1(t), I1(t) Q1(t) and
R1(t), then

∥S − S1∥ =
∥∥∥ 1

Γ(q)

∫ t

0
(t − x)q−1χ1(x, S(t))− χ1(x, S1(t))dx

∥∥∥
≤

(
Tq

Γ(q + 1)
κ4

)
∥S − S1∥,

(14)
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which gives

∥S − S1∥
(

1 − Tq

Γ(q + 1)
κ4

)
≤ 0, (15)

this implies that ∥S − S1∥ = 0 as S(t) → S1(t). Repeating the same method as above, we
can obtain for E(t), I(t), Q(t), and R(t). This completes the proof of the theorem.

Among many other features, positivity and the boundlessness of solutions are among
the integral features of epidemiological models. For this purpose, for any t > 0, we show
that all the state variables are nonnegative. That is, from systems (4), we have

CDq
0,tS(t)|S=0 = (1 − p)µ + ϑE ≥ 0,

CDq
0,tE(t)|E=0 = αSI ≥ 0,

CDq
0,t I(t)|I=0 = βE ≥ 0,

CDq
0,tQ(t)|Q=0 = γI ≥ 0,

CDq
0,tR(t)|R=0 = pµ + ϵQ ≥ 0.

Theorem 2. The region

Θ =
{
(S, E, I, Q, R) ∈+: 0 < N(T)(= S(t) + E(t) + I(t) + Q(t) + R(t)) ≤ µ

δ

}
,

is positively invariant for all t ≥ 0.

Proof. Summing up the equations in model (4), yields

CDqN(t) = µ − δN, (16)

and utilizing the standard comparison theorem [49], gives

N(t) ≤
(

N(0)− µ

δ

)
Eq(−δtq) +

µ

δ
, ∀t ∈ [0, ∞).

Thus, it follows that N(t) → µ
δ , as t → ∞. Therefore,

Θ =
{
(S(t), E(t), I(t), Q(t), R(t)) ∈ R5

+ : 0 < N(t) ≤ µ

δ

}
, (17)

is the biological feasible region for the model (4).

3.2. Disease-Free Equilibrium

Let (S(t), E(t), I(t), Q(t), R(t)) = (S(0), E(0), I(0), Q(0), R(0) be steady state for the
proposed model (4). Setting the right hand sides of system (4) to zero yields

(1 − p)µ − αSI − δS + ϑE = 0,
αSI − (β + ϑ + δ)E = 0,
βE − (γ + δ + θ)I = 0,
γI − (ϵ + δ)Q = 0,
pµ + ϵQ − δR = 0.

(18)

Hence, the DFE is given by

E0 = (S(t), E(t), I(t), Q(t), R(t)) = (S(0), 0, 0, 0, R(0)),

=

(
µ(1 − p)

δ
, 0, 0, 0,

µp
δ

)
.

(19)
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3.3. Basic Reproduction Number

The basic reproduction number R0 represents the number of secondary diphtheria cases
that would be produced by a typical primary case during the infectious period in a fully
susceptible population. Utilizing the method by Driessche and Watmough [50], we have

F =

(
αSI
N
0

)
,

and

V =

(
(β + ϑ + δ)E

−βE + (γ + δ + θ)I

)
.

Therefore, R0 can be computed by ρ(FV−1), as

R0 =
αβµ(1 − p)

δ(γ + δ + θ)(β + ϑ + δ)
. (20)

Now, the following result follows from [48].

Theorem 3. The DFE of the model (4) is locally asymptotically stable if R0 < 1, otherwise it is unstable.

The epidemiological application of the above theorem is that a slight rise in diphtheria
cases does not constitute an epidemic outbreak if R0 < 1.

Theorem 4. The model (4) endemic equilibrium E1 exists if R0 > 1, where

E1 = (S1(t), E1(t), I1(t), Q1(t), R1(t))

=

(
k1k2

αβ
,

δk1k1

αβ(β + δ)
(R0 − 1),

δk1

α(β + δ)
(R0 − 1),

γδk1

αk3(β + δ)
(R0 − 1),

ϵγk1

αk3(β + δ)
(R0 − 1) +

µp
δ

)
,

(21)

and k1 = β + ϑ + δ, k2 = γ + δ + θ and k3 = ϵ + δ.

4. Sensitivity Index with Respect to R0

In this part, we assess the contribution of some of the biological parameters associated
with the basic reproduction number R0 for minimizing the spread of diphtheria by utilizing
the techniques of forward sensitivity index analysis. The formula [51]:

ΓR0
η =

η

R0
× ∂R0

∂η
, (22)

is referred to as the forward sensitivity index of variable η ∈ {α, β, µ, p, δ, ϑ, γ, θ}, which
depends on R0. It is commonly used to determine the robustness of the model predictions
for parameter values as there are usually errors in data collection and assumed parameter
changes, see for example [49,52–56].

Table 2 presents the sensitivity parameters for R0. The results indicate that the rate
of interaction the (α), transmission rate (β), birth rate (µ), and proportion of vaccinated
people within the population (p) are more sensitive parameters to R0. Thus, reducing the
rate of transmission among the infected and exposed individuals will play a key role in
controlling the basic reproduction number. This indicates that if the value of β increases by
at least 10%, the value of R0 will also increase by 5.45%. Moreover, an increase in the ratio
of infected individuals receiving treatment will also help reduce the basic reproduction
number. Increasing the treatment rate by 10% will decrease the value of R0 by 5.48%.
Therefore, identifying effective ways to adjust these parameters will play a vital role in
minimizing the duration of infection in due course.
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Table 2. Sensitivity Analysis.

Parameters Value Elasticity Index

α 0.017 +1
µ 0.019 +1
p 0.0101 +1.0203 × 10−2

δ 0.0011 −1.0025 × 100

β 18.5 +5.4530 × 10−1

ϑ 0.056 −1.3764 × 10−3

γ 0.25 −5.4813 × 10−1

θ 0.205 −4.4946 × 10−1

The surface plot in Figure 1 indicates that the value of R0 increases when the values of
β, α and µ increases. It can be observed that increasing the values of γ, p and decreasing
the values of γ will lead to a decrease in R0, as shown in Figure 2.

(a) (b)
Figure 1. Surface plot illustrating the impact of β, α, and µ on R0. (a) β (Transmission rate) versus α

(Interaction rate); (b) µ (Birth rate) versus α (Interaction rate).

(a) (b)
Figure 2. Surface plot illustrating the impact of β, γ, and p on R0. (a) γ (Treatment rate) versus β

(Transmission rate); (b) p (Vaccination rate) versus γ (Treatment rate).
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5. Graphical Analysis and Discussion

To understand the model dynamical behavior, we used an effective numerical scheme
that is stable and convergent, see [40,57]. Table 3 shows the parameter values used in the
numerical simulations of the model (4). The numerical scheme is as follows:

CSp+1 = a0 +
hq

Γ(q + 1)

p

∑
k=0

(
(p − k + 1)q − (p − k)q

)(
(1 − p)µ − αSI − δS + ϑE

)
,

CEp+1 = b0 +
hq

Γ(q + 1)

p

∑
k=0

(
(p − k + 1)q − (p − k)q

)(
αSI − (β + ϑ + δ)E

)
,

C Ip+1 = d0 +
hq

Γ(q + 1)

p

∑
k=0

(
(p − k + 1)q − (p − k)q

)(
βE − (γ + δ + θ)I

)
,

CQp+1 = e0 +
hq

Γ(q + 1)

p

∑
k=0

(
(p − k + 1)q − (p − k)q

)(
γI − (ϵ + δ)Q

)
,

CRp+1 = f0 +
hq

Γ(q + 1)

p

∑
k=0

(
(p − k + 1)q − (p − k)q

)(
pµ + ϵQ − δR

)
.

(23)

First, we numerically solved the proposed model (4) and found the numerical solu-
tions of each compartment, as depicted in Figure 3, for the case of integer-order derivatives,
(i.e., q = 1). To visualize the complex dynamical behavior of the fractional-order model (4),
and help us to obtain a deeper insight, we varied the order (q) and obtained the numerical
results shown in Figure 4. Based on the findings, we can conclude that changing the
order (q) will result in a visual representation of an increase or decrease in the number of
individuals in each compartment, which is not seen in the classical version of the model.
This hidden phenomenon can assist government agencies and medical practitioners in
controlling the spread of infection. Additionally, our findings indicate that as the order
(0 < q ≤ 1) increases, the time required for convergence decreases.

Table 2 shows that the interaction between susceptible and infected individuals has a
positive impact on infection transmission, with a sensitive index of +1. Thus, we varied
the rate of the interaction parameters, as seen in Figure 5. Figure 6 shows how changing
the transmission rate (β) affects the number of infected individuals. In response to the
results, decreasing the rate of transmission will result in fewer infected individuals. Figure 7
illustrates how increasing the treatment rate (γ) reduces the number of infected individuals.
In addition, increasing the treatment rate (γ) will reduce the basic reproduction number.

Table 3. Numerical values for the parameters of model (4).

Parameters Value Source

α 0.017 Assumption
β 18.5 [58]
ϵ 2.1429 [58]
µ 0.019 [59]
δ 0.0011 [58]
θ 0.205 Assumption
p 0.0101 [58]
ϑ 0.056 [48]
γ 0.25 [48]
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Figure 3. Model dynamical behavior of each compartment for the classical version.
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Figure 4. Model dynamical behavior of each compartment for the Caputo fractional-order version.
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Figure 5. Dynamicbehavior of the interaction rate α between the susceptible and infected individuals
when q = 0.9.
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Figure 6. Effect of the transmission rate β on the infected individuals when q = 0.9.
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Figure 7. Effect of the treatment γ on the infected individuals when q = 0.9.

6. Conclusions

Existence and sensitivity analyses are integral parts of analyzing the dynamical be-
havior of the epidemic model. This paper presents the Caputo fractional-order diphtheria
model (4), and investigates its existence and uniqueness via the techniques of the fixed-
point theorem. To minimize the spread of infection and ascertain the various impacts of
some of the parameters linked with the model (4), we conducted the forward sensitivity
analysis on R0. The numerical solutions obtained present a diverse array of graphical
results, shedding light on the dynamical and transmission mechanisms of the proposed
model. Through these graphical results, we discerned the tangible impact of certain sensi-
tive parameters on the spread of infection and identified potential strategies to mitigate
diphtheria transmission. Moreover, the fractional diphtheria model based on the Caputo
operator provides sufficient information to understand the epidemic transmission process
and identify the crucial factors for its spread; more detailed analysis requires new tools to
uncover previously unnoticed behaviors in such nonlinear epidemiological systems. There-
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fore, operators such as Atangana–Baleanu, Caputo–Fabrizio, and Atangana–Gomez use real
data and incorporating the optimal control strategies are necessary for further exploration.
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