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Abstract: A VDB (vertex-degree-based) topological index over a set of digraphs H is a function
φ : H → R, defined for each H ∈ H as

φ(H) =
1
2 ∑

uv∈E
φd+u d−v ,

where E is the arc set of H, d+u and d−v denote the out-degree and in-degree of vertices u and v
respectively, and φij = f (i, j) for an appropriate real symmetric bivariate function f . It is our goal
in this article to introduce a new approach where we base the concept of VDB topological index
on the space of real matrices instead of the space of symmetric real functions of two variables. We
represent a digraph H by the p × p matrix α(H) , where [α(H)]ij is the number of arcs uv such that
d+u = i and d−v = j, and p is the maximum value of the in-degrees and out-degrees of H. By fixing a
p × p matrix φ, a VDB topological index of H is defined as the trace of the matrix φTα(H). We show
that this definition coincides with the previous one when φ is a symmetric matrix. This approach
allows considering nonsymmetric matrices, which extends the concept of a VDB topological index to
nonsymmetric bivariate functions.

Keywords: VDB topological indices; digraphs; space of matrices; general first Zagreb index
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1. Introduction

A directed graph (or just a digraph) D consists of a nonempty finite set V of elements
called vertices and a finite set E of ordered pairs of distinct vertices called arcs. Two vertices
are called adjacent if they are connected by an arc. If there is an arc from vertex u to vertex
v, we indicate this by writing uv. The in-degree (resp. out-degree) of a vertex v, denoted by
d−v (resp. d+v ) is the number of arcs of the form uv (resp. vu), where u ∈ V.

Directed graphs arise in a natural way in many applications of graph theory. Social
networks are often modeled as directed graphs, representing networks with directionality
such as social media interactions [1]. The same occurs with transportation networks [2].
Moreover, specific types of digraphs, such as derivable digraphs, are used in wireless
sensor networking [3].

The theory of VDB topological indices of graphs is a widely investigated topic in the
mathematical and chemical literature [4–14]. The concept of a VDB topological index of a
digraph was introduced in [15] as a generalization of VDB topological indices of graphs.
Namely, a VDB topological index over a set of digraphs H is a function φ : H −→ R,
defined for each H ∈ H as

φ(H) =
1
2 ∑

uv∈E
φd+u d−v ,

where φij is an appropriate bivariate function which satisfies φij = φji. In the mentioned
paper, the Randić index of a digraph was obtained, and the extreme value problem of the
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Randić index over the set of oriented trees with n vertices was solved. More recent studies
of the topic of VDB topological indices of digraphs can be found in [16–20].

In this article, we introduce a new matrix approach to the concept of VDB topological
index, where each of these indices is defined by a real matrix φ. Related to this definition,
we introduce the concept of an affine subspace of a digraph providing a geometrical
interpretation of the VDB topological index of a digraph.

In case the matrix φ is symmetric, we recover the concept of the VDB topological index
usually induced by symmetric real functions of two variables. However, by considering
nonsymmetric matrices, we obtain an extension of this concept to nonsymmetric bivariate
functions. This is the main difference with the concept of a VDB topological index of a
digraph introduced in [15], since it is based on a symmetric function. In Section 5, we
study the general first Zagreb index over the set of orientations of a path. This index is an
example of a VDB topological index induced by a nonsymmetric matrix.

Finally, we show that our approach can be used for some distance-based topological
indices, such as the Szeged [21] and the Mostar [22] indices.

2. Preliminaries

Given a digraph D with vertex set V and arc set E, we denote by ∆+(D) and ∆−(D)
the maximal out-degree and maximal in-degree, respectively, among all vertices in D. A
vertex v is called an isolated vertex if d+v = 0 = d−v , a source vertex if d−v = 0 < d+v , and a
sink vertex if d+v = 0 < d−v .

We say that D is an oriented graph if, whenever uv ∈ E then vu /∈ E. An oriented
graph D is obtained from a graph G by assigning a direction to each edge of G; D is called
an orientation of G. An example of an orientation of a graph is the so-called sink-source
orientation, in which every vertex is a sink vertex or a source vertex. On the other hand,
we have balanced orientations of a graph, where the difference between the in-degree and
out-degree of each vertex is at most 1.

Let us denote by Dn the set of digraphs with n non-isolated vertices.
Recall that a graph G can be identified with its symmetric digraph G, where each edge

in G is replaced by a pair of symmetric arcs in G. Let us denote by Gn ⊆ Dn the set of
graphs with n vertices. The theory of symmetric VDB topological indices over a set H ⊆ Gn
has been studied extensively in the past decades. In fact, in this theory it is always assumed
that φ =

(
φij
)

is induced by a symmetric bivariate function φij.
The space of p × p real matrices is denoted by Mp(R). If M ∈ Mp(R), then [M]ij is

the ij-entry of M. In this way, tr(M) = ∑n
i=1[M]ii is the trace of M. The transpose of M is

denoted by M⊤. For each M ∈ Mp(R) we have the linear functional ⟨M,−⟩ : Mp(R) −→
R defined as ⟨M, N⟩ = tr

(
M⊤N

)
, for every N ∈ Mp(R).

3. Affine Subspace of a Digraph

In this section, we introduce the matrix approach to the concept of the VDB topological
index and define the affine subspace of a digraph.

Definition 1. Let H ⊆ Dn. The maximal degree of H is the number

max
{

max
H∈H

{
∆+(H)

}
, max

H∈H
{

∆−(H)
}}

.

Let H ⊆ Dn with maximal degree p. We represent each graph H ∈ H by the matrix
α(H) ∈ Mp(R), where [α(H)]ij is the number of arcs uv such that d+u = i and d−v = j. In
this way we have a representing function α : H −→ Mp(R) of the set H into the space
of matrices Mp(R). On the other hand, fix a matrix φ ∈ Mp(R), and consider the linear
functional ⟨φ,−⟩ : Mp(R) −→ R defined as ⟨φ, M⟩ = tr

(
φ⊤M

)
, for each M ∈ Mp(R).
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Definition 2. The function φ̂ : H −→ R defined as φ̂ = 1
2 ⟨φ,−⟩ ◦ α is called a VDB topological

index defined over H.

Example 1. Let D denote the digraph depicted in Figure 1. The sequence of out-degrees of D is
{1, 1, 0, 3} while the sequence of in-degrees of D is {1, 2, 2, 0} . Consequently, D has maximal

degree p = 3 and it is represented by a 3 × 3 matrix α(D) =

0 2 0
0 0 0
1 2 0

.

Figure 1. Digraph used in Example 1.

Consider the matrix SC ∈ M3(R) whose ij-entry is given by [SC]ij = (i + j)−
1
2 :

SC =


1√
2

1√
3

1
2

1√
3

1
2

1√
5

1
2

1√
5

1√
6


The VDB topological index ŜC of digraph D, denoted by ŜC(D), is obtained by the composition

D α−→ α(D) ∈ M3(R)
⟨SC,−⟩−→ ŜC(D) ∈ R

and its value is

ŜC(D) =
1
2
⟨SC, α(D)⟩ = 1

2
tr
(
SC⊤α(D)

)
=

1
2

tr


1
2

2√
2
+ 1 0

1√
5

2√
3
+ 2√

5
0

1√
6

1 + 2√
6

0


=

1
4
+

1√
3
+

1√
5

.

We next show that Definition 2 coincides with the definition of VDB topological index
of digraphs given in ([15], Definition 2.1), when matrix φ ∈ Mp(R) is symmetric.

Lemma 1. Let φ̂ be a VDB topological index over the set H ⊆ Dn of degree p. If H ∈ H, then

φ̂(H) =
1
2

p

∑
i=1

p

∑
k=1

[φ]ki[α(H)]ki =
1
2 ∑

uv∈E
φd+u d−v ,

where E is the set of arcs in H.

Proof. If H ∈ H, then

φ̂(H) =

(
1
2
⟨φ,−⟩ ◦ α

)
(H) =

1
2
⟨φ, α(H)⟩ = 1

2
tr
(

φ⊤α(H)
)

=
1
2

p

∑
i=1

[
φ⊤α(H)

]
ii
=

1
2

p

∑
i=1

p

∑
k=1

[
φ⊤
]

ik
[α(H)]ki

=
1
2

p

∑
i=1

p

∑
k=1

[φ]ki[α(H)]ki =
1
2 ∑

uv∈E
φd+u d−v .
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Example 2. Let H = O(Pn) be the set of all orientations of the path Pn of n vertices. Clearly, H has

maximal degree 2. Consequently, each H ∈ H is represented by a 2 × 2 matrix α(H) =

(
a b
c d

)
,

where a, b, c, d are real nonnegative numbers such that

a + b + c + d = n − 1 (1)

a + b + c ≥ 2. (2)

Consider the matrix R ∈ M2(R) whose ij-entry is given by [R]ij = (ij)−
1
2 :

R =

(
1 1√

2
1√
2

1
2

)

Then we obtain the VDB topological index R̂ as the composition

H α−→ M2(R)
⟨R,−⟩−→ R.

For instance, consider the balanced orientation H0 of Pn given in Figure 2. Then clearly

α(H0) =

(
n − 1 0

0 0

)
and so

R̂(H0) =
1
2
⟨R, α(H0)⟩ =

1
2
(n − 1).

On the other hand, if n is even and H1 is a sink-source orientation of Pn (see Figure 2), then

α(H1) =

(
0 1
1 n − 3

)
. If n is odd, then H2 and H3 are sink-source orientations of Pn (see

Figure 2) with α(H2) =

(
0 2
0 n − 3

)
and α(H3) =

(
0 0
2 n − 3

)
. In either case,

R̂(Hi) =
1
2
⟨R, α(Hi)⟩ =

1
2

(
2√
2
+

n − 3
2

)
,

where i ∈ {1, 2, 3}.

H0 H1

H2 H3

Figure 2. Balanced and sink-source orientations of Pn.

Let us assume that φ̂ is a VDB topological index over the set H ⊆ Dn of maximal
degree p. Note that the kernel of ⟨φ,−⟩, which we denote by Kφ, is a hyperspace of Mp(R).
In other words, Kφ is a subspace of Mp(R) of dimension p2 − 1. Furthermore, let us denote
by K+

φ and K−
φ the upper and lower open halfspaces determined by Kφ:

K+
φ =

{
M ∈ Mp(R) : ⟨φ, M⟩ > 0

}
, (3)

and
K−

φ =
{

M ∈ Mp(R) : ⟨φ, M⟩ < 0
}

. (4)
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Definition 3. Let φ̂ be a VDB topological index over H ⊆ Dn of maximal degree p and H0 ∈ H.
The affine subspace of H0 is denoted by A(H0) and defined as

A(H0) = Kφ + α(H0).

Furthermore, the affine upper and lower open halfspaces of H0 are

A+(H0) = K+
φ + α(H0) and A−(H0) = K−

φ + α(H0),

respectively.

In other words, each H0 ∈ H divides the space of matrices Mp(R) into two open
halfspaces: A+(H0) and A−(H0) (see Figure 3).

Mp(R)

α(H0)

Kφ

A(H0)

A+(H0)

A−(H0)

0

Figure 3. H0 ∈ H divides the space of matrices Mp(R) into two open halfspaces.

Theorem 1. Let φ̂ be a VDB topological index over H ⊆ Dn of maximal degree p and H0 ∈ H.
Given H ∈ H, the following conditions hold:

1. φ̂(H) = φ̂(H0) if and only if α(H) ∈ A(H0);
2. φ̂(H) > φ̂(H0) if and only if α(H) ∈ A+(H0);
3. φ̂(H) < φ̂(H0) if and only if α(H) ∈ A−(H0).

Proof. 1. This is a consequence of the following equivalences:

φ̂(H) = φ̂(H0) ⇔ 1
2
⟨φ, α(H)⟩ = 1

2
⟨φ, α(H0)⟩ ⇔ ⟨φ, α(H)− α(H0)⟩ = 0

⇔ α(H)− α(H0) ∈ Kφ ⇔ α(H) ∈ A(H0).

2. It follows from the equivalences

φ̂(H) > φ̂(H0) ⇔ 1
2
⟨φ, α(H)⟩ > 1

2
⟨φ, α(H0)⟩ ⇔ ⟨φ, α(H)− α(H0)⟩ > 0

⇔ α(H)− α(H0) ∈ K+
φ ⇔ α(H) ∈ A+(H0).

3. This is similar to the proof of 2.
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Definition 4. Let φ̂ be a VDB topological index over H ⊆ Dn of maximal degree p and H0 ∈ H.
We say that H0 is maximal (resp. minimal) in H with respect to φ̂ if φ̂(H0) ≥ φ̂(H) (resp.
φ̂(H0) ≤ φ̂(H)), for all H ∈ H.

Corollary 1. Let φ̂ be a VDB topological index over H ⊆ Dn of maximal degree p and H0 ∈ H.
Then:

1. H0 is maximal in H with respect to φ̂ if and only if α(H) ∩A+(H0) = ∅;
2. H0 is minimal in H with respect to φ̂ if and only if α(H) ∩A−(H0) = ∅.

Proof. This is a direct consequence of Theorem 1.

Example 3. Consider the VDB topological index R̂ over H = O(Pn) as described in Example 2,
and H0, H1, H2, H3 as defined in Example 2 (see Figure 2). Then

KR =

{(
x y
w z

)
∈ M2(R) : x +

y√
2
+

w√
2
+

z
2
= 0

}
.

Let H ∈ H with matrix representation α(H) =

(
a b
c d

)
. Then

α(H)− α(H0) =

(
a − (n − 1) b

c d

)
,

and by (1),

a − (n − 1) +
b√
2
+

c√
2
+

d
2
= −b − c − d +

b√
2
+

c√
2
+

d
2
≤ 0.

Hence, α(H) ∩ A+(H0) = ∅ and so by Corollary 1, H0 is maximal in H with respect to R̂.
Similarly,

α(H)− α(H1) =

(
a b − 1

c − 1 d − (n − 3)

)
α(H)− α(H2) =

(
a b − 2
c d − (n − 3)

)
α(H)− α(H3) =

(
a b

c − 2 d − (n − 3)

)
,

In either case by (1) and (2)

a +
b + c − 2√

2
+

d − (n − 3)
2

=
1
2

[
a + b(

√
2 − 1) + c(

√
2 − 1)− 2(

√
2 − 1)

]
≥

√
2 − 1
2

(a + b + c − 2) ≥ 0.

Consequently, α(H) ∩A−(Hi) = ∅ and so by Corollary 1, Hi is minimal in H with respect to R̂
for each i ∈ {1, 2, 3}. Compare with ([15], Theorem 5.1).

4. Symmetric VDB Topological Indices

We begin this section defining the concept of symmetric VDB topological indices.

Definition 5. Let φ̂ be a VDB topological index over H ⊆ Dn of maximal degree p. We say that φ̂
is a symmetric VDB topological index if φ is a symmetric matrix, i.e. φ = φ⊤. Otherwise, we say
that φ̂ is a nonsymmetric VDB topological index.
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Example 4. Let H ⊆ Dn be a set of digraphs of maximal degree p and r, s ∈ R. We define the
general first Zagreb index M̂r,s

1 to be the VDB topological index induced by the p × p matrix with
ij-entries

[
Mr,s

1
]

ij = ir + js. Clearly, M̂r,s
1 is a symmetric VDB topological index if and only if

r = s. Note that M̂1,1
1 is the usual first Zagreb M̂1 index.

Definition 2 perfectly allows the possibility of considering nonsymmetric VDB topo-
logical indices defined over a set of graphs. However, if H ⊆ Gn has maximal degree p,
then the representing function α : H −→ Mp(R) satisfies α(H) = α(H)⊤, for all H ∈ H,
since clearly, in this case, the number of arcs from vertices with out-degree i to vertices with
in-degree j is the same as the number of arcs from vertices with out-degree j to vertices
with in-degree i, for all 1 ≤ i, j ≤ p. Based on this fact, we will show next that any VDB
topological index defined over a set H ⊆ Gn can be reduced to a symmetric VDB topological
index over H.

Theorem 2. Let φ̂ be a VDB topological index defined over a set H ⊆ Gn of maximal degree p. Let
Sφ = 1

2
(

φ + φ⊤) be the symmetric part of φ. Then φ̂(H) = Ŝφ(H) for all H ∈ H.

Proof. We know that α(H) = α(H)⊤ for all H ∈ H, since H ⊆ Gn. Consequently,

⟨φ, α(H)⟩ = tr
(

φ⊤α(H)
)
= tr

(
α(H)⊤φ

)
= tr(α(H)φ)

= tr(φα(H)) = ⟨φ⊤, α(H)⟩.

Hence,

2Ŝφ(H) = ⟨Sφ, α(H)⟩ = 1
2
⟨φ + φ⊤, α(H)⟩

=
1
2
⟨φ, α(H)⟩+ 1

2
⟨φ⊤, α(H)⟩

= ⟨φ, α(H)⟩ = 2φ̂(H).

Example 5. Consider the general first Zagreb index M̂1,2
1 over the set Tn of all trees with n ≥ 2

vertices. If T ∈ Tn, then by Theorem 2,

M̂1,2
1 (T) = ŜM1,2

1
(T) =

1
2

(
M̂1,1

1 (T) + M̂2,2
1 (T)

)
=

1
2

(
M̂1(T) + F̂ (T)

)
,

where M̂1 and F̂ are the first Zagreb index and Forgotten index, respectively. In particular,
using ([23], Corollaries 1 and 2) we can solve the extreme value problem of M̂1,2

1 over the set of trees
with n ≥ 2 vertices:

6n − 10 ≤ M̂1,2
1 (T) ≤ 1

2
(n − 1)(n2 − n + 2). (5)

Equality in the left-hand side of (5) holds if and only if T = Pn, while equality in the right-hand
side ocurrs if and only if T = Sn.

5. The General First Zagreb Index over Orientations of the Path

It follows from our previous section that the study of VDB topological indices over a
set of graphs reduces to the study of symmetric VDB topological indices. It is our interest
in this section, to analyze a VDB topological index over a set of digraphs (which are not
graphs). Specifically, we study the general first Zagreb index over the set H = O(Pn) as
described in Example 2.
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Let r, s be two different positive real numbers and consider the general first Zagreb
index M̂r,s

1 over O(Pn). Recall that H0 is a balanced orientation of Pn and H1, H2, H3 are
sink-source orientations of Pn (see Figure 2). Note that H2 is the inverse orientation of
H3, however, M̂r,s

1 (H2) ̸= M̂r,s
1 (H3), which is a consequence of the fact that M̂r,s

1 is a
nonsymmetric VDB topological index.

Theorem 3. Let r, s be two different positive real numbers and n > 3 an integer. Then:

1. H0 is minimal in O(Pn) with respect to M̂r,s
1 .

2. If n is even, then H1 is maximal in O(Pn) with respect to M̂r,s
1 .

3. If n is odd and r < s, then H2 is maximal in O(Pn) with respect to M̂r,s
1 .

4. If n is odd and r > s, then H3 is maximal in O(Pn) with respect to M̂r,s
1 .

Proof. Let H ∈ H = O(Pn) with matrix representation α(H) =

(
a b
c d

)
,

Mr,s
1 =

(
2 1 + 2s

1 + 2r 2r + 2s

)
∈ M2(R),

and

KMr,s
1
=

{(
x y
w z

)
∈ M2(R) : 2x + y(1 + 2s) + w(1 + 2r) + z(2r + 2s) = 0

}
.

1. α(H)− α(H0) =

(
a − (n − 1) b

c d

)
. By (1),

⟨Mr,s
1 , α(H)− α(H0)⟩ = 2a − 2(n − 1) + b(1 + 2s) + c(1 + 2r) + d(2r + 2s)

= −2b − 2c − 2d + b(1 + 2s) + c(1 + 2r) + d(2r + 2s)

= b(2s − 1) + c(2r − 1) + (2r + 2s − 2)d ≥ 0.

Hence, α(H) ∩ A−(H0) = ∅. By Corollary 1, H0 is minimal in H with respect to
M̂r,s

1 and

M̂r,s
1 (H0) =

1
2
⟨Mr,s

1 , α(H0)⟩ = (n − 1).

2. Let n > 3 be even. α(H)− α(H1) =

(
a b − 1

c − 1 d − (n − 3)

)
. Using (1) we obtain,

⟨Mr,s
1 , α(H)− α(H1)⟩ = 2a + (b − 1)(1 + 2s) + (c − 1)(1 + 2r)

+(d − (n − 3))(2r + 2s)

= 2a + (b − 1)(1 + 2s) + (c − 1)(1 + 2r)

+(2 − a − b − c)(2r + 2s)

= −(a + b − 1)(2r − 1)− (a + c − 1)(2s − 1)

≤ 0,

if a + b ≥ 1 and a + c ≥ 1. If a + b = 0, by (2) c ≥ 2, and consequently d ≤ n − 3. The
only orientation of Pn satisfying these conditions is H3, but this orientation only exists
when n is odd. Similarly, if a + c = 0, by (2) b ≥ 2, and consequently d ≤ n − 3. The
only orientation of Pn satisfying these conditions is H2, but this orientation only exists
when n is odd.
Hence, α(H) ∩ A+(H1) = ∅. By Corollary 1, H1 is maximal in H with respect to
M̂r,s

1 and

M̂r,s
1 (H1) =

1
2
⟨Mr,s

1 , α(H1)⟩ =
1
2
(n − 2)(2r + 2s) + 1.
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3. Let n > 3 be odd and r < s. α(H)− α(H2) =

(
a b − 2
c d − (n − 3)

)
. Using (1) and (2)

we obtain,

⟨Mr,s
1 , α(H)− α(H2)⟩ = 2a + (b − 2)(1 + 2s) + c(1 + 2r)

+(d − (n − 3))(2r + 2s)

= 2a + (b − 2)(1 + 2s) + c(1 + 2r)

+(2 − a − b − c)(2r + 2s)

= −(a + b + c − 2)(2r − 1)− a(2s − 1)− c(2s − 2r)

≤ 0,

Hence, α(H) ∩ A+(H2) = ∅. By Corollary 1, H2 is maximal in H with respect to
M̂r,s

1 and

M̂r,s
1 (H2) =

1
2
⟨Mr,s

1 , α(H2)⟩ =
1
2
(n − 1)(2r + 2s)− 2r + 1.

4. Let n > 3 be odd and r > s. α(H)− α(H3) =

(
a b

c − 2 d − (n − 3)

)
. Using (1) and (2)

we obtain,

⟨Mr,s
1 , α(H)− α(H2)⟩ = 2a + b(1 + 2s) + (c − 2)(1 + 2r)

+(d − (n − 3))(2r + 2s)

= 2a + b(1 + 2s) + (c − 2)(1 + 2r)

+(2 − a − b − c)(2r + 2s)

= −(a + b + c − 2)(2s − 1)− a(2r − 1)− b(2r − 2s)

≤ 0,

Hence, α(H) ∩ A+(H3) = ∅. By Corollary 1, H3 is maximal in H with respect to
M̂r,s

1 and

M̂r,s
1 (H3) =

1
2
⟨Mr,s

1 , α(H3)⟩ =
1
2
(n − 1)(2r + 2s)− 2s + 1.

Remark 1. By reversing the inequalities in the proof of Theorem 3, we deduce a dual version of
Theorem 3 when r, s are two different negative real numbers, by simply substituting ’minimal’ by
’maximal’ and viceversa.

6. Discussion

A VDB topological index over a set of digraphs H ⊆ Dn of maximal degree p is
the composition

H α−→ Mp(R)
⟨φ,−⟩−→ R,

where α is a representing function of H in the space of matrices Mp(R) and φ ∈ Mp(R).
What makes it a vertex-degree-based topological index is the fact that the matrix representing
the digraph H ∈ H has entries containing information about the degrees of the vertices,
namely, the degrees of the end-vertices of each arc in H. A natural question arises: what
kind of topological indices do we obtain when we change the representing function of the
set H of digraphs?

Let us discuss one specific example. Let G be a connected graph with vertex set V and
edge set E. For u, v ∈ V, we denote by dG(u, v) the distance of u and v in G, that is, the
length of the shortest path connecting u and v in G. Furthermore, we write nG(u, v) for the
number of vertices in G closer to u than to v.
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Consider the set Cn of all connected graphs with n vertices. Clearly, Cn has maximal
degree n − 1. We represent each graph G ∈ Cn by the matrix β(G) ∈ Mn−1(R), where
[β(G)]ij is the number of edges e = uv such that nG(u, v) = i and nG(v, u) = j. On the
other hand, consider the matrix S ∈ Mn−1(R), defined in each ij-entry as [S]ij = ij. Then

we consider the composition Ŝ = 1
2 ⟨S,−⟩ ◦ β. It turns out that for each G ∈ Cn,

Ŝ(G) = ∑
e=uv∈E(G)

nG(u, v)nG(v, u).

This is precisely the well-known Szeged index introduced by Gutman in [21]. Similarly,
if we choose the matrix M ∈ Mn−1(R) with ij-entry [M]ij = |i − j|, then the composition

M̂ = 1
2 ⟨M,−⟩ ◦ β yields for each G ∈ Cn,

M̂(G) = ∑
e=uv∈E(G)

|nG(u, v)− nG(v, u)|.

In this case we obtain the well-known Mostar index introduced in [22]. More gener-
ally, given any matrix ψ ∈ Mn−1(R), we can define the Szeged-like topological index
ψ̂ = 1

2 ⟨ψ,−⟩ ◦ β over Cn.

7. Conclusions

In conclusion, this new matrix approach to topological indices via a representing
function of the set of digraphs into the space of matrices formalizes, unifies and gives
a geometrical interpretation to the concept of a topological index. Also, it is important
to emphasize that even in the case of graphs, it is possible to study nonsymmetric VDB
topological indices (for instance, matrices induced by nonsymmetric bivariate functions
as in the case of the general first Zagreb index), but in view of Theorem 2, these indices
reduce to the study of symmetric VDB topological indices. Finally, it is important to point
out that this matrix approach can be extended to different classes of topological indices,
not necessarily vertex-degree-based indices.
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