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Abstract: A qualitative study for a second-order boundary value problem with local or nonlocal
diffusion and a cubic nonlinear reaction term, endowed with in-homogeneous Cauchy–Neumann
(Robin) boundary conditions, is addressed in the present paper. Provided that the initial data meet
appropriate regularity conditions, the existence of solutions to the nonlocal problem is given at
the beginning in a function space suitably chosen. Next, under certain assumptions on the known
data, we prove the well posedness (the existence, a priori estimates, regularity, uniqueness) of the
classical solution to the local problem. At the end, we present a particularization of the local and
nonlocal problems, with applications for image processing (reconstruction, segmentation, etc.). Some
conclusions are given, as well as new directions to extend the results and methods presented in
this paper.

Keywords: qualitative properties of solutions; nonlinear PDE of parabolic type; reaction–diffusion
equations; fixed points; Leray–Schauder degree theory; diffusion processes; image analysis; applica-
tions in engineering and industry; existence of solutions; optimization; phase changes; sensitivity;
stability; parametric optimization; biomedical imaging; image processing (compression, reconstruc-
tion, segmentation, etc.)
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94A08

1. Introduction

Industrial image processing plays a very important role in ensuring quality control
and automation across many sectors [1–3]. As part of the vast image processing domain,
image segmentation is one of the main building blocks of other image processing tasks
such as object detection and image classification [4–7]. Image segmentation is simply the
process of partitioning images into meaningful subregions, and although the techniques
used for segmentation operations are constantly improving, their accurate implementation
in certain industrial scenarios remains challenging.

Industrial imaging systems have noise characteristics and constraints that compli-
cate segmentation tasks. Existing research is often based on heuristic methods [4,8] or
machine learning algorithms [9–12], which, while effective in certain cases, may need
more fine-tuning to adapt to the specific challenges posed by industrial environments. For
example, image segmentation is widely used in a lot of applications involving medical
imaging [13,14]. Many of the noninvasive imaging techniques developed for medicine, like
radiography, computer tomography (CT), and near-infrared spectroscopy (NIRS) used for
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neuroimaging [15]; magnetic resonance imaging (MRI) [16–19]; elastography; tomography;
and echocardiography, have scientific and biomedical applications [20].

The present research addresses some of the limitations of current segmentation meth-
ods in industrial image processing by proposing an alternative approach that integrates
analytical modeling principles [21–26] with computational techniques [27,28].

We aim to provide a theoretical foundation for image segmentation frameworks
in order to make them more robust and adaptable to the complexities encountered in
industrial applications.

In the following sections, we will describe the new proposed mathematical framework
for our problem. Let Ω ⊂ IR2 be a bounded, closed domain of Lebesgue measures, |Ω|,
with a C2 boundary, ∂Ω, and [0, T], T > 0, be a generic time interval. We consider the
following nonlocal and nonlinear second-order boundary value problem:

∂

∂t
V(t, x)=M

(
t, x,∇V(t, x)

)
N
(
t, x,∇V(t, x)

)∫
Ω

J(x−y)
[
V(t, y)−V(t, x)

]
dy

+
∫

∂Ω

G(x − ys)
[
g f r (t, ys)− pt V(t, x)

]
dys

+M
(
t, x,∇V(t, x)

)
∇N

(
t, x,∇V(t, x)

)
· ∇V(t, x)

+ pr

[
V(t, x)−V3(t, x)

]
+gd(t, x), (t, x) ∈ Q = (0, T]× Ω,

V(0, x) = V0(x), x ∈ Ω,

(1)

where

• t ∈ (0, T], with T > 0 and x = (x1, x2), varies in Ω;
• pr > 0 and pt > 0 are physical parameters (measures of the interface’s thickness and

the heat transfer coefficient, for example);

•
∂

∂t
V(t, x) is the partial derivative of V(t, x) with respect to t;

• In the following equation, we denote the gradient of V(t, x) in x by ∇V(t, x) = Vx (t, x)
(∇V = Vx in short); that is,

∇V(t, x) =
(

∂

∂x1
V(t, x),

∂

∂x2
V(t, x))

)
.

We set
∂

∂xi
V = Vxi , with i = 1, 2, and so Vx = ∇V =

(
Vx1

, Vx2

)
;

• gd(t, ·) ∈ L∞(Ω) is a given real function (the distributed control);

• g f r (t, x) ∈ L∞((0, T], L∞(∂Ω)) is a given real function (the boundary control);

• dy represents the volume element dy1dy2, y = (y1, y2) ∈ IR2;

• dys represents the surface element in the surface integral;

• V(t, x) (hereafter, V) is an unknown function. J and G are symmetric, continuous,
nonnegative real functions defined on IR2, compactly supported in the unit ball such
that

∫
IR2

J(z)dz = 1 and
∫

IR2
G(z)dz = 1. We consider

m1 = max
x∈R2

|J(x)| and m2 = max
x∈R2

|G(x)|; (2)
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• M
(
t, x,∇V(t, x)

)
and N

(
t, x,∇V(t, x)

)
are positive and bounded nonlinear real func-

tions of class C1(Q), attached to the solutions, V(t, x), of problem (1), with bounded
derivatives and the role of controlling the speed of the diffusion process and enhancing the
edges (e.g., in the evolving image), and they are assumed to satisfy

∃ L1 ∈ (0, ∞) such that |M
(
t, x, z

)
| ≤ L1 ,

∃ L2 ∈ (0, ∞) such that |N
(
t, x, z

)
| ≤ L2 ,

∀(t, x, z) ∈ Q × IR2. (3)

Moreover, let us note that the functions M and N depend on t, x, and ∇V(t, x).
A particular case where M and N depend on ∇V(t, x) can be found in [29];

• V0(x) ∈ L∞(Ω) is the initial condition.

We denote this by
m̂ = 2|Ω|L1 L2 m1 + cpt m2 + pr , (4)

where c > 0 in (4) comes from the continuous embedding L∞(Ω) ⊂ L∞(∂Ω), which implies
the inequality ∥V∥L∞(∂Ω) ≤ c∥V∥L∞(Ω) (Ω being assumed to be closed and bounded).

Let m3 , m4 ∈ (0, ∞) such that
sup
x∈Ω

|gd(t, x)| ≤ m3 ,

sup
x∈Ω

|M
(
t, x,∇V(t, x)

)
∇N

(
t, x,∇V(t, x)

)
· ∇V(t, x)| ≤ m4 ,

∀t ∈ (0, T]. (5)

Problem (1) is a nonlocal one due to the diffusion of the density, V(t, x), which depends
on all values of V through the convolution-like term (see [1,13,21,29,30])

(J∗V)(t, x)=
∫
Ω

J(x−y)V(t, y)dy. (6)

Numerical approximations of the solutions to the nonlocal problem (1) can be found
in [12,22,27,31,32], while for the study of well posedness, we guide the reader to the
studies [21,30,33].

Details about the terms J(x − y),
∫
Ω

J(x − y)V(t, y)dy, and −
∫
Ω

J(x−y)V(t, x)dy from (1)

can be found in [13,33,34] and the references therein.
The second integral in (1) takes into consideration the prescribed bidirectional flux

at the boundary ∂Ω (according to the sign of g f r (t, x), (t, x) ∈ Σ = (0, T] × ∂Ω). Thus,
the density V(t, x) verifies Equation (1) without any internal or external sources.

The nonlocal reaction–diffusion problem (1) can be seen as similar to the local
reaction–diffusion equation with in-homogeneous Cauchy–Neumann boundary condi-
tions (see [3,20,29,31]), namely

∂

∂t
V(t, x)− M

(
t, x,∇V(t, x)

)
div
(

N
(
t, x,∇V(t, x)

)
∇V(t, x)

)
= pr

[
V(t, x)−V3(t, x)

]
+gd(t, x) in Q

∂

∂n
V(t, x) + pt V(t, x) = g f r (t, x) on Σ

V(0, x) = V0(x) on Ω.

(7)
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where n = n(x,y) is a vector of the outward unit normal to the surface Σ and the initial
condition, V0(x), is assumed to verify the compatibility condition:

∂

∂n
V0(x) + pt V0(x) = g f r (0, x) on ∂Ω. (8)

For the readers’ convenience, we recall that the connection between problems (1)
and (7) derives from the following relation:

M
(
t, x,∇V(t, x)

)
div
(

N
(
t, x,∇V(t, x)

)
∇V(t, x)

)
= M

(
t, x,∇V(t, x)

)[
N
(
t, x,∇V(t, x)

)
∆V(t, x) +∇N

(
t, x,∇V(t, x)

)
· ∇V(t, x)

]
,

with the mention that the Laplace operator, ∆V(t, x), is approximated by
∫
Ω

J(x−y)
[
V(t, y)−

V(t, x)
]
dy (see [33] and references therein).

Concerning Equation (7)1, we recall that

aij
(
t, x, Vx(t, x)

)
=

∂

∂Vxj

M
(
t, x, Vx(t, x)

)
N
(
t, x, Vx(t, x)

)
Vxi (t, x), i = 1, 2,

a
(
t, x, v(t, x), vx(t, x)

)
= − ∂

∂xi
M
(
t, x, Vx(t, x)

)
N
(
t, x, Vx(t, x)

)
Vxi (t, x)

−pr

[
V(t, x)− V3(t, x)

]
− gd(t, x),

while (7)2 is expressed so that[
aij
(
t, x, Vx(t, x)

)
Vxj(t, x) cos αi + pt V(t, x)− g f r (t, x)

]
Σ
= 0

(see [31,35] and references therein).
As one can see, the local problem (7) is a more general case of the Allen–Cahn equa-

tion (see [5,22,32,33,36,37] for more details). For more general assumptions (with vari-
ous types of boundary conditions), Equation (7) has been numerically investigated in,
e.g., [22,27,30,31] or [29]. For the existence, estimate, uniqueness, and regularity of a solu-
tion in the Sobolev space, W1,2

p (Q), characterized by the presence of some new physical
parameters, the principal part being in divergence form, and by considering the cubic nonlin-
earity pr

[
V(t, x)− V3(t, x)

]
, satisfying for n ∈ {1, 2, 3} the assumption H0 in [38], that is,

H0 : (V − V3)|V|3p−4V ≤ 1 + |V|3p−1 − |V|3p, p ≥ 2,

we refer to [31,35,36] .
Since the local model cannot be applied when the wavelength of the microstructure is

very small, the nonlocal model is a good alternative [13,19,21,23,39–41].
The nonlinear second-order problem (1) (or (7)) is important for modeling a variety of

phenomena of life sciences, including in biology, biochemistry, economics, medicine, and
physics. For details on the qualitative and quantitative analyses, we direct the reader to
the studies [35,42]. In addition, nonlinear problems of type (7)1 occur in the phase-field
transition system (e.g., [42]) where the phase function, V(t, x), describes the transition
between the solid and liquid phases in the solidification process of a material occupying a
region Ω.

The main novelty of our problem (1)1 refers to the cubic nonlinearity V−V3, thus
increasing the chance of better capturing the complexity of the phenomena that surround
us (see [13,21,31,36] and references therein).
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Another important novelty concerns the nonhomogeneous Cauchy–Neumann bound-
ary conditions, which can be seen as boundary control in industry (see [13,15,28,36,37,42–44]
for details).

This paper is organized as follow. In Section 2, the existence of solutions to the nonlocal
and nonlinear problem (1) are proved via the fixed-point method. A serious mathematical
treatment for the local problem (7) is performed in Section 3, with its well posedness also
being investigated. New (nonlocal and local) second-order anisotropic reaction–diffusion
equations for image segmentation are presented in Section 4. Our new PDE models, (36)
and (40), respectively, outperform the Perona–Malik technique (see [31] and references
therein) and many other state-of-the-art image processing models [20,30,32]. In Section 5,
we briefly summarize our results and discuss future directions and challenges in this
illustrious field of research.

2. Existence of Solutions to the Nonlocal and Nonlinear Problem (1)

The starting points of this section are derived from the paper [30]. Here, we con-
sider a nonconstant mobility variable M

(
t, x,∇V(t, x)

)
that depends on the nonlinear real

function ∇V(t, x), which leads to changes in the working assumptions. Moreover, we
propose here more general boundary conditions, which are more appropriate to model life
science phenomena.

Let us note at the beginning that, following [30] (Lemma 4.1, p. 13), we can find a
small enough t∗ > 0, depending on ∥V0∥L∞(Ω) and ∥g f r∥FR, such that

m̂t∗ < 1,

m2 t∗∥g f r∥FR + (m3 + m4)t
∗ + ∥V0∥L∞(Ω) <

2
3

√
(1 − m̂t∗)3

3pr t∗
,

(9)

with m̂ being given by (4) and FR = L∞((0, T], L∞(∂Ω)).

We are looking for solutions to problem (1) in the space

Y = C([0, t∗], C1(Ω)) and W = C([0, t∗], L∞(Ω)), Y ⊂ W, (10)

with the corresponding norm

∥V∥ = max
t∈[0,t∗ ]

∥V(t, ·)∥L∞(Ω)
= max

t∈[0,t∗ ]
ess sup

x∈Ω

∣∣V(t, x)
∣∣.

For the readers’ convenience, we remember that

W = C([0, t∗], L∞(Ω)) =
{

F : [0, t∗] → L∞(Ω), F continue on [0, t∗]
}

;

that is, F(t, ·) ∈ L∞(Ω) and ∃m5 ∈ (0, ∞) such that

∥F(t, ·)∥L∞(Ω)
≤ m5 , ∀t ∈ [0, t∗].

Next, by integrating (1) on [0, t], 0 < t ≤ t∗, we obtain
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V(t, x) = V0(x)

+

t∫
0

M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

J(x−y)V(s, y)dyds

−
t∫

0

M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

J(x−y)V(s, x)dyds

+

t∫
0

{ ∫
∂Ω

G(x − y)
[
g f r (s, y)− pt V(s, x)

]
dys

}
ds

+

t∫
0

M
(
s, x,∇V(s, x)

)
∇N

(
s, x,∇V(s, x)

)
· ∇V(s, x)ds

+ pr

t∫
0

[
V(s, x)− V3(s, x)

]
ds +

t∫
0

gd(s, x)ds.

(11)

Definition 1. For any V(t, x) ∈ Y ⊂ W, we define

(HV)(t, x)= V0(x)

+

t∫
0

M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

J(x−y)V(s, y)dyds

−
t∫

0

M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

J(x−y)V(s, x)dyds

+

t∫
0

{ ∫
∂Ω

G(x − y)
[
g f r (s, y)− pt V(s, x)

]
dys

}
ds

+

t∫
0

M
(
s, x,∇V(s, x)

)
∇N

(
s, x,∇V(s, x)

)
· ∇V(s, x)ds

+ pr

t∫
0

[
V(s, x)− V3(s, x)

]
ds +

t∫
0

gd(s, x)ds

(12)

and

(HV)(0, x) = V0(x) ∈ L∞(Ω), x ∈ Ω. (13)

It is easy to verify that ∀V(t, x) ∈ Y ⊂ W; then, (HV)(t, x) ∈ W, (t, x) ∈ Q. Indeed,

let us denote F1(t, x) =
t∫

0

M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

J(x−y)V(s, y)dyds. We have

∣∣F1(t, x)
∣∣ = ∣∣∣∣∣

t∫
0

M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

J(x−y)V(s, y)dyds

∣∣∣∣∣
≤

t∫
0

∣∣∣∣∣M(s, x,∇V(s, x)
)

N
(
s, x,∇V(s, x)

) ∫
Ω

J(x−y)V(s, y)dy

∣∣∣∣∣ds
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=

t∫
0

∣∣∣∣∣M(s, x,∇V(s, x)
)

N
(
s, x,∇V(s, x)

)∣∣∣∣∣
∣∣∣∣∣
∫
Ω

J(x−y)V(s, y)dy

∣∣∣∣∣ds

≤ L1 L2

t∫
0

∣∣∣∣∣
∫
Ω

J(x−y)V(s, y)dy

∣∣∣∣∣ds = L1 L2

t∫
0

∫
Ω

∣∣∣J(x − y)
∣∣∣ ∣∣∣V(s, y)

∣∣∣dy ds

≤ L1 L2 m1

t∫
0

∫
Ω

∣∣∣V(s, y)
∣∣∣dy ds ≤ L1 L2 m1

t∫
0

∫
Ω

ess sup
y∈Ω

∣∣V(t, y)
∣∣dy ds

= L1 L2 m1

t∫
0

[
ess sup

y∈Ω

∣∣V(t, y)
∣∣ ∫

Ω

dy
]
ds = L1 L2 m1

t∫
0

[
ess sup

y∈Ω

∣∣V(t, y)
∣∣∣∣Ω∣∣]ds

= L1 L2 m1

∣∣Ω∣∣ t∫
0

∥V(t, ·)∥L∞(Ω)ds ≤ L1 L2 m1

∣∣Ω∣∣m5

t∫
0

ds ≤ L1 L2 m1

∣∣Ω∣∣m5 t∗.

So
∣∣F1(t, x)

∣∣ ≤ L1 L2 m1

∣∣Ω∣∣m5 t∗, ∀t ∈ [0, t∗], a.p.t. x ∈ Ω, and thus

ess sup
x∈Ω

|F1(t, x)| < ∞, ∀t ∈ [0, t∗], a.p.t. x ∈ Ω, i.e., F1(t, ·) ∈ L∞(Ω), ∀t ∈ [0, t∗].

Through similar reasoning, it can be shown that the remaining terms on the right-hand
side of (12) also belong to L∞(Ω), ∀t ∈ [0, t∗], which means that

(HV)(t, x) ∈ W, ∀V(t, x) ∈ Y ⊂ W, (t, x) ∈ Q.

Lemma 1. If V0(x) ∈ L∞(Ω), gd(t, ·) ∈ L∞(Ω), and g f r (t, x) ∈ L∞((0, t∗], L∞(∂Ω)), then
the operator

H : Y ⊂ W → W, (14)

given by (12) and (13), is well defined.

Proof. Let us consider V(·, ·) ∈ Y ⊂ W (see (10)) and t1, t2 ∈ [0, t∗], with t1 < t2. Then, we
have (see (11) and (12))

∥(HV)(t1, ·)− (HV)(t2, ·)∥L∞(Ω)
= ess sup

x∈Ω
|(HV)(t1, x)− (HV)(t2, x)|

= ess sup
x∈Ω

∣∣∣∣∣
t2∫

t1

M
(
s, x,∇V(s, x)

){
N
(
s, x,∇V(s, x)

)∫
Ω

J(x − y)
[
V(s, y)−V(s, x)

]
dy
}

ds

+

t2∫
t1

{ ∫
∂Ω

G(x − y)
[
g f r (s, y)− pt V(s, x)

]
dys

}
ds

+

t2∫
t1

M
(
s, x,∇V(s, x)

)
∇N

(
s, x,∇V(s, x)

)
· ∇V(s, x)ds

+ pr

t∫
0

[
V(s, x)− V3(s, x)

]
ds +

t∫
0

gd(s, x)ds

∣∣∣∣∣
≤ L(t2 − t1),

where

L = 2|Ω|L1 L2 m1∥V∥+m2∥g f r∥FR+cpt m2∥V∥+pr

[
∥V∥+∥V∥3

]
+m3+m4 . (15)

Here, we have used the continuous embedding L∞(Ω) ⊂ L∞(∂Ω), which implies, for a
positive constant c, that

∥V∥L∞(∂Ω) ≤ c∥V∥L∞(Ω). (16)
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Therefore, the operator H in (14) is Lipschitz continuous on (0, t∗], with the Lipschitz
constant L given by (15), where the positive parameters m1 , m2 , L1 , L2 , c, m3 , m4 , pr , pt are
defined in (2), (3), and (5).

For t = 0, we obtain

∥(HV)(t, ·)− V0(x)∥L∞(Ω)
≤ t L. (17)

Thus, from the last two inequalities, we can conclude that the operator H is continuous
for ∀t ∈ [0, t∗]; accordingly, H is well defined.

In the following theorem, we shall use an important result obtained and proven
in [30] (Lemma 4.1, p. 13).

Theorem 1. There exists S = S(t∗) > 0 such that

∥V0∥L∞(Ω) +
(

m̂S + pr S3 + m2∥g f r∥FR + m3 + m4

)
t∗ ≤ S

and
[3pr S2 + m̂]t∗ < 1,

where t∗ > 0 satisfies (9).

Theorem 2. The operator H in (14) maps the closed ball B(0, S) of Y ⊂ W into itself, where t∗

and S are given in Theorem 1.

Proof. For any V ∈ Y ⊂ W and t1, t2 ∈ [0, t∗], with t1 < t2, we know (see Lemma 1)

∥(HV)(t1, ·)− (HV)(t2, ·)∥L∞(Ω)

≤
[(

2|Ω|L1 L2 m1 + cpt m2 + pr

)
∥V∥+ pr∥V∥3 + m2∥g f r∥FR + m3 + m4

]
(t2 − t1).

Now, consider V ∈ B(0, S), i.e., ∥V∥ ≤ S, with S given as in Theorem 1. It follows that

∥(HV)(t, ·)− (HV)(0, ·)∥L∞(Ω)

≤
[(

2|Ω|L1 L2 m1 + cpt m2 + pr

)
∥V∥+ pr∥V∥3 + m2∥g f r∥FR + m3 + m4

]
t

≤
[(

2|Ω|L1 L2 m1 + cpt m2 + pr

)
S + pr S3 + m2∥g f r∥FR + m3 + m4

]
t, ∀t, 0 ≤ t ≤ t∗.

Owing to relation (4) and Theorem 1, it follows that

∥HV(t∗, ·)∥L∞(Ω) ≤ ∥V0∥L∞(Ω) +
(

m̂S + pr S3 + m2∥g f r∥FR + m3 + m4

)
t∗ ≤ S,

which completes the proof.

Therefore, the fixed point of the operator H defined by (14) is the solution to problem (1)
on (0, t∗].

Remark 1. We can extend the already obtained results to find the solution on an interval larger
than (0, t∗], with t∗ satisfying (9). To do this, we consider the same problem (1), but with the initial
condition u∗(x) = u(t∗, x), where x ∈ Ω. We can now find the solution on [t∗, t∗ + t̄1 ], where t̄1
also satisfies the relations in (9). If we continue this procedure, we obtain a solution defined on some
time interval (0, T] (for more details, see [30] (Section 3.1, p. 11)).

In following section, we present a characterization of the solution to problem (1).
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Theorem 3. Let w(x) =
∫
Ω

J(x − y)dy. Then, the function V ∈ C
(
(0, t∗], C1(Ω)

)
is a solution

to problem (1) if and only if for all (t, x) ∈ (0, t∗]× Ω, it holds that

V(t, x) = e−w(x)tV0(x)

+

t∫
0

M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

J(x−y)e−w(x)(t−s)V(s, y)dyds

+

t∫
0

∫
∂Ω

e−w(x)(t−s)G(x − y)
[
g f r (s, ys)− pt V(s, x)

]
dysds

+

t∫
0

e−w(x)(t−s)M
(
s, x,∇V(s, x)

)
∇N

(
s, x,∇V(s, x)

)
· ∇V(s, x)ds

+ pr

t∫
0

e−w(x)(t−s)
[
V(s, x)− V3(s, x)

]
ds +

t∫
0

e−w(x)(t−s)gd(s, x)ds.

(18)

Proof. From (1), it follows that

ew(x)s ∂

∂s
V(s, x)

= M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

ew(x)s J(x−y)
[
V(s, y)−V(s, x)

]
dy

+
∫

∂Ω

ew(x)sG(x − y)
[
g f r (s, ys)− pt V(s, x)

]
dys

+ ew(x)s M
(
s, x,∇V(s, x)

)
∇N

(
s, x,∇V(s, x)

)
· ∇V(s, x)

+ pr ew(x)s
[
V(s, x)− V3(s, x)

]
+ ew(x)sgd(s, x).

The above permits us to write

∂

∂s
(
ew(x)sV(s, x)

)
= ew(x)s ∂

∂s
V(s, x) + ew(x)sw(x)V(s, x)

= M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

ew(x)s J(x−y)V(s, y)dy

+
∫

∂Ω

ew(x)sG(x − y)
[
g f r (s, ys)− pt V(s, x)

]
dys

+ ew(x)s M
(
s, x,∇V(s, x)

)
∇N

(
s, x,∇V(s, x)

)
· ∇V(s, x)

+ pr ew(x)s
[
V(s, x)− V3(s, x)

]
+ ew(x)sgd(s, x),
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which leads to

ew(x)tV(t, x)−V0(x)

=

t∫
0

M
(
s, x,∇V(s, x)

)
N
(
s, x,∇V(s, x)

)∫
Ω

ew(x)s J(x−y)V(s, y)dyds

+

t∫
0

∫
∂Ω

ew(x)sG(x − y)
[
g f r (s, ys)− pt V(s, x)

]
dysds

+

t∫
0

ew(x)s M
(
s, x,∇V(s, x)

)
∇N

(
s, x,∇V(s, x)

)
· ∇V(s, x)ds

+ pr

t∫
0

ew(x)s
[
V(s, x)− V3(s, x)

]
ds +

t∫
0

ew(x)sgd(s, x)ds.

Multiplicating by e−w(x)t, we obtain (18).

3. Existence and Uniqueness of the Solution to Problem (7)

In this section, we adapt some techniques from [29,31,45] to our problem (7), in which
the nonconstant diffusion coefficients have a particular form, i.e.,

Φ(t, x, V(t, x), Vx(t, x)) = M
(
t, x, Vx(t, x)

)
and K(t, x, V(t, x), Vx(t, x)) = N

(
t, x, Vx(t, x)

)
(see A. Miranville and C Moroşanu [45], for example).

Let us write problem (7) in an equivalent form:

∂

∂t
V(t, x)− M

(
t, x,∇V(t, x)

) ∂

∂Vxj

(N
(
t, x,∇V(t, x)

)
Vxi )Vxjxi

= A(t, x, Vxi ) + pr

[
V(t, x)− V3(t, x)

]
+ gd(t, x) in Q

∂

∂n
V(t, x) + pt V(t, x) = g f r (t, x) in Σ

V(0, x) = V0(x) on Ω,

(19)

with Vxjxi =
∂2

∂xj∂xi
V, where i, j = 1, 2, and

A(t, x, Vxi ) = M
(
t, x,∇V(t, x)

) ∂

∂xi
(N(t, x,∇V(t, x))Vxi ), i = 1, 2.

As in [35], we recall that Equation (7)1 is a quasi-linear one with the principal part
being in divergence form and

ai
(
t, x, Vx(t, x)

)
= N(t, x,∇V(t, x))Vxi , i = 1, 2,

a(t, x, Vx) = −pr

[
V(t, x)− V3(t, x)

]
− gd(t, x).

On the other hand, problem (19) is a quasi-linear one (see [29]) with

aij(t, x, Vx) =
∂

∂Vxj

ai(t, x, Vx) =
∂

∂Vxj

N(t, x,∇V(t, x))Vxi , i = 1, 2

and
a(t, x, Vx) = −A(t, x, Vx)− pr (V − V3)− gd(t, x).
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The boundary conditions (7)2 are of the second type (see [36] or [29] for details). In addition,
unless otherwise stated, we assume that Equations (7)1 and (19)1 are uniformly parabolic,
which means the following conditions are fulfilled:

ν1(|V|)ξ2 ≤ ∂ai(t, x, z)
∂zj

ξiξ j ≤ ν2(|V|)ξ2 (20)

for an arbitrary V, z, and ξ = (ξ1, ξ2), an arbitrary real vector, where ν1(r) and ν2(r) are
positive (nonincreasing and nondecreasing, respectively) continuous functions for r ≥ 0.

Definition 2. A solution, V(t, x), of the second-order boundary value problem (19) is a classical
solution if it is continuous in Q̄, has continuous derivatives Vt, Vx, and Vxx in Q, satisfies
Equation (19)1 at all points, (t, x) ∈ Q, and satisfies conditions (19)2 and (19)3 for (t, x) ∈ Σ and
t = 0, respectively.

In the present paper, we will investigate the solvability of the second-order boundary
value problems of the form of (7) in the class W1,2

p (Q). We will adapt the results from [31,45]
in order to prove the existence, the regularity, and the uniqueness of the solutions to the
new nonlinear parabolic problem expressed in (7).

3.1. Well Posedness of Solutions to Problem (7)

We will establish the dependence of the solution, V(t, x), to problem (7) on the terms
gd(t, x) and g f r (t, x) using the Leray–Schauder degree theory (see, e.g., C. Moroşanu [37]),
the Lp-theory of linear and quasi-linear parabolic equations (see [20]), and the Lions and
Peetre embedding theorem ([35], p. 14), W1,2

p (Q) ⊂ Lµ(Q), where

µ =

any positive number ≥ 3p if 1
p ≤ 1

2 ,(
1
p − 1

2

)−1
if 1

p > 1
2 ,

(21)

and, for a given positive integer k and 1 ≤ p ≤ ∞, Wk,2k
p (Q) denotes the Sobolev space

on Q:

Wk,2k
p (Q) =

{
y ∈ Lp(Q) :

∂r

∂tr
∂q

∂xq y ∈ Lp(Q) for 2r + q ≤ 2k
}

,

(see [30,36,45] for details).

The main result for the well posedness in problem (7) (or (19)) is given in the next
theorem.

Theorem 4. Suppose V(t, x) ∈ C1,2(Q) is a classical solution to problem (7) and for positive
values of c1 , C, C0 , C1 , C2 , C3 , and C4 , one has I1. For |V(t, x)| < C ∀(t, x) ∈ Q and ∀t, x, z,
the map N(t, x, z) is continuous and differentiable with respect to x and z, and its x-derivatives
and z-derivatives are measurable and bounded, satisfying (20) and

0 < Nmin ≤ N(t, x, Vx(t, x)) < Nmax, f or (t, x) ∈ Q, (22)

|N(t, x, z)Vxi |(1 + |z|) +
∣∣∣∣ ∂

∂x1
(N(t, x, z)Vx1)

∣∣∣∣+ ∣∣∣∣ ∂

∂x2
(N(t, x, z)Vx1)

∣∣∣∣
+

∣∣∣∣ ∂

∂x1
(N(t, x, z)Vx2)

∣∣∣∣+ ∣∣∣∣ ∂

∂x2
(N(t, x, z)Vx2)

∣∣∣∣+ |V(t, x1, x2)| ≤ C0(1 + |z|)2.

(23)

I2. M
(
t, x, Vx(t, x)

)
is a positive and bounded nonlinear real function of class C1(Q) with bounded

derivatives and
0 < c1 ≤ M

(
t, x, Vx(t, x)

)
≤ C1 .
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In addition, for every ε > 0, the functions V(t, x) and N(t, x, Vx(t, x))Vxi satisfy the relations

∥V∥Ls(Q)
≤ C2 , ∥N(t, x, Vx)Vxi∥Lr(Q)

< C3 , i = 1, 2,

where

r =
{

max{p, 4} p ̸= 4
4 + ε p = 4,

s =
{

max{p, 2} p ̸= 2
2 + ε p = 2.

Then, for ∀gd ∈ Lp(Q) and ∀V0 ∈ W
2− 2

p
p (Ω), with p ̸= 3

2 , problem (7) has a solution,
V ∈ W1,2

p (Q), and the following estimate holds:

∥V∥W1,2
p (Q)

≤ c

[
1 + ∥V0∥

W
2− 2

p
p (Ω)

+ ∥V0∥
3− 2

p

L3p−2(Ω)

+∥gd∥Lp(Q) + ∥g f r∥
3− 2

p

L3p−2(Σ)
+ ∥g f r∥

W
1− 1

2p ,2− 1
p

p (Σ)

]
,

(24)

where c > 0 is independent of V, gd , and g f r .

If V1, V2 ∈ W1,2
p (Q) are two solutions to (7), corresponding to {g1

d
, g1

f r
, V1

0 } and {g2
d
, g2

f r
, V2

0 },

respectively, such that ∥V1∥W1,2
p (Q)

≤ C4 , ∥V2∥W1,2
p (Q)

≤ C4 , then the following estimate holds:

max
(t,x)∈Q

|V1−V2| ≤ cec̄Tmax
[

max
(t,x)∈Q

|g1
d
−g2

d
|, max
(t,x)∈Σ

|g1
f r
−g2

f r
|, max

(t,x)∈Ω
|V1

0 −V2
0 |
]

, (25)

where the constant c, c̄ > 0 does not depend on {V1, g1
d
, g1

f r
, V1

0 } and {V2, g2
d
, g2

f r
, V2

0 }. In
particular, this solution to problem (7) is unique.

3.2. The Proof of Theorem 4

Let the Banach space B = W0,1
p (Q) ∩ L3p(Q), equipped with the norm

∥V∥B = ∥V∥Lp(Q) + ∥Vx∥Lp(Q)

and a nonlinear operator O : B × [0, 1] → B, defined by

v = v(V, λ) = O(V, λ) ∀(V, λ) ∈ W0,1
p (Q) ∩ L3p(Q)× [0, 1], (26)

where v(V, λ) is a unique solution to the problem

∂

∂t
v(t, x)−

[
λM

(
t, x, Vx(t, x)

) ∂

∂Vxj

(N
(
t, x,Vx(t, x)

)
Vxi )+(1−λ)δ

j
i

]
vxixj

= λ
{

A(t, x, Vx) + pr

[
V(t, x)− V3(t, x)

]
+ gd(t, x)

}
in Q

∂

∂ν
v(t, x) + pt v(t, x) = λg f r (t, x) on Σ

v(0, x) = λv0(x), on Ω.

(27)

with A
(
t, x, Vx(t, x)

)
= M

(
t, x, Vx(t, x)

)
∇N(t, x, Vx(t, x)) · ∇V(t, x), ∀ (t, x) ∈ Q.

First of all, let us prove the following lemma:
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Lemma 2. We assume hypotheses I1 and I2 to be valid for ∀V ∈ W1,2
p (Q) ⊂ W0,1

p (Q) ∩
L3p(Q). Then,

A
(
t, x, Vxi (t, x)

)
+ pr [V(t, x)− V3(t, x)] + gd(t, x) ∈ Lp(Q). (28)

Proof. Indeed, since V ∈ W1,2
p (Q) ⊂ Lµ(Q) ⊂ L3p(Q) (see (21)), then ∥V∥L3p(Q) ≤ Konst,

and thus

∥V3∥Lp(Q) =

(∫
Q
|V3|pdxdt

) 1
p

=

(∫
Q
|V|3pdxdt

) 1
3p
3p 1

p

= ∥V∥3
L3p(Q)

≤ (Konst)3,

i.e., the nonlinear term in (28) belongs to Lp(Q), ∀V ∈ W1,2
p (Q) ⊂ W0,1

p (Q) ∩ L3p(Q) (see
Miranville and Moroşanu [45]).

Next, we prove that A(t, x, Vxi ) ∈ Lp(Q) for ∀V ∈ W1,2
p (Q) ⊂ W0,1

p (Q) ∩ L3p(Q).

Using (19), we obtain (Vxi =
∂

∂xi
V(t, x), i = 1, 2)

A(t, x, Vxi ) = M
(
t, x,∇V(t, x)

) ∂

∂xi

[
N
(
t, x,∇V(t, x)

)
Vxi

]
= M

(
t, x,∇V(t, x)

){ ∂

∂xi

[
N
(
t, x,∇V(t, x)

)]
Vxi

+N
(
t, x,∇V(t, x)

) ∂

∂xi

(
∂

∂xi
V(t, x)

)}
= M

(
t, x,∇V(t, x)

){ ∂

∂xi
N
(
t, x,∇V(t, x)

)
+

2

∑
j=1

∂

∂Vxj

N
(
t, x,∇V(t, x)

)
V2

xjxi

}
Vxi + N

(
t, x,∇V(t, x)

)
V2

xixi
.

We denote

T1 =
∂

∂xi

[
N
(
t, x,∇V(t, x)

)]
Vxi ,

T2 = N
(
t, x,∇V(t, x)

)
V2

xixi
,

Gj = Vxi

∂

∂Vxj

N
(
t, x,∇V(t, x)

)
V2

xjxi
, j = 1, 2.

According to the hypothesis, we have (i, j = 1, 2)

i.
∂

∂xi
N
(
t, x,∇V(t, x)

)
is measurable and bounded, and Vxi ∈ Lp(Q);

ii. N
(
t, x,∇V(t, x)

)
is measurable and bounded (see (23)1), and V2

xixi
is continuous;

iii.
∂

∂Vxj

N
(
t, x,∇V(t, x)

)
is measurable and bounded, and Vxi and V2

xjxi
are continuous.

Using classical measure theory, from i.–iii., it results that T1, T2, and Gj, with j = 1, 2,
are in Lp(Q), and thus A(t, x, Vxi ) ∈ Lp(Q), with i = 1, 2.

Owing to the above outcomes and knowing that gd(t, x) ∈ Lp(Q), we can easily
conclude that the statement in (28) is true.

3.3. The Proof of Theorem 4 (Continued)

We shall prove that the nonlinear operator O defined by (26) is well defined, continu-
ous, and compact.
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Proof. From the right-hand side of (27)1 and owing to (28), we can use the Lp-theory of
linear parabolic equations (see [35]) to conclude a the solution, v, to problem (27) exists,
and it is unique with

v = v(V, λ) ∈ W1,2
p (Q), ∀ v ∈ W0,1

p (Q) ∩ L3p(Q), ∀ λ ∈ [0, 1]. (29)

Using now the continuous inclusions (see [31] and references therein)

W1,2
p (Q) ⊂ W0,1

p (Q) ∩ L3p(Q), (30)

we obtain that O(V, λ) = v ∈ W0,1
p (Q) ∩ L3p(Q) for all V ∈ W0,1

p (Q) ∩ L3p(Q) and ∀ λ ∈
[0, 1], which means that the nonlinear operator O is well defined.

Let Vn → V in W0,1
p (Q) ∩ L3p(Q) and λn → λ in [0, 1]. We denote vn,λn = O(Vn, λn),

vn,λ = O(Vn, λ), and v1,λ = O(V, λ). Using ideas from [31,35,36,45], we obtain

∥vn,λn − vn,λ∥W1,2
p (Q)

→ 0 as n → ∞, (31)

∥vn,λ − v1,λ∥W1,2
p (Q)

→ 0 as n → ∞. (32)

Making use of the continuous embedding (30) and relations (31) and (32), we derive
the continuity of the nonlinear operator O defined in (26). Furthermore, O is compact.
Indeed, since µ > 3p (see (21)), the inclusion W1,2

p (Q) ↪→ W0,1
p (Q) ∩ L3p(Q) is compact

(see [35], p. 14). Moreover, writing O as the composition

B × [0, 1] → W1,2
p (Q) ↪→ W0,1

p (Q) ∩ L3p(Q) = B,

the compactness of O immediately follows.

3.3.1. The Regularity of the Solution V(t, x)

We establish now the existence of a number δ > 0 such that

(V, λ) ∈ W0,1
p (Q) ∩ L3p(Q)× [0, 1] with V = O(V, λ) =⇒ ∥V∥B < δ. (33)

The equality V = O(V, λ) in (33) is equivalent to

∂

∂t
V(t, x)−λM

(
t, x,Vx(t, x)

)
div
(
N
(
t, x,Vx(t, x)

)
·∇V

)
−(1−λ)∆V

= λ
{

A(t, x, Vx) + pr

[
V(t, x)− V3(t, x)

]
+ gd(t, x)

}
in Q

∂

∂ν
V(t, x) + pt V(t, x) = λg f r (t, x) on Σ

V(0, x) = λV0(x), on Ω.

(34)

(see (7) and (27)).

Multiplying the first equation in (34) by |V|3p−4V and integrating over Qt := (0, t)×Ω,
t ∈ (0, T], we obtain
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∫
Qt

∂

∂t
|V(τ, x)|3p−2dτdx−λ

∫
Qt

M
(
t, x,Vx(t, x)

)
div
(
N
(
t,x,Vx(t, x)

)
· ∇V

)
|V|3p−4Vdτdx

−(1 − λ)
∫
Qt

∆V |V|3p−4v dτdx

= λpr

∫
Qt

(V − V3)|V|3p−4V dτdx + λ
∫
Qt

gd |V|3p−4V dτdx.

Following the same line of proof as in the studies [17,27,31], we finally obtain

∥V∥W1,2
p (Q)

≤ c

{
1 + ∥V0∥

W
2− 2

p
∞ (Ω)

+ ∥V0∥
3p−2

p

L3p−2(Ω)

+∥gd∥Lp(Q) + ∥g f r∥
W

1− 1
2p ,2− 1

p
p (Σ)

+ ∥g f r∥
3p−2

p

L3p−2(Σt)

}
.

(35)

The continuous embedding W1,2
p (Q) ⊂ B = W0,1

p (Q) ∩ L3p(Q) ensures that

∥V∥B ≤ c∥V∥W1,2
p (Q)

,

which, owing to (35), ensures that a constant δ > 0 can be found such that the property
expressed in (33) is true.

We denote this as

Bδ :=
{

V ∈ B : ∥V∥B < δ
}

.

From (33), we derive that

O(V, λ) ̸= V ∀V ∈ ∂Bδ, ∀λ ∈ [0, 1],

provided that δ > 0 is sufficiently large (see also [38]). Furthermore, following the same rea-
soning as in [29–31,35,36,38,45], we conclude that problem (7) has a solution V ∈ W1,2

p (Q).
The estimate (24) results from (35), and the proof of the first part in Theorem 4 is finished.

3.3.2. The Uniqueness of the Solution V(t, x)

To establish the estimate in (24) and, as a consequence, the uniqueness of the solution
to problem (7) or (19)1 and (7)2,3, we refer to [29,31,35] and the references therein.

As a consequence, this shows the uniqueness of the solution to the nonlinear
problem (7).

Corollary 1. For V1
0 = V2

0 , problem (7) possesses a unique solution in W1,2
p (Q).

Proof. Let g1
d
= g2

d
= gd and g1

f r
= g2

f r
= g f r in Theorem 4. Then, (25) demonstrates the

corollary (see also [38] and references therein).

Remark 2. The nonlinear operator O in (26) depends on λ ∈ [0, 1], and its fixed points for λ = 1
are solutions to (34).
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4. A Novel Nonlocal and Nonlinear Second-Order Anisotropic Reaction–Diffusion
Model in Image Segmentation

The nonlocal and nonlinear parabolic second-order PDE problem (1) can be applied,
for example, to image segmentation, denoising, enhancement, and restoration. Here, we
consider the particularization of this mathematical model, namely

∂

∂t
V(t, x) = M

(
∥∇V(t, x)∥

)
N
(
∥∇V(t, x)∥

)
×

{∫
Ω

J(x − y)
[
V(t, y)− V(t, x)

]
dy +

∫
∂Ω

G(x − ys)
[

g f r (t, ys)− pt V(t, x)
]
dys

}

+M
(
∥∇V(t, x)∥

)
∇N

(
∥∇V(t, x)∥

)
· ∇V(t, x)

+pr

[
V(t, x)− V3(t, x)

]
+ gd(t, x),

(36)

with the initial condition

V(0, x) = V0(x). (37)

The first function M : [0, ∞) → (0, ∞) in the PDE-based model (36) has the form

M(s) =
(αsκ + ν)1/(κ+1)

ξ
, (38)

where α, ν ∈ (0, 4], ξ ≥ 1.5, and κ ∈ (0, 2]. It is worth noting that the term M(∥∇V(t, x)∥)
controls the speed of this diffusion process and enhances the edges of the corresponding
image.

The edge-stopping (diffusivity) function N : [0, ∞) → (0, ∞) in (36) has the form

N(s) = ε

(
δ(V)

β ln(δ(V)) + γs2

)1/3

, (39)

where ε ∈ (0, 2), γ ∈ (1, 5], and β ∈ (0, 1), and the conductance parameter δ is defined by

δ(V) := |rµ(∥∇V∥) + ζM(∥∇V∥)|, r > 0, ζ ∈ (0, 1),

with the respective averaging and median operators µ and M.
The function N in (39) satisfies the main requirements for successful restoration [31],

e.g., it is positive and monotonically decreasing in (0, ∞) and lim
s→∞

N(s) = 0.

The nonlocal PDE model given by (36) and (37) admits a solution in the space
C([0, t∗], C1(Ω)) (see Theorem 2), which represents the recovered image. The solution
to this problem can be derived by an iterative algorithm, and it can be determined by
numerically solving the nonlinear diffusion-based model given by (36) and (37) using the
finite-differences method [29–31].

The local anisotropic reaction–diffusion model corresponding to (36) can be written
as follows:
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∂

∂t
V(t, x)− M

(
∥∇V(t, x)∥

)
div
(

N
(
∥∇V(t, x)∥

)
· ∇V(t, x)

)
= pr

[
V(t, x)− V3(t, x)

]
+ gd f (t, x) in Q

∂

∂n
V(t, x) + pt V(t, x) = g f r (t, x) on Σ

V(0, x) = V0(x) on Ω,

(40)

∇V(t, x) = Vx =
(
Vx1(t, x), Vx2(t, x)

)
.

The edge-stopping (diffusivity) function in (36)2 is positive, monotonically decreasing,
and converges to zero (see [3,12,29–31]), thus satisfying the conditions imposed by proper
diffusion. Moreover, it is easy to check that M and N in (36) satisfy assumptions I1 and
I2 in Theorem 4, and thus, the nonlinear anisotropic reaction–diffusion model (40) is
well posed, as proven in the previous section. Consequently, it admits a unique classical
solution, V(t, x) ∈ W1,2

p (Q), that represents an evolving image of the observed image
V(0, x) = V0(x).

Because of the presence of the term M
(
∥∇V(t, x)∥

)
, the nonlinear operator in (40)

does not represent the gradient of the energy function. Therefore, the proposed second-
order nonlinear diffusion-based scheme cannot be obtained from the minimization of any
energy cost function, so this scheme is not a variational PDE model.

5. Conclusions

This paper deals with a qualitative study for some second-order boundary value prob-
lems, with local or nonlocal diffusion and a cubic nonlinear reaction term, endowed with
in-homogeneous Cauchy–Neumann (Robin) boundary conditions. Here, we are focused on
finding concrete cases of functions corresponding to the general cases Φ(t, x, V(t, x), Vx(t, x))
and K(t, x, V(t, x), Vx(t, x)), which were introduced for the first time in a paper by Mi-
ranville, Moroşanu, and Pavăl [30], whose work represents a major challenge for both the-
ory and applications. In our new nonlinear, second-order, anisotropic, reaction–diffusion
problems given by (1) and (7), we consider the following settings: Φ(t, x, V(t, x), Vx(t, x)) =
M
(
t, x,∇V(t, x)

)
and K(t, x, V(t, x), Vx(t, x)) = N

(
t, x,∇V(t, x)

)
.

First, provided that the initial data meet appropriate regularity conditions, we prove
the existence of a solution in the space C([0, t∗], C1(Ω)) of the nonlocal and nonlinear
second-order boundary value problem (1) (in particular, (36) and (37)).

Secondly, under certain assumptions about the input data, gd(t, x), g f r (t, x), and V0(x),
we study the well posedness (the existence, a priori estimates, regularity, uniqueness) of a
classical solution in the Sobolev space, W1,2

p (Q), of the local and nonlinear second-order
boundary value problem (7) (in particular, (40)). Precisely, the Leray–Schauder principle is
applied to prove the existence of solutions to the nonlinear problem in question, while the
Lp theory of linear and quasi-linear parabolic equations is used in order to derive regularity
properties for the solutions. Moreover, the a priori estimates are made in Lp(Q), which
leads to better estimates for unknown functions V(t, x) (for more details in this respect,
see [13,26,30,31,35,38,39,46] and references therein). This approach could be applied in
future to study other kinds of first- and second-order boundary value problems.

We note that due to the presence of the nonlinear coefficients M
(
t, x,∇V(t, x)

)
and

N
(
t, x,∇V(t, x)

)
(see (1) and (7)), the proposed second-order nonlinear reaction–diffusion

schemes (36), (37), and (40) represent nonvariational PDE models (see [29–31]). Therefore,
they cannot be obtained from the minimization of any energy cost function; thus, these
new schemes are not variational PDE models.

These models describe a great variety of phenomena that appear in many sciences, like
physics, biology, chemistry, image processing, etc. From this, we can deduce the importance
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of developing numerical methods that bring efficiency to the process of approximating so-
lutions (accuracy, computer time, etc.). Thus, the construction of numerical approximation
schemes to approximate unique solutions to the mathematical models (1) and (7) represents
an urgent problem to be solved in the future.

To conclude, we can highlight some questions that could be addressed in future work,
namely

• Would it be possible to discuss such results for other classes of models? What restric-
tions should be imposed?

• Can we use such results in the study of distributed and/or boundary nonlinear optimal
control problems governed by such a nonlinear equation (see [36])?

• To illustrate the effectiveness of theory and applications equally, a nonuniform grid of
points for the time interval [0, T] could be constructed (see Remark 1) and used for
both the nonlocal problems (36) and (37) and the local problem (40).
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30. Miranville, A.; Moroşanu, C.; Pavăl, S.-D. Preface: Qualitative and Quantitative Analysis of Nonlinear and Nonlocal Reaction-

Diffusion Models. Applications. Discret. Contin. Dyn. Syst. 2023, 16, i–ii. https://doi.org/10.3934/dcdss.2022208.
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