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Abstract: To improve traffic efficiency, adaptive traffic signal control (ATSC) systems have been 

widely developed. However, few studies have proactively optimized the air environmental issues 

in the development of ATSC. To fill this research gap, this study proposes an optimized ATSC al-

gorithm to take into consideration both traffic efficiency and decarbonization. The proposed algo-

rithm is developed based on the deep reinforcement learning (DRL) framework with dual goals 

(DRL-DG) for traffic control system optimization. A novel network structure combining Convolu-

tional Neural Networks and Long Short-Term Memory Networks is designed to map the intersec-

tion traffic state to a Q-value, accelerating the learning process. The reward mechanism involves a 

multi-objective optimization function, employing the entropy weight method to balance the weights 

among dual goals. Based on a representative intersection in Changsha, Hunan Province, China, a 

simulated intersection scenario is constructed to train and test the proposed algorithm. The result 

shows that the ATSC system optimized by the proposed DRL-DG results in a reduction of more 

than 71% in vehicle waiting time and 46% in carbon emissions compared to traditional traffic signal 

control systems. It converges faster and achieves a balanced dual-objective optimization compared 

to the prevailing DRL-based ATSC. 

Keywords: adaptive signal control system; intersections; carbon emissions; deep reinforcement  

learning 
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1. Introduction 

The dramatic increase in vehicles on the road has caused serious traffic congestion 

and environmental pollution issues in urban areas, especially at intersections where vehi-

cle acceleration and deceleration frequently occur [1]. To improve road traffic efficiency, 

a variety of traffic signal control (TSC) systems have been developed as coordinators for 

the traffic flows at urban intersections [2]. According to the traffic management policy 

applied by the authorities, TSC systems are divided into fixed-time signal control (FTSC), 

actuated/triggered signal control (ASC), and adaptive traffic signal control (ATSC) sys-

tems. 

The fixed-time control system operates according to a pre-defined signal timing strat-

egy, with a fixed periodic duration, and pre-timed red and green signal phases, regardless 

of the traffic state [3,4]. Despite its practical importance, the fixed-time control strategy 

developed based on historical traffic data cannot accommodate variable and unpredicta-

ble traffic demands in the real world [5–7]. To this end, an actuated control system was 
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developed. In such a system, the traffic light or its duration time varies with the detected 

traffic flow at the specific entrance of an intersection according to pre-defined rules [8,9]. 

Although the actuated control system takes into consideration traffic fluctuations, the traf-

fic flow alone is insufficient in reflecting the actual traffic demands in complex traffic con-

ditions [10].  

To relax the limitations of the actuated control system, adaptive traffic control sys-

tems have been proposed. In such a system, the real-time traffic state is monitored contin-

uously through several critical parameters, based on which the adaptive control strategies 

are updated accordingly [11]. The most deployed ATSC systems at urban intersections 

include the Sydney Coordinated Adaptive Traffic System (SCATS) and the Split Cycle 

Offset Optimization Technique (SCOOT). The SCATS aims to select the optimal phasing 

(i.e., cycle times, phase splits, and offsets) scheme for a traffic situation from pre-stored 

plans according to the vehicle equivalent flow and saturation level calculated from the 

fluctuations in traffic flow and system capacity. The SCOOT reacts to different traffic 

states by changing the cycle length, phase splits, and offset in small increments according 

to vehicle delays and stops calculated from the detected flow [12]. SCATS and SCOOT 

have proven their great potential in improving traffic efficiency while being human-

crafted, given their respective control schemes and incremental designs pre-determined 

by experts [13]. The experts’ knowledge is valuable but may suffer from subjective bias 

issues.  

In recent years, reinforcement learning (RL), particularly data-driven deep reinforce-

ment learning (DRL), has shown excellent application prospects in ATSC [14]. In the ATSC 

system, RL self-learns the optimal actions through interaction and feedback with the traf-

fic environment instead of manually setting pre-defined rules. One or several intersections 

are considered an agent. The signal control system of the agent makes a decision after 

observing the state of the road network, and then learns the optimal signal timing scheme 

by maximizing the reward of environmental feedback [15]. Mikami and Kakazu [16] first 

applied RL to TSC optimization, leading to an upsurge in application of RL in TSC sys-

tems. However, RL is suitable for models with a discrete state and its direct application to 

TSC systems increases the computational complexity and requires large storage space 

[17]. Deep learning (DL) inspired by the working mode of the human brain can effectively 

process high-dimensional data by transforming low-level features to abstract high-level 

features, and thus can address the application limitation of RL in traffic signal control 

systems [18]. By combining the perception capacity of DL with the decision-making ca-

pacity of RL, DRL has been widely applied to ATSC [19].  

The application of the DRL algorithm to ATSC in most studies focuses on the calcula-

tion rate, convergence effect, and application scenarios, in which traffic efficiency is the ma-

jor goal of TSC optimization [19–22]. Considering the severe air pollution caused by idling 

times, parking times, and frequent accelerations/decelerations at intersections [23], vehicle 

emissions are also taken into consideration in the development of FTSC [24,25] and ASC 

[26], in addition to traffic efficiency. However, these bi-objective traffic control systems are 

pre-defined optimal timing schemes based on historical traffic data, which cannot be ap-

plied to the real-time control of real-world dynamic traffic flow for efficiency and emission 

optimization. To fill this research gap, this study proposes an optimized algorithm for the 

development of the ATSC system to take into consideration both vehicle emissions, espe-

cially carbon emissions, and traffic efficiency. 

The proposed ATSC algorithm utilizes a DRL framework with traffic efficiency and 

carbon emissions as the dual-objective optimization. The agent in the DRL framework is 

developed to change the traffic signal phase based on the multiple-reward function re-

lated to optimization objectives. More specifically, traffic efficiency and carbon emissions 

are optimized by reducing the cumulative waiting time (CWT) and carbon dioxide emis-

sions (CDEs) of all vehicles, respectively. The agent self-learns the optimal decision of 

traffic signal phases by minimizing the CWT and CDE between two adjacent traffic signal 

phases. To accelerate and balance the agent learning process, we develop a novel neural 
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network comprising Convolutional Neural Networks and Long Short-Term Memory Net-

works and utilize the entropy weight method to balance the weights among the CWT and 

CDE. A representative intersection in the real world is simulated for training and testing 

the proposed algorithm.  

2. Literature Review 

2.1. TSC System for Decarbonization and Efficiency 

Traffic signal control (TSC) systems are the primary means of organizing traffic at 

intersections, and a reasonable allocation of signal phase durations can improve vehicle 

passage efficiency. Early studies focused on calculating signal phase durations or setting 

rules for FTSC and ASC, which are unsuitable for dynamically changing traffic flows 

[4,8,9]. Hence, ATSC systems were proposed, which dynamically adjust signal timing 

based on real-time traffic data collected from various sensors [27]. The core principle of 

ATSC involves real-time analysis of traffic patterns and the optimization of signal phases 

to improve overall traffic throughput [28,29]. The mainstream approach is dynamic pro-

gramming models [30,31] that predict traffic patterns based on historical and real-time 

data to optimize signal timing. Zhao and Ma [32] established an ATSC dynamic planning 

model to increase traffic volume at intersections under an alternative design. Dynamic 

programming considers the traffic density, vehicle arrival rates, and intersection geome-

try in signal timing allocation [33,34]. Although these models can provide optimal solu-

tions for traffic signal planning, they are computationally intensive and resource-demand-

ing, especially for large-scale networks. Therefore, reinforcement learning (RL), particu-

larly deep reinforcement learning (DRL), offers an innovative solution for training agents 

to manage traffic signals [20]. Agents learn optimal strategies through trial and error to 

minimize delays and enhance traffic flow stability. Although RL techniques can handle 

complex nonlinear traffic patterns, they often require long training periods and significant 

computational power. 

Previous studies indicated that TSC systems can alter driving behavior, effectively 

reducing vehicle carbon emissions and fuel consumption [35–37]. Eco-driving strategies 

integrated with TSC systems encourage drivers to adopt energy-saving driving habits, 

such as smooth acceleration and deceleration, maintaining optimal speeds and minimiz-

ing idling time [38,39]. By advising drivers to maintain stable speeds and avoid rapid ac-

celeration or braking, TSC systems developed based on eco-driving strategies reduce fuel 

consumption and emissions. Hao et al. [26] developed a vehicle eco-approach and depar-

ture framework controlled by ASC to achieve carbon emissions reduction. Dynamic pro-

gramming models [40,41] and RL techniques [42,43] are also applied to optimize signal 

timing specifically for decarbonization. These models can prioritize green waves in high-

traffic corridors and adjust signal timings to minimize idling at intersections, both of 

which reduce fuel consumption. Some studies use multi-agent deep reinforcement learn-

ing techniques to coordinate multiple traffic signals, ensuring smooth traffic flow and re-

ducing stop-and-go traffic [44,45]. Additionally, TSC systems are designed to prioritize 

eco-friendly vehicles, such as electric and hybrid cars, by providing them with longer 

green phases or giving them priority at intersections to lower overall emissions [46,47]. 

To achieve the synergistic optimization of decarbonization and efficiency, balancing 

the demand for efficient traffic flow with the goals of reducing emissions and fuel con-

sumption is necessary. Multi-objective optimization frameworks are employed to tackle 

this challenge as they can handle conflicting objectives and provide solutions that balance 

efficiency and decarbonization [48–50]. These multi-objective frameworks often use evo-

lutionary algorithms or other advanced optimization techniques to find Pareto optimal 

solutions. Lin et al. [51] tackles multi-objective urban traffic light scheduling, minimizing 

delays and carbon emissions using Q-learning-enhanced algorithms. Furthermore, adap-

tive TSC systems integrating eco-driving strategies and dynamic programming models 

are particularly effective in achieving synergistic optimization [52,53]. Integrating eco-
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driving/carbon emission and DRL allows the system to learn and adapt to real-time traffic 

conditions. Boukerche et al. [54] used deep reinforcement learning to optimize traffic sig-

nals and vehicle speeds, ensuring smooth passage through intersections and reducing de-

lays and emissions. The DRL-based TSC method continuously improves performance by 

incorporating real-time data from various sources, including vehicle-to-infrastructure 

(V2I) communication, to enhance its optimization capabilities. 

2.2. DRL-Based ATSC 

The ATSC system can learn optimal policy through its continuous interactions with 

the real-time traffic state at intersections by applying different deep reinforcement learn-

ing approaches [53,55–57]. In the development of ATSC systems, three crucial parameters 

are usually used, including state which is the description of the traffic environment, action 

which is the set of traffic signal phases, and the reward function which serves to measure 

the changes in traffic efficiency or other relevant traffic indexes caused by the action [58–

60]. Existing DRL-based ATSC studies adopted different designs of state, action, and re-

ward. States can be vehicle-based representations, such as discrete traffic state encode 

(DTSE) including vehicle position and speed information, or feature-based value vector 

representations, such as vehicle queue length, cumulative delay, and waiting time [61,62]. 

Action includes selecting a possible green signal phase, keeping the current green signal 

phase/switching to the next green signal phase in sequence, or changing the signal phase 

duration [63]. Reward mainly concerns vehicle queue length, delay, etc. [64].  

DRL-based ATSC algorithms are always trained and implemented by a single agent 

of value-based or policy-gradient-based methods [65]. Popular DRL algorithms used for 

traffic-efficiency-based ATSC systems include the Deep Q Network (DQN) based on the 

value function, Deep Deterministic Policy Gradient (DDPG), Advantage Actor-Critic 

(A2C), and Asynchronous Advantage Actor-Critic (A3C) based on the policy gradient 

[66]. For example, Arel et al. [18] applied DRL in ATSC using a neural network to fit the 

Q-value, in which the Q-value may be overestimated by the DQN. To solve the overesti-

mation problem, Van Hasselt et al. [67] proposed the Double Deep Q Network to decouple 

action selection and value function estimation. Given that uniform sampling reduces the 

learning effect, a priority experience replay method which gives priority to important op-

erations and a Dueling Deep Q Network that attaches an extra Q-value to the selection of 

each action was proposed to accelerate the learning effect [68,69]. To enhance the stability 

of the model, a Double Dueling Deep Q Network was proposed by using the Convolu-

tional Neural Network (CNN) as the Q-value function approximator and target network, 

respectively [49,70]. In terms of policy-gradient DRL in ATSC algorithms, the A2C method 

and DDPG, which uses the nonlinear function to approximate the Q-value function, were 

applied to improve the efficiency and stability of the model [71–73]. In addition, the DRL 

model for ATSC is optimized by considering vehicle heterogeneity, improving the model 

input, considering the key points of the road network, and so on [74].  

In summary, traditional TSC systems can only achieve emission reductions based on 

specific scenarios and optimization algorithms, limiting their adaptability and practical-

ity. ATSC systems based on eco-driving, dynamic programming, and DRL show good 

performance in decarbonization, but most still primarily focus on efficiency optimization, 

treating decarbonization as a constraint or secondary strategy rather than proactively link-

ing it to signal timing. To fill this gap, this study proposes an optimized DRL algorithm 

that targets carbon emissions and efficiency as primary optimization objectives. A multi-

objective reward function is designed to accelerate model convergence, advancing the de-

velopment of an ATSC system that optimizes decarbonization and efficiency. 

3. Deep Reinforcement Learning-Based ATSC Algorithm 

This section presents the research problem statement of this paper and describes the 

DRL-based ATSC algorithm for improving traffic efficiency and reducing carbon emissions. 
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3.1. Research Problem Statement 

In this study, the research design is to reduce carbon emissions and improve traffic 

efficiency by designing a DRL-based ATSC system for optimizing dual goals (DRL-DG). 

In this application of DRL to the TSC problem, the signal control unit is regarded as an 

agent that takes actions by observing the state in the intersection environment. Its action 

𝑎 is defined as the appropriate traffic signal phase. Its reward 𝑟 is defined as the multi-

objective combination of the traffic efficiency index and carbon emission index. Through 

a self-learning process, the agent makes optimal decisions of traffic signal phases to 

achieve the goals. 

In the environment, a signalized intersection is designed to connect with four access 

roads. Each road is a dual carriageway allowing vehicles to travel in both directions. For 

each direction, three types of lanes are designed. Along the direction of vehicles approach-

ing the intersection, the inside lane is used for left-turning vehicles; the middle lane is 

used for straight-ahead vehicles; and the outside lane is used for right-turning or straight-

ahead vehicles. The specific width, quantity, and rules of lanes at the intersection are de-

signed based on travel demand. 

The traffic signal phase defines the releasing and waiting time for traffic flow in dif-

ferent directions, consisting of red, yellow, and green signal policies to ensure the orderly 

movement of vehicles at intersections. In our problem, four traffic signal phases are de-

signed for the movement of vehicles, as shown in Figure 1. Phase 1 sets the green signal 

for the middle and outside lanes; phase 2 sets the green signal for the inside lane in the 

east–west direction; Phase 3 sets the green signal for the middle and outside lanes; and 

Phase 4 sets the green signal for the inside lane in the north–south direction. According to 

the real-world rules of TSC, the yellow signal timing is set as four seconds. 

 

Figure 1. Definition of the intersection and four traffic signal phases. 

3.2. Deep Reinforcement Learning 

By the RL approach, agents learn the optimal policy to achieve definitive goals 

through continuous interactions with the environment. The Markov decision process is a 

theoretical framework to achieve goals through interactive learning, which can explain 

well the basic process of RL [14]. As TSC is the process of discrete action selection, value-

based RL is appropriate for the current application. Specifically, the state is expressed as 

the characteristic matrix or vector of the traffic environment. The action is shown as the 

discrete selection vector while the reward is presented as a scalar value related to the traf-

fic data. RL learns strategies/policies to maximize returns or achieve specific goals via 
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continuous interaction with the environment. The real-time state 𝑠 of the environment is 

first input to the agent for taking the corresponding action 𝑎 according to its current 

knowledge of policy 𝜋. Then, the agent obtains feedback reward 𝑅 (or punishment) from 

the environment, and accumulates long-term goals based on the reward. Under the action 

𝑎𝑡, the state 𝑠𝑡 transits to the state 𝑠𝑡+1
′  with a probability of 𝑝𝑎. In the learning process, 

policy is constantly updated to maximize the expected value of the long-term reward (ac-

tion-value function) until the expected value stabilizes in the optimal policy 𝜋∗ (term: 

“Converge”). The action-value function is defined as 

𝑄𝜋(𝑠, 𝑎) ≐ 𝐸𝜋[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝐸𝜋[∑ 𝛾𝑘∞
𝑘=0 𝑅𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (1) 

where 𝑄𝜋(𝑠, 𝑎) denotes the expected return of adopted policy 𝜋 after taking action 𝑎 at 

state 𝑠 , 𝐸𝜋  is the expected value of the adopted policy 𝜋 , 𝐺𝑡  is the cumulative dis-

counted future reward, 𝑠𝑡 is the state at the time step 𝑡, 𝑎𝑡 is the action taken at the time 

step 𝑡, 𝑘 is an incremental value from 0 to positive infinity, 𝛾 is the discount factor, and 

𝑅𝑡+𝑘+1 is the reward at the time step 𝑡 + 𝑘 + 1.  

According to the Bellman equation, the action-value function decomposes as [75]: 

𝑄∗(𝑠, 𝑎) = 𝐸 [𝑅𝑡+1 + 𝛾 max
𝑎′

𝑄∗(𝑠𝑡+1, 𝑎′) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 

= ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)]

𝑠′,𝑟

 
(2) 

where 𝑄∗(𝑠, 𝑎) denotes the optimal expected return of the optimal adopted policy 𝜋 after 

action 𝑎 is taken at state 𝑠, 𝐸 is the expected value, 𝑅𝑡+1 is the reward at the time step 

𝑡 + 1, 𝑠𝑡+1 is the state at the time step 𝑡 + 1, 𝑎′ is the action taken at the time step 𝑡 + 1, 

and 𝑄∗(𝑠′, 𝑎′) is the optimal expected return of the optimal adopted policy 𝜋 after action 

𝑎′ is taken at state 𝑠𝑡+1. In addition, 𝑠′ is the state at the time step 𝑡 + 1, 𝑟 is the reward 

after action 𝑎 is taken at state 𝑠, and 𝑝 is the probability of the state transition. The opti-

mal policy by iterating the optimal action value function continuously is solved: 

𝜋∗ = 𝑎𝑟𝑔 max
𝑎𝐴

𝑄∗(𝑠, 𝑎) (3) 

where 𝜋∗ is the optimal policy and 𝐴 is the set of actions. 

DRL is the combination of RL and DL, which is one of the advanced learning frame-

works in the current control system. Deepmind [19] proposed the Deep Q Network (DQN) 

in 2013. The DQN uses the experience playback to renew the neural network of the Q-

value calculation instead of the tabular form and stores the samples (𝑠, 𝑎, 𝑟, 𝑠′) from the 

interaction in the memory of experience. Then, small batches of samples are uniformly 

sampled from the memory of experience. The depth neural network is trained by the ran-

dom gradient descent method to approximate the Q-value. A strong correlation in sam-

ples can be interrupted by random sampling, which stabilizes the convergence. 

𝜋∗ = 𝑎𝑟𝑔 max
𝑎𝐴

𝑄∗(𝑠, 𝑎; 𝑤𝜃) (4) 

where 𝑤𝜃 is the parameter of the neural network. 

𝑦(𝑠, 𝑎) = 𝑟 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′; 𝑤𝜃) (5) 

However, the DQN tends to overestimate Q-values. Therefore, this study employs 

the Double DQN (DDQN) framework to design the agent, whose current target action-

value function is defined as 

𝑦(𝑠, 𝑎) = 𝑟 + 𝛾𝑄(𝑠′, 𝑎𝑟𝑔 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝑤𝜃); 𝑤𝑡) (6) 

where 𝑤𝑡 represent the parameters of the target network. 
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3.3. Framework 

Based on the DRL’s architecture, the conceptual framework of the DRL-DG approach 

consists of the environment and the agent is composed of a self-learning algorithm and a 

TSC component as shown in Figure 2. The agent applies the DDQN algorithm and re-

ceives a reward related to optimization goals after executing actions affecting the environ-

ment. The TSC system takes actions to adjust traffic signal phases to smooth traffic flow.  

Traffic environment information is collected and transformed to the state 𝑠𝑡 at the 𝑡 

time step as the input of the agent in DRL-DG. Based on 𝑠𝑡, an action 𝑎𝑡 is selected for 

the agent through an 𝜀-greedy policy. According to the action 𝑎𝑡, the TSC system remains 

in the current traffic signal phase or switches to another traffic signal phase to change 

vehicular movements on specific lanes. After taking action 𝑎𝑡, the traffic environment 

changes to the state 𝑠𝑡+1 at the next time step 𝑡 + 1. The reward 𝑟𝑡 of the state–action pair 

(𝑠𝑡 , 𝑎𝑡) is calculated according to the definition of reward functions. Next, the reward 𝑟𝑡 

and the state 𝑠𝑡+1 are returned from the environment, forming (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) together 

with state–action pair (𝑠𝑡 , 𝑎𝑡), stored as the agent’s experience in the memory pool. The 

state 𝑠𝑡+1 is used as the agent’s input at the next time step 𝑡 + 1. All procedures involving 

the input and feedback mechanism between the agent and environment are iterative. Fi-

nally, the agent learns the optimal traffic signal phases and updates the DDQN model 

from the memory pool by the experience replay method. 

 

Figure 2. The conceptual framework of DRL-DG. 

3.4. Agent Design 

3.4.1. State 

In this study, based on the discrete traffic state encoding (DTSE), non-uniform quan-

tization and one-hot encoding are used to design the state vector as the state representa-

tion. The intersection used for simulation is an isolated cruciform intersection with an 

eight-lane dual carriageway whose length is 500 m in four directions, respectively [76]. 

For each direction, the inside lane is designed for left-turning vehicles; two middle lanes 

are designed for straight-ahead vehicles; and the outside lane is designed for right-turning 

or straight-ahead vehicles. Lanes are divided into cells according to a certain length pro-

portion. Taking the west approach entrance of the intersection as an example, the cell de-

sign is illustrated in Figure 3. The three lanes on the right are divided as a whole, while 

the left turn lane on the left is divided separately. Ten cells are obtained for the west en-

trance direction. A total of 80 cells are set for the lanes in four directions of an intersection. 

Whether a car is present in cells represents the state. The state value of the cell is one if a 

vehicle exists; otherwise, it is zero. 
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Figure 3. Schematic diagram of cells designed for west entrance at intersection (state presentation). 

As for the design of each cell, it aims to reflect the distribution of vehicles along the 

road. As shown in Figure 3, the cell nearest to the intersection is 7 m long, which can 

accommodate only one vehicle. Considering the relatively low traffic density in the road-

way sections far from the intersection, the cell farthest from the intersection is 180 m long. 

Compared with the method of using a real-time image or lane uniform division to repre-

sent the state, the proposed division method can reflect the actual nonuniform traffic den-

sity along the road, reduce the data dimension, and shorten the calculation time [77]. Us-

ing the presence of vehicles in each cell as the state can simplify traffic information, give 

samples specific labels of the environmental features, facilitate the feature extraction in 

the model, and thus increase the stability of convergence. 

3.4.2. Action 

The agent selects appropriate actions to divert traffic flow based on the traffic state. 

The action in this study is defined as the selection of a possible traffic signal phase. The 

action set is 𝐴 = {𝐸𝑊𝐺, 𝐸𝑊𝐿𝐺, 𝑁𝑆𝐺, 𝑁𝑆𝐿𝐺}  representing the east–west straight move-

ment and right turn, the east–west left turn, the north–south straight movement and right 

turn, and the north–south left turn, respectively. The minimum duration of each green 

traffic signal phase is set to 10 s [63]. Meanwhile, a 4 s yellow signal is set during the 

switching between green and red signals for intersection safety. At each signal phase de-

cision, if the agent selects the same phase, the green light for that phase is extended by 10 

s. Otherwise, a 4 s yellow light is executed before switching to the next phase. In the DRL-

DG system, after a phase has been selected consecutively six times, it will trigger the en-

forcement of other phases. Each green phase duration ranges from 10 to 60 s. 

3.4.3. Reward 

At a certain moment, the agent selects an action according to the observed state. Once 

the action is executed, the feedback, i.e., reward, is obtained for evaluating the perfor-

mance of the action. The reward function is a key factor in ensuring the convergence of 

DRL and the achievement of optimization goals. The dual-objective reward function is 

defined by the reward functions of traffic efficiency 𝑅𝑇𝐸 and carbon emissions 𝑅𝐶𝐸.  

𝑅(𝑡) =  𝑊𝑇𝐸𝑅𝑇𝐸
(𝑡)

+ 𝑊𝐶𝐸𝑅𝐶𝐸
(𝑡)

 (7) 

where 𝑊𝑇𝐸 and 𝑊𝐶𝐸 are the weights of traffic efficiency and carbon emissions set in the 

dual-objective reward function, respectively.  

The weight values in the reward function influence the model’s convergence. Com-

pared to the expert scoring method, analytic hierarchy process, or simple linear weighting, 

the entropy weight method calculates weights based on data distribution, reducing sub-

jective biases and providing a more data-driven and adaptable solution. The entropy 

weight method is used to adjust the weights based on the reward values in the DRL-based 

ATSC system [49,78]. Given that the entropy method is sensitive to data distribution and 
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has initial subjective weighting issues, data normalization and the dynamic adjustment of 

weights based on real-time traffic data and reward values are implemented, ensuring sta-

ble and reliable weighting results. 

𝑦𝑖 =
𝑥𝑖 − 𝑚𝑖𝑛 {𝑥𝑖}

𝑚𝑎𝑥{𝑥𝑖} − min {𝑥𝑖}
 (8) 

where 𝑚𝑖𝑛 {𝑥𝑖} and 𝑚𝑎𝑥{𝑥𝑖} represent the maximum and minimum value of the 𝑖 re-

ward. 

𝑃𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

, 0 ≤ 𝑃𝑖𝑗 ≤ 1 (9) 

where 𝑥𝑖𝑗 is the reward value at action 𝑖 calculated by the reward function 𝑗. 

𝑌 = {𝑃𝑖𝑗}𝑚×𝑛 (10) 

where 𝑌 is the standardized matrix. 

𝐻𝑗 = −
1

ln 𝑚
∑(𝑃𝑖𝑗 × ln 𝑃𝑖𝑗)

𝑚

𝑖=1

 (11) 

where 𝐻𝑗 is the entropy value of the reward function 𝑗. 

𝑔𝑗 = 1 − 𝐻𝑗 (12) 

where 𝑔𝑗 is the coefficient of variation in the reward function 𝑗. 

𝑤𝑗 =
𝑔𝑗

∑ 𝑔𝑗
𝑛
𝑗=1

 (13) 

where 𝑤𝑗 is the weight value of the reward function 𝑗, i.e., the value of 𝑊𝑇𝐸 and 𝑊𝐶𝐸.  

In terms of traffic efficiency, minimizing travel delays is the primary goal. Previous 

studies have proved that the waiting time of vehicles at the intersection can be used as an 

indicator of travel delay [58,61,64]. 

CWT denotes the cumulative or total waiting time of all vehicles stopping and wait-

ing at the lane before crossing the intersection. A longer waiting time indicates longer 

delays. The difference in CWT between two adjacent execution time steps refers to the 

reward function indicating traffic efficiency: 

𝑅𝑇𝐸
(𝑡)

= −(𝐶𝑊𝑇(𝑡+1) − 𝐶𝑊𝑇(𝑡)) (14) 

where 𝐶𝑊𝑇(𝑡) and 𝐶𝑊𝑇(𝑡+1) denote the cumulative waiting time at step 𝑡 and 𝑡 + 1, re-

spectively. 

In terms of carbon emissions, its major source is carbon dioxide emissions. Thus, the 

second goal is minimizing carbon dioxide emissions (CDEs). The difference in CDE in two 

adjacent executing actions refers to the reward function indicating carbon emission reduc-

tions: 

𝑅𝐶𝐸
(𝑡)

= −(𝑃𝐸(𝑡+1) − 𝑃𝐸(𝑡)) (15) 

where 𝑃𝐸(𝑡) and 𝑃𝐸(𝑡+1) denote the cumulative carbon dioxide emissions of step 𝑡 and 

𝑡 + 1, respectively.  

Carbon dioxide emissions are acquired by the pollutant emission model of SUMO 

[79], which defines the emission quantity (g/h) as a function of the vehicular current en-

gine power using typical emission curves over power (CEPs). The total carbon dioxide 

emissions 𝑃𝐸 are defined as 

𝑃𝐸 = (𝑃𝑅𝑜𝑙𝑙 + 𝑃𝐴𝑖𝑟 + 𝑃𝐴𝑐𝑐𝑒𝑙 + 𝑃𝐺𝑟𝑎𝑑)/𝜂𝑔𝑒𝑎𝑟𝑏𝑜𝑥 (16) 
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where  

𝑃𝑅𝑜𝑙𝑙 = (𝑚𝑣𝑒ℎ𝑖𝑐𝑙𝑒 + 𝑚𝑙𝑜𝑎𝑑) × 𝑔 × (𝐹𝑟0 + 𝐹𝑟1𝑣 + 𝐹𝑟2𝑣4) × 𝑣 (17) 

𝑃𝐴𝑖𝑟 = (𝑐𝑑 × 𝐴 ×
𝜌

2
)𝑣3 (18) 

𝑃𝐴𝑐𝑐𝑒𝑙 = (𝑚𝑣𝑒ℎ𝑖𝑐𝑙𝑒 + 𝑚𝑟𝑜𝑡 + 𝑚𝑙𝑜𝑎𝑑)𝑎𝑣 (19) 

𝑃𝐺𝑟𝑎𝑑 = (𝑚𝑣𝑒ℎ𝑖𝑐𝑙𝑒 + 𝑚𝑙𝑜𝑎𝑑) × 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 × 0.01 × 𝑣 (20) 

with the following definitions: 
𝜂𝑔𝑒𝑎𝑟𝑏𝑜𝑥 driver train loss (set to 0.95); 

𝑚𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑚𝑙𝑜𝑎𝑑 vehicular masses and load masses, respectively; 

𝑔 gravitational constant (6.673 × 10−11m3/(kg × s2)); 

𝐹𝑟0, 𝐹𝑟1, 𝐹𝑟2 coefficients of resistance/friction; 

𝑣 the instantaneous velocity of vehicles; 

𝑐𝑑 the vehicular coefficient from drag; 

𝐴 cross-sectional area (m2); 

𝜌 air mass density (~1.225 kg/m3); 

𝑚𝑟𝑜𝑡 rotating mass. 

3.4.4. DQN Model 

The optimal policy is learned according to the optimization goal through the DQN 

model based on the traffic state. The traditional DQN model is a complete neural network 

with a full connection layer. Figure 4 presents the designed novel neural network for the 

DQN model in this study, which is a neural network linked by convolutional, long short-

term, and fully connected layers. The target network utilizes the same neural network. 

 

Figure 4. Structure design of the DQN model. 

The given state represented by 80 cells, i.e., the 0–1 matrix with size 8 × 10, is cali-

brated to the Q-value of the action through convolutional and fully connected layers. 

Based on the size of the 0–1 state matrix, two convolution layers with 100 and 10 kernels 

are set up [80], whose filter size is 1 × 3 and stride is 2, to create labels with a lane char-

acteristic. The final convolution layer’s output is flattened via a pooling layer as the state 

vector to fully connected layers. The LSTM includes two layers with 80 units and a 0.2 

dropout rate. It is noted that the number of fully connected layers is 5, whose width is 

400. Using the Adam optimizer, the learning rate is 0.001, the batch size is 100, and the 

training iteration is 800 times per round, using the mean square error as the loss function. 

The Q-value indicates the reward value. Thus, the optimal selection is the action which 

has the highest Q-value. The agent’s experience at every time step is stored in the memory 

pool. The DQN is trained by the experience replay method to update the weight parame-

ter of the neural network.  
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3.5. Overall Algorithm 

Algorithm 1 presents the pseudo-code of the proposed algorithm. The time step, 

agent, TSC component, and memory pool are initialized first (Line 1), after which the in-

terface between the algorithm and simulation platform is established (Line 2). Based on 

the 𝜀-greedy policy, the optimal action is obtained for the current traffic state (Lines 3–7). 

The optimal action is then activated for the TSC component, causing a traffic signal phase 

variation, as illustrated in lines 8–10. Following the action, the next state and reward re-

turned from the environment are stored in the memory pool together with the current 

state and action (Lines 11–13). By sampling from the memory pool, DQN is trained (Lines 

14–17). The algorithm is implemented through the DL framework Keras using the Python 

programming language (Version 3.8.12). 

Algorithm 1: DRL-DG Algorithm Flow 

1: Initialize: Evaluation DQN, Target DQN, TSC component, memory pool 

2: Establish simulation interface (TRACI) 

3: for episode = 1 to total episode do 

4:   Initialize: road network environment, import traffic flow data 

5:   for time step = 1 to maximum time do 

6:     Agent observes the current environment 𝑠𝑡 

7: Choose 𝑎𝑡 based on 𝜀-greedy policy 

8: Import 𝑎𝑡 to TSC component 

9: TSC component changes traffic signal phase 

10: Output 𝑠𝑡+1 and calculates reward 𝑟𝑡 

11: Store (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in memory pool 

12:   end for 

13:   Extract samples from the memory pool to train the network 

14:   Based on 𝑄∗(𝑠, 𝑎) to calculate optimization goals 

15: 
  Update the parameters of Evaluation/Target DQN using the mean square error 

loss function 

16: end for 

Several variables act as obstacles in achieving convergence, including a high varia-

bility in traffic flow, complex traffic scenarios, the reward design, and algorithm parame-

ters. The DRL-DG method improves convergence by employing a sophisticated reward 

function that uses the entropy weight method to balance traffic efficiency and carbon 

emissions. Additionally, a neural network structure combining CNN and LSTM is used 

to handle complex traffic scenarios and improve agent-learning efficiency. To enhance 

convergence stability, the experience replay mechanism and target networks are utilized. 

Algorithm parameters are carefully tuned through extensive experimentation. 

4. Case Validation 

Based on a representative signalized intersection in the Changsha urban road net-

work, Simulation of Urban Mobility (SUMO) software is adopted to build the simulated 

intersection scenario for training and testing the proposed algorithm. In the simulation, 

the algorithm collects traffic information and controls traffic signal phases by the Traci 

interface coded directly in Python. The agent in DRL-DG is trained under a random traffic 

flow generated by a Weibull distribution. The performance of the proposed DRL-DG is 

evaluated at the simulated intersection with the real-world traffic flow data recorded by 

photography and compared with that of three classic traffic signal control algorithms. 

4.1. Scenario 
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The experimental scenario refers to the intersection of Kaiyuan East Road and 

Huangxing Avenue in Changsha City, Hunan Province, China. The intersection is a typi-

cal cruciform signalized intersection in China, which connects four 500 m long dual car-

riageways with four lanes each way in Figure 5. For each entrance direction, there is an 

inside lane for left-turning vehicles, two middle lanes for straight-ahead vehicles, and an 

outside lane for right-turning or straight-ahead vehicles. The vehicles on the outside lane 

are permitted to turn right during the red signal phase without conflicts in the intersection 

area. 

 

Figure 5. Real-world intersection and scenario. 

The four directions of the real-world intersection are all business areas with a bal-

anced traffic flow distribution. The real-world traffic flow data were collected from 7:30 

a.m. to 8:30 a.m., which is part of the peak hours in Changsha City on Thursday 23 June, 

2022. A total of 979 vehicles were observed during such a period. The number of vehicles 

increases significantly during the peak hours, especially in the middle lanes which ac-

count for about 70% of the total number of vehicles as presented in Figure 6, causing traffic 

congestion. In such a case, the traffic flow approximately obeys a Weibull distribution, 

which is thus used to simulate the flow distributions during peak hours.  

 

Figure 6. Real-world traffic flow. 

4.2. Simulation and Algorithm Setting 

To simulate the traffic flow during the peak hours at the real-world intersection, the 

probability density of a Weibull distribution is assumed for vehicles in the traffic flow. 

𝑓(𝑥; 𝜆, 𝑎) = {
𝑎

𝜆
(

𝑥

𝜆
)

𝑎−1

𝑒−(
𝑥
𝜆

)
𝑎

𝑥 ≥ 0

0                         𝑥 < 0

 (21) 

where 𝜆 is the scale parameter, set as 1; 𝑎 is the shape parameter, set as 2.  

As for the vehicle movement from any approaching entrance of the intersection, the 

probability of vehicles turning left, traveling straight, or turning right is 12.5%, 75%, and 

12.5%, respectively. In the simulation, the car-following behavior obeys the Krauss car-

following model. The vehicle is 5 m long with the minimum distance between the adja-

cent vehicle of 2.5 m. The maximum velocity of vehicles is 35 km/h, setting 1 m/s2 as 
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the maximum acceleration, 4.5 m/s2 as the maximum deceleration, and 0.5 (𝑠𝑖𝑔𝑚𝑎) as 

the driver defect. 

Table 1 shows the detailed setting for the simulation and algorithm. The parameters 

presented are for the agent (action number, duration of signal phases) and algorithm (ep-

isode, step, learning rate, batch size, memory, etc.).  

Table 1. Algorithm setting. 

Parameter Value Note 

Number of actions 𝑁𝑎 4 Number of phases 

Minimum green time 𝑔𝑚𝑖𝑛 10 s  

Yellow time 𝑡𝑦 4 s  

Default phase 𝑝0 𝐸𝑊𝐺 Initial traffic signal phase 

Episode 400 Number of trainings 

Step 3600 Step length of one training 

Weight of CWT 𝑊𝐶𝑊𝑇 0.5  

Weight of CDE 𝑊𝐶𝐷𝐸 0.5  

Batch size 𝐵 100  

Learning rate 𝐿𝑟 0.001  

Epoch 𝐸 800  

Starting 𝜀 0.99  

Ending 𝜀 0.01 To avoid local optimal solution 

Minimum memory pool size 𝑀𝑚𝑖𝑛 600 To obtain all samples 

Maximum memory pool size 𝑀𝑚𝑎𝑥 60,000 To remove the oldest element 

Discount factor 𝛾 0.8  

Leaky ReLU 𝛽 0.01  

Length of training step 𝑡𝑡𝑟𝑎𝑖𝑛 1 s  

4.3. Comparisons among Different TSC Systems 

To evaluate the performance of the proposed algorithm, the DRL-DG-based adaptive 

traffic control system is compared with traditional traffic control systems, including FTSC 

and ASC, and the DRL-SG-based ATSC system, which applies an advanced DRL algo-

rithm for efficiency optimization. The comparisons are conducted in terms of VWT, VQL, 

CDE, ADF, VFC, and NGE [13]. 

(1) Fixed-time signal control (FTSC): FTSC predefines a set of timing schemes by the clas-

sic Webster timing method and is widely used for real-world traffic intersections. The 

duration set for phase 1, phase 2, phase 3, and phase 4 is 60, 40, 60, and 40 s, respec-

tively. Between two adjacent phases, a four-second yellow signal is set.  

(2) Actuated signal control (ASC): ASC adjusts the traffic signal phase and the duration 

time based on the queue length and traffic flow. Once the queue length of the lane 

during the red signal phase reaches the threshold which is set as 70 m, the signal for 

this lane turns green. In case many vehicles are still in the lane during the green sig-

nal, the duration of the green signal will be extended up to 60 s [81]. 

(3) DRL-based ATSC Optimizing Single Goal (DRL-SG): DRL-SG applies the DRL al-

gorithm framework into ATSC to optimize traffic efficiency that receives the most 

attention. Similarly, the DQN model used for efficiency optimization is a conven-

tional, long short-term, and fully connected neural network. The reward refers to the 

difference in the vehicular waiting time at two adjacent time steps. 

The signal phase duration and rules of DRL-DG are different to FTSC and ASC. FTSC 

utilizes the Webster method, a historical traffic data-driven approach that calculates prede-

termined and fixed green phase durations. The ASC method incorporates a queue length 

detection mechanism based on FTSC, allowing for early phase changes and dynamic signal 

phase adjustments based on real-time traffic flow. In contrast, the proposed DRL-DG 
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approach entails developing a phase-selecting agent capable of dynamically adjusting green 

phase durations in response to real-time traffic conditions [11,61]. The minimum green 

phase duration is set to 10 s to account for driver reaction times and ensure an optimal op-

timization effect [5,20]. 

4.4. Evaluation Metrics 

The primary optimization objectives of DRL-DG include vehicle waiting time and 

vehicle driving delay. In addition, the vehicle queue length is calculated for traffic effi-

ciency evaluation. While vehicle fuel consumption, carbon dioxide emissions, and toxic 

gas emissions are estimated for vehicle emissions. The explanations for all metrics are 

given below. 

(1) Vehicle waiting time (VWT): This refers to the cumulative waiting time of vehicles 

stopping at the intersection in each time stamp (5 min). A lower VWT indicates a 

shorter time that vehicles are stopped at the intersection, contributing to higher traffic 

efficiency. 

(2) Vehicle queue length (VQL): This refers to the cumulative quantity of vehicles stop-

ping at the intersection entrance in each time stamp (5 min). A lower VQL implies 

more vehicles crossing the intersection, reducing the possibility of congestion. 

(3) Carbon Dioxide Emissions (CDEs): These refer to the total carbon dioxide emissions 

of vehicles in each time stamp (5 min). CDEs are used as the main index to evaluate 

vehicle carbon emissions. Lower CDEs denote lower carbon emissions. 

(4) Acceleration–deceleration frequency (ADF): This refers to the total frequency of ve-

hicle accelerations or deceleration in each time stamp (5 min). A lower ADF reveals 

lower extra carbon dioxide emissions (Vasconcelos et al., 2014). 

(5) Vehicle fuel consumption (VFC): This refers to the cumulative fuel consumed dur-

ing driving in each time stamp (5 min). A lower VFC denotes a higher energy effi-

ciency. 

(6) Noxious gas emissions (NGEs): These are the total emissions of carbon monoxide (CO) 

and nitrogen oxides (NOx) emitted by vehicles in each time stamp (5 min). Lower 

NGEs denote less toxic air pollutants. The CO and NOx emissions are estimated using 

SUMO’s pollutant emission model, which calculates emissions based on the vehicle’s 

current engine power and typical emission curves [79].  

𝐸𝐶𝑂 = 𝑃 ∙ 𝐸𝐹𝐶𝑂 (22) 

𝐸𝑁𝑂𝑥 = 𝑃 ∙ 𝐸𝐹𝑁𝑂𝑥 (23) 

𝑃 = (𝑚 ∙ 𝑎 + 𝑚 ∙ 𝑔 ∙ 𝐶𝑟 +
1

2
∙ 𝑝 ∙ 𝐴 ∙ 𝐶𝑑 ∙ 𝑣2) ∙ 𝑣 (24) 

where 𝑃 is the engine power in kilowatts (kW). 𝐸𝐹𝐶𝑂 and 𝐸𝐹𝑁𝑂𝑥 are the emission fac-

tors for CO and NOx (grams/kWh). 𝑣 is the vehicle speed (m/s). 𝑚 is the vehicle mass 

(kg). 𝑎 is the vehicle acceleration in (m/s2). 𝑔 is the gravitational acceleration, typically 

9.81 m/s2. 𝐶𝑟 is the rolling resistance coefficient. 𝑝 is the air density (kg/m3), typically 

1.225 kg/m3 at sea level and 15 °C. 𝐴 is the vehicle frontal area (m²). 𝐶𝑑 is the air re-

sistance coefficient. 

4.5. Results and Discussion 

FTSC, ASC, DRL-SG, and DRL-DG systems are implemented in the simulation based 

on the real-world traffic flow. The cumulative, average, and real-time evaluation metrics 

are obtained and compared for all traffic control systems. 

Figure 7 illustrates that the DRL-DG’s convergence speed is faster than that of the 

DRL-SG. The novel network architecture and the design of the multi-objective optimiza-

tion function have accelerated the agent’s learning process.  
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Figure 7. Training process. 

4.5.1. Overall Analysis 

VWT and VQL are indicators for the evaluation of traffic efficiency at the intersection. 

VWT indicates the time lost caused by vehicle stopping and waiting for the red signal. 

VQL is the number of vehicles stopping at the intersection due to a red signal. The cumu-

lative waiting time and queue length for different traffic control systems are shown in 

Figure 8a,b, respectively. The average value of VWT and VQL is provided in the first two 

columns of Table 2. Compared to FTSC and ASC, VWT is reduced by 83.54% and 70.74%, 

respectively, for a DRL-DG-based ATSC. In terms of VQL, its value obtained for a DRL-

DG-based ATSC is reduced by 83.83% and 70.79%, respectively. When compared with 

DRL-SG, DRL-DG has the approximate performance on VWT (15.68 vs. 14.79) and VQL 

(3.23 vs. 3.01).  

In terms of CDE shown in Figure 9a, the vehicle carbon dioxide emissions of the DRL-

DG-based ATSC system are reduced by 69.71%, 52.71%, and 41.96%, respectively, com-

pared with FTSC, ASC, and DRL-SG systems. ADF is the acceleration or deceleration fre-

quency/rate, an important component related to carbon emissions [82,83]. The result of 

cumulative ADF is provided in Figure 9b. From the figure, the ADF value of DRL-DG is 

smallest, indicating that the traffic flow is stable. The average value of CDE and ADF is 

provided in the third and fourth columns of Table 2, indicating similar comparison results 

to the accumulative results.  

In addition to the primary objective indicators, VFC and NGE are also calculated and 

used for evaluating the performance of different TSC systems from the perspectives of 

economic benefits and toxic air pollution [84]. Their cumulative results are given in Figure 

10a,b, respectively. Their average values are given in the last two columns of Table 2. Both 

the figure and table showed that the VFC of DRL-DG is reduced by 69.71%, 52.71%, and 

41.96%, respectively, compared to FTSC, ASC, and DRL-SG. Similarly, the NGE of DRL-

DG is reduced by 84.85%, 73.14%, and 24.53%, respectively. Therefore, the proposed DRL-

DG algorithm can significantly improve fuel economy and reduce toxic air pollution. 
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(a) Vehicle waiting time (b) Vehicle queue length 

Figure 8. Cumulative performance of TSC systems regarding traffic efficiency. 

  
(a) Carbon dioxide emissions (b) Acceleration–deceleration frequency 

Figure 9. Cumulative performance of TSC systems regarding carbon dioxide emissions. 

  
(a) Vehicle fuel consumption (b) Noxious gas emissions 

Figure 10. Cumulative performance of TSC systems regarding secondary index. 

Table 2. Average performance of traffic signal control methods with evaluation metrics. 

TSC 
Average VWT 

(s/Vehicle) 

Average VQL 

(Vehicle/s) 

Average CDE 

(g/Vehicle) 

Average CDE  

(Rate) 

Average VFC 

(mL/Vehicle) 

Average NGE 

(g/Vehicle) 
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FTSC 95.27 20.02 313.59 17.61 134.81 16.24 

ASC 53.61 11.08 200.84 17.54 86.33 9.16 

DRL-SG 14.79 3.01 163.64 14.47 70.35 3.26 

DRL-DG 15.68 3.23 94.97 10.87 40.83 2.46 

4.5.2. Comparative Analysis in Simulation 

According to the real-world traffic flow at intersections, the traffic volume increases 

dramatically from 0 to 30 min and decreases gradually from 30 to 60 min. Based on the 

simulation, the real-time performance of DRL-DG on the evaluation metrics collected in 

five-minute intervals is compared with that of FTSC, ASC, and DRL-SG.  

The real-time performance of different TSC systems on traffic efficiency in each five-

minute interval is shown in Figure 11. The overall trend revealed by Figure 11a shows 

that the fluctuations in the optimized objective of VWT for all traffic control systems are 

positively related to those of traffic volume. A similar trend could be observed for VQL in 

Figure 11b. From 0 to 30 min, the vehicle waiting time and queue length increase, while 

from 30 to 60 min, the vehicle waiting time and queue length reduce. However, VWT and 

VQL are always lowest for DRL-SG and DRL-DG, followed by ASC and FTSC, indicating 

that DRL-based ATSC can significantly improve traffic efficiency compared to traditional 

traffic control systems. DRL-SG results in a slightly shorter waiting time and queue length 

than DRL-DG with an insignificant difference. This result can be explained by the sole 

optimization objective of DRL-SG which is traffic efficiency, while in DRL-DG, the effi-

ciency may compromise the objective of carbon emissions, resulting in a lower efficiency.  

The real-time performance of various TSC systems on carbon emissions in each five-

minute interval is presented in Figure 12a. From the figure, the CDE values of DRL-DG 

are always lowest, followed by ASC, FTSC, and DRL-SG, indicating its advantage of car-

bon emission reductions. The ADF of different traffic control systems is shown in Figure 

12b. The FTSC and ASC result in the highest vehicle acceleration or deceleration, followed 

by DRL-SG. Similar to the comparative result of carbon dioxide emissions, DRL-DG re-

sults in the lowest acceleration/deceleration frequency [85,86]. The DRL-DG compels ve-

hicles to avoid inessential acceleration/deceleration and move stably. Acceleration or de-

celeration rate has been demonstrated to contribute to significant carbon emissions [87]. 

If there is a speed profile, the explanations can be more convincing. 

The real-time performance of traffic control systems on fuel economy and toxic air 

pollution is illustrated in Figure 13a and Figure 13b, respectively. Given that carbon emis-

sions and fuel consumption are directly related, the images of CDE and VFC are found to 

be similar. The VFC value of DRL-DG is lowest among the four traffic control systems, 

indicating its advantage in the improvement in fuel economy. The reduction in fuel con-

sumption can be explained by the decreased VWT and acceleration/deceleration rate [88]. 

As for NGE in Figure 13b, the toxic pollutant emissions at the intersection controlled by 

DRL-DG are lowest, indicating the lowest toxic pollutants among all four traffic systems. 

Based on Equations (22)–(24), the emission of noxious gas is related to the vehicle engine 

power [89]. The lowest NGE can be partially explained by the reduced vehicle waiting 

time (as shown in Figure 11a) and acceleration/deceleration rate (as shown in Figure 12b) 

[90].  
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(a) Vehicle waiting time (b) Vehicle queue length 

Figure 11. Real-time performance of TSC methods regarding traffic efficiency. 

  
(a) Carbon dioxide emissions (b) Acceleration–deceleration frequency 

Figure 12. Real-time performance of TSC methods regarding carbon dioxide emissions. 

  
(a) Vehicle fuel consumption (b) Noxious gas emissions 

Figure 13. Real-time performance of TSC methods regarding other air pollution index. 

In summary, traffic control systems developed by DRL-based methods, especially 

DRL-DG, perform significantly better than traditional traffic control systems consisting of 

fixed and actuated traffic control systems, in terms of traffic efficiency, carbon dioxide 

emissions, fuel consumption, and toxic gas emissions. The overwhelming advantage of 

the DRL-DG-based traffic control systems is embodied in high-traffic volume situations. 

Considering this advantage and the expensive relevant equipment, a DRL-DG-based traf-

fic control system could be applied for intersections with heavy traffic. In the practical 

application, the weights can be adjusted according to government policies or the demand 

of practice.  

4.5.3. Opening the “Black Box” in DRL-DG 

The relationship between the DRL-DG system and vehicle waiting time is fundamen-

tal to understanding its impact on traffic efficiency. The reasonable allocation of signal 

phase durations directly influences driving behavior and improves traffic flow. The DRL-

DG system employs deep reinforcement learning to dynamically adjust traffic signal tim-

ings based on real-time traffic conditions. Traditional FTSC and ASC systems fail to adapt 

to fluctuating traffic patterns, resulting in extended vehicle waiting times and increased 

congestion. In contrast, the DRL-DG system continuously learns and modifies signal 

phases to optimize traffic flow. Microsimulation results have shown that the DRL-DG sys-

tem reduces vehicle waiting times by 83.54% compared to FTSC and 70.74% compared to 

ASC. It intelligently selects signal phases and adjusts green phase durations based on cur-

rent traffic data, minimizing idle times and enhancing overall traffic flow at intersections. 

These improvements highlight the system’s ability to streamline traffic movement and 

reduce congestion through real-time optimization. 

The impact of the DRL-DG system on carbon emissions is closely linked to its ability 

to reduce vehicle idle times and optimize acceleration and deceleration patterns. Vehicles 
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emit higher levels of pollutants, such as CO2, CO, and NOx, during idling and frequent 

stop-and-go movements. The DRL-DG system effectively lowers emissions by minimiz-

ing these periods through optimized signal timings. Specifically, the system adjusts signal 

phases dynamically, ensuring that vehicles spend less time idling at red lights and expe-

rience fewer abrupt stops and starts. This leads to a smoother traffic flow with reduced 

acceleration and deceleration cycles, significantly reducing carbon emissions. The macro-

scopic simulation results confirm this point (see Figure 12), showing that the DRL-DG 

system has the lowest vehicle acceleration/deceleration frequency. In fact, the DRL-DG 

system influences several critical factors directly impacting emissions: it reduces idle 

times, ensures smoother transitions through intersections, and adapts to real-time traffic 

conditions to prevent congestion. These adjustments result in a substantial reduction in 

overall fuel consumption and emissions. In simulations, the DRL-DG system achieved a 

69.71% reduction in CO2 emissions compared to FTSC and a 52.71% reduction compared 

to ASC. Further, CO and NOx emissions were significantly reduced, proving the environ-

mental benefits of the DRL-DG system and its potential to improve sustainable urban mo-

bility by lowering harmful emissions. 

Several factors also influence vehicle carbon emissions at intersections, including in-

tersection design, vehicle types, and traffic volume. The design of an intersection, such as 

the number of lanes, presence of dedicated turning lanes, and overall layout, can signifi-

cantly affect traffic flow and emissions. Well-designed intersections that minimize vehicle 

idling and facilitate smooth traffic flow can reduce emissions. Additionally, the types of 

vehicles and their respective emission rates impact overall emissions. Eco-friendly cars 

produce fewer emissions than conventional vehicles. Traffic volume is another critical fac-

tor: high traffic volumes often lead to increased idling times and more frequent stop-and-

go movements, contributing to higher emissions. Traffic signal optimization aims to pre-

vent high traffic volumes, thereby reducing carbon emissions. Therefore, effective policy 

measures are essential to addressing these factors and reducing vehicle emissions at in-

tersections. Implementing congestion pricing can decrease traffic volume during peak 

hours, reducing emissions. Incentives for eco-driving behaviors and driver education can 

promote energy-efficient driving practices. Investing in smart infrastructure, such as 

adaptive traffic signal control systems and real-time traffic monitoring, can enhance traffic 

flow and reduce emissions. 

5. Conclusions 

To improve traffic efficiency and reduce carbon emissions at intersections, this study 

proposes a deep reinforcement learning-based dual-objective optimization algorithm for 

the adaptive traffic signal control system. The objectives of this study are achieved by 

reducing vehicle waiting time and carbon dioxide emissions through the proposed DRL-

DG-based ATSC traffic control systems. In addition, the performance of the proposed sys-

tem in reducing vehicle fuel consumption and toxic gas emissions is also evaluated.  

Based on the video data collected from an isolated intersection in Changsha City, 

China, the intersection and traffic flow are simulated through SUMO. Based on the simu-

lated intersection, the proposed DRL-DG algorithm is trained and tested with an equal pri-

ority set for vehicle waiting time and carbon dioxide emissions. For comparison purposes, 

fixed-time signal control (FTSC), actuated signal control (ASC), and DRL-based ATSC that 

optimizes only traffic efficiency are also trained and tested. In terms of traffic efficiency, the 

results show that DRL-DG and -SG methods perform similarly on traffic efficiency without 

significance. But DRL-DG performs much better than FTSC and ASC with a reduction of 

more than 71% in vehicle waiting time. Regarding carbon dioxide emissions, the DRL-DG 

method performs best with a reduction of more than 46%. The traffic control system devel-

oped based on the proposed DRL-DG also shows its advantage in the reduction in vehicle 

fuel consumption and toxic gas emissions. For all evaluation metrics, the performance of the 

proposed algorithm is especially outstanding in high-traffic-flow situations.  
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The proposed DRL-DG-based traffic control systems are suitable for intersections 

with heavy traffic, considering their overwhelming advantage in high-traffic-flow situa-

tions and the limited funds available for system development. By revising the weights of 

the two objectives, the algorithms can adjust to government policies and practical de-

mands on the trade-off of traffic efficiency and carbon emissions. 

This study is not without limitations. In terms of objectives, road safety, especially 

traffic conflicts, which is another important issue of traffic in intersections, is not taken 

into consideration. In addition, the DRL-DG in the ATSC system faces challenges such as 

requiring extensive high-quality data, hyperparameter tuning, system complexity, 

lengthy training times, and ensuring robustness under diverse conditions. Future research 

will address these issues, aiming to develop more efficient, scalable, and practical DRL-

DG-optimized ATSC systems for diverse urban environments. 
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