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Abstract: In free probability, the theory of Cauchy–Stieltjes Kernel (CSK) families has recently been
introduced. This theory is about a set of probability measures defined using the Cauchy kernel
similarly to natural exponential families in classical probability that are defined by means of the
exponential kernel. Within the context of CSK families, this article presents certain features of the
Marchenko–Pastur law based on the Fermi convolution and the t-deformed free convolution. The
Marchenko–Pastur law holds significant theoretical and practical implications in various fields,
particularly in the analysis of random matrices and their applications in statistics, signal processing,
and machine learning. In the specific context of CSK families, our study of the Marchenko–Pastur
law is summarized as follows: Let K+(µ) = {Qµ

m(dx); m ∈ (mµ
0 , mµ

+)} be the CSK family generated

by a non-degenerate probability measure µ with support bounded from above. Denote by
(

Qµ
m

)•s

the Fermi convolution power of order s > 0 of the measure Qµ
m. We prove that if

(
Qµ

m

)•s
∈ K+(µ),

then µ is of the Marchenko–Pastur type law. The same result is obtained if we replace the Fermi
convolution • with the t-deformed free convolution t .

Keywords: variance function; Cauchy–Stieltjes transform; Marchenko–Pastur law

MSC: 60E10; 46L54

1. Introduction

In free probability, the Marchenko–Pastur law plays the same role that the Poisson law
plays in classical probability. In mathematical random matrices theory for large rectangular
random matrices, the Marchenko–Pastur measure describes the asymptotic behavior of
the corresponding singular values. However, many properties and characterizations have
been given regarding Marchenko–Pastur law in the literature. In [1], the Lukacs type
characterization of Marchenko–Pastur law is studied in free probability. In [2], Marchenko–
Pastur law was characterized in the context of Cauchy–Stieltjes Kernel (CSK) families based
on Boolean additive convolution. Furthermore, a short proof for the Marchenko–Pastur
theorem was given in [3]. Further results related to the Marchenko–Pastur measure are
given in [4–10]. In the present article, our study on the Marchenko–Pastur law is related
to CSK families. In this study, we involve two kinds of convolutions of importance in
free probability, namely the Fermi convolution introduced in [11] and the t-deformed free
convolution defined in [12,13]. In fact, the study of the stability of a given CSK family with
respect to a Fermi convolution (or a t-deformed free convolution) power leads to the result
that the generating measure of the CSK family is of the Marchenko–Pastur type law. To
clarify our results, we need to present some fundamental notions on CSK families as a
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basis for the reader. We also discuss certain concepts of Fermi convolution and t-deformed
free convolution.

It is well known that the theory of natural exponential families (NEFs) in classical
probability is based on the exponential kernel exp(ϑy). The CSK family in free probability
is introduced in a way similar to NEFs by using the Cauchy–Stieltjes kernel (1 − ϑy)−1.
Some properties of CSK families are given in [14] involving measures with compact support.
Extended properties of CSK families are provided in [15] to cover probability measure
having support bounded from one side, say, from above. Pba denotes the set of non-
degenerate real probability measures having support bounded from above. Suppose
µ ∈ Pba, then

Mµ(ϑ) =
∫ 1

1 − ϑy
µ(dy) (1)

is defined as ∀ ϑ ∈ [0, ϑ
µ
+) with 1

ϑ
µ
+
= max{0, sup supp(µ)}. The set

K+(µ) = {Pµ
ϑ(dy) =

1
Mµ(ϑ)(1 − ϑy)

µ(dy) : ϑ ∈ (0, ϑ
µ
+)}

represents the one-sided CSK family generated by µ.
The mean function ϑ 7→ Kµ(ϑ) =

∫
yPµ

ϑ(dy) is strictly increasing on (0, ϑ
µ
+) (see [15]).

The interval (mµ
0 , mµ

+) = Kµ((0, ϑ
µ
+)) represents the (one-sided) mean domain of K+(µ).

Consider χµ(·) to be the inverse of Kµ(·); for m ∈ (mµ
0 , mµ

+), write Qµ
m(dy) = Pµ

χµ(m)
(dy).

A mean parametrization is then provided for K+(µ) as

K+(µ) = {Qµ
m(dy); m ∈ (mµ

0 , mµ
+)}.

It was proven in [15] that

mµ
0 = lim

ϑ→0+
Kµ(ϑ) and mµ

+ = B − lim
z→B+

1
Gµ(z)

, (2)

where
B = B(µ) = max{0, sup supp(µ)} =

1
ϑ

µ
+

, (3)

and
Gµ(w) =

∫ 1
w − y

µ(dy), for w ∈ C \ supp(µ) (4)

represent the Cauchy–Stieltjes transform of µ.
The CSK family is denoted as K−(µ) when the support of µ is bounded from be-

low. We have ϑ
µ
− < ϑ < 0, where ϑ

µ
− is equal to 1/A(µ) or −∞ with A = A(µ) =

min{0, inf supp(µ)}. The interval (mµ
−, mµ

0 ) represents the mean domain for K−(µ) where
mµ

− = A − 1/Gµ(A). If the support of µ is compact, then ϑ ∈ (ϑ
µ
−, ϑ

µ
+) and K(µ) =

K−(µ) ∪ {µ} ∪ K+(µ) is the two-sided CSK family.
The function

m 7→ Vµ(m) =
∫
(x − m)2Qµ

m(dx), (5)

is called a variance function of K+(µ) (see [14]). If µ does not have a moment of order
1, then all measures in K+(µ) have infinite variance. The authors in [15] introduced the
concept of a pseudo-variance function Vµ(·) as

Vµ(m) = m
(

1
χµ(m)

− m
)

. (6)
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If mµ
0 =

∫
yµ(dy) is finite, then Vµ(.) exists and (see [15])

Vµ(m) =
m

m − mµ
0
Vµ(m). (7)

Remark 1. (i) The law Qµ
m(dy) can be written as Qµ

m(dy) = hµ(y, m)µ(dy) with

hµ(y, m) :=


Vµ(m)

Vµ(m)+m(m−y) , m ̸= 0 ;

1, m = 0, Vµ(0) ̸= 0 ;
V′

µ(0)
V′

µ(0)−y , m = 0, Vµ(0) = 0 .

(8)

(ii) µ is characterized by Vµ(·). If we consider

ϖ = ϖ(m) = m +
Vµ(m)

m
, (9)

then
Gµ(ϖ) =

m
Vµ(m)

. (10)

(iii) Consider φ(µ) as the image of µ by φ : y 7−→ αy + β where α ̸= 0 and β ∈ R. Then, ∀ m

close enough to mφ(µ)
0 = φ(mµ

0 ) = αmµ
0 + β,

Vφ(µ)(m) =
α2m

m − β
Vµ

(
m − β

α

)
. (11)

When Vµ(.) exists,

Vφ(µ)(m) = α2Vµ

(
m − β

α

)
. (12)

(iv) For a ̸= 0, the Marchenko–Pastur measure is

MPa(dy) =
√
((a + 1)2 − y)(y − (a − 1)2)

2πa2y
1((a−1)2,(a+1)2)(y)dy + (1 − 1/a2)+δ0 (13)

with mMPa
0 = 1. We have

VMPa(m) =
a2m2

m − 1
, (14)

and

(mMPa
− , mMPa

+ ) =

{
(1 − |a|, 1 + |a|), if a2 ≤ 1;
(0, 1 + |a|), if a2 > 1.

(15)

For more details, see ([2] Section 3).

We now introduce the notion of Fermi convolution. Denote the set of real probability
measures (the subsets of measures from P that have finite mean and variance and with
compact support, respectively) by P (P2 and Pc, respectively). For ρ ∈ P2, the B-transform
is defined in [11] by

Bρ(z) = mρ
0z + zEρ0

(
1
z

)
, (16)

where mρ
0 is the mean of ρ, ρ0 is the zero mean shift of ρ and

Eρ(z) = z − 1
Gρ(z)

, for z ∈ C+. (17)
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Since ρ ∈ P2 is determined by Gµ(·), it is also determined by Bµ(·).
Let ρ1, ρ2 ∈ P2 and the Fermi convolution of ρ1 and ρ2 be denoted ρ = ρ1 • ρ2; then,

we have,
Bρ(z) = Bρ1(z) + Bρ2(z) (18)

(see ([11] Theorem 3.1)). In addition, ρ ∈ P2 and mρ
0 = mρ1

0 + mρ2
0 .

ρ ∈ P2 is •-infinitely divisible if for each q ∈ N, there is ρq ∈ P2 so that

ρ = ρq • ...... • ρq︸ ︷︷ ︸
q times

.

All measures ρ ∈ P2 are •-infinitely divisible (see ([11] Remark 3.2)). The Fermi convolution
was studied from a combinatoric point of view in [11], and the Fermionic Poisson limit
theorem was proven in ([11] Theorem 3.2). In ([16] Theorem 1), the variance function is
expressed via Fermi convolution power.

Next, we describe some facts concerning t-deformed free convolution. In fact, Bożejko
and Wysoczański [12,13] examined a deformation of the Cauchy–Stieltjes transform of
a probability measure λ in the following manner: Let t > 0 and λ ∈ P; based on the
Nevanlinna theorem, the function Gλt(.) is defined by

1
Gλt(z)

=
t

Gλ(z)
+ (1 − t)z, (19)

is the Cauchy–Stieltjes transform of some probability measure indicated by Ut(λ) := λt.
In [12,13], a new type of convolution, called a t-deformed free convolution (or a t-free
convolution) and denoted by t -convolution was introduced, that is, for λ1 and λ2 ∈ P

λ1 t λ2 = U1/t(Ut(λ1)⊞Ut(λ2)). (20)

For λ ∈ Pc, the free cumulant transform Rλ(·) of λ is provided by

Rλ(Gλ(ξ)) = ξ − 1
Gλ(ξ)

, for all ξ in a neighborhood of 0. (21)

The t-deformed free cumulant transform, denoted by Rt
λ(·), is given by

Rt
λ(ξ) :=

1
t
RUt(λ)(ξ).

For λ1 and λ2 ∈ Pc, we have

Rt
λ1 t λ2

= Rt
λ1
(ξ) +Rt

λ2
(ξ). (22)

It is well known that the t-deformed free cumulant transform is a particular case of the
(a, b)-deformed free cumulant transform, introduced in [17], by considering t = a = b > 0.
One see that

lim
ξ→0

Rt
λ(ξ) = mλ

0 . (23)

λ ∈ Pc is t -infinitely divisible, if for each q ∈ N, there is λq ∈ Pc such that

λ = λq t ...... t λq︸ ︷︷ ︸
q times

.
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Let λ t r represent the r-fold t -convolution of λ with itself. This operation is well defined
∀ r ≥ 1, see [18], and

Rt

λ
t r

(ξ) = rRt
λ(ξ). (24)

The proof of the central limit theorem related to t -convolution is provided. The limit
measure is called the t-deformed free Gaussian law. A Poisson-type limit theorem, related
to t -convolution, is also demonstrated. The limiting measure is termed a t-deformed
free Poisson distribution; see [12,13] for more details. In addition, ref. [19] (Corollary 1)
provides an intriguing formula for the variance function when considering the power of
the t -convolution of the generating measure.

This article continues the investigation of Fermi convolution and t -convolution from
the perspective of CSK families. The remaining sections of this article are grouped as
follows: In Section 2, for ρ ∈ P2, we introduce the family of measures:

F = {
(

Qρ
m(dy)

)•s
; m ∈ (mρ

0, mρ
+)}. (25)

We prove that if F is a re-parametrization of K+(ρ), then, up to scale transformation, ρ is of
the Marchenko–Pastur type law provided by (13). The same result is obtained in Section 3
(with different tools) if we replace the Fermi convolution • in (25) with the t -convolution.

2. A Property of MPa Based on Fermi Convolution

Let µ ∈ P2. For the clarity of the results in this section, instead of the B-transform, we
consider the following H-transform:

Hµ(z) = zBµ

(
1
z

)
= mµ

0 + Eµ0(z) = mµ
0 + z − 1

Gµ0(z)
. (26)

We have
Hµ•s(z) = sHµ(z) for all s > 0. (27)

Now, we state and prove the following result about the H-transform. This is important in
proving the primary result of this section, presented by Theorem 1.

Lemma 1. Let µ ∈ P2 be non degenerate with b = sup supp(µ) < ∞. For z ∈ C\supp(µ) such
that z ̸= Vµ(m)/m, we have

HQµ
m
(z) =

(
m +

Vµ(m)
m

)
Hµ(z + m − mµ

0 )− m(z + m)

Vµ(m)
m − (z + m − Hµ(z + m − mµ

0 ))
. (28)

Proof. We have that

Hµ(z) = Eµ(z + mµ
0 ) = z + mµ

0 − 1
Gµ(z + mµ

0 )
. (29)

According to ([20] Lemma 2.3), for ξ ∈ C\supp(µ) such that ξ ̸= m + Vµ(m)/m, the
Cauchy–Stieltjes transform of Qµ

m ∈ K+(µ) is given by

GQµ
m
(ξ) =

1
m +Vµ(m)/m − ξ

(Vµ(m)

m
Gµ(ξ)− 1

)
. (30)

Combining (29) and (30), we get for z such that z + m ∈ C\supp(µ) and z ̸= Vµ(m)/m

HQµ
m
(z) = z + m − 1

GQµ
m
(z + m)

=
(z + m)Gµ(z + m)Vµ(m)/m − (m +Vµ(m)/m)

Gµ(z + m)Vµ(m)/m − 1
. (31)
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From (29), one see that

Gµ(z + m) =
1

z + m − Hµ(z + m − mµ
0 )

. (32)

Combining (31) and (32), we obtain (28).

To support the proof of Theorem 1, we provide and show the following proposition.

Proposition 1. Let µ ∈ P2 be non-degenerate with b = sup supp(µ) < ∞. Then,

(i) lim
z−→+∞

Hµ(z + m − mµ
0 )

z
= 0.

(ii) lim
z−→+∞

Hµ(z + m − mµ
0 )(z + m − Hµ(z + m − mµ

0 ))

z
= mµ

0 .

Proof. The proof follows from ([2] Proposition 3.2) and the relation (29).

The major outcome of this section has now been stated and proved.

Theorem 1. Let µ ∈ P2 be non-degenerate with b = sup supp(µ) < ∞. If (Qµ
m)

•s = Qµ

g(m,s) pro-

vided by (8) where g(m, s) depends on m ∈ (mµ
0 , mµ

+) and s > 0, then mµ
0 ̸= 0, g(m, s) = sm, and

µ is the image by y 7−→ mµ
0 y of MPa provided by (13) for a2 > 1 such that |a| is sufficiently large.

Proof. We have that (Qµ
m)

•s = Qµ

g(m,s). That is, ∀ z ∈ (b − mµ
0 ,+∞)

sHQµ
m
(z) = HQµ

g(m,s)
(z). (33)

From ([16] Proposition 3 (iii)), we have that

lim
z−→+∞

Hµ(z) = mµ
0 . (34)

So,

g(m, s) = m
Qµ

g(m,s)
0 = lim

z−→+∞
HQµ

g(m,s)
(z) = lim

z−→+∞
sHQµ

m
(z) = smQµ

m
0 = sm. (35)

Using (28) and (35), Equation (33) becomes

s
(

m +
Vµ(m)

m

)
Hµ(z + m − mµ

0 )− sm(z + m)

Vµ(m)
m − (z + m − Hµ(z + m − mµ

0 ))
=

(
sm +

Vµ(sm)
sm

)
Hµ(z + sm − mµ

0 )− sm(z + sm)

Vµ(sm)
sm − (z + sm − Hµ(z + sm − mµ

0 ))
. (36)

After some calculations, Equation (36) is

s
(

m +
Vµ(m)

m

)
Hµ(z + m − mµ

0 )
Vµ(sm)

sm
− (z + m)Vµ(sm)− sm(z + m)Hµ(z + sm − mµ

0 )

− s
(

m +
Vµ(m)

m

)
Hµ(z + m − mµ

0 )(z + sm − Hµ(z + sm − mµ
0 ))

=
Vµ(m)

m

(
sm +

Vµ(sm)

sm

)
Hµ(z + sm − mµ

0 )− sm(z + sm)
Vµ(m)

m
− sm(z + sm)Hµ(z + m − mµ

0 )

−
(

sm +
Vµ(sm)

sm

)
Hµ(z + sm − mµ

0 )(z + m − Hµ(z + sm − mµ
0 )). (37)
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In both sides of (37), we divide by z and let z −→ +∞. Recalling Proposition 1 and relation
(34), we obtain (

tm − mµ
0

tm

)
Vµ(tm) = tVµ(m)

(
m − mµ

0
m

)
. (38)

Combining (38) with (7), we obtain

Vµ(tm) = tVµ(m) for all m ∈ (mµ
0 , mµ

+) and all t > 0. (39)

Note that Vµ(·) ̸= 0, as µ is non-degenerate by assumption. Then, Vµ(m) = γm for γ > 0.

✓ If mµ
0 = 0, then V(m) = γm with γ > 0 can not serve as a variance function,

see ([2] page 6).
✓ If mµ

0 ̸= 0, then according to ([14] Theorem 3.2), µ is the image by y 7→ mµ
0 y of MPa

given by (13). In this case, γ = a2mµ
0 .

Remark 2. For m ∈ (mµ
0 , mµ

+), we must have g(m, s) = sm ∈ (mµ
0 , mµ

+). The law µ is the image
by ϕ : y 7→ mµ

0 y of MPa given by (13). If mµ
0 > 0, we have mµ

+ = ϕ(mMPa
+ ) = mµ

0 (1 + |a|). If
mµ

0 < 0, K−(µ) is the CSK family and (mµ
−, mµ

0 ) is the domain of means with mµ
− = mµ

0 (1 + |a|).
In all cases, we should have a2 > 1 so that |a| is sufficiently large to be sure that g(m, s) = sm
remains in the mean domain.

We now show that, in Theorem 1, the inverse implication is not valid. Assume
that mµ

0 > 0. We know that g(m, s) = sm, and µ is the image by y 7→ mµ
0 y of MPa

provided by (13) for a2 > 1 such that |a| is sufficiently large. The interval (mµ
0 , mµ

0 (1 + |a|))
is the mean domain of K+(µ). For |a| values that are sufficiently large, we have that
sm ∈ (mµ

0 , mµ
0 (1 + |a|)). We have to prove that

(Qµ
m)

•s ̸= Qµ
sm. (40)

That is, for x > sm close enough to sm,

V(Qµ
m)•s(x) ̸= VQµ

sm
(x). (41)

So, (40) is concluded from Remark 1(ii).

We have that mQµ
sm

0 = sm and from ([16] Theorem 1 (ii)) we also have m(Qµ
m)

•s

0 = smQµ
m

0 = tm.
Then, ε > 0 exists such that V(Qµ

m)•s(·) and VQµ
sm
(·) are well defined on (sm, sm + ε).

Furthermore, from ([2] Formula (3.24)), we have that ∀ p > m sufficiently close to m,

VQµ
m
(p) = p

(
ap(mµ

0 )
2

p − m
+ p

[
mµ

0
m

− 1

])
. (42)

Using ([16] Theorem 1 (ii)) and (42) we have, ∀ 0 < s ̸= 1 and ∀ x ∈ (sm, sm + ε),

V(Qµ
m)•s(x) = sVQµ

m
(x/s) + x2(1/s − 1) + mQµ

m
0 (s − 1)x

= x

(
ax(mµ

0 )
2

x − sm
+ x

[
mµ

0
sm

− 1

]
+ (s − 1)m

)
.

̸= x

(
ax(mµ

0 )
2

x − sm
+ x

[
mµ

0
sm

− 1

])
= VQµ

sm
(x).

A proof of (40) is achieved.
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3. A Property of MPa Based on t -Convolution

Theorem 2. Let µ ∈ Pc. For 0 < α ̸= 1 such that
(

Qµ
m

) t α
is defined, if (Qµ

m)
t α = Qµ

k(m,t,α)

provided by (8) where k(m, t, α) depends on m ∈ (mµ
0 , mµ

+), t > 0, and 0 < α ̸= 1, then mµ
0 ̸= 0,

k(m, t, α) = αm, and µ is the image by y 7→ mµ
0 y of MPa given by (13) for a2 > 1 such that |a| is

large enough.

Proof. For 0 < α ̸= 1 such that
(

Qµ
m

) t α
is defined, we have

(
Qµ

m

) t α
= Qµ

g(m,t,α).
Equivalently, there is δ > 0 such that ∀ z ∈ (−δ, δ)

Rt

(Qµ
m)

t α
(z) = Rt

Qµ
k(m,t,α)

(z). (43)

Using (23) and (43), we obtain

k(m, t, α) = m
Qµ

g(m,t,α)
0 = lim

z−→0
Rt

Qµ

g(m,t,α)
(z) = lim

z−→0
Rt

(Qµ
m)

t α

(z) = α lim
z−→0

Rt
Qµ

m
(z) = αm. (44)

The R-transform of Qµ
m can be expressed as

RQµ
m
(z) = c1(Q

µ
m) + c2(Q

µ
m)z + zε(z). (45)

where c1(Q
µ
m) and c2(Q

µ
m) denote, respectively, the first and the second free cumulants of

Qµ
m and limz→0 ε(z) = 0. That is

RQµ
m
(z) = m + Vµ(m)z + zε(z). (46)

Using (45), the Rt-transform of Qµ
m may be written as

Rt
Qµ

m
(z) =

1
t
RUt(Q

µ
m)(z) =

1
t
[c1(Ut(Q

µ
m)) + c2(Ut(Q

µ
m))z + zε(z)]

=
1
t
[tm + tVµ(m)z + zε(z)] = m + Vµ(m)z +

z
t

ε(z). (47)

Using (47), we obtain

Rt

(Qµ
m)

t α
(z) = αRt

Qµ
m
(z) = αm + αVµ(m)z + α

z
t

ε(z), (48)

and
Rt

Qµ
αm
(z) = αm + Vµ(αm)z + zε(z). (49)

Combining (43), (44), (48) and (49), we obtain

Vµ(αm) = αVµ(m), for all m ∈ (mµ
0 , mµ

+) and 0 < α ̸= 1. (50)

Note that Vµ(·) ̸= 0 as µ is non-degenerate by assumption. So, Vµ(m) = σm for σ > 0.

✓ If mµ
0 = 0, then V(m) = σm with σ > 0 cannot be a variance function (see [2] (page 6)).

✓ If mµ
0 ̸= 0, then according to [14] (Theorem 3.2), µ is the image by y 7→ mµ

0 y of MPa

provided by (13) and we have σ = a2mµ
0 .

Remark 3. For m ∈ (mµ
0 , mµ

+), we must have k(m, t, α) = αm ∈ (mµ
0 , mµ

+). Recall Remark 2:
If mµ

0 > 0, we have mµ
+ = mµ

0 (1 + |a|). If mµ
0 < 0, then (mµ

−, mµ
0 ) is the mean domain with

mµ
− = mµ

0 (1 + |a|). In all cases, we should have that a2 > 1 for |a| is sufficiently large such that
k(m, t, α) = αm exists in the mean domain.
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We now establish that, in Theorem 2, the inverse implication is not valid. Assume
that mµ

0 > 0. We have that k(m, t, α) = αm and µ is the image by y 7→ mµ
0 y of MPa given by

(13) for a2 > 1 with |a| large enough. The interval (mµ
0 , mµ

0 (1 + |a|)) is the mean domain of
K+(µ). For sufficiently large |a|, one see that αm ∈ (mµ

0 , mµ
0 (1+ |a|)). We have to prove that

(Qµ
m)

t α ̸= Qµ
αm. (51)

Equivalently, for x > αm sufficiently close to αm,

V
(Qµ

m)
t α

(x) ̸= VQµ
αm
(x). (52)

So, (51) is deduced from Remark 1(ii).

We have that mQµ
αm

0 = αm and from [19] (Corollary 1) we also have m(Qµ
m)

t α

0 = αmQµ
m

0 = αm.
Then, there is ε > 0 such that V

(Qµ
m)

t α
(·) and VQµ

αm
(·) are well defined on (αm, αm + ε).

Using [19] (Corollary 1) and (42) we have, ∀ x ∈ (αm, αm + ε),

V
(Qµ

m)
t α

(x) = αVQµ
m
(x/α) + x2

(
1 − t

α
+ t − 1

)

= x

(
ax(mµ

0 )
2

x − αm
+ x

[
mµ

0
αm

− t
α
+ t − 1

])
.

̸= x

(
ax(mµ

0 )
2

x − αm
+ x

[
mµ

0
αm

− 1

])
= VQµ

αm
(x).

A proof of (51) is achieved.

4. Conclusions

In this article, we have investigated two kinds of convolutions of importance in free
probability: the Fermi convolution, denoted as •, and the t-deformed free convolution,
denoted as t . For ρ ∈ Pc, we introduce the family of measures

T = {
(

Qρ
m(dy)

) t α
; m ∈ (mρ

−, mρ
+)}, (53)

for 0 < α ̸= 1. We have proven that if the family T is a re-parametrization of the CSK family
K(ρ), then the measure ρ is of the Marchenko–Pastur type law. The proof is based on the
properties of the t-deformed free cumulant transform, and the variance function plays an
important role here. A similar property related to the Marchenko–Pastur law is obtained
with different concepts by considering the Fermi convolution instead of the t -convolution.
These results provide new insights into the structure of probability measures related to the
Marchenko–Pastur law and may have implications for applications in statistical mechanics
and random matrix theory.
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12. Bożejko, M.; Wysoczański, J. New examples of onvolutions and non-commutative central limit theorems. Banach Cent. Publ. 1998,

43, 95–103. [CrossRef]
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