
Citation: Xue, F.; Li, Q. Forecast

Horizon of Dynamic Lot Sizing

Problem with Perishable Inventory

and Multiple Chain Stores: Shipping

and Stockout Cost. Mathematics 2024,

12, 2063. https://doi.org/10.3390/

math12132063

Academic Editor: Hsien-Chung Wu

Received: 28 May 2024

Revised: 23 June 2024

Accepted: 26 June 2024

Published: 1 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Forecast Horizon of Dynamic Lot Sizing Problem with
Perishable Inventory and Multiple Chain Stores: Shipping and
Stockout Cost
Feng Xue 1 and Qiumin Li 2,*

1 School of Mathematics, Chengdu Normal University, Chengdu 611130, China; 061060@cdnu.edu.cn
2 School of Statistics, Chengdu University of Information Technology, Chengdu 610103, China
* Correspondence: liqm@cuit.edu.cn

Abstract: Perishable products are very common, but managing inventory of perishable products
can be very challenging for firms, especially in distribution systems, including multiple chain stores.
In this environment, we consider a dynamic lot-sizing problem faced by a distribution center that
dis-patches a single perishable product to multiple chain stores. Demand cannot be backlogged, but
it does not have to be satisfied; unsatisfied demand means stockout (lost sale). The first step is to
transform the total profit function into a special total cost function. Our next step is to explore the
properties of the optimal solution and use them to formulate a dynamic programming algorithm to
solve the problem. Furthermore, we establish forecast and decision horizon results, which help the
operation manager to decide the precise forecast horizon in a rolling decision-making process. Based
on the model setting and the methods of dynamic programming, we obtained two interesting findings:
(1) the maximized profit objective function is equivalent to the minimized cost objective function,
and (2) the famous zero inventory property conditionally holds in the inventory management of
perishable products. On an extensive test bed, useful insights were obtained on the impact of the
lifetime of the product and cost parameters on the total cost and length of the forecast horizon. Thus,
the contributions of this study are as follows: (1) we explore two structure policies in an optimal
solution to devise efficient algorithms to reduce computational complexity; (2) we provide a sufficient
condition for forecasting and decision horizons; and (3) we determine that, for a given fixed cost, the
median forecast horizon first increases with the lifetime of the product and stockout cost and then
remains invariable when it reaches a certain level.

Keywords: forecast horizon; dynamic lot size; perishable product; multiple chain stores

MSC: 90C26; 90C29; 90C31

1. Introduction

Perishable products are products with short sales cycles and low residual values at
the end of the period due to the characteristics of the products themselves or consumer
preferences [1,2]. In recent years, with the increasing competition in the market and the
continuous improvement of product systems, many enterprises have started to increase
product models and improve the product iteration speed to gain competitive advantages,
which has led to an increasing number of products showing the characteristics of perishable
products, with electronics, fashion, and apparel as the main products. However, the
consequent increase in inventory costs leads to an increase in total costs; thus, enterprises,
in order to reduce the total cost, are not always timely and efficient in meeting customer
demand, but, rather, choose to delay delivery or even to run out of stock. From the point of
view of the economies of scale of production and the credibility of the point of view of their
considerations, enterprises tend to more often choose to be out of stock (Kevin and José
2023) [3]. Therefore, considering the fickle nature of products, the investigation of dynamic

Mathematics 2024, 12, 2063. https://doi.org/10.3390/math12132063 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12132063
https://doi.org/10.3390/math12132063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12132063
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12132063?type=check_update&version=1


Mathematics 2024, 12, 2063 2 of 17

lot-size decision making in fickle goods operating enterprises holds significant theoretical
and practical implications.

In addition, multifrequency and small-batch distribution have become the primary
indicators of logistics activities due to the increase in consumers’ requirements for quality
of life and the development of a logistics economy. Especially for perishable goods, the
demand of each chain store is more dispersed in time and space, and the demand for goods
is small in quantity and large in frequency, which leads to a larger proportion of the total
cost of distribution and delivery [4]. In order to reduce costs, the distribution of perishable
goods has developed a trend of common and mixed loading; that is, in a single chain
store, the distribution number cannot reach the effective load of the vehicle [5,6], and the
enterprise can bring together the demand for goods from different chains to match the
loading. This enables the integration of logistics resources to make full use of the capacity,
reduce transportation costs, and improve corporate profits [7]. Based on this, in order for
enterprises to operate under minimum cost, customer demand cannot be met in a timely
and effective manner, and although out-of-stock costs will increase, this will reduce the
enterprise’s production fixed costs and inventory holding costs; this also requires a trade-off
between the level of service and transportation costs, and, at this time, the enterprise’s
operational decision making becomes complex and difficult or even idle. Methods of
coordinating transportation costs, out-of-stock costs, and inventory costs become key to
decision making. Thus, the study of distribution centers’ distribution of perishable goods
to multiple chain stores under the dynamic batch problem has become an urgent problem
to solve.

In this study, we address a dynamic problem for a distribution center that distributes a
single perishable product to multiple chain stores. We investigate two cases of managing the
inventory: one is that the distribution center manages the inventory, and the chain stores do
not carry excess inventory; the other is that the distribution center and chain stores manage
the inventory jointly. The two ways of managing inventory have their respective advantages
and disadvantages. The first one has an important similarity with the vendor-managed
inventory (VMI) model: we know that the VMI can reduce and eliminate the bullwhip
effect, improving the agility degree and flexibility in the supply chain, and so this policy
of managing the inventory by the distribution center gains popularity, while, in reality,
the distribution center may be restricted by its storage capacity, and so the distribution
center and chain stores manage the inventory jointly. According to our research, only
one DLS model in the literature explicitly considers one producer directly distributing the
product to multiple specific customers [8]. The differences between our model and that of
Chand et al. [8] are as follows: (i) Chand et al. assume that the inventory can be carried for
an infinite amount of time and do not consider the short lifetime of products; (i) Chand et al.
assume that customers have a tolerance for temporary product shortages, which means
that all demands are ultimately satisfied, while we assume that customers are not willing
to wait for orders that arrive late, so the demand in a period cannot be backlogged, but
stockout (lost sale) is permitted.

In a multiperiod, dynamic decision-making environment, the forecast horizon is a
period with the property that the data for periods beyond it are not required in order to
determine an optimal first decision. The latest period covered by this first decision is called
the decision horizon. In numerous studies, a decision horizon is also called a planning
horizon. More formally, a decision horizon refers to the number of the next few periods,
say, for which decisions must be made in the current period. An integer is referred to as a
forecast horizon corresponding to the decision horizon if the data beyond the period do not
influence the optimal decisions for the first periods in any period problem. Forecast and
decision horizons were first introduced by Wagner and Whitin [9] and have been widely
applied in production planning and inventory management. Simultaneously, the forecast
horizon theory has been extended to broader areas, including capacity expansion, machine
replacement, plant location, cash balance, and bond refunding.



Mathematics 2024, 12, 2063 3 of 17

The remainder of the article is structured as follows: Section 2 provides the literature
review. Section 3 formulates the problem faced by a distribution center that dispatches a
single perishable product to multiple chain stores with shipping and stockout costs. In
Section 4, the properties of an optimal solution are outlined, and an efficient algorithm for
solving the problem is developed. The forecast horizon results are established in Section 5.
Section 6 extends the results from Section 4 by considering the case in which chain stores
are allowed to carry excess inventory. Section 7 gives an overview of the computational
results and managerial insights. The conclusions and suggestions for future research can
be found in Section 8.

2. Literature Reviews

The earliest version of a dynamic lot-sizing (DLS) model was introduced by Wagner
and Whitin [9]. This model can be described as follows: the demand in each period is
known and must be satisfied. There is no restriction on production capacity or inventory
capacity. The unit production cost remains constant, even though setup and unit-holding
costs may vary from one period to another. The objective of the problem is to minimize the
total production and holding costs. An important contribution of their study is the demon-
stration of the optimality of zero inventory property (ZIP). Based on ZIP, they developed
a forward dynamic programming (DP) algorithm to solve the problem. The DLS model
has been the subject of intensive research in the last few years. These extensions include
DLS problems with backlogging [10], stockout [11,12], and production capacity [13–15],
and they solve N-hard problems through optimization. Shi [12] found the optimal pro-
duction rate that minimizes the expected discounted system cost subject to a given risk
level of stockout. Bunn and Ventura [13] studied the multiproduct dynamic lot-sizing
problem with capacity constraints and batch ordering. They defined three mixed-integer
linear programming (MILP) models and applied Lagrangian relaxation to formulate the
corresponding dual problems by relaxing the capacity constraints, which used one of
two heuristics to find good feasible solutions. In addition, Hwang et al. [16], Fan and
Qu [17], and Akbalik et al. [18] considered a class of dynamic lot-sizing problems with
one-way and two-way product substitution modes for durable and perishable products
and developed an efficient approximate DP algorithm to solve the problem with multiple
perishable products. Cha and Moon [19], Li et al. [20], and Chang [21] developed a novel
heuristic algorithm to solve a single-warehouse multiple retailer problem, an NP-hard
problem, and modeled a modified all-unit discount cost structure close to the optimal
solution. Cannella et al. [22], Zhang et al. [23], and Hwang et al. [24] considered the multi-
level lot-sizing problem with production capacities (MLSP-PC). They developed the first
polynomial algorithm for the MLSP-PC with general concave costs at all of the stages and
introduced a novel approach to overcome the limitations of previous approaches. In short,
the DLS model has been extensively studied from different perspectives, mainly focusing
on inventory bounds [16–18], quantity discount [19–23], multi-echelon [22–24], the learning
effect [25–27], and remanufacturing [28–30]. We refer to the generalizations cited above in
relation to the classical DLS models.

Chand et al. [31] presented a comprehensive classified bibliography of the vast litera-
ture on the theory and applications of forecast horizons. From 2002 till now, the research
on forecast horizons mainly includes the aspects outlined below. Cheevaprawatdomrong
and Smith [32] established the existence of forecast horizons under the stochastic demand
under the following assumptions: (i) costs and revenues are time-varying and linear, and
(ii) demand is never eventually zero. Dawande et al. [33] used integer programming (IP)
to compute the minimal forecast horizon for a specific class of DLS problems under the
assumption that the future demands are integer multiples of a given positive real number.
Ghate and Smith [34] established forecast horizon results for a DLS model with backlog-
ging under convex costs. Dawande et al. [35] and Bardhan et al. [36] investigated the
forecast horizon for a two-product DLS model under demand substitution in one direction
and production changeovers and then proved the problem as the shortest path problem.
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Teyarachakul [37] developed the forecast horizon results for a DLS model with learning
and forgetting in setups.

It is assumed that demands can be aggregated in each period in the classical DLS
problems, but this is not suitable for the situation where the distribution center or pro-ducer
directly distributes the products to the different chain stores. Because of direct shipping,
the transportation cost to distribute the products to the different chain stores could vary
significantly due to the distance traveled. In addition, there are various prices for the
same product in different chain stores because of the different consumer groups in the
same period. For the above reasons, the assumption of aggregate demand in the classical
DLS models may not be realistic. The distribution system, which integrates procurement
(production), inventory, and transportation decisions, is similar to the basic supply chain.
In recent years, the supply chain strategy has gained increasing popularity. For instance,
Apple and Nike factory stores use production-distribution methods, while Walmart utilizes
procurement–distribution methods.

There are some gaps between our study and the traditional literature. It is assumed
that the inventory can be carried for an infinite number of periods in the classical DLS
models. However, there are many situations where the assumption does not hold in
reality. A wide variety of commodities have a short lifetime, such as fruits, vegetables,
meat, and pharmaceuticals. Simultaneously with the fierce competition in the market
and the development of technology, the speed of product replacement is accelerated, and
the lifetime of the product is shorter than ever. Even some durable goods have a short
lifetime, such as consumer electronics, seasonal fashion, and journals. In many articles,
these products are also defined as perishable products. We have a clear understanding that
ZIP is the key to solving the DLS problem, as it enables unlimited inventory transportation.
The vast majority of extensions for DLS problems are based on ZIP. However, ZIP cannot
be used when inventory cannot be held for an infinite number of periods (for DLS models
with perishable inventory, see Hsu [38], Hsu [39], Chu et al. [40], and Sargut and Isik [41]).
Other research on inventory management of perishable products includes recent works by
Jing and Chao [42] and Claassen et al. [43].

Thus, the research questions are as follows: (1) How can we devise efficient algo-
rithms to solve the dynamic optimization models? (2) How can we obtain the forecast
horizons, and what are the sufficient conditions? (3) How do the parameters influence the
forecast horizons?

3. Model Formulation

We follow the assumption of a perishable inventory outlined in the previous literature.
The lifetime of the product is periods, there is no deterioration, and the value of the product
will not reduce within the lifetime. In contrast, the product’s value will be zero, and there
is no disposal cost beyond the lifetime. We study this case. Without loss of generality, we
assume that the procurement lead time (production) is zero. Furthermore, the following
notations are used in our model (Table 1).

Table 1. Notation table.

T: The total number of time periods, which are indexed as t = 1, 2, . . . , T;
N: The total number of different chain stores, which are indexed as i = 1, 2, . . . , N;
dit: Demand of chain store i in period t, i = 1, 2, . . . , N, t = 1, 2, . . . , T;
σt: Fixed cost of procurement of the distribution center in period t, t = 1, 2, . . . , T;
ct: Unit procurement cost in period t, t = 1, 2, . . . , T;
pit: Unit selling price of chain store i in period t, i = 1, 2, . . . , N, t = 1, 2, . . . , T;
ht: Unit holding cost of the distribution center in period t, t = 1, 2, . . . , T;
yit: Unit shipping cost to distribute the product in period t to chain store i, i = 1, 2, . . . , N, t = 1, 2, . . . , T;
xt: The amount of procurement at the beginning of period t, t = 1, 2, . . . , T;
It: The amount of inventory at the end of period t, t = 1, 2, . . . , T;
Sit: The amount of stockout (lost sale) of chain store i incurred in period t, t = 1, 2, . . . , T;
Yit: The amount of product distributed in period t to satisfy the demand of chain store i, i = 1, 2, . . . , N,
t = 1, 2, . . . , T;

δ(xt): Binary variables, δ(xt) =

{
1 if xt > 0
0 othewise .
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A period t is called a procurement point (period) if xt > 0. In addition, we make the
following assumptions:

1. Any demand not satisfied in its period is considered stockout (lost sale), and
backlogging is prohibited. Thus, we can focus on analyzing the effects of stockouts on
firms’ performance. In future research, we can study the interaction between stockout
and backlog.

2. The gross marginal profit (pit − ct) is non-negative for all chain stores i in any
period t, i = 1, 2, . . . , N; t = 1, 2, . . . , T. This is a realistic assumption; otherwise, firms will
not conduct operations.

We first present a profit-maximization formulation for our model. The profit of the
supply chain is found by subtracting the total cost from the total realized revenue, where
the total cost includes the shipping cost, fixed cost, variable cost of procurement, and
inventory holding cost. The revenue for selling the product to the chain store i in period t
results from multiplying the realized sales by the corresponding unit’s selling price. The
realized sales from chain store i in period t are given by (dit − Sit). Revenues are summed
from all chain stores and over all periods to yield the supply chain’s realized revenue.

The profit maximization objective is as follows:

max

{
N

∑
i=1

T

∑
t=1

pit(dit − Sit)−
N

∑
i=1

T

∑
t=1

yit(dit − Sit)−
T

∑
t=1

[δ(xt)σt + ctxt + ht It

}
;

simplifying the above expression, we have

max

{
N

∑
i=1

T

∑
t=1

pitdit −
N

∑
i=1

T

∑
t=1

pitSit −
N

∑
i=1

T

∑
t=1

yit(dit − Sit)−
T

∑
t=1

[δ(xt)σt + ctxt + ht It]

}
.

Let Yit = dit − Sit; note that the term
N
∑

i=1

T
∑

t=1
pitdit is constant and can be dropped from

the objective function. Therefore, the profit-maximization objective mentioned above is
equivalent to the cost-minimization formulation below:

min
T

∑
t=1

(
σtδ(xt) + ctxt + ht It +

N

∑
i=1

pitSit +
N

∑
i=1

yitYit

)
(1)

Subject to

It = It−1 + xt −
N

∑
i=1

Yit for i = 1, 2, . . . , N, t = 1, 2, . . . , T (2)

Yit + Sit − dit = 0 for i = 1, 2, . . . , N, t = 1, 2, . . . , T (3)

xt ≤
N

∑
i=1

t+m−1

∑
i=t

dit for i = 1, 2, . . . , N, t = 1, 2, . . . , T (4)

xt, It, Yit, Sit ≥ 0 for i = 1, 2, . . . , N, t = 1, 2, . . . , T (5)

I0 = IT = 0 (6)

Note that pit is the stockout cost of chain store i in period t in the cost-minimization
formulation. Constraint (2) represents the balance of inventory, and Constraint (3) means
that the demands of customer i in period t are satisfied by shipping Yit and stockout Sit.
Constraint (4) means that the amount of production cannot exceed the sum demands of
all customers within the product’s lifetime. Constraint (5) requires that the production,
inventory, shipping, and stockout quantities are non-negative. Without losing generality,
we assume zero inventory at the beginning of period 1 and at the end of the period T
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(Constraint (6)). We would like to denote the problem as a multiple stores problem, that
is, MSP.

The MSP can be a formulated as a concave cost network flow problem. Let nodes D
and S be supply nodes that contain the total demand over T periods, and let Pt and Lt be
trans-shipment nodes that transit, respectively. The destination node Cit is the demand
node, each corresponding to a demand dit from chain store i in period t. The objective is
to minimize the cost of flows. The network G corresponds to N chain stores, and the T
periods problem is shown in Figure 1. More specially, the arc set consists of the following
arc subsets:

(i) Directed arcs (D, Pt) for i = 1, 2, . . . , N have zero shipping cost for zero arc flow
and a cost of σt + ctxt if the arc’s flow xt > 0.

(ii) Directed arcs (S, Lt) for t = 1, 2, . . . , T ship flows at zero cost and have upper
bounds of +∞.

(iii) Directed arcs (Pt, Pt+1) for t = 1, 2, . . . , T − 1 ship flows at a holding cost of ht per
unit flow.

(iv) Directed arcs (Pt, Cit) for i = 1, 2, . . . , N, t = 1, 2, . . . , T ship flows at a delivery
cost of yit per unit flow.

(v) Directed arcs (Lt, Cit) for i = 1, 2, . . . , N, t = 1, 2, . . . , T ship flows at a stockout cost
of pit per unit flow.
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Figure 1 provides a network representation of the MSP; please refer to Aksen et al. [44,45]
for a step-by-step walkthrough of how the optimal solution is derived. Later, some useful
properties of the optimal solution of the MSP will be derived using the network. Demand
differentiation based on the different selling prices and shipping costs is an important
generalization of the classical DLS model that acquires multifarious management practices
from reality. The next illustration serves as an example of this viewpoint.



Mathematics 2024, 12, 2063 7 of 17

Example 1. Consider two chain stores 1 and 2; the demand vectors for the first five periods are
(3, 4, 4, 4, 2, 7) and (3, 4, 3, 2, 2, 6), respectively. The other parameters are as follows: m = 3;
ct = (8, 9, 13, 10, 11, 9); ht = (3, 1, 1, 1, 3, 2); y1t = (1, 3, 1, 1, 2, 2); y2t = (1, 2, 1, 2, 4, 3);
p1t = (15, 13, 16, 17, 19, 18); p2t = (17, 18, 18, 20, 18, 21); σt = (20, 100, 20, 60, 50, 30). The
optimal solution of the problem is to purchase in period 1 and period 3 and period 6. The procurement
in period 1 is used to satisfy demands d11, d13 and d21, d22, d23. The procurement in period 3 is
used to satisfy demands d14, d15 and d24. The procurement in period 6 is used to satisfy demands
d16 and d26.

In the above solution, two phenomena do not exist in the classical DLS model. First,
note that I2 · x3 ̸= 0; it is not true for purchases only when the entering inventory is zero.
This happens because of perishable inventory and fluctuating costs. With a speculative

motive cost structure, for example, ct +
t′−1
∑
i=t

hi < ct′ , the distribution center will purchase

more to avoid a higher cost, At the same time, the inventory cannot be carried for an infinite
number of periods, so ZIP does not hold.

Secondly, notice that in periods 2 and 5, the demand d12 (d25) is stockout, while
the demand d22 (d15) is satisfied by procurement in period 1. In an aggregate demand
DLS model, stockout in a certain period means that all demands are lost; however, in
reality, some demands will be satisfied, and some demands could be lost in the same
period. This happens because of two reasons: the first is due to the fact that different chain
stores set different prices for various customer bases; the second is that the shipping cost
is nonstationary.

4. Properties and Dynamic Programming Algorithm

In this section, we will investigate two important properties of the optimal solution.
Later, they will be used to develop a DP algorithm.

Before we consider the problem with no restriction on cost structure, it should be first

noted that if there is no speculative motive for holding inventory, that is ct +
t′−1
∑
i=t

hi > ct′ ,

∀t < t′, ZIP still holds for the perishable inventory. This is a special case in which the
variable cost per unit of procurement cost ct is constant or fluctuates slightly in the market.
We drop the unrealistic assumption and investigate the MSP for perishable products under
a more general cost structure. In the more general cost structure, the unit of procurement
cost is not restricted; thus, it is more practical.

Theorem 1. In an optimal solution, there is (dit − Yit)(dit − Sit) = 0, i = 1, 2, . . . , N, t =
1, 2, . . . , T; that is, the demand is either satisfied entirely by a shipment in exact one period, or
completely lost.

Proof. According to Aksen et al. [44], the network representation of the problem shows
the characteristics of a concave cost network with a single source node. Accordingly, the
basic optimal solution for the problem will be an extreme point solution corresponding to a
spanning tree of the network. Furthermore, a basic optimal solution will have the property
that arborescent flows have positive flow in at least one inward arc at each node. Next,
we consider the chain store node Cit; if (dit − Yit)(dit − Sit) > 0, then node Cit would have
two positive inward arcs, one from shipment and another one from stockout in that period,
contradicting the property that any node has at most one positive inward arc. □

Now we are ready to show the next property (see the Appendix A for the proof):

Theorem 2. There exists an optimal solution Ω∗ to the MS; if l < λ are two procurement periods
and dit is satisfied by procurement in period λ, then for any t∗ > t, the procurement amount in
period l for satisfying dit∗ is zero.
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Theorem 2 suggests that there is an optimal solution to the MSP where perishable
stocks are used to satisfy demands in a first-in, first-out fashion. Such a solution is called a
FIFO solution.

It is well known that there exists an optimal solution to many classical DLS problems
that satisfies ZIP. This property is stated as follows:

Zero inventory property: In an optimal solution, It−1xt = 0 for all t.
With perishable inventory, ZIP may not hold in an optimal solution. This was demon-

strated in Example 1. This is an important difference between perishable products and
common products. The existing forward DP algorithm for resolving DLS models typi-
cally depends on ZIP, while it cannot be used to resolve the DLS problem with perishable
inventory. Based on Theorem 1 and Theorem 2, we use the following DP recursion to
solve the problem. For any t, 1 ≤ t ≤ T, let F(t) be the minimum costs needed to satisfy
demands from period 1 to t. Let F(l, k, t) be the costs in the t-period problem in which
the last procurement occurs at the beginning of period l for satisfying the demands from
period k to t. For periods l, k, and t, 1 ≤ l ≤ k ≤ t; note that the limitation of the lifetime of
the product, period l, and t must satisfy t − l + 1 ≤ m. Denote gi(l, k, t) as the minimum
variable cost to satisfy the demand from chain store i in periods k through t. We have the
following dynamic programming recursion:

F(t) = min
r≤l≤k≤t

F(l, k, t) = min
r≤l≤k≤t

{
F(k − 1) + σl +

N

∑
i=1

gi(l, k, t)

}

where r = max{t − m + 1, 1} and F(0) = 0.
Now we discuss the computation of gi(l, k, t), first introducing the following equation:

Ri(l, k, t′) = cl +
t′−1

∑
j=l

hj + yit′ − pit′

From the equation, Ri(l, k, t′) can be considered as a kind of marginal cost associated
with one item lost in the period t′. The demands t′ will be completely lost in an optimal
solution if Ri(l, k, t′) > 0. For any period t′ (k ≤ t′ ≤ t), if Ri(l, k, t′) ≤ 0, we argue that the
period t′ is in the period set U1, if Ri(l, k, t′) > 0, then the period t′ is in the period set U2.

By definition above, we can obtain that

gi(l, k, t) = (cl + ∑
u∈U1

yiu) · ∑
v∈U1

div +
k−1

∑
u=l

hu · ∑
v∈U1

div +
t

∑
u=k

hu · [ ∑
v∈U1

div −
v

∑
w=k

(diw − Siw)] + ∑
u∈U2

piudiu

Let MCi(l, t) denote the trade-off between the cost of losing one unit demand of chain
store i in period t and meeting one unit demand by a procurement in period l. The value of
MCi(l, t) is determined by the following expression:

MCi(l, t) = min

{
cl +

t−1

∑
u=l

hu + yit, pt

}

Using the fact that F(l, k, t) = F(l, k, t − 1) +
N
∑

i=1
MCi[l(t), t], we will illustrate how the

DP algorithm solves Example 1.
We start by solving the 1-period MSP with an optimal value F(1), from the above

functional equation, r = 1.

F(1) = F(1, 1, 1) = F(0) + 20 + 54 = 74
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Then, we proceed to solve the 2-period MSP. Again, r = 1.

F(1, 1, 2) = F(1, 1, 1) + 104 = 178, F(2, 2, 2) = F(1) + 100 + 92 = 266,
F(1, 2) = F(1, 1, 2) = 178, F(2, 2) = F(2, 2, 2) = 266,

F(2) = min{F(1, 2); F(2, 2)} = F(1, 1, 2) = 178.

The 3-period MSP is solved in the following.

F(1, 1, 3) = F(1, 1, 2) + 104 = 269,
F(2, 2, 3) = F(2, 2, 2) + 77 = 343,

F(2, 3, 3) = F(2) + 100 + 77 = 355,
F(3, 3, 3) = F(2) + 20 + 98 = 296,

F(1, 3) = F(1, 1, 3) = 269,
F(2, 3) = min{F(2, 2, 3); F(2, 3, 3)} = F(2, 2, 3) = 343,

F(3, 3) = F(3, 3, 3) = 296, F(3) = min{F(1, 3); F(2, 3); F(3, 3)} = F(1, 1, 3) = 269

When F(4) is computed, r is equal to 2.

F(2, 2, 4) = F(2, 2, 3) + 74 = 417, F(2, 3, 4) = F(2, 3, 3) + 74 = 429,
F(2, 4, 4) = F(3) + 100 + 74 = 443, F(3, 3, 4) = F(3, 3, 3) + 92 = 388,
F(3, 4, 4) = F(3) + 20 + 92 = 381, F(4, 4, 4) = F(3) + 60 + 92 = 421,
F(2, 4) = min{F(2, 2, 4); F(2, 3, 4); F(2, 4, 4)} = F(2, 2, 4) = 417
F(3, 4) = min{F(3, 3, 4); F(3, 4, 4)} = F(3, 4, 4) = 381
F(4, 4) = F(4, 4, 4) = 421, F(4) = min{F(2, 4); F(3, 4); F(4, 4)} = F(3, 4) = 381,

Continuing in the same manner, we obtain

F(5) = min{F(3, 5); F(4, 5); F(5, 5)} = F(3, 5) = 451, F(6) = F(6, 6, 6) = 451 + 179 = 630.

From this example, we can see that when the number of chain stores is large, then
the computational time will increase hugely. This is a limitation of this DP algorithm. In
the future research, we can develop effective approximate algorithms for solving large-
scale problems.

5. Detection of Forecast Horizon

In this section, we present a sufficient condition that determines the decision and
forecast horizon.

Definition 1. If xt
j is the optimal period j procurement amount in the t-period MSP, then the

sequence
{

xt
1, xt

2, . . . , xt
t
}

is called an optimal procurement sequence.

Definition 2. If the sequence
{

xt
1, xt

2, . . . , xt
t
}

is an optimal procurement sequence for the t-period
MSP, then the sequence

{
xt

1, xt
2, . . . , xt

t′
}

is an optimal procurement subsequence, provided that
t′ ≤ t.

Definition 3. l(t) is the period in which the last procurement takes place in an optimal solution to
t-period problem.

Theorem 3. Suppose the optimal solution for a t-period problem is given by F[l(t), k(t), t]. Consider
problems MSP(t − m), MSP(t − m + 1), . . ., MSP(t − 1). If xt−m

j = xt−m+1
j = . . . = xt−1

j
for j = 1, 2, . . . , t′ (1 ≤ t′ ≤ t − m), then period t is a forecast horizon and period t′ is a
decision horizon.

Proof. F[l(t1), k(t1), t1] is the optimal solution for the t1 (t1 > t) period problem. If k(t1) > t,
then examine the optimal solution to the k(t1)− 1 period problem. Let k(t1)− 1 = t2; if
k(t2) > t, we continue the process until we find an optimal solution to a tn period problem
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such that k(tn) ≤ t < k(tn−1). Note that k(tn−1)− 1 = tn, F[l(tn), k(tn), tn] is the optimal
solution to the tn period problem. Since the lifetime of the product is m periods, we have
l(tn) > t − m. Given the analysis above, it is known that the optimal solution of the tn
period problem is a part of the optimal solution of the longer t1 period problem.

If xt−m
j = xt−m+1

j = . . . = xt−1
j , for j = 1, 2, . . . , t′ (1 ≤ t′ ≤ t − m), that means

that each problem MSP(t − m), MSP(t − m + 1), . . ., MSP(t − 1) has the same optimal
procurement subsequence for the first t′ periods. Hence the first t′ periods must be part
of the optimal solution to any problem of length t∗, where t ≤ t∗ ≤ T. Therefore, period
t′ is a decision horizon since it needs t periods of information to determine the decision
horizon, and period t is the corresponding forecast horizon. □

More formally, the detection of forecast horizon can be summarized as follows:
STEP 1
Let F(0) = 0, and compute the matrix gi(l, k, t).
STEP 2
Compute

F(l, k, t) = F(k − 1) + σl +
N

∑
i=1

gi(l, k, t),

which satisfies the following conditions:

r ≤ l ≤ k ≤ t, r = max{t − m + 1, 1}

STEP 3
Compute F(l, t) = kmin F(l, k, t) for all l, k which satisfy the conditions in Step 2.
STEP 4
Compute F(t) = lmin F(l, t) for all l which satisfy the conditions in Step 2. Set l(t) = l

and k(t) = k for that l, k which minimizes F(l, k, t).
STEP 5
Check for the decision horizon:
If xt−m

j = xt−m+1
j = . . . = xt−1

j , for j = 1, 2, 3, . . . , t′ (1 ≤ t′ ≤ t − m), then period t is
the forecast horizon, and period t′ is the decision horizon.

If Step 5 does not hold, then set t = t + 1; go to Step 2.
Using the above steps, we found that Period 6 is the forecast horizon, and the corre-

sponding decision horizon is Period 5.

6. Model Extension to Allow Chain Stores Inventories

We now consider the extension model whereby chain stores are allowed to carry
inventory; two extra notations are used in this extension model.

hit: Unit holding cost of chain store i in period t, i = 1, 2, . . . , N, t = 1, 2, . . . , T;
Iit: The amount of inventory at the end of period t held by chain store i, i = 1, 2, . . . , N,

t = 1, 2, . . . , T;

min
T

∑
t=1

(
σtδ(xt) + ctxt + ht It +

N

∑
i=1

hit Iit +
N

∑
i=1

pitSit +
N

∑
i=1

yitYit

)
.

The extended problem is equivalent to the minimum cost network flow problem,
which is a modified version of the original network in Figure 1. It needs to add an arc from
node Ci,t−1 to node Ci,t with an inventory cost hit Iit. Theorem 4, used for the extended
problem derived from the modified network, is as follows.

Theorem 4. In an optimal solution, there exists Sit(dit − Sit) = 0, i = 1, 2, . . . , N, t = 1, 2, . . . , T;
that is, the demand dit is either satisfied entirely by a shipment in period t or is completely lost.
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Proof. Similar to Theorem 1, consider the chain store node Cit, if Sit(dit − Sit) > 0, then
node Cit would have at least two positive inward arcs, one from shipment in period t or
from inventory at the end of the previous period and another from stockout in period t,
contradicting the property that any node has at most one positive inward arc. □

Theorem 5. There exists an optimal solution Ω∗ to the MSP; if l < λ are two procurement periods
and dit is satisfied by procurement in period λ, then for any t∗ > t, the procurement amount in
period l for satisfying dit∗ is zero.

Proof. The proof is similar to Theorem 2; hence, its proof is omitted. □

The dynamic programming recursion is consistent with Section 3, except for the
computation of gi(l, k, t):

F(t) = min
r≤l≤k≤t

F(l, k, t) = min
r≤l≤k≤t

{
F(k − 1) + σl +

N

∑
i=1

gi(l, k, t)

}

where r = max{t − m + 1, 1} and F(0) = 0.
Similarly, we define the following equation:

Hi(l, k, t′) = min
l≤wi≤k

{
cl +

wi−1

∑
u=l

hu + yiwi +
t′

∑
u=wi

hiu

}

If Hi(l, k, t′) > pi, the demands of period t′ are completely lost, so we can obtain the
variable costs that satisfy the demands from period k to t.

That is similar to the situation where only the distribution center holds inventory
in Section 4. Hi(l, k, t′) can be considered as a kind of marginal cost associated with one
item lost in the period t′. The demands dit′ are completely lost in an optimal solution if
Hi(l, k, t′) > 0. For any period t′ (k ≤ t′ ≤ t), if Hi(l, k, t′) ≤ 0, we argue that the period t′

is in the period set U1; if Hi(l, k, t′) > 0, then the period t′ is in the period set U2.
Using the definition above, we can determine that

gi(l, k, t) = (cl +
wi−1

∑
u=l

hu + yiwi +
k−1

∑
u=wi

hiu) ∑
v∈U1

dv +
t−1

∑
u=k

hu[ ∑
v∈U1

div −
u

∑
r=k

(dir − Sir)] + ∑
u∈U2

piudiu

7. Computational Results and Managerial Insights

In this section, we compare optimal solutions from our model without a stockout policy.
We also demonstrate some interesting phenomena regarding the effect of the product’s
lifetime, stockout cost, fixed cost, and holding cost on the forecast horizon. The test bed we
use is comparable to those recommended by Dawande et al. [33,35] and Bardhan et al. [36].
The number of chain stores is set at 2. It is important to note that more stores will lead to
a larger amount of computation, but the results are not affected by the number of stores.
Therefore, for simplicity, we study the case of two stores. The chain stores are not allowed
to hold excess inventory. In the work by Dawande et al. [35], they assume that the demands
are normally distributed, with a mean of 10 and a standard deviation of 5. According to
the characteristics of our study and the previous literature, we assume that the demands
are normally distributed, where the mean is set to 5 and the standard deviation is set to
2. At any time, if a demand generated is less than zero or zero, it is set to one. The test
implementation is carried out using MATLAB R2017b.

Test 1. For i = 1, 2, t = 1, 2, . . . , T, the unit’s selling price (stockout cost) pit is set
at 20; the unit’s procurement cost ct is set at 10; the unit’s holding cost ht is set at 2; the
unit’s shipping cost yit is set at 2; the fixed cost of procurement σt takes three values: 50,
80, and 100; and the lifetime of the product takes seven values: 3, 4, 5, 6, 7, 8, and 9. First,
we computed the total cost for six periods under different fixed costs and the lifetime of
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the product. Then, we computed the forecast horizon for the T period problem. For each
combination of the setup cost and the lifetime of the product, we generated 11 instances
(to enable the easy identification of the median total cost and forecast horizon). The total
number of instances in the test bed is 3 × 7 × 11 = 231.

Figure 2a shows a plot of the total cost as a function of the product’s lifetime under
three fixed-cost values. For a given fixed cost, the median total cost increases with the
product’s lifetime and then remains constant. We offer the following explanation: the
additional flexibility for bigger products’ lifetime expands the set of feasible actions. When
the product’s lifetime is very large, the set of feasible actions remains unchanged.
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function of lifetime and fixed cost.

Figure 2b shows a plot of the sensitivity analysis about the median total cost as a
function of the lifetime of the product under eight values of fixed cost, which shows that
the median total cost decreases with the increase in the lifetime of the product and increases
with the increase in the fixed cost of procurement σt. Subsequent sensitivity about the
median forecast horizon as the lifetime of the product and fixed cost of procurement is
similar. In order to more clearly see the relationship between them, Figure 2c takes three
values, 50, 80, and 100; the lifetime of the product takes seven values, 3, 4, 5, 6, 7, 8, and 9;
and the specific content is shown in Figure 2c.

Figure 2c shows a plot of the total cost as a function of the product’s lifetime under
three values of fixed cost. For a given fixed cost, the median total cost increases with the
lifetime of the product, then remains constant. We offer the following explanation: the
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additional flexibility for a bigger product lifetime expands the set of feasible actions. When
the product’s lifetime is very long, the set of feasible actions remains unchanged.

Figure 2c plots the median forecast horizon as a function of the product’s lifetime
for the three values of fixed cost. For a given setup cost, the median forecast horizon
first increases with the product’s lifetime and then remains constant. In general, a shorter
product lifespan leads to more procurement periods, leading to a shorter forecast horizon.
When other parameters are fixed and the lifetime of the product is very long, the perishable
product will be equal to the durable product; the forecast horizon cannot be affected by
the lifetime. As the fixed cost increases, the median forecast horizon for a given product’s
lifetime increases. Higher fixed costs lead to shorter procurement periods, leading to a
longer forecast horizon.

Test 2. For i = 1, 2, t = 1, 2, . . . , T, the fixed cost of procurement σt is set at 50; the unit’s
procurement cost ct is set at 10; the unit’s shipping cost yit is set at 2; the unit’s holding cost
ht takes three values: 1, 2, 4; the unit’s selling price (stockout cost) pit takes 6 values: 18, 19,
20, 25, 30, and 35; and the lifetime of the product is 5 periods. Similarly, we first compute
the total cost for six periods under different holding stockout costs. Then, we compute the
forecast horizon for the T period problem. For each combination of the holding cost and
stockout cost, 11 instances are generated, and the total number of instances in the test bed
is 3 × 6 × 11 = 191.

Figure 3 plots the median forecast horizon as a function of the stockout cost for the
three values of holding cost. For a given holding cost, the median forecast horizon first
increases with the stockout cost and then remains constant. Similar to Figure 2c, a higher
stockout cost results in more procurement periods and, consequently, a shorter forecast
horizon. When other parameters are fixed and the stockout cost is very high, we do not
choose the option of stockout. Therefore, the forecast horizon remains unchanged. For a
given stockout cost, the median forecast horizon typically decreases with the holding cost.
A higher holding cost results in more procurement periods and, consequently, a shorter
forecast horizon.
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8. Conclusions and Suggestions for Future Research

The existing papers on DLS problems assume that the lifetime of products is infinite. In
addition, previous studies assume that demands can be aggregated in each period. Several
structural policies of an optimal solution do not hold if we relax the abovementioned
assumptions. This motivates us to investigate a novel problem. This study presents an
important variant of the DLS problem faced by a distribution center that supplies a single
perishable product to multiple chain stores, which incurs shipping and stockout costs. We
first consider a case where only the distribution center can carry inventory. We also analyze
an extension of the problem where chain stores can hold inventory.

The theoretical implications are as follows: in this study, we explored the structural
properties of the optimal solution. For example, the demand is either satisfied entirely by
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a shipment in exact one period, or completely lost; perishable stocks are used to satisfy
demands in first-in, first-out fashion. We further used them to develop an efficient DP
algorithm to solve the multiperiod optimization model. Furthermore, we established
forecast and decision horizon results, which help the operation manager analyze the
appropriate data information periods. Moreover, the managerial implications are as follows:
using a comprehensive test bed, we obtained useful managerial insights into the impact
of the lifetime of the product and cost parameters on the total cost and the length of
the forecast horizon. For example, the median total cost increases with the lifetime of the
product and then remains constant. At the same time, the median forecast horizon increases
with the lifetime of the product and then remains constant.

This study does not consider the possibility of trans-shipment between two stores and
the capacity constraints. In addition, we do not consider the time windows of procurement
and delivery. Thus, the research can be extended in various directions. One extension of
our work would be to study the general case where the inventory of one chain store can be
shipped to other chain stores.

Secondly, the capacity constraint is an important reason for stockouts. Thus, another
interesting extension of our work would be to consider capacity constraints, including the
procurement capacity, inventory capacity, and shipping capacity. For example, in each
period, the number of procurements cannot exceed the largest capacity Ct, that is, xt ≤ Ct.

Thirdly, the customer offers a grace period, which is the demand time window during
which specific demand can be satisfied with no penalty in reality. That is associated with
each demand i, in which the customer specifies the earliest and latest delivery time, denoted
by Ei and Li, respectively, where Ei ≤ Li. Hence, the interval [Ei, Li] represents the time
window corresponding to demand i. The inclusion of the procurement or delivery time
window can also provide opportunities for further analysis.
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Appendix A

Before presenting Theorem 2, first, we show a property of optimal solution.

Lemma A1. Suppose that l < λ are two procurement periods in the optimal solution to problem
MSP and procure in period λ for satisfying dit and dit∗ for some λ ≤ t < t∗. Then, if cl +
t∗−1
∑

u=l
hu + yit∗ > pit∗ , there exists cl +

λ−1
∑

u=l
hu > cλ; if cl +

t∗−1
∑

u=l
hu + yit∗ ≤ pit′ , there exists

(cl +
λ−1
∑

u=l
hu − cλ) ≥ 0.
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Proof. From the assumption, procure in period λ for satisfying dit and dit′ for some λ ≤ t < t∗,

we have cλ +
t−1
∑

u=λ
hu + yit < pit and cλ +

t∗−1
∑

u=λ
hu + yit∗ < pit∗ . If cl +

t∗−1
∑

u=l
hu + yit∗ > pit∗ ,

then cl +
t∗−1
∑

u=l
hu + yit∗ > cλ +

t∗−1
∑

u=λ
hu + yit∗ , so we have cl +

λ−1
∑

u=l
hu > cλ.

If cl +
t∗−1
∑

u=l
hu + yit∗ ≤ pit∗ , the total costs in the optimal solution Ω+ from period l

to period t∗, which include procurement cost, inventory cost, shipping cost to satisfy the
demand of N chain stores, and stockout cost for N chain stores, can be expressed as follows:

σl + cl x+l +
λ−1

∑
u=l

hu I+u + σλ+cλx+λ +
t∗−1

∑
v=λ

hv I+v + yitdit + yit∗dit∗ + F+(l, t∗)

We modify optimal solution Ω+ to feasible solution Ω∗ by satisfying the demand of
chain store i in period t′ by procurement in period l. Thus, we have

x∗l = x+l + dit∗ ; x∗λ = x+λ − dit∗ ; I∗u = I+u + dit∗ , u = l, l + 1, . . . , λ − 1; I∗v = I+v , v = λ, λ + 1, . . . , t∗ − 1

The costs in the modified solution Ω∗ from period l to period t∗ can be expressed
as follows:

σl + cl(x+l + dit∗) +
λ−1

∑
u=l

hu(I+u + dit∗) + σλ+cλ(x+λ − dit∗) +
t∗−1

∑
v=λ

hv I+v + yitdit + yit∗dit∗ + F∗(l, t∗)

Note that it remains unchanged in the solution Ω+ and Ω∗ from the above analysis,
that is, F+(k, t∗) = F∗(k, t∗). The perturbed solution cannot decrease cost below the
optimal solution, so we have

σl + cl x+l +
λ−1
∑

u=l
hu I+u + σλ+ cλx+λ +

t∗−1
∑

v=λ
hv I+v + yitdit + yit∗dit∗ + F+(l, t∗) ≤

σl + cl(x+l + dit∗) +
λ−1
∑

u=l
hu(I+u + dit∗) + σλ + cλ(x+λ − dit∗) +

t′−1
∑

v=λ
hv I+v + yitdit + yit∗dit∗ + F∗(l, t∗)

Simplifying the above expression, we have (cl +
λ−1
∑

u=l
hu − cλ)dit∗ ≥ 0. □

Now we are ready to prove Theorem 2.

Proof. Suppose we have an optimal solution Ω+ where l < λ are two procurement periods
and dit is satisfied by procurement in period λ. dit∗ is satisfied by procurement in period l,

so we have cλ +
t−1
∑

u=λ
hu + yit ≤ pit and cl +

t∗−1
∑

u=l
hu + yit∗ ≤ pit∗ . If cλ +

t∗−1
∑

u=λ
hu + yit∗ ≥ pit∗ ,

then cλ +
t∗−1
∑

u=λ
hu + yit∗ ≥ cl +

t∗−1
∑

u=l
hu + yit∗ , and we have cλ ≥ cl +

λ−1
∑

u=l
hu, so the costs

are not increased by rescheduling the program to let dit be also satisfied by procurement
in period l, while this contradicts the assumption of optimal solution Ω+, so we have

cλ +
t∗−1
∑

u=λ
hu + yit∗ < pit∗ . Under cλ +

t∗−1
∑

u=λ
hu + yit∗ < pit∗ , we modify this optimal solution

Ω+ to obtain another feasible solution Ω∗, where dit∗ is satisfied by procurement in period
λ instead of by procurement in period l, as in Ω+. In the modified solution Ω∗, we have

x∗l = x+l − dit∗ ; x∗λ = x+λ + dit∗ ; I∗u = I+u − dit∗ , u = l, l + 1, . . . , λ − 1; I∗v = I+v , v = λ, λ + 1, . . . , t∗ − 1
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V(Ω+) represents the total costs in the optimal solution Ω+ from period l to period t∗,

V(Ω+) = (σl + cl x+l ) +
λ−1

∑
u=l

hu Iu + (σλ + cλx+λ ) +
t∗−1

∑
v=λ

hu Iu + yitdit + yit∗dit∗ + F+(l, t∗)

V(Ω∗) represents the total costs in the modified solution Ω∗ from period l to period t∗,

V(Ω∗) = [σl + cl(x+l − dit∗)] +
λ−1
∑

u=l
hu(Iu − dit∗) + [σλ + cλ(x+λ + dit∗)] +

t∗−1
∑

v=λ
hu Iu

+ yitdit + yit∗dit∗ + F∗(l, t∗)

To complete the proof, we need to show that V(Ω+) ≥ V(Ω∗).

V(Ω+)− V(Ω∗) = (cl +
λ−1

∑
u=l

hu − cλ)dit∗ + F+(l, t∗)− F∗(l, t∗)

We know that F+(k, t∗) = F∗(k, t∗), from Lemma A1, and dit∗ ≥ 0, so we have
V(Ω+) ≥ V(Ω∗). □
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