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Abstract: This paper studies the problem of adaptive fuzzy control based on command filtering for
a class of nonlinear systems characterized by an input dead zone, input saturation, and unknown
control direction. First, this paper proposes a novel equivalent transformation technique that sim-
plifies the design complexity of multiple input constraints by converting the input dead zone and
saturation nonlinearities into a unified functional form. Subsequently, a fuzzy logic system is utilized
to handle the unknown nonlinear functions, and the command-filtering method is employed to
address the issue of complexity explosion, while the Nussbaum function is utilized to resolve the
challenge of an unknown control direction. Based on Lyapunov stability, it is proven that the tracking
error converges to a small neighborhood around the origin, and all closed-loop signals are bounded.
Finally, a numerical simulation result and an actual simulation result of a pendulum are presented to
verify the feasibility and effectiveness of the proposed control strategy.
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1. Introduction

It is widely acknowledged that stability analysis and controller design for nonlinear
systems have been subjects of ongoing research and interest for several decades [1–3]. This
technology is often applied to robots [4], quadcopter UAVs [5], noise data classification [6],
aerospace systems [7], etc. Recently, the combination of backstepping methodology with
adaptive control techniques to address nonlinear systems has undergone significant de-
velopment and practical application. In earlier studies, nonlinear terms of the system
were often assumed to be known a priori or linearly parameterizable. However, for many
practical systems, this assumption is considered unrealistic. To solve this problem, neural
networks (NNs) and fuzzy logic systems (FLS) have been used to approximate unknown
system dynamics [8,9]. For example, [10] introduced an adaptive fuzzy controller grounded
in sliding mode control theory. In [11–13], the authors introduced several intelligent control
methodologies for nonlinear systems featuring pure feedback structures by amalgamating
neural networks or fuzzy logic systems with adaptive backstepping approaches.

However, the most common drawback of backstepping techniques is the complexity
explosion caused by repeatedly differentiating the virtual controller. To address this issue,
Ref. [14] proposed a dynamic surface control (DSC) scheme, which incorporated a first-
order filter dynamic surface at each stage of the backstepping control design process,
thereby obviating the need for calculating the derivatives of the virtual controller. Dynamic
filtering technology was introduced by [15] to investigate event-triggered tracking control
of a category of uncertain nonlinear systems. However, DSC technology failed to account
for the error introduced by the filter, consequently diminishing the control performance
of the system. Refs. [16–19] applied command-filtering technology to nonlinear systems
under different constraints, which not only solved the problem of complexity explosion
in the backstepping design process, but also established an error compensation system to
make up for the shortcomings of DSC technology.
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Despite the success of command-filter adaptive control in nonlinear systems, the
presence of various constraints in practical engineering contexts, such as input dead zones,
input saturation, unknown control direction, etc., can influence the system’s stability. To
solve the dead-zone problem, some related results are provided in [20–22]. Ref. [20]
proposed an adaptive dead-zone inverse technology. Ref. [21] developed a corresponding
disturbance observer for estimation based on the unknown approximation error and
the impact of unknown dead zones and external disturbances. In [22], the system was
converted into n-step predictors, and an adaptive compensation term was introduced to
overcome the asymmetric dead zone existing in the system. Apart from the presence of
dead zone input, the presence of input saturation can also cause performance degradation
of nonlinear systems and signal delay or loss. The study of input saturated systems has
also been an important topic in recent years [23,24].

On the other hand, when researching adaptive control of nonlinear systems, it is
often necessary to know the control direction representing the direction of motion in
advance [25,26]. However, the direction of controlling gain is mostly unknown in practical
applications. The Nussbaum gain method is an effective tool for processing unknown
signals. Characterized by its values and integral oscillating infinitely between positive
and negative, the Nussbaum function allows the control system to adjust its strategy
automatically, despite uncertainty about the sign of the control gain, ensuring that the
system can stably achieve the desired state. Building upon this technology, numerous
control strategies have been formulated [27–30]. Ref. [27] introduced the Nussbaum
function to compensate for the impact of the unknown direction problem and designed
an adaptive tracking controller based on a command filter. For systems featuring multiple
unknown high-frequency gains, Ref. [28] introduced a novel command-filtered Nussbaum
design. A novel Nussbaum function was devised by [29] to address the tracking problem
encountered within a category ofstochastic strict feedback nonlinear systems. By using an
improved Nussbaum function, [30] extended previous research results to cover a broader
range of nonlinear systems, characterized by unknown variations in both the sign and
magnitude of the control gain over time. However, to the best of our knowledge, there is a
scarcity of papers that concurrently address nonlinear systems with input dead zones, input
saturation, and uncertain control directions. This scarcity partly motivated the research
presented in this paper.

Based on the previous discussion, the main contributions of this article, in contrast to
existing research outcomes, can be encapsulated as follows:

1. Compared with the nonlinear systems studied in [25,26], where the control direction
was known, this paper considers a broader situation in which the control direction is
unknown, and it designs adaptive fuzzy control using the Nussbaum function.

2. This paper proposes a novel transformation method to eliminate the impact of the
input dead zone and saturation on the system, and uses command-filtering technology
to solve the problem of complexity explosion in traditional backstepping design.

2. Preliminary Knowledge and Problem Statement
2.1. System Model

Consider the following nonlinear system
ẋi = fi(x̄i) + λigi(x̄i)xi+1, i = 1, . . . , n − 1,
ẋn = fn(x̄n) + λngn(x̄n)u,
y = x1,

(1)

where x = [x1, x2, . . . xn]T ∈ Rn represents the state vector with x̄i = [x1, x2, . . . xi]
T ∈ Ri,

and y ∈ R denotes the system output; λi = 1 (or −1) represents an unknown control
direction; gi(x̄i) are bounded continuous functions with 0 < h̄i ≤ gi(·) ≤ Θi, h̄i and Θi
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represent two constants; and fi(x̄i) signifies the unknown smooth function. The control
input u ∈ R is specified as

u(t) =



uh, v(t) > uh,
kh(v(t)− mh), mh ≤ v(t) < uh,
0, −ml < v(t) ≤ mh,
kl(v(t) + ml), −ul < v(t) ≤ −ml ,
−ul , v(t) < −ul ,

(2)

where v(t) is the input of the dead zone; uh and ul are positive parameters and represent
unknown saturation values; kh > 0, kl > 0, mh > 0, and ml > 0 are the unknown
zone parameters; and the dead-zone slopes in positive and negative region are same, i.e.,
kh = kl = k .

Assumption 1 ([22]). The dead-zone parameters of mh, ml , and k are bounded. This implies that
there are known parameters mh max, mh min, ml max, ml min, kmax, and kmin, such that
mh ∈ [mh min, mh max], ml ∈ [ml min, ml max], and k ∈ [kmin, kmax].

For the development of a robust control scheme, (2) is reformulated as follows:

u(t) = π
(
v(t)

)
v(t) + ϑ

(
v(t)

)
. (3)

Based on Assumption 1, one can conclude that ϑ
(
v(t)

)
is bounded, while satisfies∣∣ϑ(v(t))∣∣ ≤ Lp , where Lp represents the upper bound.

Assumption 2 ([25]). In this article, considering that the input signal v is limited in actual
situations, π

(
v(t)

)
satisfies the following inequality

0 < ℑ ≤ min
{

uh
v(t)max

, k
}

≤ π
(
v(t)

)
≤ max{1, k}, (4)

2.2. Fuzzy Logic Systems

FLS consists of four primary components: the knowledge base, fuzzifier, fuzzy infer-
ence engine, and defuzzifier. The knowledge base houses a comprehensive set of fuzzy
if-then rules, which are defined as follows:

Rl : IF x1 is Pj
1, and x2 is Pj

2, and xn is Pj
n, then y is Qj,j = 1, 2, . . . ,℘, where

x = [x1, x2, . . . , xn]
T , and y are the FLSs input and system output, respectively; Pj

m, Qj

denote the fuzzy sets for x and y, respecitvley; an equivalent expression of FLS can be
obtained as

y(x) =
∑℘

j=1 ȳj ∏n
m=1 µ

Fj
m
(xm)

∑℘
j=1

[
∏n

m=1 µ
Fj

m
(xm)

] , (5)

with ȳj = maxy∈R µQj(y), where µ
Pj

m
(xm) and µQj(y) are the membership functions. De-

note W = [ȳ1, ȳ2, . . . , ȳ℘]T = [W1, W2, . . . , W℘]T and ψ(x) = [ψ1(x), ψ2(x), . . . , ψ℘(x)]T , the

membership functions, which are defined as ψj(x) =
∏n

m=1 µ
Fj
m
(xm)

∑℘
j=1

[
∏n

m=1 µ
Fj
m
(xm)

] . Consequently,

FLS can be succinctly described as follows

y(x) = WTψ(x). (6)
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Lemma 1 ([27]). The following inequality holds for any smooth function f (x) defined on the
compact set Ω if there is a sufficiently tiny positive scalar ε:

sup
x∈Ω

∣∣∣ f (x)− WTψ(x)
∣∣∣ ≤ ε. (7)

Definition 1 ([29]). The Nussbaum function N(ζ) : R → R has the properties

lim
ℓ→∞

sup
1
ℓ

∫ ℓ

0
N(ζ)dζ = +∞,

lim
ℓ→−∞

inf
1
ℓ

∫ ℓ

0
N(ζ)dζ = −∞.

(8)

Lemma 2 ([29]). Consider ζ(t) and V(t) ≥ 0 are smooth functions on [0, t f ), and N(ζ(t)) is an
even smooth Nussbaum-type function. Suppose

V(t) ≤ e−Υ1t
∫ t

0

(
w
(
x̄(τ)

)
N
(
ζ(τ)

)
+ 1
)
ζ̇(τ)eΥ1τdτ + D, (9)

in which D > 0 and Υ1 > 0, and V(t), ζ(t) and
∫ t

0 w
(
x̄(τ)

)
N
(
ζ(τ)

)
ζ̇(τ)dτ remain bounded

on [0, t f ).

Lemma 3 ([25]). The command filter is defined as{
ω̇i = ϖωi,2,
ω̇i,2 = −2φϖωi,2 − ϖ(ωi − αi−1),

(10)

where αi−1 and ωi represent the input and output of the command filter, respectively, ωi(0) = αi−1
and ωi,2(0) = 0, φ ∈ (0, 1], and ϖ > 0.

Remark 1. The command-filtering approach is a control strategy that simplifies the design and
implementation of complex control systems. By incorporating a filter between the controller and
actuator, it smooths the control signals, preventing performance degradation due to overly complex
control strategies. This method effectively reduces system complexity and avoids “complexity
explosion” caused by high-frequency control updates and excessive regulation.

Assumption 3 ([26]). The reference signal xd and its first-order derivative ẋd are continuous
and bounded.

3. Controller Design and Stability Analysis
3.1. Controller Design

In this section, an adaptive command-filter controller is designed for the nonlinear
system (1) by integrating the Nussbaum function with the back-stepping technique. Coor-
dinate changes are introduced to facilitate controller design:{

e1 = x1 − yd,
ei = xi − ωi, i = 1, . . . , n,

(11)

where ei represents the tracking error and ωi denotes the output of the filter.

Remark 2. It is noteworthy that the error induced by the command filter exacerbates the system
error. To address this drawback, a compensation signal, denoted as β, is introduced to mitigate the
adverse effects of the filter error ωi − αi−1 on the system.
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Design the compensation signal βi to eliminate the error caused by the command filter
as follows {

β̇i = −kiβi + giβi+1 + gi(ωi+1 − αi),
β̇n = −knβn,

(12)

where ki is a given positive constant and βi(0) = 0.
Subsequently, the compensated tracking error signals can be expressed as follows

ξi = ei − βi, i = 1, 2, . . . , n. (13)

Step 1: Taking the derivative of ξi as

ξ̇1 = ė1 − β̇1 = ẋ1 − ẏd − β̇1 = f1 + λ1g1x2 − ẏd − β̇1. (14)

The Lyapunov function is chosen as

V1 =
1
2

ξ2
1 +

1
2Γ1

θ̃2
1 , (15)

where Γ1 represents the positive parameter to be constructed, and in order to solve the
parameter estimation problem, the parameter estimation error is θ̃1 = θ1 − θ̂1, and the
constant is defined as θi = ∥Wi∥2.

Based on (11), (13), (14) and (15) the time derivative of V1 is shown as

V̇1 = ξ1ξ̇1 −
1
Γ1

θ̃1
˙̂θ1

= ξ1
(

f1 + λ1g1(ω2 + ξ2 + β2)− ẏd − β̇1
)
− 1

Γ1
θ̃1

˙̂θ1

= ξ1 f1 + λ1g1ξ1ω2 + λ1g1ξ1ξ2 + λ1g1ξ1β2 − ξ1ẏd − ξ1 β̇1 −
1
Γ1

θ̃1
˙̂θ1.

(16)

As function f1(x) is unknown, the direct design of the virtual control signal α1 is not
feasible. Thus, according to Lemma 1, for any given number ε1 > 0, there are

f1(B1) = WT
1 ψ1 + δ1(B1), ∥δ1(B1)∥ < ε1,

in which ∥δ1(B1)∥ denotes the estimation error.
By applying Young’s inequality, the following formula can be derived

ξ1 f1 ≤
ξ2

1θ1ST
1 S1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1, (17)

where a1 is a given positive scalar.
Consider a compensating signal β̇1 as

β̇1 = −k1β1 + g1β2 + g1(ω2 − α1). (18)

Next, after combining formulas (16)–(18), it can be easily obtained that

V̇1 ≤
ξ2

1θ1ST
1 S1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1 + λ1g1ξ1ω2 + λ1g1ξ1ξ2 + λ1g1ξ1β2

+ k1ξ1β1 − g1ξ1β2 − g1ξ1ω2 + g1ξ1α1 −
1
Γ1

θ̃1
˙̂θ1 − ξ1ẏd

≤
ξ2

1θ1ST
1 S1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1 + λ1g1ξ1ξ2 + k1ξ1β1 + g1ξ1α1 −

1
Γ1

θ̃1
˙̂θ1

+
(
λ1 − 1

)
g1ξ1

(
β2 + ω2

)
− ξ1ẏd.

(19)
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In this article, λ1 = 1(or − 1) represents the unknown control direction. Applying
Young’s inequality, one can obtain

(λ1 − 1)g1ξ1(β2 + ω2) = (λ1 − 1)g1ξ1(x2 − ξ2) = 0 ≤ 2g2
1ξ2

1 + x2
2 + ξ2

2, λ1 = 1,

(λ1 − 1)g1ξ1(β2 + ω2) = (λ1 − 1)g1ξ1(x2 − ξ2) ≤ 2g2
1ξ2

1 + x2
2 + ξ2

2, λ1 = −1,

λ1g1ξ1ξ2 ≤ 1
2

g2
1ξ2

1 +
1
2

ξ2
2, λ1 = 1(or − 1).

(20)

Substituting (20) into (19) produces

V̇1 ≤
ξ2

1θ1ψT
1 ψ1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1 +

5
2

g2
1ξ2

1 +
3
2

ξ2
2

+ k1ξ1β1 + g1ξ1α1 −
1
Γ1

θ̃1
˙̂θ1 + x2

2 − ξ1ẏd.

(21)

Next, the virtual control signal α1 and the Nussbaum-type gain ζ1 are developed
as follows 

α1 = N(ζ1)

(
ξ1 θ̂1ST

1 S1
2a2

1
+ k1e1 +

1
2 ξ1 +

5
2 g2

1ξ1 − ẏd

)
,

ζ̇1 = ξ1

(
ξ1 θ̂1ST

1 S1
2a2

1
+ k1e1 +

1
2 ξ1 +

5
2 g2

1ξ1 − ẏd

)
.

(22)

By amalgamating the aforementioned equation, (21) can be reformulated as

V̇1 ≤
ξ2

1θ1ψT
1 ψ1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1 +

5
2

g2
1ξ2

1 +
3
2

ξ2
2 + k1ξ1β1 + g1ξ1α1 −

1
Γ1

θ̃1
˙̂θ1 + x2

2 − ξ1ẏd

≤ −k1ξ2
1 + g1N(ζ1)ζ̇1 + ζ̇1 +

θ̃1

Γ1

(
Γ1ξ2

1ψT
1 ψ1

2a2
1

− ˙̂θ1

)
+

1
2

a2
1 +

1
2

ε2
1 +

3
2

ξ2
2 + x2

2.

(23)

Next, the adaptive law ˙̂θ1 is designed as ˙̂θ1 =
Γ1ξ2

1ψT
1 ψ1

2a2
1

− σ1θ̂1, and with the help of

Young’s inequality σ1 θ̃1 θ̂1
Γ1

≤ σ1θ2
1

2Γ1
− σ1 θ̃2

1
2Γ1

, one obtain

V̇1 ≤ −k1ξ2
1 + g1N(ζ1)ζ̇1 + ζ̇1 −

σ1θ̃2
1

2Γ1
+ N1, (24)

where N1 = 1
2 a2

1 +
1
2 ε2

1 +
3
2 ξ2

2 + x2
2 +

σ1θ2
1

2Γ1
.

Step i: (2 ≤ i ≤ n − 1): According to the differential rules, the following expression
is derived

ξ̇i = ėi − β̇i = ẋi − ω̇i − β̇i = fi + λigixi+1 − ω̇i − β̇i. (25)

Choose a Lyapunov function candidate function, as follows

Vi = Vi−1 +
1
2

ξ2
i +

1
2Γi

θ̃2
i . (26)

where θ̃i = θi − θ̂i.
By differentiating Vi, the following formula holds

V̇i = V̇i−1 + ξi ξ̇i −
1
Γi

θ̃i
˙̂θi

= V̇i−1 + ξi
(

fi + λigi(ωi+1 + ξi+1 + βi+1)− ω̇i − β̇i
)
− 1

Γi
θ̃i

˙̂θi

= V̇i−1 + ξi fi + λigiξiωi+1 + λigiξiξi+1 + λigiξiβi+1 − ξiω̇i − ξi β̇i −
1
Γi

θ̃i
˙̂θi.

(27)
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According to Lemma 1 again, for any given number εi > 0, there are

fi(Bi) = WT
i ψi + δi(Bi), ∥δi(Bi)∥ < εi,

in which ∥δi(Bi)∥ denotes the estimation error.
By applying Young’s inequality again, the following formula can be derived

ξi fi ≤
ξ2

i θiψ
T
i ψi

2a2
i

+
1
2

a2
i +

1
2

ξ2
i +

1
2

ε2
i , (28)

where ai is a given positive scalar.
The compensation signal β̇i is designed to be

β̇i = −kiβi + giβi+1 + gi(ωi+1 − αi). (29)

Incorporating Equations (28) and (29) into (27), one can obtain

V̇i ≤V̇i−1 +
ξ2

i θiψ
T
i ψi

2a2
i

+
1
2

a2
i +

1
2

ξ2
i +

1
2

ε2
i + λigiξiξi+1 + kiξiβi + giξiαi −

1
Γi

θ̃i
˙̂θi

+
[
λigiξiωi+1 + λigiξiβi+1 − giξiβi+1 − giξiωi+1

]
− ξiω̇i

≤V̇i−1 +
ξ2

i θiψ
T
i ψi

2a2
i

+
1
2

a2
i +

1
2

ξ2
i +

1
2

ε2
i + λigiξiξi+1 + kiξiβi + giξiαi −

1
Γi

θ̃i
˙̂θi

+
(
λi − 1

)
giξi
(

βi+1 + ωi+1
)
− ξiω̇i.

(30)

Similar to (20), one can obtain

λigiξiξi+1 ≤ 1
2

g2
i ξ2

i +
1
2

ξ2
i+1,

(λi − 1)giξi(βi+1 + ωi+1) ≤ 2g2
i ξ2

i + x2
i+1 + ξ2

i+1.
(31)

Then, (30) is rewritten as

V̇1 ≤V̇i−1 +
ξ2

i θiψ
T
i ψi

2a2
i

+
1
2

a2
i +

1
2

ξ2
i +

1
2

ε2
i +

5
2

g2
i ξ2

i +
3
2

ξ2
i+1

+ kiξiβi + giξiαi −
1
Γi

θ̃i
˙̂θi + x2

i+1 − ξiω̇i.

(32)

The virtual control signal α1 and the Nussbaum-type gain ζ1 are designed as
αi = N(ζi)

(
ξi θ̂iψ

T
i ψi

2a2
i

+ kiei +
1
2 ξi +

5
2 g2

i ξi − ω̇i

)
,

ζ̇i = ξi

(
ξi θ̂iψ

T
i ψi

2a2
i

+ kiei +
1
2 ξi +

5
2 g2

i ξi − ω̇i

)
.

(33)

Combining the above equation, (32) can be rewritten as

V̇i ≤ V̇i−1 − kiξ
2
i + gi N(ζi)ζ̇i + ζ̇i +

θ̃i
Γi

(
Γiξ

2
i ψT

i ψi

2a2
i

− ˙̂θi

)
+

1
2

a2
i +

1
2

ε2
i +

3
2

ξ2
i+1 + x2

i+1. (34)

Next, the adaptive law ˙̂θi is designed as ˙̂θi =
Γiξ

2
i ψT

i ψi
2a2

i
− σi θ̂i, and with the help of

Young’s inequality σi θ̃i θ̂i
Γi

≤ σiθ
2
i

2Γi
− σi θ̃

2
i

2Γi
, one obtain
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V̇i ≤V̇i−1 − kiξ
2
i + gi N(ζi)ζ̇i + ζ̇i −

σi θ̃
2
i

2Γi
+

1
2

a2
i +

1
2

ε2
i +

3
2

ξ2
i+1 + x2

i+1 +
σiθ

2
i

2Γi

≤−
i

∑
j=1

k jξ
2
j −

i

∑
j=1

1
2

σj θ̃
2
j

Γj
+

i

∑
j=1

gjN
(
ζ j
)
ζ̇ j +

i

∑
j=1

ζ̇ j

+
1
2

i

∑
j=1

(
a2

j + ε2
j + 3ξ2

j+1 +
σjθ

2
j

Γj

)
+

i

∑
j=1

xj+1
2.

(35)

Step n: Based on (1), (4), (11) and (13), one has

ξn = ėn − β̇n = ẋn − ω̇n − β̇n = fn + λngnu − ω̇n − β̇n

= fn + λngn[π
(
v
)
v + ϑ

(
v
)
]− ω̇n − β̇n.

(36)

Take a Lyapunov function Vn in the following form

Vn = Vn−1 +
1
2

ξ2
n +

1
2Γn

θ̃2
n, (37)

where θ̃n = θn − θ̂n.
Differentiating Vn, one can obtain

V̇n = V̇n−1 + ξn ξ̇n −
1

Γn
θ̃n

˙̂θn

= V̇n−1 + ξn
(

fn + λngn(π(v)v + ϑ(v))− ω̇n − β̇n
)
− 1

Γn
θ̃n

˙̂θn

= V̇n−1 + ξn fn + ξnλngnπ(v)v + ξnλngnϑ(v)− ξnω̇n − ξn β̇n −
1
Γ

θ̃n
˙̂θn.

(38)

Similarly, according to Lemma 1 and Young’s inequality, one can obtain

ξn fn ≤ ξ2
nθnψT

n ψn

2a2
n

+
1
2

a2
n +

1
2

ξ2
n +

1
2

ε2
n, (39)

where an is a given positive scalar.

λngnξnϑ(v) ≤ λn(
1
2

ξ2
n +

1
2
ℜ2), (40)

where |ϑ(v)| < Lp, |gi| < Θi, and |gnϑ(v)| < ℜ, with ℜ = ΘnLp.
Then, the compensation signal ṙn is designed to be

β̇n = −knβn. (41)

Combined with the above formula, (38) is rewritten as

V̇n ≤V̇n−1 +
ξ2

nθnψT
n ψn

2a2
n

+
1
2

a2
n +

1
2

ξ2
n +

1
2

ε2
n + λngnξnπ(v)v

+ λn

(
1
2

ξ2
n +

1
2
ℜ2

n

)
+ ξnknβn −

1
λn

θ̃n
˙̂θ − ξnω̇n.

(42)

The virtual control signal v and the Nussbaum-type gain ζn are designed asv = 1
ℑ N(ζn)

(
ξn θ̂nψT

n ψn
2a2

n
+ knen + ξn − ω̇n

)
,

ζ̇n = ξn

(
ξn θ̂nψT

n ψn
2a2

n
+ knen + ξn − ω̇n

)
.

(43)
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Combining the above equation, (42) can be rewritten as

V̇n ≤ V̇n−1 − knξ2
n + λngnN(ζn)ζ̇n + ζ̇n +

1
2
ℜ2

n +
θ̃n

Γn

(
Γnξ2

nψT
n ψn

2a2
n

− ˙̂θn

)
+

1
2

a2
n +

1
2

ε2
n. (44)

Next, the adaptive law ˙̂θn is designed as ˙̂θn = Γnξ2
nψT

n ψn
2a2

n
− σn θ̂n, and with the help of

Young’s inequality σn θ̃n θ̂n
Γn

≤ σnθ2
n

2Γn
− σn θ̃2

n
2Γn

, one obtain

V̇n ≤V̇n−1 − knξ2
n + λngnN(ζn)ζ̇n + ζ̇n −

σn θ̃2
n

2Γn
+

1
2

a2
n +

1
2

ε2
n +

σnθ2
n

2Γn
+

1
2
ℜ2

n

≤−
n

∑
j=1

k jξ
2
j −

n

∑
j=1

1
2

σj θ̃
2
j

Γj
+

n−1

∑
j=1

gjN
(
ζ j
)
ζ̇ j + λngnN(ζn)ζ̇n +

n

∑
j=1

ζ̇ j

+
1
2

n

∑
j=1

(
a2

j + ε2
j +

σjθ
2
j

Γj

)
+

n−1

∑
j=1

x2
j+1 +

3
2

n−1

∑
j=1

ξ2
j+1 +

1
2
ℜ2

n.

(45)

3.2. Stability Analysis

Theorem 1. Consider the nonlinear system (1) under Assumptions 1–3, utilizing the error compen-
sation signals (18), (29), (41), virtual controllers (22) and (33), as well as the actual controller (43)
designed in this study, and combining the constructed parameter adaptive law along with the
provided signal xd, it is assured that all closed-loop signals remain bounded, and the tracking error
is driven to the vicinity of the origin.

Proof. Denote D =
{

2k jσj, ∀j = 1, . . . , n
}

, (45) can be rewritten as

V̇n ≤ −DVn + C +
n−1

∑
i=1

(gjN(ζ j) + 1)ζ̇ j + ζ̇n(λngnN(ζn) + 1), (46)

where C = 1
2 ∑n

j=1

(
a2

j + ε2
j +

σjθ
2
j

Γj

)
+ ∑n−1

j=1 x2
j+1 +

3
2 ∑n−1

j=1 ξ2
j+1 +

1
2ℜ2

n.

Thus, multiplying (46) by eDt results in

d
dt

(
VneDt

)
≤ eDt

n−1

∑
j=1

(
gjN

(
ζ j
)
+ 1
)

ζ̇ j + eDt
(

λngnN(ζn) + 1
)

ζ̇n + eDtC. (47)

Integrating the above equation to the interval [0, t), one can obtain

Vn(t) ≤e−Dt
∫ t

0

n−1

∑
j=1

(
gjN

(
ζ j
)
+ 1
)
ζ̇ jeDτdτ + e−Dt

∫ t

0
(λngnN(ζn) + 1)ζ̇neDτdτ

+
C
D

+ e−DtVn(0)−
C
D

e−Dt.

(48)

According to Lemma 2, it can be inferred that Vn, ζn and
∫ t

0 (λngnN(ζn
)
+ 1)ζ̇ndτ are

bounded. Thus, ξn and θ̃n are bounded. In addition, similar to the previous derivation, it
can be derived that Vn−1, ζn−1, ξn−1 ,θ̃n−1 and Vi, ζi, ξi ,θ̃i are all bounded, which derive
the boundedness of

∫ t
0 ∑n−1

i=1 (gjN(ζ j) + 1)ζ jeDτdτ and
∫ t

0 (λngnN(ζn) + 1)ζ̇neDτdτ. Thus,
the following formula holds

0 ≤ Vn ≤
[

Λ1 + Λ2 + Vn(0)−
C
D

]
e−Dt +

C
D

, (49)

where Λ1 represents
∫ t

0 ∑n−1
i=1 (gjN(ζj)+1)ζjeDτdτ, and Λ2 denotes

∫ t
0 (λngnN(ζn)+1)ζ̇neDτdτ.
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According to (49), one can obtain

lim
t→∞

Vn(t) ≤
C
D

. (50)

Connecting Equations (37) and (49), the following equation is established

|ξn| ≤

√
2
[(

Λ1 + Λ2 + V(0)− C
D
)
e−Dt +

C
D

]
, (51)

which implies that

lim
t→∞

|ξn| ≤
√

2C
D

. (52)

this means ξn is bounded.
According to (13), it is evident that the boundedness of en correlates with βn. Ac-

cording to the results in [31], it can be obtained that βn is bounded. Then, the following
formula holds

lim
t→∞

|en| ≤ lim
t→∞

(|ξn|+ |βn|) ≤
√

2C
D

+ ∆, (53)

where ∆ represents a positive constant that satisfies
∣∣βn
∣∣ ≤ ∆.

This proves that en and ξn are bounded. Finally, all of the signals in (1) are all bounded.
This completes the proof.

Remark 3. Even though the control strategy presented in this paper shows an outstanding control
performance, it still has its limitations. For instance, the equivalent transformation technique
depends on precise system models and parameters; large errors in parameter estimation might impact
the control effectiveness. Furthermore, for extreme nonlinear effects, our method may need further
refinement or combination with other techniques.

Remark 4. Refs. [27–30] investigated nonlinear systems with unknown control directions. How-
ever, these studies did not account for the error induced by the filter or the effects of an input dead
zone and saturation. Unlike these studies, this paper employs command-filtering technology to
address the complexity explosion issue and proposes a transformation method to mitigate the impact
of an input dead zone and saturation on the system.

4. Simulation Results

This section provides two illustrative examples to demonstrate the feasibility of the
proposed approach.

Example 1. The following second-order nonlinear system are considered
ẋ1 = 0.1x1

2 + λ1g1(x̄1)x2

ẋ2 = 0.2x1x2 + x1 + λ2g2(x̄2)u
y = x1,

(54)

where g1(x̄1) = 4, g2(x̄2) = 1, λ1 = −1 , λ2 = 1, and u is defined as

u =



5, v > 5
0.6
(
v − 0.6

)
, 0.6 < v < 5

0, −0.6 < v < 0.6
0.6
(
v + 0.6

)
, −5 < v < 0.6

−5, v < −5.

(55)
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The virtual controller α1 is designed as
α1 = N(ζ1)

(
ξ1 θ̂1ψT

1 ψ1
2a2

1
+ k1e1 +

1
2 ξ1 +

5
2 g2

1ξ1 − ẏd

)
,

ζ̇1 = ξ1

(
ξ1 θ̂1ψT

1 ψ1
2a2

1
+ k1e1 +

1
2 ξ1 +

5
2 g2

1ξ1 − ẏd

)
.

(56)

The controller v is designed as
v = 1

ℑ N(ζ2)

(
ξ2 θ̂2ψT

2 ψ2
2a2

2
+ k2e2 + ξ2 − ω̇2

)
,

ζ̇2 = ξ2

(
ξ2 θ̂2ψT

2 ψ2
2a2

2
+ k2e2 + ξ2 − ω̇2

)
,

(57)

where the initial state variables of the system are x1(0) = 0.2, x2(0) = −0.1, θ̂1(0) = 0.5,
θ̂1(0) = 0.2, and the desired trajectory yd = 0.5 sin(t). The design parameters are given as k1 = 2,
k2 = 1, ℑ = 1, σ1 = 0.08, σ2 = 0.08, a1 = 2, a2 = 7, Γ1 = 0.3, Γ2 = 0.3, ϖ = 50, and
φ = 1 and select N(ζ1) = ζ2

1 cos(ζ1) and N(ζ2) = ζ2
2 cos(ζ2) with ζ1(0) = 0 and ζ2(0) = 0.

In addition, to handle nonlinear terms, one might choose the following fuzzy membership function

µP1
m
= e−

(
x1+x0

j

)2

2 , µP2
m
= e−

(
x2+x0

j

)2

2 , xj
0 = 3, 2, 1, 0 ,−1,−2,−3, j = 1, . . . 7.

The simulation results are illustrated in Figures 1–6. The trajectories of the system
output y and the reference signal yd, using the control strategy proposed in this paper and
the control strategy with the same design parameters from reference [27], are shown in
Figure 1. According to Figure 1, we can see that the system output y can effectively track
the reference signal yd, and the control method proposed in this paper, which accounts
for input dead zones and saturation, achieves a higher tracking accuracy compared with
the control method proposed in reference [27]. Figures 2 and 3 show states x1 and x2 of
the system and the trajectories of the adaptive parameters θ̂1 and θ̂2, respectively. Figure 4
shows the evolution of signals u and v. Figures 5 and 6 describe the Nussbaum function
signals ζ1, ζ2, N(ζ1), and N(ζ2). Based on the above simulation results, it is evident that
the proposed scheme achieves an excellent tracking performance, and all of the signals
within the closed-loop system are bounded. This demonstrates the effectiveness of the
proposed control scheme.

Figure 1. Trajectories of yd and y [27].
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Figure 2. The trajectories of x1 and x2.

Figure 3. Adaptive parameters.

Figure 4. Trajectories of the control input.

Figure 5. The trajectories of ζ1 and N(ζ1).
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Figure 6. The trajectories of ζ2 and N(ζ2).

Example 2. Consider the pendulum model shown in Figure 7.

Figure 7. Pendulum.

Its equation of motion in the tangential direction can be written as

MLθ̈ + kLθ̇ + Mg sin θ = u, (58)

where M = 1 denotes the mass of the dot; θ is the angle subtended by the rod and the vertical
axis through the pivot point; k = 2 represents the friction coefficient; L = 1 is the length of the
rod; g = 9.8 represents the acceleration due to gravity; θ̇ and θ̈ are angular velocity and angular
acceleration, respectively.

Define x1 = θ(t) and x2 = θ̇(t). Then, the state equations are


ẋ1 = λ1g1(x̄1)x2

ẋ2 = −2x2 − 10 sin(x1) + λ2g2(x̄1)u
y = x1,

(59)

where λ1 = 1, λ2 = −1, g1(x̄1) = 1, g2(x̄1) = 1, and u is defined as

u =



20, v > 20
0.5
(
v − 0.5

)
, 0.5 < v < 20

0, −0.5 < v < 0.5
0.5
(
v + 0.5

)
, −20 < v < 0.5

−20, v < −20

(60)
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The virtual controller, controller, desired signal, Nussbaunm functions, and fuzzy
membership function designs are similar to those in Example 1. The initial parameters
are chosen as x1(0) = 0.2, x2(0) = −0.1, θ̂1(0) = 0.3, and θ̂1(0) = 0.5, and the desired
trajectory is yd = 0.5 sin(t). The design parameters are k1 = 4, k2 = 3, ℑ = 1, σ1 = 1,
σ2 = 1, a1 = 10, a2 = 10, Γ1 = 0.7, Γ2 = 0.7, ϖ = 50, and φ = 1.

The simulation results are depicted in Figures 8–13. The above simulation results show
that the developed adaptive command-filtered fuzzy control scheme achieves a satisfactory
tracking performance, with all of the signals in the control system remaining bounded.

Figure 8. The trajectories of yd and y.

Figure 9. The trajectories of x1 and x2.

Figure 10. Adaptive parameters.
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Figure 11. The trajectories of the control input.

Figure 12. The trajectories of ζ1 and N(ζ1).

Figure 13. The trajectories of ζ2 and N(ζ2).

5. Conclusions

This paper proposes a command-filtering adaptive fuzzy tracking control strategy
for nonlinear systems with unknown control directions, input dead zones, and saturation.
A novel approach is applied to analyze the effects of input dead zone and saturation. By
combining the fuzzy logic system and the command filter, an adaptive fuzzy logic controller
is constructed to ensure that the error signal converges to a bounded compact set around
the origin. The combination of the Nussbaum function and the backstepping method solves
the difficulty caused by the unknown system control direction. Based on the adaptive
tracking controller proposed in this article, the boundedness of all signals in the closed-loop
system is guaranteed.
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