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Abstract: This paper studies a class of attack behavior in which adversaries assume the role of
initiators, orchestrating and implementing attacks by hiring executors. We examine the dynamics
of strategic attacks, modeling the initiator as an attack planner and constructing the interaction
with the defender within a defender–attack planner framework. The individuals tasked with ex-
ecuting the attacks are identified as attackers. To ensure the attackers’ adherence to the planner’s
directives, we concurrently consider the interests of each attacker by formulating a multi-objective
problem. Furthermore, acknowledging the information asymmetry where defenders have incomplete
knowledge of the planners’ payments and the attackers’ profiles, and recognizing the planner’s
potential to exploit this for strategic deception, we develop a defender–attack planner model with
deception based on signaling games. Subsequently, through the analysis of the interaction between
the defender and planner, we refine the model into a tri-level programming problem. To address
this, we introduce an effective decomposition algorithm leveraging genetic algorithms. Ultimately,
our numerical experiments substantiate that the attack planner’s deceptive strategy indeed yield
greater benefits.

Keywords: signaling game; attack planner deception; multi-attackers; multi-objective optimization;
tri-level programming; decomposed algorithm; genetic algorithm

MSC: 91A80

1. Introduction

Game theory has found extensive applications in various fields, especially in the
Stackelberg games (SGs), which are simple yet powerful models for sequential interaction
between two strategic players: a leader and a follower. Specifically, the leader commits to a
strategy first, and the follower responds after observing the leader’s commitment. The game
was first proposed in 1934, when researchers introduced it to analyze market competition
between a large-leader firm and a small-follower firm [1]. Since then, it has been applied
to a diverse array of problems, including principal–agent contract design [2], pricing and
planning in transportation systems [3], influence maximization [4] and exam design [5],
often focusing on the leader’s perspective and with the aim of identifying the optimal
strategy for the leader to commit to. Over recent years, with the successful application of
SGs in security resource allocation, an increasing number of experts have utilized them
to address security problems, known as the Stackelberg Security Games (SSGs) [6]; thus,
SSGs have emerged as a significant area of research for SGs. To date, SSGs have been
applied to address a multitude of practical issues, such as threat screening games [7], green
security games [8–10] and crime prevention strategies [11]. In SSGs, the defender, as the
leader, implements an optimal mixed (or randomized) defense strategy. This mixed strategy
represents a probability distribution across all the possible defense strategies. The attackers,
as the followers, observe this and adjust their strategy to optimize their outcome [12].
This has been seen in, for instance, the Los Angeles Sheriff’s Department’s application to the
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subway system [13] and the US Coast Guard’s initiatives on ports and waterways in Boston
and New York City [14], among others. In these applications, a defender aims to protect
targets from strategic adversaries by deploying limited resources. The central solution
concept in SSGs is the strong Stackelberg equilibrium (SSE) [15,16], which determines the
defender’s optimal strategy. However, SSE is predicated on the assumption that both
parties have complete knowledge of each other’s information. In numerous real-world
scenarios, this assumption often fails to hold true. The defender frequently lacks complete
information about the follower. Currently, these issues have been extensively researched,
resulting in a multitude of proposed solutions. For example, when the defender is uncertain
about the attacker’s payoff but is aware of its range, strategies are explored that are robust
to small interval uncertainties [17–19]. In scenarios where the defender is only aware of
the distribution of the attacker’s payoff, the Bayesian Stackelberg equilibrium is used to
maximize the defender’s utility [20–22]. Furthermore, as defenders gather information
through interactions with attackers, numerous studies have investigated learning from the
attackers’ response strategies to refine leadership tactics [17,23–26]. The essence of these
approaches is the defender’s attempt to acquire relevant information about the attacker,
assuming the information obtained is accurate. However, when the attacker becomes aware
of the defender’s reliance on information, there is a tendency for the attacker to use tactics
that obfuscate the defender, intending to provide them with misleading information, which
is a form of deceitful behavior.

Currently, the attackers’ deception has attracted significant attention, prompting a
variety of studies to focus on this phenomenon. Existing research mainly investigates
scenarios where attackers provide false information about a single aspect, such as their
payoff [27–29] or the degree of rationality [30–32]. However, in numerous real-world
scenarios, defenders confront a more intricate challenge where attackers have multiple
pieces of undisclosed information. Recognizing this gap, broadening the scope of analysis
to include situations with followers possessing multiple private information sets is essential.
By considering a scenario in which the attacker has two types of private information, we
can establish a more comprehensive model. In the existing body of research, the attacker
commonly uses strategies that involve either selecting a target to attack [33] or allocating
resources for an attack on the targets [34,35]. However, real-world scenarios frequently
exhibit a more complex dynamic where the attacker assumes the role of a “leader” who
orchestrates an attack and recruits individuals to execute it. In this context, the individual
who devises the attack strategy is referred to as the “attack planner”, while the person
commissioned to execute the attack is termed the “attacker”. Unlike resources, which
can be allocated at will, individuals have independent thoughts and agency. Therefore, it
is essential to consider their interests to ensure their adherence to the arranged strategy.
Furthermore, the defender is often unaware of the specifics regarding the hired individuals,
which we establish as the attack planner’s private information. This can be exploited by the
attack planner to mislead defenders by misrepresenting the number of hired individuals.

In summary, this paper introduces a model that delineates the interaction between
the attack planner and the defender, then extends this model to account for the attack
planner’s deception and the compliance of hired individuals through a multi-objective
problem. Subsequently, we propose a tri-level programming framework that aligns with
the interactive process. The first level involves signaling, wherein the attack planner seeks
to obscure the defender’s comprehension and maximize personal benefits. The second
level pertains defense, wherein the defender strategically allocates resources to minimize
potential losses. The third level constitutes the attack phase, wherein the attack planner
coordinates the execution of the attack, aiming to maximize profit. Simultaneously, to
ensure the attackers’ adherence with the plan, the attack strategy formulated by the attack
planner must safeguard the attackers’ interests. This model deviates from the conven-
tional tri-level min–max–min programming models [36,37], rendering traditional solving
algorithms inapplicable. Consequently, we introduce an efficient, customized algorithm
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designed to accommodate the unique structure and requirements of the model, ensuring
effective resolution and thorough analysis.

Our contributions: In order to deal with the opponent’s deception effectively, this
paper analyzes a kind of deception behavior in attack in detail.

• We model the attack initiator as the attack planner—the individual they hire to carry
out the attack is the attacker—and we propose a defender–attack planner (D-AP)
model to describe the interaction between them;

• We account for the interests of each attacker to ensure compliance, framing this as a
multi-objective optimization issue;

• This paper also addresses the defender’s uncertainty to the attack planner’s payment
and the particulars of the hired attackers, constructing a defender–attack planner
game model with deception (D-APD).

• We articulate D-APD as a tri-level programming problem and propose a customized
decomposition algorithm based on a genetic algorithm (DA-GA) to address it.

The remainder of this paper consists of the following. In Section 2, we summarize
the previous related work. In Section 3, we present detailed descriptions of the D-AP
and D-APD models. In Section 4, we formulate a tri-level programming problem and
propose a solution algorithm. In Section 5, we a conduct further analysis of the model
via experimental validation. Finally, Section 6 presents the conclusions of this paper and
outlines directions for future research.

2. Related Work

This section provides an overview of the existing literature that is pertinent to our
research, focusing on two key aspects: deception behavior within games and the role of
the planner.

2.1. Deception in Games

As deception can obfuscate an adversary’s understanding and disrupt their decision-
making process, certain research endeavors have explored methods to mitigate or neutralize
criminal offensives through deceptive tactics. Within the homeland security domain, stud-
ies have formulated models of deceptive strategies wherein the defender employs a range
of signals to mislead the attacker [38–40]. Ref. [33] examines security games involving the
defender’s use of disguised resources. Ref. [41] explores the concept of strategic secrecy
in the defender’s approach to infrastructure protection. In addition, when the attacker is
unsure of the amount of the defender’s resources, the defender may deceive the attacker by
disguising or hiding a portion of the resources, potentially reporting fewer resources than
are actually available [33]. In contrast to [33], Ref. [42] studied the phenomenon of bluffing
in signaling games, where the defender may claim to possess more resources than are actu-
ally available, serving as a deterrent to the attacker and thus preventing the attack. In [43],
a problem with multiple attacker types is studied, in which the defender initially commits
to a mixed strategy and signaling scheme, identifies the attacker’s type and then acts, and
the attacker subsequently responds. In [44], a two-stage game model is presented, in which
the first stage is a basic defender–attacker game, and in the second stage, the defender
sends a deceptive signal regarding actual resource allocation. Ref. [40] explores the issue of
deception in a single-objective multi-period game where multiple types of defenders exist.
In each game, they initially select a behavior and a signaling strategy. Another work has
discussed the problem of stochastic games with multiple defenders cheating [45]. In [34],
researchers used the hypergame framework to study the deception of defenders in a game
with multiple attackers. Attackers with multiple types possess distinct payoff functions and
resource quantities, so the hypergame framework is used to model each attacker individu-
ally. Ref. [46] examines the optimal conditions and methods for defenders to effectively
deceive various attackers. Other studies investigated the deception of a defender in a game
with ambiguous benefits and multiple attackers [47]. Ref. [48] examines how defenders
counter advanced sustainability threats through deceptive behavior.
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However, precisely because the deceptive behavior confuses the adversary, more and
more attackers will choose to deceive, leading to a deviation in defense strategy and an
infliction of more severe damage. In [27], with distinct types characterized by varying
payoffs, the attacker deceives the defender by imitating other attacker types. In [28], the
attacker deceives the defender by directly presenting a false type. Nguyen et al. studied
the deception strategies of attackers in repeated games [29]. Ref. [49] addresses similar
problems. Unlike Ref. [29], this study examines the issues within the SSG framework,
whereas Ref. [29] focuses on a stochastic one. Ref. [30] studies deception in games with
multiple attackers, where multiple attackers pay the same but have different levels of
rationality, and perfectly rational attackers adopt a guise of bounded rationality to deceive
defenders. However, these studies do not consider the scenario where attackers possess
multiple pieces of private information.

In addition, because asymmetric information is a key friction in many economic
interactions, deception often appears in the principal–agent problem [2,50,51], which is a
prevalent application of the SGs. The principal delegates the management of the output
process to the agent. A contract is signed in advance, specifying the terms of an incentive
payment. The agent exerts costly effort for managing the output. Subsequently, given the
contract offered by the principal, the agent returns an optimal effort response that optimally
balances their cost of effort with the proposed compensation. Ultimately, the principal
selects the optimal contract to motivate the agent’s effort [52]. Then, a principal may offer a
range of contracts to an agent with uncertain characteristics and ask the agent to choose
the one that matches their true type. Naturally, the principal’s menu must consider the
agent’s potential misrepresentation of their type, meaning that the agent may mislead
the principal [53]. However, such a deception is predominantly observed in economic
contexts and significantly differs from the deception encountered in the security domain
we examine.

2.2. About Planner

Several studies have examined the beneficial impacts of community participation in
wildlife preservation [54–58], but these studies lack a mathematical model of the interaction
between defenders and attackers; some researchers formulated it using the Stackelberg
game framework [59]. Acknowledging the possibility of community members colluding
with the attacker, the patrol, acting as the defender, employs community informants to
gather intelligence on the attacker’s activities. However, no existing studies have yet
considered a scenario where attackers may also hire some people to execute the attack,
which significantly diverges from the defender’s recruitment of community members,
including the consideration of the interests of the hired attackers. It is in addressing this
gap that this paper contributes to the literature.

3. Model

In this section, we initially construct a foundational defender–attack planner game
model. Subsequently, considering the attack planner’s private information, we construct
a defender–attack planner with a deception model based on signaling games. Table 1
describes the mathematical notation used in this paper.

Table 1. Legend of common symbols.

Symbol Description

Sets:
SD The set of defender’s pure strategy
SA The set of attack planner’s pure strategy
Θ The set of attack planner’s payment types
Φ The set of attacker types
S1 The set of signals about payment type
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Table 1. Cont.

Symbol Description

S2 The set of signal about attacker type
TY The set of attack planner’s types
S The set of signals

∆o1 The set of mixed signaling strategy about planner’s payoff type
∆o2 The set of mixed signaling strategy about planner’s attacker type

Parameters:
N The number of targets
bs Attacker’s base salary vector
c Defender’s cost vector
B Defender’s budget constraint
n The number of strong and weak attacker
vd Defender’s valuation of targets
va Attack planner’s valuation of targets
sd Defender’s pure strategy
sa Attack planner’s pure strategy
qj The probability that the target j is attacked successfully
ui i-th attacker’s base salary

acij The i-th attacker’s cost when they attacks target j
α The ratio of the commission when attack is successful

ppt The prior probability distribution about payment types
vθ The target valuation of Attack planner with payment type θ

pθ The prior probability distribution about attacker type
µpt The posterior probability about the payment types
µan The posterior probability about the attacker type
dc Attack planner’s deception cost
pty The prior probability distribution of attack planner’s type

µ(ty|s) The probability that the attack planner’s type is ty after receiving
the signal s

LD, UAP, Ui The utility of defender, planner and the i-th attacker without
deception

Lto, Uto, Uty
i

The utility of defender, planner and the i-th attacker with
deception

Decision variables:
πo The signaling strategy
πd Defender’s strategy scheme
πa Attack planner’s attack scheme

3.1. Defender–Attack Planner Game Model

In this section, we develop a model that captures the strategic interaction between a
defender and an attack planner within the framework of a Stackelberg game, known as the
Defender–Attack Planner (D-AP) model.

3.1.1. Model Description

A D-AP game model consists of a defender and an attack planner (hereafter referred to
as the planner), where the defender needs to protect a set of N targets, and the planner hires
some attackers to attack a subset of targets. The hired attackers are categorized into two
types—strong and weak—based on their offensive capabilities (the model is also extensible
to scenarios involving multiple attacker types). Their basic salary is different, which is
denoted as bs = (bs1, bs2); bs1 and bs2 correspond to the base salaries of the strong and
weak attackers, respectively. The defender also possesses two defense levels: the high-
level defense is capable of repelling all attackers, while the low-level defense is effective
only against weak attackers. The defender incurs a fixed cost upon protecting a target;
c = (c1, c2, c3) represents the cost vector, where c1 = 0 signifies the absence of defense
and c2 and c3 correspond to the costs of low-level and high-level defense, respectively.
The defender has a budget constraint B and the planner also faces budgetary constraints,
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which restricts the number of attackers they can hire; this is denoted as n = (n1, n2),
where planner-hired attackers are n, including n1 strong attackers and n2 weak attackers.
at = (at1, . . . , atn) denotes each attacker’s type (strong or weak), where ati ∈ {1, 2} and
ati = 1(2) represent that the i-th attacker is weak (strong). Each target holds a distinct
importance to the defender and the planner, that is, they have different valuations of the
targets. The defender’s valuation of the targets is vd = (vd

1, . . . , vd
N) and the planner’s

valuation is va = (va
1, . . . , va

N). When a target j is attacked successfully, the defender incurs
a penalty PD

j and the planner receives a reward RA
j . On the contrary, if an attack on a target

j is unsuccessful, the defender will gain a reward RD
j and the planner will incur a penalty

PA
j , and they satisfy RD

j > PD
j , RA

j > PA
j . This paper assumes that the utility of both sides

is only related to the targets that were successfully attacked; in this case, RD
j = PA

j = 0,

PD
j = −vd

j and RA
j = va

j .

3.1.2. Strategy Expression

The defender’s pure strategy is to decide what level of protection to apply to each
target within budget constraints which is denoted by sd = (sd1, . . . , sdN), where
sdj ∈ {0, 1, 2} and ∑N

j=1 csdj+1 ≤ B, sdj = 0 indicate that the target j is not protected;
sdj = 1 means low-level defense against the target jand sdj = 2 denotes high-level defense
against the target j. SD = {sd|sdj ∈ {0, 1, 2}, ∑N

j=1 csdj+1 ≤ B} represents the set of all the
defender’s pure strategies. The planner’s pure strategy involves determining the allocation
of the hired attackers to execute an attack on a designated set of targets, represented by
sa = (saij)i∈[n],j∈[N], where saij ∈ {0, 1} and saij = 1(0) mean that the i-th attacker is (not)
arranged to attack the target j. Following a successful attack on a target, the attacker respon-
sible is granted a commission proportional to the target’s value to the planner. Although
it may appear that one attacker is assigned per target and vice versa, the diverse values
of the targets result in a scenario of contention among multiple attackers, each seeking
to secure a higher commission. Acknowledging this possibility, we assume that different
attackers are permitted to attack the same target. However, the commission received
from a successful attack will be evenly divided among the participating attackers, and the
probability of a successful attack on a target remains unaffected by an increased number of
attackers. This assumption facilitates adherence to the planner’s strategy among attackers.
SA = {san×N |saij ∈ {0, 1}, ∑N

j=1 saij = 1, i = 1, . . . , n} denotes the planner’s strategy space,

where ∑N
j=1 saij = 1 means that each attacker can only attack one target.

3.1.3. Utility Function

Given the attack strategy sa, we let sa1 = (sa1
ij)i∈[n],j∈[N], where sa1

ij = 0 if saij = 0

and sa1
ij = ati if saij = 1; then, sa2

j = max{sa1
ij, i = 1, . . . , n} signifies the magnitude of the

attack that target j is projected to encounter, denoting sa2 = (sa2
1, . . . , sa2

N). Specifically,
should the planner allocate only weak attackers to a target, then the target faces only weak
attacks; conversely, the target endures strong attacks. Then, for a strategy profile (sd, sa),
the probability that the target j is successfully attacked is

qj(sd, sa) =

{
1, sa2

j > sdj

0, otherwise,

this is because the high-level defense is capable of repelling all attackers, while the low-level
defense is effective only against weak attackers. In addition, we define sa3

j = ∑n
i=1 saij as

the number of attackers attacking the target j, and let sa3 = (sa3
1, . . . , sa3

N).
The total loss of the defender, which is denoted as LD, is the sum of the value of the

targets successfully attacked and the cost of the defensive strategy; then, for a strategy
profile (sd, sa), we have
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LD(sd, sa) =
N

∑
j=1

(qj(sd, sa)vd
j + csdj+1). (1)

The utility of the planner, UAP, is the aggregate value derived from successfully attacked
targets, minus the cost of hiring all attackers, then

UAP(sd, sa) =
N

∑
j=1

qj(sd, sa)va
j −

n

∑
i=1

Ui(sd, sa), (2)

where Ui is the benefit of the i-th employed attacker, i.e., the cost of hiring the i-th attacker.
For each hired attacker, irrespective of the attack’s success, they receive a base salary, incur
a certain attack cost, and upon a successful attack, they receive an additional commission
proportional to the target’s value. Thus

Ui(sd, sa) = ui +
N

∑
j=1

saijqj(sd, sa) ·
αva

j

sa3
j
−

N

∑
j=1

saijacij, (3)

where ui = bsati is the i-th attacker’s base salary, α ∈ (0, 1) denotes the proportionality
constant of the commission awarded to the attacker post-successful attack and acij denotes
the i-th attacker’s cost when they attacks target j. Attackers, despite having identical
capabilities, may demonstrate diverse target preferences, influenced by a multitude of
factors, such as the distance between the attacker and the target. This study incorporates
these individual differences among attackers by representing these differences through
variable attack costs ac.

3.2. Defender–Attack Planner Game Model with Deception

Building upon the previously outlined model, we develop an advanced Defender–
Attack Planner game model with Deception (D-APD). This model takes into account the
planner’s strategic deception in two critical dimensions: the payoff type and the attacker
type. The deception in payoff type could lead the defender to misestimate the importance
of the targets to the planner. Similarly, deception in attacker type could involve obscuring
the true attack capabilities, which can confuse the defender’s assessment of the attack’s treat
level. By integrating these elements, the D-APD model encapsulates the intricate interplay
of strategy and information, and thus provides a framework for analyzing sophisticated
security threats.

3.2.1. The Attack Planner with Multiple Types

In reality, defenders are typically aware only of the range of possible scenarios and
the likelihood of each occurring, which is encapsulated in the prior probability. First,
denoting the set of all possible payment types as Θ = {θ1, . . . , θm}, the corresponding prior
probability distribution is ppt : Θ → [0, 1]. A planner with payment type θ values each
target as vθ = (vθ

1, . . . , vθ
N). Then, we denote the set of all possible hired attacker situations

in which the planner with payment type θ as Φθ = {φθ
1, . . . , φθ

mθ}; that is, the planner
with payment type θ has mθ possible attacker types, where φθ

k = (φθ
k1, φθ

k2) means that
the planner with payment type θ hired φθ

k1 strong attackers and φθ
k2 weak attackers. The

corresponding prior probability distribution is pθ : ΦΘ → [0, 1]. Φ =
⋃

θ∈Θ Φθ represents
the set of all attacker types. In practice, although the attacker type for each payment type
planner is different, they can be viewed as the same by taking a union. For example, if
the set of attacker types for a planner with payment type θ1 is Φθ1 = {φ1, φ2}, the set
of attacker types for a planner with payment type θ2 is Φθ2 = {φ2, φ3}, then we can set
Φθ1 = Φθ2 = {φ1, φ2, φ3} and pθ1(φ3) = 0, pθ2(φ1) = 0. Therefore, we can directly let
Φ = {φ1, . . . , φM}, which represents the set of all possible attacker types (M in total).
φi = (φi

1, φi
2) means hiring a φi

1 strong attacker and a φi
2 weak attacker, and we denote the
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prior probability of the planner of payment type θ over all attacker types as pθ : Φ→ [0, 1].
Obviously, each attacker type φ corresponds to a group of attackers, and the base salary
of this group of attackers is recorded as uφ = (uφ

1 , . . . , uφ

||φ||1
); the attack cost matrix is

recorded as acφ = (acφ
ij)i∈[||φ||1],j∈[N]. Then, under the strategy profile (sd, sa), the utility

function of the planner with payment type θ and attacker type φ is

Uθ,φ(sd, sa) =
N

∑
j=1

qj(sd, sa)vθ
j −

||φ||1
∑
i=1

Uθ,φ,i(sd, sa), (4)

where Uθ,φ,i is each employed attacker’s benefit, that is

Uθ,φ,i(sd, sa) = uφ
i +

N

∑
j=1

saijqj(sd, sa) ·
αvθ

j

sa3
j
−

N

∑
j=1

saijacφ
ij . (5)

3.2.2. Attack Planner’s Deception

For private information, the planner is usually more inclined to mislead the defenders
by deceiving rather than reporting the truth. The practice of sending preemptive signals
has become the prevalent method of deception. These signals are crafted to influence
the defender’s perception of the threat and subsequent resource allocation. However, it
is important to note that there is a cost associated with this deceptive behavior, termed
the deception cost, denoted as dc = (dc1, dc2), dc1 and dc2 is the planner’s deception cost
about payment and attacker type, respectively. First, the planner will achieve deception by
simulating the behavior of a planner of other payment types, so the set of signals sent about
the payment type is S1 = Θ and the corresponding set of mixed-signal sending strategies is
∆o1 = {o1 = (o1s1)s1∈S1 |o1s1 ∈ [0, 1], ||o1||1 = 1}, where o1s1 is the probability of sending
the signal s1. In addition, for the attacker type, the planner will deceive the defender by
arranging the attacker to disguise or hide (such as plainclothes police), so that the defender
will have a wrong understanding of the real number of hired attackers. Therefore, the
number of attackers reported by the planner cannot be more than the number of real hired
attackers. Then the set of signals sent by the planner with the payment type θ and the
attacker type φ about the attacker type is S2,θ,φ = {s2 ∈ N+|s2 ≤ φ1 + φ2} (the planner
only reports the total number of attackers, not the specific number of strong and weak
attackers). For example, suppose a planner’s set of attacker types is {(1, 2), (2, 4), (3, 1)},
then the set of signals they send is {1, 2, 3, 4, 5, 6}. But in fact, we can find that when the
planner sends signal 1 or 2, the effect on the posterior probability is the same as when they
send signal 3; this is because when sending signals 1, 2 and 3, the possible types of planner
are (1, 2), (2, 4), (3, 1). Therefore, we reasonably let S2 = {||φ||1|∀φ ∈ Φ} represent the set
of signals about the planner’s attacker type; then, S2,φ = {s2 ∈ S2|s2 ≤ φ1 + φ2} is the
set of signals about the attacker type for the attacker type φ planner, and their collection
of mixed signaling strategies is ∆φ

o2 = {o2 = (o2s2)s2∈S2,φ |o2s2 ∈ [0, 1], ||o2||1 = 1}, where
o2s2 is the probability that the planner sends a signal s2 about their attacker type. Then
∆o2 =

⋃
φ∈Φ ∆φ

o2 is the collection of all the mixed strategies about the attacker type.

3.2.3. Game Process

The game begins with the planner committing to a signaling scheme πo = (πo1, πo2),
where πo1 : Θ × Φ → ∆o1 is the planner’s signaling scheme about their payment
type, that is, πo1(θ, φ) represents the signaling scheme of the planner with payment
type θ and the attacker type φ; πo1(s1|θ, φ) is the probability that they send signal s1,
πo1(s1|θ) = ∑φ∈Φ πo1(s1|θ, φ) is the probability that the planner with payment type θ

sends signal s1. Similarly, πo2 : Θ×Φ → ∆o2 is the planner’s signaling scheme regarding
the attacker type.
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Then, after receiving the signal (s1, s2), the defender updates their belief on the plan-
ner’s type according to Bayes’ rule, which is the posterior probability. The posterior
probability about the payment type is

µpt(θ|s1) =
ppt(θ)πo1(s1|θ)

∑θ′∈Θ ppt(θ′)πo1(s1|θ′) =
ppt(θ)∑φ∈Φ πo1(s1|θ, φ)

∑θ′∈Θ ppt(θ′)∑φ∈Φ πo1(s1|θ′, φ)
, (6)

and the posterior probability about the attacker type of planner with payment type θ is

µan(φ|θ, s2) =
ppt(θ)pθ(φ)πo2(s2|θ, φ)

∑φ′∈Φ ppt(θ)pθ(φ′)πo2(s2|θ, φ′)
=

pθ(φ)πo2(s2|θ, φ)

∑φ′∈Φ pθ(φ′)πo2(s2|θ, φ′)
. (7)

Then the posterior probability that the planner’s payment type is θ and attacker’s type is
φ is µ(θ, φ|s1, s2) = µpt(θ|s1) · µan(φ|θ, s2). Subsequently, the defender chooses a defense
strategy based on their posterior belief to protect targets; we denote their strategic scheme
as πd : S1 × S2 → SD, that is, πd(s1, s2) = (πd(j|s1, s2))j∈[N] represents the strategy that
the defender takes after receiving the signal s1, s2 and πd(j|s1, s2) ∈ {0, 1, 2} is the defense
level of the defender at target j at this time.

Finally, the planner arranges for the attackers to carry out the attack and the strategic
scheme is πa : Θ×Φ× S1 × S2 → SA; πa(θ, φ, s1, s2) = (πa(ij|θ, φ, s1, s2))i∈[||φ||1],j∈[N] is the
attacker arrangement strategy adopted by the planner with payment type θ and attacker type
φ when sending signals s1, s2 and πa(ij|θ, φ, s1, s2) ∈ {0, 1} represents the case where the i-th
attacker is scheduled to attack target j at this time. The game process is shown in Figure 1.

Figure 1. Game process.

3.2.4. Utility of Both Sides

After receiving the signal s1, s2, the defender’s loss function is

Ls1,s2
(πo, πd, πa) = ∑

θ∈Θ
∑

φ∈Φ:||φ||1≥s2

µ(θ, φ|s1, s2) · LD(πd(s1, s2), πa(θ, φ, s1, s2)). (8)

The utility function of the planner with payment type θ and the attacker type φ when
sending signal s1, s2 is

Uθ,φ
s1,s2(πd, πa) = Uθ,φ(πd(s1, s2), πa(θ, φ, s1, s2))− ind(s1, θ) · dc1 − ind(s2, ||φ||1) · dc2, (9)
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where ind(a, b) =
{

0, a = b
1, a ̸= b

is indicator function. Thus, the total expected utility of the

planner of type θ and attacker type φ is

Uθ,φ
AP(πo, πd, πa) = ∑

s1∈S1
∑

s2∈S2,φ

πo1(s1|θ, φ) · πo2(s2|θ, φ) ·Uθ,φ
s1,s2(πd(s1, s2), πa(θ, φ, s1, s2)), (10)

which corresponds to the gains of the i-th attacker, which are shown as

Uθ,φ
i (πo, πd, πa) = ∑

s1∈S1
∑

s2∈S2,φ

πo1(s1|θ, φ) · πo2(s2|θ, φ) ·Uθ,φ,i(πd(s1, s2), πa(θ, φ, s1, s2)). (11)

3.2.5. The Equilibrium

For each planner with the payment type θ and the attacker type φ, given the signaling
strategy πo and defender strategy πd, let fk(πa) = Uθ,φ

k (πo, πd, πa), k = 1, . . . , ||φ||1; then,
by solving the Pareto optimal solutions of the multi-objective problem

maxπa f = ( f1(πa), . . . , fk(πa), . . . , f||φ||1(πa)),

we can obtain a Pareto optimal set, denoted as ParSAθ,φ. In Definition 1, we give the
specific definition of the model equilibrium solution.

Definition 1. The strategy profile (π∗o , π∗d , π∗a ) is called an equilibrium solution of model if and
only if

• π∗o =< π∗o1(θ, φ), π∗o2(θ, φ) >= argmaxπo1,πo2Uθ,φ
AP(πo, π∗d , π∗a ), ∀θ, φ

• π∗d(s
1, s2) = argminπd Ls1,s2

(π∗o , πd, π∗a ), ∀s1, s2

• π∗a (θ, φ) = argmaxπa∈ParSAθ,φ Uθ,φ
AP(π

∗
o , π∗d , πa), ∀θ, φ.

3.3. Motivating Example

To explain the model more intuitively, we give an example. Assume there are three
targets and the set is T = {t1, t2, t3}, and the planner has two payment types Θ = {θ1, θ2}
and two attacker types Φ = {φ1, φ2}. The specific values are shown in Table 2.

Table 2. Motivation example.

Variable Value

N 3
m 2
p1 [0.5 0.5]
M 2
p2 [0.5 0.5]
α 0.01
vd [5000 3000 2000]
Θ [2000 5000 2000;5000 5000 3000]
bs [50 30]
Φ [1 0;1 1]
u1 50
u2 [30 50]
ac1 [2 1 3]
ac2 [1.5 2 1;1 3 2]
dc [3 3]
c [0 20 30]
B 40
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When the planner chooses to reveal the true type, we can compute the SSE of this
game. For the planner with payment type θ1 and attacker type φ1, the defender strategy is
(0, 2, 0), i.e., they choose to implement a high-level defense against target t2, which makes
sense because target t2 is of the highest value to the planner with payment type θ1; the
corresponding attack strategy is ‘t3’. For a planner with payment type θ1 and attacker type
φ2 where the defender chooses not to defend, the corresponding attack strategy is (t3, t2),
i.e., arrange for a strong attacker to attack target t3 and a weak attacker to attack target ‘t2’.
For a planner with payment type θ2 and attacker type φ1 where the defender chooses not
to defend, the corresponding attack strategy is t2. For a planner with payment type θ2 and
attacker type φ2 where the defender implements a high level of defense against the target
t1, the corresponding attack strategy is (t3, t2). Under the strategy profile, the loss suffered
by the defender was 3750, and the gain gained by the planner was 5633. The game tree is
shown in Figure 2.

Figure 2. Game tree without deception.

When the planner first commits to a signaling strategy, the planner with payment type
θ1 and the attacker with type φ1 will mislead the defender into thinking that their payment
type is θ2 by sending signals, causing the defender to mistake target t1 as the most valuable
to them, and will thus choose to implement a high-level defense against target t1. In this
case, the planner will choose to attack the target t2 so that it benefits and the defender loses.
Similarly, the planner with payment type θ2 and an attacker of type φ2 misleads the
defender into thinking that their attacker type is φ1 by sending signals, making them
gain and causing the defender to suffer losses. With the signaling strategy, the defender
ultimately suffered a loss of 4022.5, while the planner made a gain of 6623.5. The game tree
is given in Figure 3. It is observed that the outcomes for both parties are more pronounced
when a signaling strategy is employed. This instance illustrates that the planner’s deception
can lead to increased benefits for themselves, simultaneously resulting in more significant
detriments for the defender.
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Figure 3. Game tree with deception.

4. Equilibrium Computation

In the introduced model, it is acknowledged that the planner’s strategy involves
the transmission of two distinct signals, each necessitating individual calculation. It sub-
stantially increases the complexity of the resolution procedure. To address this issue, we
propose a model simplification. Then, a tri-level programming framework is formulated
based on the game process, and a decomposition algorithm is subsequently applied to
solve it.

4.1. Modified Model

We propose a model simplification by considering all possible combinations of the
two signals. This approach not only reduces the computational burden but also maintains
the strategic essence of the signaling process, ensuring that the model remains a faithful
representation. Specifically, the planner has m ·M possible combinations of types, so the set
of types can be reformulated into TY = {tyθ,φ = (θ, φ)|θ ∈ Θ, φ ∈ Φ}. Then, the set of all
types with payment type θ is represented as TYθ = {tyθ,φ = (θ, φ)|φ ∈ Φ} and the set of all
types with attacker type φ is represented as TYφ = {tyθ,φ = (θ, φ)|θ ∈ Θ}. The correspond-
ing prior probability is pty : TY → [0, 1], where pty(tyθ,φ) = ppt(θ) · pθ(φ). Rewrite the set
of signals sent by the planner as S = {s = (s1, s2)|s1 ∈ S1, s2 ∈ S2}. Denote the set of signals
for each type tyθ,φ as Styθ,φ

= {s = (s1, s2)|s1 ∈ S1, s2 ∈ S2,φ}, and the corresponding mixed

signal strategy set is ∆tyθ,φ

o = {o = (os)s∈Styθ,φ |os ∈ [0, 1], ||os||1 = 1} = {o = (os)s∈S|os ∈

[0, 1], ||os||1 = 1, os = 0∀s2 > ||φ||1}; set ∆o =
⋃

ty∈TY ∆tyθ,φ

o . With a slight abuse of the
notation, denote the modified signaling strategy as πo : TY → ∆o, and πo(s|tyθ,φ) is the
probability that the planner with type tyθ,φ sends the signal s. Then, accordingly, the
defender’s strategy scheme is πd : S → SD, where πd(s) = (πd(1|s), . . . , πd(N|s)) is
the defender’s strategy after receiving the signal s, and πd(j|s) ∈ {0, 1, 2} represents the
defense level in the j-th target. The planner’s attack scheme is πa : TY× S→ SA, where
πa(tyθ,φ, s) = (πa(ij|tyθ,φ, s))i∈[||φ||1],j∈[N] is the attack strategy after the planner with type
tyθ,φ sends the signal s and πa(ij|tyθ,φ, s) ∈ {0, 1}. After receiving the signal s, the de-

fender’s belief that the planner type is tyθ,φ is redenoted as µ(tyθ,φ|s) = pty(tyθ,φ)·πo(s|tyθ,φ)

∑ty∈TY pty(ty)·πo(s|ty)
.

Then, combined with Equations (2), (4) and (10), the total utility function of the planner is



Mathematics 2024, 12, 2532 13 of 28

Uto(πo, πd, πa) = ∑
tyθ,φ∈TY

pty(tyθ,φ) ∑
s∈Styθ,φ

πo(s|tyθ,φ)·

(
N

∑
j=1

qj(πd(s), πa(tyθ,φ, s))vθ
j −

||φ||1
∑
i=1

Utyθ,φ

i − ind(s1, θ) · dc1 − ind(s2, φ) · dc2), (12)

where Utyθ,φ

i is the income of the i-th attacker hired by the planner with type tyθ,φ; that is

Utyθ,φ

i = uφ
i +

N

∑
j=1

πa(ij|tyθ,φ, s)qj(πd(s), πa(tyθ,φ, s)) ·
αvθ

j

πa(tyθ,φ, s)3
j
−

N

∑
j=1

πa(ij|tyθ,φ, s)acφ
ij . (13)

Combined with Equations (1) and (8), the total loss function of the defender is

Lto(πo, πd, πa) = ∑
s∈S

∑
tyθ,φ∈TY

πo(s|tyθ,φ)·

∑
tyθ,φ∈TY:||φ||1≥s2

µ(tyθ,φ|s)
N

∑
j=1

(qj(πd(s), πa(tyθ,φ, s))vd
j + cπd(j|s)+1). (14)

4.2. Tri-Level Programming

In this section, based on the game process, we delineate the D-APD model as a tri-level
programming framework that encapsulates the strategic interactions between an attack
planner and a defender, as depicted in Figure 4. The following discussion provides an
in-depth exposition of this tri-level programming framework.

Figure 4. The tri-level programming framework.

4.2.1. Signaling-Level Problem

At the beginning of the game, the planner chooses a signaling strategy to confuse the
defender and thus make their own gains greater. Therefore, the first level is the signaling-
level (SL), where the planner chooses a signal strategy designed to mislead the defender’s
decision-making process to achieve greater benefits. Formally, the SL problem optimizes
the planner’s utility and finds the corresponding optimal signaling strategy and is denoted
by P1:
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P1 : maxπo Uto(πo, π∗d , π∗a ) (1a)

s.t. πo(s|tyθ,φ) ∈ [0, 1], ∀s ∈ S, tyθ,φ ∈ TY (1b)

∑
s∈s

πo(s|tyθ,φ) = 1, ∀tyθ,φ ∈ TY (1c)

πo(s|tyθ,φ) = 0 f ors2 > ||φ||1, ∀tyθ,φ ∈ TY (1d)

In P1, the objective function (1a) represents the planner’s objective to maximize their utility.
The decision is to determine the probability of sending each signal. Constraint (1b) and (1c)
ensure the validity of the decision variable. Constraint (1d) illustrates the feasibility of the
decision variable, that is, the planner can only send the signal with a smaller number of
attackers than the actual number of hired attackers.

4.2.2. Defense-Level Problem

Upon receiving the signal from the planner, the defender updates their beliefs in light
of the received signals, and accordingly, chooses a defense strategy, aiming to minimize
their loss. Thus, the second level, designated as the defense-level (DL), is designed to
identify a defense strategy for the defender that minimizes the potential loss. This level is
mathematically formalized as P2:

P2 : minπd Lto(π∗o , πd, π∗a ) (2a)

s.t.
N

∑
j=1

cπd(j|s)+1 ≤ B (2b)

πd(j|s) ∈ {0, 1, 2}, ∀j ∈ [N], s ∈ S (2c)

In P2, the objective function (2a) is to minimize the defender’s loss. Constraint (2b) indicates
that the defense cost cannot exceed its budget. Constraint (2c) sets a ternary restriction on
defense decisions.

4.2.3. Attack-Level Problem

After observing the defense strategy, the planner arranges for the attackers to attack a
subset of targets and the game ends. Consequently, the third and final level, known as the
attack-level (AL), involves the planner deploying the attackers to execute an attack strategy
that maximizes the utility. Specifically, in the AL problem, the decision is to decide the
specific target for each attacker. It is essential to consider the individual benefits of each
attacker simultaneously in formulating the attack strategy, ensuring that the strategy aligns
with the Pareto optimal solutions within the multi-objective framework defined by the
attackers’ benefits. This problem is formalized as P3:

P3 : maxπo Uto(π∗o , π∗d , πa) (3a)

s.t. πa(tyθ,φ, s) ∈ ParSAtyθ,φ
, ∀s ∈ S (3b)

N

∑
j=1

πa(ij|tyθ,φ, s) = 1, ∀i ∈ [||φ||1], s ∈ S, tyθ,φ ∈ TY (3c)

πa(ij|tyθ,φ, s) ∈ {0, 1}, ∀i ∈ [||φ||1], j ∈ [N], s ∈ S, tyθ,φ ∈ TY (3d)

In P3, the objective function (3a) is to maximize the planner’s payoffs. Constraint (3c) states
that each attacker can only attack one target. Constraint (3d) sets a binary restriction on
attack decisions. Constraint (3b) guarantees a profit for each attacker. Formally, for the

planner with type tyθ,φ, let gk(πa) = Utyθ,φ

k (πo, πd, πa), k = 1, . . . , ||φ||1; then, ParSAtyθ,φ

is the Pareto optimal set for the following multi-objective problem P4.
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P4 : maxπa g = (g1(πa), . . . , gk(πa), . . . , g||φ||1(πa)) (4a)

s.t.
N

∑
j=1

πa(ij|tyθ,φ, s) = 1, ∀i ∈ [||φ||1], s ∈ S (4b)

πa(ij|tyθ,φ, s) ∈ {0, 1}, ∀i ∈ [||φ||1], j ∈ [N], s ∈ S (4c)

4.3. Algorithm Description

Solving tri-level programming problems is inherently complex, with even the most
straightforward scenarios being NP-hard [60]. The extant algorithms for addressing these
problems are primarily divided into exact and heuristic methods. Exact algorithms en-
compass implicit enumeration [61,62], reformation techniques [63] and decomposition
algorithms [37,64]. However, implicit enumeration is limited to very small-scale problems.
The reformation technique is tailored to problems with continuous lower-level decision vari-
ables, which does not align with the discrete variables present in our model. Consequently,
the decomposition algorithm has garnered widespread application in research due to its
effectiveness. The crux of employing this algorithm lies in its successful decomposition of
the problem. Heuristic algorithms are also favored for their swift computation times [65].
But it may yield suboptimal solutions. So, the column and constraint generation algo-
rithm (C&CG) has been introduced as an extension of decomposition algorithms [66,67].
While previous C&CG algorithms are tailored to solve min–max–min or max–min–max
problems, they are not directly applicable to the model presented in this paper. In response,
we extend the decomposition algorithm and devise a customized decomposition algorithm
based on a genetic algorithm (DA-GA) for the tri-level programming problem outlined
herein. Our proposed algorithm operates within a master-subproblem framework. The
master problem (MP) is tasked with determining the signal strategy, while the subproblem
(SP) is designed to extract a defense strategy for a given signal strategy. We will now delve
into the construction and computation of both the master problem and subproblem, as well
as the intricate process of our customized DA-GA. Given that the resolution of the master
problem and subproblem is contingent upon the solution of the lowest attack level problem,
we initially present a detailed methodology for addressing the attack level problem in
Section 4.3.1, prior to discussing the master problem and subproblem in depth.

4.3.1. Attack-Level Algorithm

The implementation steps of the AL problem’s algorithm are demonstrated in
Algorithm 1. In fact, the essence of resolving the attack-level problem P3 lies in addressing
the multi-objective problem P4. Given the vast number of strategy combinations available
to planners of various types, a direct computational approach would incur significant com-
putational expense. However, since the problem-solving process for planners of different
types is analogous and their decisions are mutually independent, we can substantially
mitigate computational costs by addressing each type of planner separately. Furthermore,
the dimensionality of the attack scheduling strategy space escalates exponentially as the
number of hired attackers increases, making it impractical to identify all Pareto optimal
solutions by exhaustively examining each potential attack strategy. Leveraging the effective-
ness of the NSGA-II algorithm in tackling multi-objective problems, this paper introduces a
genetic algorithm (GA) tailored to problem P4. Taking the planner with type tyθ,φ as an
example, when they send signal s, the specific steps are as follows:

0. Code: The planner’s attack scheduling strategy is a 0− 1 matrix with size ||φ||1 × N,
so we first need to encode it. Specifically, we encode each attack scheduling strategy
as an ||φ||1-dimensional row vector with elements in set [N]. For example, a strategy1 0 0 0 0

0 0 0 0 1
0 0 1 0 0

 can be encoded as (1, 5, 3), which represents that the 1-th attacks

the 1-th target, the 2-th attacks the 5-th target and the 3-th attacks the 3-th target. In
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fact, the number of columns in each row of the policy matrix with the value of 1 is
taken as the encoding of the policy.

1. Determine an initial population P consisting of n individuals that meet the constraints;
2. Calculate the fitness f = ( f1, f2) of each individual in P;

(1) For f1:

• Calculate the function value for each individual on each objective;
• For each individual p, calculate the number of individuals np that dominate

it and the set of individuals Sp that it dominates;
• Set the f1 of the individuals with np = 0 to 1, and the set of these individu-

als to F1, then subtract the np values of the individuals in Sp by 1; then,
set the f1 of the individuals with np = 0 at this time to 2, the set of these
individuals to F2, and so on until the f1 of each individual is calculated.

(2) For f2, solve it for each individual in Fl in (1) separately:

• For each individual i in Fl , let i’s crowding distance L[i]d = 0;
• Calculate the m-th function value for each individual and sort them in

ascending order according to these values;
• In order to give individuals on the edge a selection advantage, let

L[1]d = L[end]d = in f ; that is, after sorting, let the crowding distance
of the first and last individuals be infinity. Then for the other individuals
i = 2, . . . , |Fl | − 1

L[i]d = L[i]d + (L[i + 1]m − L[i− 1]m)/( f max
m − f min

m )

where L[i + 1]m and L[i− 1]m represent the m-th objective function value
for the (i + 1)-th and (i− 1)-th individuals, and f max

m and f min
m represent

the maximum and minimum values of the m-th objective function of the
individuals in Fl , respectively;

• The above three steps are repeatedly calculated for each objective function,
and the crowding distance obtained when each individual corresponds
to different objective functions is added up to obtain the final crowding
distance, which is denoted as f2.

3. By selecting, crossing and mutating for P, a new population Q is generated;

(1) Selection operator: The selection is based on fitness using the binary tournament
method. Randomly select two individuals for comparison, select the better
individual to enter the next generation and repeat this operation until we select
enough n individuals where an individual p is better than an individual q, if,
and only if, the f1 of p is less than q or the f1 of p is equal to q and the f2 of p is
greater than q. That is, compare the rank first; the individual with a lower rank
is better, individuals with an equal rank have a comparative crowding distance,
and individuals with larger crowding distances are better;

(2) Crossover operator: For two individuals in the population, a location is ran-
domly selected and the genes at that location are exchanged with a
certain probability;

(3) Mutation operator: In order to ensure the diversity of the population and avoid
falling into the local optimal situation, the individuals in the population are
randomly selected in a position and the genes at that position are changed.

4. According to step 2, calculate the fitness of each individual in P
⋃

Q;
5. Selection* operator: Select the n individuals in P

⋃
Q as the offspring; if there is an l,

that makes ∑l
i=1 |Fi| = n true, so P =

⋃l
i=1 Fi is the offspring population. Otherwise,

when l satisfies the conditions ∑l−1
i=1 |Fi| < n and ∑l

i=1 |Fi| > n, the individuals
in Fl are sorted in descending order of crowding distance ( f2), and then the first
(n−∑l−1

i=1 |Fi|) individuals are selected to form offspring P together with
⋃l−1

i=1 Fi;
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6. Return to step 3 and loop until the termination condition is satisfied, and finally obtain
a Pareto optimal solution set.

Algorithm 1: GA for AL problem
Input: model parameters;
Output: the attack scheme π∗a , attack planner’s total utility Uto;

1 for tyθ,φ ∈ TY; do
2 for s ∈ S do
3 Generate an initial population at random P;
4 Calculate the fitness f = ( f1, f2) of each individual in P;
5 iteration = 1;
6 while iteration ≤ gen do
7 Select parents using the binary tournament method based on fitness for

P;
8 Perform crossover operator with probability pc;
9 Perform mutation operator with probability pm;

10 Denote generated new population as Q;
11 Calculate the fitness of each individual in P

⋃
Q;

12 Perform select* operator to select n individuals in P
⋃

Q as the offspring
and denote it as P;

13 iteration = iteration + 1;
14 end
15 Take the individuals in P whose f1 value is 1, and archive the set of them as

ParSAtyθ,φ

s , that is, the Pareto optimal set;

16 Calculate attack planner’s utility Utyθ,φ

s for each individual in ParSAtyθ,φ

s ;

17 π∗a (tyθ,φ, s) = argmax
sa∈ParSAtyθ,φ

s
Utyθ,φ

s (sa);

18 end
19 end

20 Uto = ∑tyθ,φ∈TY pty(tyθ,φ)∑s∈S π∗o (s|tyθ,φ) ·Utyθ,φ

s .

4.3.2. Master Problem

First, we construct and solve a master problem by considering a subset of the defense
strategy schemes to obtain a signaling strategy. Specifically, we give a set of defense
strategies Π̂d = {π̂1

d, . . . , π̂h
d , . . . , π̂H

d }, where h represents the iteration index. For each π̂h
d ,

we define a attack scheme πh
a . Then the master problem can be formulated as follows:

P5 : maxπo ,πh
a

Uto(πo, π̂h
d , πh

a ) (5a)

s.t. πo(s|tyθ,φ ∈ [0, 1], ∀s ∈ S, tyθ,φ ∈ TY) (5b)

∑
s∈S

πo(s|tyθ,φ) = 1, ∀tyθ,φ ∈ TY (5c)

πo(s|tyθ,φ) = 0 f or s2 > ||φ||1, ∀tyθ,φ ∈ TY (5d)

πh
a (ty

θ,φ, s) ∈ ParSAtyθ,φ
, ∀s ∈ S, h ∈ [H] (5e)

N

∑
j=1

πh
a (ij|tyθ,φ, s) = 1, ∀i ∈ ||φ||1, s ∈ S, tyθ,φ ∈ TY, h ∈ [H] (5f)

πh
a (ij|tyθ,φ, s) ∈ {0, 1}, ∀i ∈ ||φ||1, j ∈ [N], s ∈ S, tyθ,φ ∈ TY, h ∈ [H] (5g)

The planner’s signaling strategy is crafted specifically to mislead the defender, and as
such, it exerts a direct influence on the defense strategy within the middle-level problem.
Then problem P5 effectively translates into a linear programming problem, in which, the
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dimensions of columns and constraints are finite and the constraints (5e) can be effectively
addressed using Algorithm 1. So the master problem can be solved directly in polynomial
time by using a professional linear programming solver.

4.3.3. Subproblem

The subproblem is centered on determining the defender’s strategy in response to
a predefined signaling strategy π∗o . It is important to recognize that the subproblem is
concerned solely with deriving the defender’s strategy. The defender’s eventual loss,
the corresponding attack strategy and the planner’s utility are all contingent upon the
defender’s potentially incorrect perception of the planner’s intentions. These outcomes,
which are based on this misaligned cognition, require further analysis and are addressed
in the attack-level problem. Then, the subproblem is constructed as the following bi-
level problem:

P6 : minπd Lto(π∗o , πd, πa) (6a)

maxπa Uto(π∗o , πd, πa) (6b)

s.t.
N

∑
j=1

cπd(j|s)+1 ≤ B (6c)

πa(tyθ,φ, s) ∈ ParSAtyθ,φ
, ∀s ∈ S (6d)

N

∑
j=1

πa(ij|tyθ,φ, s) = 1, ∀i ∈ [||φ||1], s ∈ S, tyθ,φ ∈ TY (6e)

πd(j|s) ∈ {0, 1, 2}, ∀j ∈ [N], s ∈ S (6f)

πa(ij|tyθ,φ, s) ∈ {0, 1}, ∀i ∈ [||φ||1], j ∈ [N], s ∈ S (6g)

This problem’s complexity arises from the vast number of possible defense strategy combi-
nations for each signal, and the dimension of the defense strategy space grows exponentially
with an increasing number of targets. To address this, we employ a genetic algorithm to
find solutions for each signal that the defender might receive. Each defense strategy is
represented as an N-dimensional row vector with elements from the set {0, 1, 2}, and these
vectors are used directly as chromosomes without the need for additional encoding. The de-
fender’s objective is to minimize their loss; that is, an individual with a lower loss function
value would conventionally be considered more advantageous. Thus, we instead define
the fitness of each individual as f = ∑N

j=1 vd
j − L. Here, L represents the objective function

value that corresponds to the defender’s strategy under misperception. It is essential to note
that during the algorithm’s iterative process, we must evaluate whether the individuals in
each new generation adhere to the budget constraints. This is a critical step to ensure that
the solutions remain feasible within the given parameters. With the signaling scheme π∗o as
a given, the detailed steps of the algorithm are provided in Algorithm 2.

4.3.4. Customized Decomposition Algorithm Based on Genetic Algorithm

To solve the tri-level programming problem in this paper, we propose a customized
decomposition algorithm based on a genetic algorithm. Since the goal of the algorithm is to
maximize the utility of the planner, first make P = ∞ starting with Π̂d = ∅, representing
that the defender does not defend against any target, and then make the utility greater
by comparing the utility with P after each iteration. At each iteration, solve the MP for
the defense scheme Π̂d and obtain a signal scheme π̂o. Then for this π̂o, solve SP using
Algorithm 2; obtain the defense scheme π̂h

d and let Π̂d = Π̂d
⋃

π̂h
d . Subsequently, solve the

AL problem using Algorithm 1 and obtain the objective function value objAL and corre-
sponding attack scheme π̂a. Compare objAL and P; if objAL is larger, update π∗o , π∗d , π∗a , P
to π̂o, π̂h

d , π̂a, objAL, respectively, otherwise do not update. Then, add a variable and a
corresponding set of constraints to MP, and continue solving until the iteration stops. It is
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important to note that the π∗o , π∗d , π∗a is the final strategy scheme, and U is given by P, but
L needs to solve Lto(π∗o , π∗d , π∗a ) for the strategy profile (π∗o , π∗d , π∗a ), and cannot be directly
given by the objective function value of SP. This is because the SP is carried out under the
wrong cognition formed by the defender after receiving the deception signal of the planner;
the attack scheme is not the real strategy scheme taken by the planner. The specific steps
are shown in Algorithm 3.

Algorithm 2: GA for SP
Input: model parameters;
Output: the defense scheme π∗d ;

1 for s ∈ S do
2 iteration = 1;
3 Generate a set of individuals satisfying the budget constraint is randomly as

the initial population P;
4 while iteration ≤ gen do
5 For each individual p in P, calculate the corresponding attack scheme π∗a

using Algorithm 1;
6 Calculate each individual p’s fitness f = ∑N

j=1 vd
j − L(π∗o , p, π∗a );

7 Select parents using the roulette wheel mechanism from P;
8 Perform crossover operator with probability pc;
9 Perform mutation operator with probability pm;

10 For individuals in the resulting population who don’t meet the budget
constraints, the defense level at the less valuable targets is reduced until
the budget constraint is met;

11 Denote the generated offspring as P;
12 iteration = iteration + 1;
13 end
14 Find the individual with the highest fitness in final P; that is π∗d(s).
15 end

Algorithm 3: Customized DA-GA
Input: model parameters;
Output: signal scheme π∗o , defense scheme π∗d , attack scheme π∗a , defender’s loss

L, attack planner’s utility U;
1 Initialize: P = −∞, Π̂d = ∅, h = 1;
2 while h ≤ H do
3 Solve MP(Π̂d), obtain the signal scheme π̂o;
4 For π̂o, solve SP(π̂o) using Algorithm 2, obtain defense scheme π̂h

d ;
5 Π̂d ← Π̂d

⋃
π̂h

d ;
6 For π̂o and π̂h

d , solve AL problem using Algorithm 1, obtain the optimal value
objAL and corresponding attack scheme π̂a;

7 if objAL > P then
8 π∗o = π̂o, π∗d = π̂h

d , π∗a = π̂a, P = objAL;
9 end

10 Create a extra variable πh
a ;

11 Add the new variable and constraints (5e)− (5g) to MP(P5);
12 h = h + 1;
13 end
14 U = P, and for π∗o , π∗d , π∗a , calculate L = Lto(π∗o , π∗d , π∗a ).
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5. Experiment and Analysis

In this section, we analyze the model through some numerical experiments. Suppose
that the value of each target to both sides is divided into three levels according to their
importance to both sides, and the specific values are 10,000, 15,000 and 25,000. vd and vΘ

are randomly selected among all combinations of the three levels. Let bs = (350, 200) and
α = 0.01. Each element in the attacker’s cost matrix ac takes a random value from [0, 50].

5.1. Algorithm Performance

In this section, we evaluate the computational performance of the customized DA-GA.
Figure 5 illustrates that the algorithm is finitely convergent and influenced by the budget
constraints and the number of targets. Specifically, the number of iterations increases as
the budget increases, as evidenced by comparing (a) with (c) and (b) with (d) in Figure 5.
This trend is attributed to the expansion of the strategy space with an increased budget,
complicating the search for the optimal strategy and consequently increasing the iterations
needed for convergence. Similarly, an increase in the number of targets also leads to a
higher number of iterations, as demonstrated by the comparison between (a) and (b), and
(c) and (d) in Figure 5.
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Figure 5. Convergence of DA-GA.

Then, we have compared the runtime of the DA-GA algorithm introduced in this
paper against the Enumeration Algorithm (EA). The comparative results are illustrated in
Figure 6. It is observed that while the EA holds a marginal advantage in scenarios with
a small number of targets, the DA-GA algorithm consistently outperforms EA when the
number of targets exceeds four. The performance gap becomes particularly pronounced as
the number of targets increases. For instance, when the target count reaches six, the EA’s
execution time exceeds 500 min, demonstrating the computational inefficiency of EA at
higher target volumes. In contrast, the DA-GA algorithm exhibits a significant performance
advantage under these conditions. This comparative analysis underscores the efficiency of
the DA-GA in solving complex problems involving multiple targets.

Furthermore, to validate the accuracy of the algorithm, we have compared its compu-
tational results with the exact algorithm, as depicted in the Table 3. The findings indicate
that the error margin of the DA-GA algorithm is confined within a narrow range.
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Figure 6. Algorithm runtime.

Table 3. Effectiveness of DA-GA.

B = 400 B = 600

N EA DA-GA EA DA-GA

3 4.1894× 104 4.1894× 104 2.4163× 104 2.4163× 104

4 5.5653× 104 5.5653× 104 4.6396× 104 4.6399× 104

5 5.8032× 104 5.8039× 104 6.4190× 104 6.4192× 104

5.2. The Impact of Defense Budgets

The impact of defense budgets on the planner’s utility is analyzed and presented
in Figure 7. With an increase in the defense budget, the planner’s utility is observed to
decrease in a stepwise pattern. This inverse relationship is logical, given that a larger
defense budget enables broader target protection, which in turn lowers the probability of a
successful attack and thus reduces the planner’s utility. Moreover, within a certain range of
the defense budget, minor budget variations lead to negligible changes in the planner’s
utility. This phenomenon occurs as minor budget adjustments do not substantially change
the defender’s strategy. For example, a defense budget of 150 or 200 units allows the
defender to provide only low-level protection for a single target. This analysis highlights
the critical role of budget allocation in defense strategy.

Figure 7. The impact of defense budgets.
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5.3. The Impact of Signaling Strategy

Following the results from Section 5.2, in this section, we calculate the utility of the
attack planner when the defense budget is 300, 450, 600, 750 and 900, respectively, with and
without How to solve without the signaling strategy is in the Appendix A. the signaling
strategy, and subsequently analyze the impact of the signaling strategy on the utility. For
each subfigure (aa) in Figure 8a–e, we set m = 2, M = 3 and for each subfigure (bb) in
Figure 8a–e, we set N = 5. The findings indicate that the utility of the planner employing a
signaling strategy exceeds that of the planner not employing such a strategy. This suggests
a propensity for the planner to deceive the defender in order to reap greater benefits.
Additionally, each (aa) in Figure 8 shows that an increase in the number of targets causes
the planner’s utility to increase. This increase is logical, given that a constant defense budget
implies that the defender cannot effectively protect all targets, facilitating the planner’s
selection of high-value targets for attack to maximize their utility. Furthermore, each (bb) in
Figure 8 exhibits a more pronounced difference in the planner’s utility between scenarios
with and without signaling strategies compared to corresponding (aa). This suggests that
signaling strategies are more responsive to the diversity of payment types than to the
number of targets. With an increased number of payment types, the defender’s uncertainty
about the planner’s intentions escalates, enabling the planner to exploit this uncertainty
through signaling and to enhance the signal strategy’s effectiveness.

(a) B = 300 (b) B = 450

(c) B = 600 (d) B = 750

(e) B = 900

Figure 8. The impact of signaling strategy.
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5.4. The Impact of Prior Probability

Furthering our investigation, we examine the impact of prior probability on the
planner’s utility. To facilitate the analysis, we focus on a scenario involving solely two
types of planners. We propose the following theorem:

Theorem 1. When there are two types of attack planner, there is a linear relationship between their
utility and the prior probability of each type (the proof of this theorem is in the Appendix B).

We proceed to validate Theorem 1 through experimentation. The number of targets
was fixed at five. Utilizing the outcomes from Section 5.2, we analyzed how the planner’s
utility varied with changes in the prior probability across defense budgets of 300, 450, 600,
750 and 900, respectively. The findings are presented in Figure 9. The results demonstrate a
linear decrease in the planner’s utility with an increase in prior probability, consistent with
the predictions of Theorem 1. This trend is attributed to the reduction in the defender’s
uncertainty about the planner’s type due to an elevated prior probability. Consequently,
the defender protects the targets with increased precision, resulting in a corresponding
decrease in the planner’s utility.

(a) B = 300 (b) B = 450

(c) B = 600 (d) B = 750

(e) B = 900

Figure 9. The impact of prior probability.
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5.5. The Impact of Deception Cost

Our analysis further explores the influence of deception costs on signaling strategies,
with a summary of the findings presented in Table 4. The data indicate a positive correlation
between the cost of deception and the planner’s tendency to report their types truthfully. As
the deception cost increases, the probability of the planner reporting their types truthfully
also rises. Furthermore, the analysis indicates that the relative magnitude of deception
costs associated with payment and attacker types significantly influences the planner’s
signaling strategy. When the deception cost is lower for the payment type than for the
attacker type, the planner is more inclined to deceive the defender regarding the payment
type. Conversely, the planner is more likely to mislead the defender about the attacker type.

Table 4. The impact of deception costs on signaling strategy.

Type 1 2 3 4 5

dc = [0,50]
1 (1,1) (2,1) (1,1) (2,1) (2,1)
2 (1,2) (4,2) (5,2) (5,2) (1,2)
3 (1,3) (5,3) (3,3) (3,3) (1,3)

dc = [10,50]
1 (3,1) (5,1) (2,1) (5,1) (5,1)
2 (1,2) (1,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (4,3) (4,3) (5,3)

dc = [20,50]
1 (1,1) (5,1) (5,1) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (3,3) (3,3) (4,3) (5,3)

dc = [30,50]
1 (1,1) (1,1) (3,1) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)

dc = [40,50]
1 (1,1) (5,1) (3,1) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)

dc = [50,50]
1 (1,1) (5,1) (3,1) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)

dc = [60,50]
1 (1,1) (2,3) (3,1) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)

dc = [70,50]
1 (1,1) (2,3) (3,2) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)

dc = [80,50]
1 (1,1) (2,2) (3,1) (4,2) (5,3)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)

dc = [90,50]
1 (1,1) (2,3) (3,1) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)

dc = [100,50]
1 (1,1) (2,3) (3,1) (4,1) (5,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3)

6. Conclusions

This paper models the interaction between an attack planner and a defender, in which
the attack planner hires some attackers and arranges them to attack the target. To ensure the
attackers’ compliance with the arrangement, we safeguard their interests by incorporating
a multi-objective problem into our model. In addition, considering that defenders may
not fully grasp various details about the attack planner, which could be exploited using
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the attack planner to induce misjudgment and ineffective defense strategies, we develop a
D-APD signaling game model to make up for the deficiencies in prior research on this type
of attack. To address the model, we formulate it as a tri-level programming framework
according to the game process, and propose a customized DA-GA for its computation.
Then, we validate the algorithm’s effectiveness through experimental validation. Moreover,
by assessing the benefits of an honest planner, we determine that the planner is more likely
to opt for deception to secure greater benefits. Hence, there is an imperative to investigate
effective defenses against these attacks. Finally, through controlled variable experiments,
we establish that the defense budget can significantly curtail the attack planner’s incomes,
which further verify the significance of budgetary considerations in defense strategy.

We proceed under the assumption that attackers will adhere to the directives of the
planner. However, in reality, hired attackers may defy the planner’s attack arrangements
due to inadequate compensation or financial incentives from the defenders, among other
factors, introducing a layer of complexity. Consequently, our future research will delve
into this issue. Furthermore, despite our detailed examination of a specific attack behavior,
the critical aspect lies in our response to it. Thus, the implementation of effective defenses
by defenders in response to such complex attacks remains a central focus of our future
research, and is the paramount objective of our study on attack behaviors.
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Appendix A

When there is no signal strategy, the model is a Stackelberg game; therefore, the
strategies and utility of both the attack planner and the defender are solved using the
following problem P7:

P7 : minsd

N

∑
j=1

(qj(sd, sa∗)vd
j + csdj+1) (A1)

s.t.
N

∑
j=1

qj(sd, sa∗)vθ
j −

||φ||1
∑
i=1

(ui +
N

∑
j=1

sa∗ijqj(sd, sa∗) ·
αvθ

j

sa∗3j
−

N

∑
j=1

sa∗ijacij) ≥

N

∑
j=1

qj(sd, sa)vθ
j −

||φ||1
∑
i=1

(ui +
N

∑
j=1

saijqj(sd, sa) ·
αvθ

j

sa3
j
−

N

∑
j=1

saijacij),

∀sa ∈ ParSAθ,φ (A2)
N

∑
j=1

csdj+1 ≤ B (A3)

sdj ∈ {0, 1, 2}, ∀j ∈ [N] (A4)

This is a discrete planning problem, and in fact, it is equivalent to the SP in which the
signal strategy is an identity matrix, i.e., the attack planner sends a truthful signal about its
own type. So, we can solve it through solve SP(E) (E represents an identity matrix), using
Algorithm 2.



Mathematics 2024, 12, 2532 26 of 28

Appendix B

Proof of Theorem 1. Suppose that there are two types of attack planner, that is ty1, ty2; the
prior probability of ty1 is p1, so the probability of ty2 is 1− p1. Then, the attack planner’s
total utility is

U = p1 · ∑
s∈Sty1

πo(s|ty1) · (
N

∑
j=1

qj(πd(s), πa(ty1, s))va1
j −

||n1||1
∑
i=1

Uty1
i − ind(s1, ty1

1) · dc1

− ind(s2, ty2
1) · dc2) + (1− p1) · ∑

s∈Sty2

πo(s|ty2) · (
N

∑
j=1

qj(πd(s), πa(ty2, s))va2
j −

||n2||1
∑
i=1

Uty2
i

− ind(s1, ty1
2) · dc1 − ind(s2, ty2

2) · dc2)

= p1 · ( ∑
s∈Sty1

πo(s|ty1) · (
N

∑
j=1

qj(πd(s), πa(ty1, s))va1
j −

||n1||1
∑
i=1

Uty1
i − ind(s1, ty1

1) · dc1

− ind(s2, ty2
1) · dc2)− ∑

s∈Sty2

πo(s|ty2) · (
N

∑
j=1

qj(πd(s), πa(ty2, s))va2
j −

||n2||1
∑
i=1

Uty2
i − ind(s1, ty1

2) · dc1

− ind(s2, ty2
2) · dc2)) + ∑

s∈Sty2

πo(s|ty2) · (
N

∑
j=1

qj(πd(s), πa(ty2, s))va2
j −

||n2||1
∑
i=1

Uty2
i − ind(s1, ty1

2) · dc1

− ind(s2, ty2
2) · dc2).

From this equation, we can obtain that U is linearly related to p1.
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