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Abstract: The application of contrastive learning in image clustering in the field of unsupervised
learning has attracted much attention due to its ability to effectively improve clustering performance.
Extracting features for face-oriented clustering using deep learning networks has also become one of
the key challenges in this field. Some current research focuses on learning valuable semantic features
using contrastive learning strategies to accomplish cluster allocation in the feature space. However,
some studies decoupled the two phases of feature extraction and clustering are prone to error
transfer, on the other hand, features learned in the feature extraction phase of multi-stage training
are not guaranteed to be suitable for the clustering task. To address these challenges, We propose
an end-to-end multi-branch feature fusion comparison deep clustering method (SwEAC), which
incorporates a multi-branch feature extraction strategy in the representation learning phase, this
method completes the clustering center comparison between multiple views and then assigns clusters
to the extracted features. In order to extract higher-level semantic features, a multi-branch structure is
used to learn multi-dimensional spatial channel dimension information and weighted receptive-field
spatial features, achieving cross-dimensional information exchange of multi-branch sub-features.
Meanwhile, we jointly optimize unsupervised contrastive representation learning and clustering
in an end-to-end architecture to obtain semantic features for clustering that are more suitable for
clustering tasks. Experimental results show that our model achieves good clustering performance on
three popular image datasets evaluated by three unsupervised evaluation metrics, which proves the
effectiveness of end-to-end multi-branch feature fusion comparison deep clustering methods.

Keywords: deep clustering; comparative learning; multi-branch features

MSC: 68T07

1. Introduction

Handling labeled data has been a longstanding issue in the field of machine learning,
but real-world data tend to be unlabelled and massive. As the field of deep learning and
data mining grows and develops, clustering shows great potential in the field of unlabeled
data. Clustering, as an unsupervised learning method, can capture the consistency and
relative differences between data from a large amount of unlabeled data. K-means cluster-
ing [1] and spectral clustering [2] are common methods in the field of clustering. They are
prone to problems such as the “Curse of Dimensionality” and inaccurate clustering results
when facing large, high-dimensional data sets. Traditional clustering is limited due to the
feature representation of the data, and it has poor scalability. To alleviate this problem,
deep clustering decouples the feature representation and clustering of high-dimensional
data while obtaining low-dimensional feature representations by nonlinearly mapping an
image to the latent space through a deep learning network [3].
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Deep clustering utilizes deep neural networks to mine the non-linear features of
high-dimensional data, demonstrating powerful non-linear mapping capabilities. In order
to more efficiently obtain feature spaces that can easily be clustered and grouped, archi-
tectures such as self-encoders [1], comparative learning [4,5], and generative adversarial
networks [6,7] are commonly used to efficiently capture feature distributions in the latent
space. Currently, staged model training for decoupled representation learning and cluster-
ing tasks is commonly used as a training strategy [8], during which errors in the previous
stage are easily transferred to the next stage in multi-stage-separation task training. Feature
extraction and clustering have also been combined into a unified end-to-end architecture as
a training strategy [9,10]. Representation learning is used as a prior for the clustering task
to update the network alternately and iteratively during training with a global perspective.

Deep-contrast clustering uses comparative learning to extract higher-order features in
order to perform an unsupervised clustering task based on the extracted feature represen-
tations [8,11]. Comparative learning compares positive and negative samples in the data
space to measure the similarity between target samples. Due to the semantic consistency
of the positive sample pairs, higher-order features of the data are learned by bringing
the positive sample pairs closer together and distancing the negative samples [12,13]. An
encoder is commonly used to learn feature vectors in comparative learning. Due to the
limitation of the scanning range of the convolutional sensory field and the use of the same
convolutional kernel parameters, the sensibility for higher-level semantic features is some-
what limited. There is also a neglect of location information, as well as the importance of
individual features, which is limited due to the identification of salient features, thus affect-
ing clustering performance. In addition to improving the ability to represent features in
the potential feature space, learning a clustering-oriented feature representation is likewise
advantageous in cluster assignment. In order to jointly address feature representation, as
well as clustering assignments for contrast learning, SCAN [8] and DEC [14]) both decouple
contrast-feature extraction and clustering, thus completing training in stages. However, due
to the coupling between its multiple phases, the learned features may not be guaranteed to
fit the clustering task, which in turn may impair the clustering assignment. In order to get
better clustering results, it is often necessary to learn a clustering-oriented representation.

In order to overcome the error transfer that occurs in multi-stage tasks and learn
better clustering-oriented feature representation, we propose an end-to-end, multi-branch,
feature-fusion deep clustering method (SwEAC). We encapsulate comparative represen-
tation learning and target clustering in a unified architecture. Specifically, utilizing an
unsupervised contrastive learning strategy to identify high-dimensional representations,
the network integrates our proposed new multi-branch feature aggregation module EAR to
recognize multi-dimensional information. Subsequently, contrasting instance samples are
completed using clustering centers, and finally, unsupervised contrastive representation
learning and clustering are jointly optimized. The multi-branch feature aggregation module
partitions spatial sub-features into multiple groups, utilizing three branches to identify
spatial channel features and weighted receptive field spatial features from different dimen-
sions. By merging multi-dimensional information, short-term and long-term dependency
relationships are established. Multi-branch feature aggregation can enhance the feature
representation capability of convolutional networks, yielding higher-level spatial semantic
features. Our main contributions are as follows:

1. Proposed a new, end-to-end, multi-branch, feature fusion-comparison deep clus-
tering method. Contrast learning is utilized to accomplish a priori representation
learning while fusing aggregated information under multiple branches in a feature
extraction network. The contrastive representation-learning stage uses clustering
centers to compare instance samples and extract semantically meaningful feature
representations. Combined representation learning and clustering for joint training
and iterative optimization.

2. Designed a new, multi-branch feature-aggregation method. Divided multi-channel
sub-features, using a three-branch structure to learn multi-dimensional spatial channel-
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dimension information and weighted receptive-field spatial features. Completed
multi-branch and cross-dimensional information exchange, achieving the aggregation
of sub-features and establishing long-term and short-term dependence.

3. Designed a clustering-oriented contrastive representation learning strategy. Joint
optimization of unsupervised contrastive representation learning and clustering to
improve the problem of error transmission faced by multi-stage deep clustering
tasks. The training of the model extracts clustering-oriented feature representations in
continuous iterations, thus improving the model’s ability to cluster.

Experimental evaluation shows that SwEAC outperforms previous work on several
common image clustering datasets. We conducted comparison experiments and ablation
experiments on three datasets (CIFAR-10, CIFAR-100/20, and STL10, respectively) to
demonstrate the effectiveness of our proposed model.

2. Related Work

Contrastive learning has now become an important branch in the field of unsupervised
learning. Its essence lies in using an agent task as a guiding principle for constructing
similarities between instances, as well as using an objective function as a supervisory signal
for self-supervised learning to guide the learning direction of the model. Early InstDisc [15]
proposed individual discrimination as an agent task in conjunction with NCE loss for
contrastive learning. CPC [16] used generative agent tasks for training in contrastive
learning. With the continuous development of contrastive learning, contrastive-learning
architectures generally tend to use the InfoNCE loss function as a supervised signal to
guide training, maximizing the mutual information between the whole and the parts. The
difference is that MOCO [12] uses an instance-discrimination agent task and proposes the
use of a data-structure queue in the dictionary, thus overcoming the problem of negative
sample storage size. SimCLR [4] introduces data augmentation to enhance the learning
of positive and negative sample pairs through data augmentation. SWaV [17] combines
clustering and contrastive learning to compare clustering results. How can better positive
and negative samples between instances be selected? Recent studies have shown that
contrastive learning allows models to self-learn and still distinguish the similarity between
instances without using negative samples, as demonstrated by models such as BYOL [18]
and SimSiam [19]. BYOL [18] learns as a prediction task without considering negative
samples, and it uses the MSE objective function to supervise the training process of the
model. With the continuous expansion and extension of transformers in various fields
of deep learning, MOCOv3 [20], DINO [21], and other related works have replaced the
backbone of the model with vision transformers [22], which make contrastive learning
more robust.

Deep learning networks can non-linearly map images belonging to high-dimensional
unstructured data to a latent feature space and perform clustering [14], thus proposing a
series of deep learning-based clustering methods: based on an autoencoder (AE), based
on generative adversarial networks (GANs), based on contrastive learning, and based
on deep neural networks (DNNs). Deep clustering based on an autoencoder completes
representation learning during the process of reconstructing input data. DEC [14], as a deep
embedded clustering method, can jointly optimize embedded features and soft-allocation
clustering tasks. IDEC [23] introduces an incomplete autoencoder to constrain and maintain
the local structure of the data-generation distribution, thereby improving the mechanism
for preserving local feature structures. Based on generative adversarial networks, deep
clustering utilizes a generator to generate simulated data and a discriminator to verify the
authenticity of input data. Through alternating the training and continuous optimization
of the generator and discriminator, higher dimensional representations are identified to
complete clustering allocation [24,25]. Due to their excellent adaptability and portability,
deep neural networks are commonly used for dimensionality reduction or clustering.
However, as the number of neural network parameters increases significantly, it can easily
lead to overfitting and getting stuck in local optima. Deep clustering based on contrastive
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learning constructs positive and negative samples and utilizes sample similarity to learn
high-dimensional representations in latent space [5]. For unlabeled image datasets, it is not
necessary to define the true labels of the data, only to determine the similarity between the
data. Similar data samples are clustered together into the same cluster, making clustering
tasks better distinguish between data from different clusters. Compared to an autoencoder,
contrastive learning in the feature representation module can improve the generalization
ability of feature representations used for clustering tasks through unsupervised similarity
learning, which can, to some extent, reduce the problem of overfitting. CC [26] is instance-
level and cluster-level contrastive learning conducted by Peng D et al. in the row and
column dimensions of the feature space, and online clustering was completed under a
dual contrastive framework. GCC [27] introduces a graph structure while preserving the
space of instance and cluster layers in CC [26], achieving contrastive learning of graphs
while applying the contrastive loss of the Graph Laplace Operator to clustering learning
and representation learning. SCAN [8] is based on deep clustering using SimCLR [19] and
MOCO [12], and it employs contrastive learning to mine nearest neighbors from proxy
tasks as prior knowledge for semantic clustering.

3. Materials and Methods

We elaborate the proposed end-to-end, multi-branch, feature fusion-comparison deep
clustering method, which contains the multi-branch feature-aggregation module EAR, as
shown in Figure 1. We model this end-to-end method as fθ , specifying the image dataset
X = {x1, x2, . . . , xn} to complete the nonlinear mapping of fθ : xn → yk, where xn is the
unlabeled input image, yk represents the clustering allocation result of its input image, and
k is the number of clusters in the cluster.

Figure 1. Multi-branch, feature fusion-comparison deep clustering architecture. Firstly, a convolu-
tional neural network that integrates multi-branch feature extraction strategies is used to extract
high-dimensional representations. The Conv Block and the EAR Block iteratively interact with each
other. The EAR uses a three-branch structure to identify spatial channel features and weighted
receptive-field spatial features from different dimensions. Then, different transformed instances of
the same data sample are mapped to the clustering center in the feature space, and the comparison of
instance samples is completed through the clustering center. Finally, clustering is performed based
on the embedded feature vector z.

3.1. Contrast Deep Clustering

For each image data sample xn in the fixed image dataset X, we use different data
transformation strategies xt

n = T(t)(xn), where xt
n represents t transformations of the same

data sample xn. The one-dimensional embedded compressed vector z is obtained by
embedding the data sample into the latent feature space f (x) → z using f (·). f (·) is a
feature-extraction network consisting of four stages, with the first three stages containing
two basic building blocks, Conv Block and EAR Block, and the last stage containing only
Conv Block. Conv Block uses convolutional kernel sliding to capture short neighborhood
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features, EAR Block captures multi-branch information with grouped subspace distribution,
and Conv Block and EAR Block capture features through continuous iterative interaction.

In order to better remove interfering noise and obtain high-dimensional unsuper-
vised semantic information, we adopt an unsupervised contrastive learning strategy. Sim-
CLR [19], MOCO [12], and others require the construction of a large number of negative
samples, which requires a significant amount of computing power and memory-resource
consumption. We use the contrast learning strategy of SwAV [17] to solve the problem of
the resource waste of negative samples by comparing cluster centers. Specifically, sam-
ple xn is transformed into different views, xi

n and xj
n; based on the data-transformation

strategy T(t)(xn), forward propagation in the network f (·) yields vectors zi
n and zj

n. Due
to the information-invariance mechanism of the image itself, different view instances of
the same sample can be divided into the same cluster center. Therefore, instances under
different views can exchange their predicted probability distribution, q, to capture the same
high-dimensional representation, which can be specifically defined as follows:

Lα(zi
n, zj

n) = S(zi
n, qj

n) + S(zj
n, qi

n), where S(zi
n, qj

n) = −∑
k

qj
k log pi

k (1)

where code q is the self-label probability distribution of two transformed views of the same
sample, S(z, q) is the degree of fit between the feature z and the probability distribution
code q, which can be calculated using cross-entropy loss, and p represents the computed
assignment probability. The probability distribution obtained from an instance variant
view is used for prediction using another view, where zi

n predicts qj
n, and zj

n predicts qi
n,

thereby achieving exchange prediction and completing the comparison of positive samples
between clusters based on cluster centers. The probability distribution q of two exchanged
views of the same sample and the calculated probability distribution p are obtained through
trainable cluster centers. The vector zn is mapped from different views to a set of K trainable
prototype vectors c1, c2, ..., cK, which serve as trainable cluster centers and are continuously
updated during iterative training. Simultaneously, C is used to represent the K column
matrix C = [c1, c2, ..., cK] composed of K trainable prototype vectors. Next, the feature
representation is compared with each prototype vector, utilizing the dot product of z and
trainable prototype vectors to obtain the corresponding probability distribution:

pt
K =

exp( 1
φz⊤t cK)

∑k′ exp( 1
φz⊤t ck′)

(2)

where φ is the temperature parameter, and zt is the vector obtained based on different data
change strategy views. cK is the trainable cluster center embedding of the Kth cluster. We
use C to calculate code q so that all instances are equally partitioned by the prototype. This
equal distribution constraint ensures that the distribution probabilities of different instances
are different, thereby avoiding trivial solutions that may occur during the process of mini-
mizing cross-entropy. Given N feature vectors Z = [z1, z2, . . . , zN] for training mini-batches,
prototype vectors C = [c1, c2, ..., cK], with a probability distribution of Q = [q1, q2, . . . , qN],
optimize the allocation probability Q to obtain the optimal one, thereby maximizing the
correlation between the generated feature vectors and trainable prototypes:

max
Q∈QTr(Q⊤C⊤Z) + ρH(Q) (3)

Q = {Q ∈ RK×N
+ |Q1N =

1
K

1K, Q⊤1K =
1
N

1N} (4)

where H(Q) = −∑uv Quv log Quv, ρ is the mapping smoothness constraint term, and Q
is the target assignment probability obtained from optimal transportation. The Sinkhorn–
Knopp algorithm is used to solve coed q iteratively. A more detailed description of the
SwAV and Sinkhorn–Knopp algorithms can be found in references [17,28,29].
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Clustering clusters dynamically allocate along with the training of contrastive repre-
sentation learning. The goal is to partition the feature vectors z mapped by the network
f (·) in the embedding space into different categories in an unsupervised manner. At this
stage, predictive analysis is completed through the fully connected predictor fk, achieving
fk : zn → yk. Firstly, the fully connected predictor fk achieves a fully connected mapping
from the input feature zn to the output category k. It predefines each sample to a different
category, resulting in a one-dimensional probability output, F. Since both F and P, calcu-
lated in Equation (2), are probability distributions based on the feature Z extracted via the
encoder, mutual information [30] is used to maximize the dependency between the two
probability distributions. Finally, convergence is achieved by mapping sample instances
with similar semantics in P to the same cluster in F. The dependency measurement method
based on mutual information can be defined as follows:

I(P; F) = −H(F|P) + H(F) (5)

Specifically, inspired by the maximization of mutual information clustering strategy
in IMC-SwAV [31], we utilize mutual information measurement methods to maximize
the dependency between the assignment probability distribution P and F. By mapping
semantically similar instances in P to the same cluster in F, the dependency between the two
probability distributions is maximized to achieve convergence. It can be defined as follows:

Lclu(F, P) =
1

T2

T

∑
i

T

∑
j

[
H(Fj|Pi)− γH(Fj)

]
(6)

where Fj is the unsupervised classification prediction, F = {FϵRN×k
+ }, Pi is the code ob-

tained from Equation (2), P = {PϵRN×K
+ }, H(Fj|Pi) is a conditional entropy calculation,

H(Fj) is used for marginal entropy calculation, γ is the introduction of a weighting param-
eter to constrain the marginal entropy, N denotes the number of instances in batch size, T
denotes the total number of instances in batch size corresponding to the data-enhanced
transformed views, and the indexes i and j denote the corresponding transformed views. To
prevent overfitting of the fully connected predictor fk, we regularize fk using the marginal
entropy γH(Fj) from Equation (6), ensuring fair distribution of different sample instances
within each cluster. Simultaneously, by minimizing the conditional entropy in Equation (6),
we enhance the confidence of clustering predictions.

3.2. Multi-Branch Feature Aggregation

We propose a new basic building block EAR in the feature extraction network f (·),
which integrates multi-branch feature-aggregation methods. In this work, multiple sub-
features are divided in the channel dimension, followed by establishing interaction between
weighted receptive-field spatial features and spatial features in the feature extraction net-
work, constructing long short-term dependencies to acquire information from different
dimensional distributions, as shown in Figure 2. Specifically, first, the channel (C) di-
mension is divided into multiple spatial grouping sub-features (C//G), and the different
semantic feature distributions within each subspace are meaningfully learned. Meanwhile,
we adopt a three-branch parallel structure, which is defined as X-branch, Y-branch, and
3× 3-branch, respectively. The X-branch and Y-branch perform feature mapping along the
horizontal and vertical coordinate directions, respectively, while preserving spatial position
information [32] and weighting receptive field information. The 3× 3-branch establishes
global dependencies and constructs relationships in different dimensions.

Each spatial group in the X-branch is C//G, given an input of dimension C//G×H×W.
One-dimensional compressive encoding is completed along the W dimension, averaging
pooling horizontal coordinate direction characteristics, which can be defined as follows:
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zh
C//G =

1
W ∑

0≤u<W
xC//G(h, u) (7)

Figure 2. A note on multi-branch feature aggregation modulo rapidity.

For input features in the Y-branch, the average pooling is completed in the H-dimension,
which can be formulated as follows (Figure 2):

zW
C//G =

1
H ∑

0≤v<H
xC//G(v, w) (8)

The X-branch and Y-branch capture global feature information and positional informa-
tion in the corresponding directions through compression encoding and then aggregate
the features along the two branch directions. While retaining the horizontal and vertical
coordinate position information, we will focus on receptive field features and measure the
importance of different receptive field spatial features. Given the feature map xf , since
convolutional kernel scanning can dynamically generate receptive field features, Group
Conv is used to quickly extract receptive field spatial features. To define the importance of
features at different positions during the sliding process of the wild window, a weighted
mapping is given as a new feature, which can be formulated as follows:

Y(xf ) =
[
Softmax(G1×1(AvgPool(xf )))

]
× [ReLU(Norm(Gi×i(xf )))] (9)

where Gi×i denotes the convolution kernel is a grouped convolution of i× i, and AvgPool
extracts the global features of the given feature map xf . G1×1 is used for information
interaction computation, and Softmax is used to obtain the weighted values of receptive
field features. Norm is used to normalize the features obtained from grouped convolution
Gi×i(xf ), followed by a ReLU activation for non-linear transformation. Subsequently, an
Adjust Shape operation is performed to reshape the features. To consider the importance
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of each channel feature, multiplication is used for feature fusion to achieve inter-channel
interaction among features.

The multi-branch feature-aggregation module EAR not only focuses on the receptive
field feature distribution between spatial channels but also considers global encoding. In
the 3× 3-branch, the 3× 3 convolution kernel is used to construct sub-features, extract
multi-scale spatial features to expand the feature space, and capture some spatial structural
information lost in the compression of the X-branch and Y-branch. Subsequently, the
Avg pool is used to obtain global information encoding, which interacts with the X- and
Y-branches to construct long short dependencies. EAR has established three branches for
cross-dimensional interaction, learning spatial channel information and weighted receptive
field spatial features from different dimensions and achieving the aggregation of multi-
branch sub-features to improve clustering performance.

3.3. Objective Function

The end-to-end architecture we use is a single-stage integrated architecture that jointly
optimizes comparative representation learning and clustering during training with the
following overall objective distribution:

L = Lα + Lclu (10)

Lα is the loss function for the comparison representation stage, and Lclu is the loss function
for the clustering stage. The target loss of the overall architecture is summed up by the
losses of the two stages, completing iterative optimization.

4. Experiments

We experimented with our proposed method on three commonly used image clus-
tering datasets, and we evaluated the clustering performance by comparing evaluation
metrics, demonstrating the effectiveness of the experiment.

4.1. Dataset

We present three challenging image datasets used in our approach, CIFAR-10 [33],
CIFAR-100/20 [33], and STL10 [34], for which the basic details of the data are presented in
Table 1, as well as a brief description of the different datasets.

Table 1. Summary of datasets used for evaluation.

Dataset Name Total Samples Clusters Type Size

CIFAR-10 60,000 10 Color object image 32× 32
CIFAR-100/20 60,000 20/100 Color object image 32× 32

STL10 113,000 10 Color object image 96× 96

• CIFAR-10 [33] is a dataset containing 60,000 images of color objects, of which 50,000 are
training images, and 10,000 are test images. Each image is a three-channel color RGB
image of size 32× 32. Each image in CIFAR-10 represents real-world objects and can
be categorized into 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck.

• CIFAR-100/20 [33] contains 60,000 color images, including 50,000 training images
and 10,000 test images, each of which belongs to the RGB three-channel type of
32× 32 pixels. The CIFAR100 dataset contains 100 categories, which can be subdivided
into 20 major categories from a deeper perspective, and 5 subcategories in each
major category. From the perspective of category division, CIFAR-100/20 is more
detailed and rich in hierarchical structure than CIFAR-10, which is more conducive to
network learning.
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• STL10 [34] is one of the commonly used benchmark datasets in the unsupervised
domain, which consists of 113,000 RGB images, all of which have a resolution of
96× 96, and it contains 105,000 training data and 8000 test data.

4.2. Evaluation Metrics

In our experiments, we used three commonly applied unsupervised evaluation metrics
to assess the clustering performance of our proposed method, namely the accuracy of
comparative clustering (ACC), normalized mutual information (NMI), and the adjusted
Rand index (ARI). The accuracy of comparative clustering (ACC) measures the mapping
relationship between the predicted distribution and the true distribution, and it can be
formulated as follows:

ACC(l, C) = max
m

∑N
i=1 1{li = m(ci)}

N
(11)

The ACC mapping range is within [0,1], and the closer its value is to 1, the better the
clustering effect. The standard mutual information (NMI) measures the similarity of the
sample clustering results:

NMI(l, C) =
I(l; c)

max{H(l), H(c)} (12)

H(l) and H(c) correspond to the entropy values of the sample true labels and the sample
predicted labels, respectively, and NMI takes values within [0,1]; the larger its value, the
better the clustering effect. The adjusted Rand index (ARI) measures the similarity between
the sample clustering categories and the true categories:

ARI =
RI − E[RI]

max (RI)− E[RI]
where RI =

a + b
c2

N
(13)

In its formula, N is the total number of samples, a represents the number of true
positives or TPs, b represents the number of true negatives or TNs, and ARI takes the value
of [−1,1]; a higher value indicates that the category obtained from clustering is more similar
to the real category.

4.3. Experimental Settings

In the experiment, for the sake of fair comparison, we followed the settings in the
benchmark methods SwAV [17] and IMC SwAV [31]. During training for all experiments,
we used the PyTorch 2.0.1 architecture to implement our method, with the learning rate set
to 5 × 10−4 , using the Adam optimizer. Due to differences in data volume across different
datasets, the batch size was set to 256. The number of channel feature groupings, G, in
EAR was set to 8. For the fairness of the experiment, all data in the experimental section
were trained using one NVIDIA RTX 4090 (https://www.autodl.com/) and 500 epochs of
training data were obtained. The clustering results obtained from training on three datasets
were reported.

4.4. Comparative Experiment

Based on three classic datasets, we compare our proposed method with classical
clustering and comparative deep clustering algorithms. For a more fair comparison, all
methods were run on a server with only one NVIDIA RTX 4090 GPU, and their experimental
results were replicated in the same experimental environment and compared with our
running results. As shown in Table 2, compared to the classical clustering algorithm
k-means, deep clustering can substantially improve clustering performance compared
to the simple clustering algorithm. Next, we will compare the deep clustering methods
with the end-to-end mechanism and the multi-stage mechanism, respectively. The multi-
stage mechanism SCAN exhibits separated multi-stage coupling during the training phase.

https://www.autodl.com/
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Compared with multi-stage methods, SwEAC still has competitiveness, achieving an
improvement of approximately 7% in all three indicators on the STL10 dataset. This proves
that combining clustering objectives with network-optimization processes can significantly
improve learning efficiency without overly relying on network initialization. Compared
to other single-stage end-to-end mechanisms for deep clustering CC [26], our method
achieves an ACC of 90.1 on the CIFAR-10 dataset within a unified architecture. Compared
to CC [26], we obtained better clustering performance with limited computational resources
(on a server with only 1 GPU on board). We and IMC-SwAV [31] both used the SwAV
comparison mechanism [17] during the unsupervised representation learning phase. Our
method achieved better clustering performance on all four datasets, especially CIFAR-
100/20, with which improvements of 2% to 3% were achieved in the ACC, NMI, and ARI
metrics, demonstrating the effectiveness of optimized representation learning.

Table 2. Clustering performance using three object image benchmarks; note that all data were trained
on an NVIDIA RTX 4090 to get the run results.

Model
CIFAR-10 CIFAR-100/20 STL10

ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 22.2 7.5 4.6 14.2 8.2 2.6 22.5 12.7 6.1

CC [26] 78.9 70.4 63.7 42.8 43.0 26.5 85.0 76.3 72.5

SCAN [8] 87.2 78.2 75.3 46.7 45.9 29.0 75 66.0 58.7

CoHiClust [35] 83.0 75.3 70.1 45.0 41.0 28.0 69.0 60.7 52.5

IMC-SwAV [31] 89.3 81.4 79.2 49.3 51.2 34.5 81.4 71.9 67.4

SwEAC (AVG) 89.6 ± 0.4 81.8 ± 0.5 79.8 ± 0.6 51.0 ± 0.5 52.1 ± 0.4 35.7 ± 0.7 83.3 ± 0.3 73.1 ± 0.3 68.5 ± 0.5

SwEAC (best) 90.1 82.3 80.7 51.5 52.8 36.5 83.6 73.4 69

4.5. Empirical Analysis
4.5.1. Visualization of Cluster Semantics

In our experiments, we visualized the semantic clustering done using SwEAC on
the STL10 dataset based on the prototype samples, as shown in Figure 3. Specifically, we
selected three samples from 10 clusters that were close to the cluster center and visualized
their original images. The visualization results show that we learned semantically mean-
ingful features, demonstrating that our network can extract higher-level semantic features
for clustering assignment.

Figure 3. Visualization of semantic clustering on STL10.

4.5.2. Ablation Study

To further demonstrate the effectiveness of the encoder (Encode) that integrates multi-
branch aggregation features, we conducted ablation studies, exploring the impact of our



Mathematics 2024, 12, 2749 11 of 14

proposed multi-branch feature aggregation module, EAR, on clustering performance.
SwEAC (EAR) uses an encoder that aggregates multi-scale features. To demonstrate that
the multi-branch feature extraction strategy in the deep learning stage can learn feature
representations that are more conducive to clustering, we removed the multi-branch feature-
aggregation module EAR and adopted the deep clustering model SwEAC (ResNet) of the
ordinary encoder of the ordinary residual neural network [36]. As shown in Table 3, we
conducted ablation experiments based on three datasets. The data in the table indicates that,
in the deep clustering model with multi-branch feature fusion module SwEAC (EAR), ACC,
NMI, and ARI have all shown varying degrees of improvement, increasing by 2.5%, 2.4%,
and 2.6% respectively. On the STL10 dataset, all three clustering metrics showed slight
improvements, with NMI further increasing by 0.4%. This confirms that it is effective and
that fusing multi-scale feature aggregation methods can optimize representation learning
and thus improve clustering performance, which can lead to learning better clustering-
oriented feature representations.

Table 3. Validity of the ablation study on three benchmark datasets.

Methods ACC NMI ARI

CIFAR-10 SwEAC (ResNet) 89.8 82.2 80.6
SwEAC (EAR) 90.1 82.3 80.7

CIFAR-100/20 SwEAC (ResNet) 49.0 50.4 33.9
SwEAC (EAR) 51.5 52.8 36.5

STL10 SwEAC (ResNet) 83.5 73.0 68.9
SwEAC (EAR) 83.6 73.4 69

4.6. Comparative Study

In order to demonstrate the effectiveness of the proposed comparative deep clustering
algorithm, we replaced the clustering module and combined our model’s deep learning
module with classical clustering algorithms for comparison. Specifically, K-means and
spectral clustering (SC) are classic clustering algorithms, so we replaced the clustering
module of SwEAC with k-means and spectral clustering (SC) algorithms, respectively. As
shown in Table 4, the data in the table are derived from the experimental results on the
CIFAR-10 dataset. We can see that our proposed SwEAC outperforms the K-means and
spectral clustering (SC) models in all three clustering metrics. To further demonstrate the
effectiveness of the SwEAC clustering model, we compared the clustering prediction results
of each cluster with the true labels of the samples, generated corresponding confusion
matrices, and completed normalization. As shown in Figure 4, we used a confusion matrix
on the CIFAR-10 validation set to provide the correspondence between the predicted results
and the actual true labels. The diagonal of the confusion matrix represents the degree to
which the predicted results of the sample match the actual true labels.

Table 4. Performance comparison based on multi-clustering methods.

Methods ACC NMI ARI

SwEAC-kmeans 65.5 68.8 42.7
SwEAC-sc 73.7 75.4 61.5

SwEAC 89.9 82.3 80.6

4.7. Parameter Sensitivity

We conducted parameter sensitivity research in the multi-branch feature aggregation
module and analyzed the impact of the multi-channel feature grouping parameter G in
the multi-branch feature extraction module on clustering performance. As we divided the
channel (C) dimension into multiple spatial grouping sub-features (C//G), we set G as a
number divisible by C, which was 4, 8, 16, and 32. Based on the CIFAR-100/20 dataset, the
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clustering performance was compared under different parameter values. Table 5 shows the
results at different G values.

Table 5. SwEAC performance under different parameter settings on the CIFAR-100/20 dataset.

ACC NMI ARI

G = 4 50 51 34.6
G = 8 51.5 52.5 36.5
G = 16 49.6 50.9 34.3
G = 32 47.8 50.9 33.6

Figure 4. Correspondence between predicted results and actual true labels in the confusion matrix.

Figure 5 demonstrates the effect of different values of G taken on the clustering
performance and evaluated with three metrics, ACC, NMI, and ARI. Here, we aim to
evaluate the clustering performance under multi-space grouping subspace. The results in
the figure show that the clustering performance metrics are all improved when the value of G
is increased from 4 to 8, the performance is relatively better when G = 8, and the clustering
performance is instead all decreased as G keeps increasing. It can be seen that, through proper
multi-channel feature grouping, different semantic feature distributions within a meaningful
multi-grouping subspace can be learned, leading to better clustering results.

Figure 5. Performance of different G-element fetches; the horizontal coordinate indicates the G fetches.
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5. Conclusions

The performance of clustering is largely influenced by representation learning; there-
fore, we propose an end-to-end, multi-branch, feature fusion-comparison deep clustering
method. We integrate feature extraction and clustering tasks into a unified end-to-end ar-
chitecture, using an encoder based on multi-branch information aggregation and applying
a clustering-center comparison strategy to obtain better semantic features for clustering
allocation. This method has shown good clustering performance on three popular datasets,
and compared to popular comparative deep clustering methods, it has achieved certain
improvements in all three clustering evaluation indicators. In future work, we have plans to
apply it to datasets and learning tasks in other fields, such as semi-supervised learning. By
using a small amount of labeled data to train the network, the learning capability of the fea-
ture extraction network is further enhanced, leading to improved clustering performance.
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