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Abstract: The conjugate gradient (CG) directions are among the important components of the CG
algorithms. These directions have proven their effectiveness in many applications—more specifically,
in image processing due to their low memory requirements. In this study, we derived a new conjugate
gradient coefficient based on the famous quadratic model. The derived algorithm is distinguished
by its global convergence and essential descent properties, ensuring robust performance across
diverse scenarios. Extensive numerical testing on image restoration and unconstrained optimization
problems have demonstrated that the new formulas significantly outperform existing methods.
Specifically, the proposed conjugate gradient scheme has shown superior performance compared to
the traditional Fletcher–Reeves (FR) conjugate gradient method. This advancement not only enhances
computational efficiency on unconstrained optimization problems, but also improves the accuracy
and quality of image restoration, making it a highly valuable tool in the field of computational
imaging and optimization.

Keywords: image processing; impulse noise reduction; unconstrained optimization; conjugate
gradient methods; line search methods

MSC: 90C30; 90C26; 90C06; 90C90; 90C47

1. Introduction

Many real-world applications involve nonlinear optimization problems, particularly,
problems of extremely enormous dimensions, and thus require the use of first-order
schemes to obtain their solutions. Conjugate gradient (CG) methods, the most popular
first-order approaches, have been widely demonstrated to be useful in handling challenging
unconstrained and constrained problems, such as problems arising from imaging process-
ing. This is due to the efficiency of the CG algorithm in handling sparse and large-scale
systems, which are common in such tasks. These methods are iterative and thus allow
for early termination criteria to save time, and can be adapted for nonlinear functions,
making their algorithms versatile. In addition, CG schemes efficiently handle minimization
problems with regularization, scale well with the size of the problem, and can control
parallel processing capabilities, improving their efficacy and speed for high-resolution
image processing tasks.

In [1], the authors propose a two-phase strategy that combines the advantages of the
adaptive median filter with the variational method in a single approach. The adaptive
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median filter [2] is used in the initial phase of the processing for salt-and-pepper noise.
In such methods, X represents the real image and A = {1, 2, 3, ..., M} × {1, 2, 3, ..., N}
represents the index set of X and N ⊂ A denotes the set of indices of the noise pixels that
were detected during the first phase of the analysis process. Thus, the issue is determining
an effective method for minimizing the function as follows:

fα(x) = ∑
(i,j)∈N

[∣∣xi,j − yi,j
∣∣+ ζ

2
(2 × S1

i,j + S2
i,j

]
(1)

where ζ is the regularization parameter, S1
i,j = 2∑(m,n)∈Pi,j∩Nc ϕα(ui,j − ym,n), S2

i,j =

∑(m,n)∈Pi,j∩N ϕα(xi,j − ym,n) are the edge-preserving potential functions, and ϕα =
√

α + x2,
α > 0 is the edge-preserving potential function. Pi,j denotes the set of the four closest
neighbors of the pixel at the location (i, j) ∈ A, and yi,j denotes the observed pixel value
of the image at the position (i, j), with xi,j =

[
xi,j

]
(i,j)∈N in each row denoting a column

vector c of one length sorted lexicographically after the other.
It has been demonstrated in [1,2] that the term

∣∣xi,j − yi,j
∣∣ in (1) allows for the detection

of noisy pixels, but it also adds a tiny bias in the restoration of corrupted pixels when used
in conjunction with other techniques. Our method begins by detecting the set of all noisy
pixels, which occurs in its initial phase. As a result, this phrase is no longer necessary
during the restoration phase. This recommends that we remove it from consideration (1).
Consequently, we can only analyze the functional aspects of the following:

fα(x) = ∑
(i,j)∈N

[(
2 × S1

i,j + S2
i,j

]
. (2)

In this study, we are more interested in investigating the performance of a new Conju-
gate gradient method on image restoration and unconstrained optimization problem of
the form:

Min f (x) , x ∈ Rn (3)

where f is continuously differentiable (see [3–5]). The CG algorithm generates a sequence
of iterative points via [6]:

xk+1 = xk + αkdk, (4)

where αk is a step length and the search direction dk+1 is generated as:

dk+1 = −gk+1 + βkdk. (5)

For further information on the possible choices of the conjugate coefficient βk, see [7,8].
In general, the global convergence characteristics of CG techniques are widely studied.
According to [9], the Fletcher–Reeves (FR) method has been identified as having the best
convergence results, while the Hestenes–Stiefel (HS) method has been recognized as one of
the most efficient CG methods with good numerical performance but failing to satisfy the
global convergence properties under classical line search conditions [10]. The particular
choices for the FR and HS methods are:

βFR
k =

gT
k+1gk+1

gT
k gk

, βHS
k =

yT
k gk+1

dT
k yk

, (6)

with yk = gk+1 − gk. The presentations in [11–14] provide excellent references to contem-
porary CG approaches that have yielded significant outcomes, in comparison to those in
(6). Because the Hestenes–Stiefel formula meets the conjugacy criterion, it is particularly
appealing to require that (see [15])

dT
k+1yk = 0, (7)
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be satisfied when new methods are developed. The derivations in [16,17] represent an
outstanding summary of the evolution of multiple variants of nonlinear conjugate gradient
methods with a specific focus on global convergence qualities, as described in [17]. In
theory, based on Perry’s conjugacy criterion (7), it may be rewritten as:

dT
k+1yk = −sT

k gk+1. (8)

In [14], the Hestenes–Stiefel (HS) method has been modified to produce:

βWC
k =

yT
k+1gk+1

dT
k yk

+
2( fk − fk+1) + gT

k sk

dT
k yk

(9)

As revealed by the numerical findings, the Wu and Chen [17] approach numerically
supersedes the HS method [10].

In [18], it is shown that for quadratic functions, the step size is determined exactly as:

αk = −
gT

k dk

dT
k Gdk

. (10)

For non-quadratic problems, classical line searches, such as cubic interpolation, are
employed to find a step size αk along a generated search direction. For convergence
purposes, αk is usually required to satisfy the strong Wolfe–Powell (SWP) [19] line search
conditions:

f (xk + αkdk) ≤ f (xk) + δαkgT
k dkdT

k g(xk + αkdk) ≥ σ dT
k gk, (11)

where 0 < δ < σ < 1 [20,21]. Such conditions are particularly beneficial in examining
the convergence properties of CG methods. For a more recent study on the CG method,
see [22–27].

Next, a new CG conjugacy parameter is developed by employing a quadratic model.
This is followed by an analysis of the new method’s convergence properties. The new
derivation aims to further the numerical behavior of CG methods.

2. Deriving the New Parameter Based on the Quadratic Model

In this section, we present the derivation process of the new conjugate gradient
formulas. The algorithm used for the computational experiment is further presented at the
end of this section. The motivation for constructing novel conjugate gradient parameters via
the quadratic model is to enhance the convergence rate and accuracy of the CG algorithm.
By leveraging the second-order curvature and presenting modified formulas, the updated
algorithm can provide improved direction and step length adjustments, and this would
lead to more effective minimization, particularly in large-scale and complex problems
in image restoration and unconstrained optimization, which need robust optimization
procedures. The new CG parameter is derived using the quadratic model:

fk+1 = fk + sT
k gk +

1
2

sT
k Q(xk)sk, (12)

where the corresponding gradient is given as:

gk+1 = gk + Q(xk)sk (13)

The second-order curvature is derived from (12) and (13) to obtain:

sT
k yk = 2sT

k Q(xk)sk + 2( fk+1 − fk) (14)
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Using the above equation to obtain:

sT
k Q(xk)sk = 2

(
sT

k gk)
2(

sT
k yk + 2( fk − fk+1)

) = ωksT
k yk, (15)

where

ωBT1
k = 2

(
sT

k gk)
2(

sT
k yk

)(
sT

k yk + 2( fk − fk+1)
) (16)

Using (8) and (15) in the above equation, we obtain:

dT
k+1yk = −ωksT

k yk − sT
k gk. (17)

Since dk+1 = −gk+1 + βksk, this implies that:

βksT
k yk = gT

k+1yk − ωksT
k yk − sT

k gk (18)

which yields:

βk =
gT

k+1yk

sT
k yk

− ωk
sT

k yk

sT
k yk

−
sT

k gk

sT
k yk

(19)

Additionally, for exact line search, (16) leads to two suggested expressions as follows:

ωBT2
k = 2

(
sT

k gk)
2(

sT
k yk

)(
2( fk − fk+1)− sT

k gk
) (20)

and

ωBT3
k = 2

(
sT

k gk)
2(

sT
k yk

)(
2( fk − fk+1) + αkgT

k gk
) . (21)

We refer to the three alternatives of ωk as BT1, BT2, and BT3, respectively, as indicated
in (16), (20), and (21). Introducing multiple forms of ωk, including BT1, BT2, and BT3,
offers flexibility in selecting the most suitable parameter for different problem contexts,
improving the approach’s performance and adaptability.

The algorithmic steps (Algorithm 1) for the derived method are summarized as:

Algorithm 1. The new conjugate gradient algorithm for minimizing.

Initialization. Given x0 ∈ Rn, δ ∈ (0, 1), σ ∈ (δ, 1), set d0 = −g0 and k = 0.
Stage 1. If ∥gk∥ ≤ ε, then stop.
Stage 2. Find αk by (9) and (10).
Stage 3. Let xk+1 = xk + αkdk, and compute βk by (19).
Stage 4. Compute dk+1 = −gk+1 + βkdk.
Stage 5. Set k = k + 1 and go to stage 1.

3. Convergence Analysis of the Uniformly Convex Function

The global convergence analysis for the derived methods is considered in this section.
The following assumptions are needed:

Assumption 1. f (x) is bounded below on Rn and bounded on the set Ψ = {x ∈ Rn : f (x) ≤ f (x0)}.

Assumption 2. The gradient g is Lipschitz continuous, i.e., there exists a non-negative steady L
such that

∥g(u)− g(w)∥ ≤ L∥u − w∥, ∀u, w ∈ Rn. (22)

Under these assumptions on the objective function, there exists a steady Γ ≥ 0, such that
∥∇ f (x)∥ ≤ Γ. More details can be found in [28,29].
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We start by proving the descent property for the new algorithm in the following
theorem.

Theorem 1. Let {xk} and {dk} be generated by (5) with the choices (19), (20), and (21) for the
conjugacy parameter, then dk+1 is a downhill direction.

Proof of Theorem 1. Since d0 = −g0, we obtained gT
0 d0 = −∥g0∥2 ≤ 0. Multiplying dk+1

in (5) by gT
k+1 and using Equation (13), we have:

dT
k+1gk+1 ≤ −∥gk+1∥2 +

[
gT

k+1yk

sT
k yk

−
sT

k gk+1

sT
k yk

]
sT

k gk+1. (23)

By Lipschitz condition:
yT

k gk+1 ≤ LsT
k gk+1. (24)

Combining (23) with (24), we obtain:

dT
k+1gk+1 ≤ −∥gk+1∥2 +

[
L

sT
k gk+1

sT
k yk

−
sT

k gk+1

sT
k yk

]
sT

k gk+1. (25)

Hence, (25) yields:

dT
k+1gk+1 ≤ −∥gk+1∥2 + [L − 1]

(
sT

k gk+1)
2

sT
k yk

. (26)

Next, from (26), we have:

dT
k+1gk+1 ≤ −∥gk+1∥2 < 0

Hence, the generated directions are downhill. □

To show that the new method converges globally, we employ the following lemma,
which was proven in [19,20]

Lemma 1. If positive constants, m and M, exist, such that for ∀k ≥ 0

δT
k
∼
γk

∥ δk ∥2 ≥ m

and
∥ ∼

γk ∥
2

δT
k
∼
γk

≤ M, (27)

for any positive integer t, the inequality, (44) holds for at least [t/2] values of k ∈ {1, 2, . . . , t}.

Using the condition of Lemma 1, we can prove the following result.

Theorem 2. Assume that f is a uniformly convex function on Rn, i.e., there exists a stable µ > 0,
that satisfies:

lim
k→∞

(inf∥gk+1∥) = 0. (28)

If the conditions in Lemma 1 hold, then:

lim
k→∞

(inf∥gk+1∥) = 0. (29)
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Proof of Theorem 2: The proof is similar to the ones in [20,21]. □

4. Numerical Results

In this section, numerical data is presented to demonstrate the efficiency of the BT1,
BT2, and BT3 algorithms in reducing salt-and-pepper impulse noise by lowering the
threshold in (3) and further solving unconstrained optimization problems. The parameters
chosen for the line search in (11) for the BT1, BT2, and BT3 procedures are δ = 0.0001
and σ = 0.5. All simulations are conducted on a PC with MATLAB 2015a. The BT1, BT2,
and BT3 techniques are compared to the FR method in terms of performance efficiency. It
is vital to emphasize that the speed at which the obtained decrease in (3) is the primary
focus of this research. The Signal-to-Noise Ratio is used to evaluate the quality of the
recovered image:

PSNR = 10log10
2552

1
MN ∑i,j

(
ur

i,j − u∗
i,j)

2
, (30)

where ur
i,j and u∗

i,j denote the pixel values of the restored image and the original image,
respectively. The stopping criteria for both techniques are as follows:

|f(uk)− f(uk−1)|
|f(uk)|

≤ 10−4 and∥ f (uk)∥ ≤ 10−4(1 + | f (uk)|). (31)

Table 1 reports the computed PSNR (peak signal-to-noise ratio), in addition to the
iterations count (NI) and function evaluations (NF) for each of the tested methods, as
opposed to the standard FR method.

Table 1. Numerical results of FR, BT1, BT2, and BT3 algorithms.

Image
Noise
Level r

(%)

FR-Method BT1-Method BT2-Method BT3-Method

NI NF PSNR
(dB) NI NF PSNR

(dB) NI NF PSNR
(dB) NI NF PSNR

(dB)

Le
50 82 153 30.5529 42.0 90.0 30.5077 55.0 109.0 30.4726 30.0 60.0 30.779
70 81 155 27.4824 45.0 97.0 27.3425 56.0 111.0 27.5176 53.0 107.0 27.2491
90 108 211 22.8583 53.0 113.0 22.9824 58.0 115.0 23.0099 54.0 109.0 22.8871

Ho
50 52 53 30.6845 30.0 63.0 35.2072 35.0 70.0 34.9453 36.0 72.0 35.1792
70 63 116 31.2564 32.0 66.0 30.9014 39.0 78.0 30.7493 29.0 58.0 30.9249
90 111 214 25.287 36.0 74.0 25.1023 52.0 103.0 25.267 48.0 96.0 25.1356

El
50 35 36 33.9129 24.0 48.0 33.8687 30.0 58.0 33.862 26.0 51.0 33.9353
70 38 39 31.864 17.0 32.0 31.9634 30.0 58.0 31.7931 34.0 68.0 31.7348
90 65 114 28.2019 39.0 80.0 28.2067 44.0 86.0 28.0416 44.0 88.0 28.1316

c512
50 59 87 35.5359 28.0 60.0 35.296 34.0 69.0 35.862 26.0 51.0 35.3528
70 78 142 30.6259 34.0 72.0 30.6113 39.0 79.0 30.6145 34.0 68.0 30.6749
90 121 236 24.3962 47.0 98.0 24.9266 50.0 101.0 24.8411 44.0 88.0 24.8521

As demonstrated in Table 1, the BT1, BT2, and BT3 are more efficient as they require
the fewest iterations and function evaluations compared to the FR method. Furthermore,
the PSNR values generated by all three new approaches are superior. The restoration results
achieved utilizing the FR, BT1, BT2, and BT3 algorithms are shown in Figures 1–4. These
findings demonstrate that the recommended image-correcting procedures BT1, BT2, and
BT3 are reliable and effective.
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Figure 2. Demonstrates the results of algorithms FR, BT1, BT2, and BT3 of 256 × 256 House image.



Mathematics 2024, 12, 2754 8 of 12

Figure 3. Demonstrates the results of algorithms FR, BT1, BT2, and BT3 of 256 × 256 Elaine image.
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Figure 4. Demonstrates the results of algorithms FR, BT1, BT2, and BT3 of 256 × 256 Cameraman image.
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Next, the numerical performance of the proposed method was evaluated on a total
of twenty-three unconstrained optimization problems under the strong Wolfe line search.
Three metrics including the number of iterations (NOI), the number of function evaluation
(NOF), and computational time (CPUT) are used to measure the efficiency of all algorithms.
The termination condition was also set as:

i. If ∥gk+1∥ < 10−6 was not satisfied.
ii. If iterations exceed 2000.

Table 2 presents a detailed performance of all the algorithms. The symbol (***) is used
to denote the point where an algorithm fails to satisfy the above conditions. The symbol
(##) means a failure to converge to a solution.

The above results are further analyzed using the performance profile tool introduced
by Dolan and More [30]. The following figures present the visual illustration of the results
from Table 2.

As seen in Figures 5 and 6, a percent P(τ) of the problems for which the technique is
within a factor τ of the optimal time is displayed for each method. A method’s quickest
percentage of test problems is indicated by the vertical axis on the left side of the curves.
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Table 2. Performance comparison based on NOI, NOF, and CPU time.

BT1 BT2 BT3 FR

No. Function DIM Initial NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT NOI NOF CPUT

1 QUARTICM 100 (11,. . .,11) 4 101 0.002562 *** *** *** *** *** *** 17 108 0.00045
2 QUARTICM 1000 (11,. . .,11) *** *** *** 4 ## 0.00287 6 202 0.00248 18 122 0.000572
3 BIGGSB1 2 (3,3) 1 3 0.002401 1 3 0.00294 1 3 0.00303 1 3 0.002224
4 BIGGSB1 2 (11,11) 1 3 0.002209 1 3 0.00192 1 3 0.00164 1 3 0.002617
5 QUADRATIC QF 2 (0.01,0.01) 2 4 0.002074 2 4 0.0038 2 4 0.00349 2 4 0.00311
6 QUARTC 100 (11,. . .,11) 4 101 0.010275 *** *** *** *** *** *** 17 108 0.011307
7 EXT PENALTY 8000 (1,1,. . .,1) *** *** *** *** *** *** 3 30 0.00287 *** *** ***
8 DIAGONAL 6 1000 (0.5,. . .,0.5) 5 33 0.017629 5 32 0.02154 *** *** *** 11 12 0.003807
9 DIAGONAL 6 10,000 (0.5,. . .,0.5) 5 56 0.05131 *** *** *** *** *** *** *** *** ***

10 DIAGONAL 6 50,000 (0.5,. . .,0.5) 3 33 0.13378 *** *** *** 4 58 0.23391 *** *** ***
11 EXT DENSCHNB 10,000 (1,1,. . .,1) 1 3 0.001311 1 3 0.00078 1 3 0.00074 1 3 0.00144
12 EXT DENSCHNB 50,000 (1,1,. . .,1) 1 3 0.00241 1 3 0.00282 1 3 0.00293 1 3 0.002363
13 EXT DENSCHNB 100,000 (1,1,. . .,1) 1 3 0.005923 1 3 0.00398 1 3 0.00579 1 3 0.005875
14 MATYAS 2 (1,1) 6 17 0.001374 6 17 0.00073 6 17 0.00078 7 36 0.000423
15 MATYAS 2 (0.5,0.5) 6 17 0.00052 6 17 0.00083 6 17 0.00059 7 36 0.000422
16 BRENT 2 (11,11) 1 3 0.000396 1 3 0.0004 1 3 0.00049 1 3 0.00071
17 BRENT 2 (13,13) 1 3 0.000602 1 3 0.00068 1 3 0.00045 1 3 0.000803
18 BRENT 2 (3,3) 1 3 0.000679 1 3 0.00037 1 3 0.00054 1 3 0.000375
19 Rotated Ellipse 2 2 (0.5, -1) 13 21 0.001451 13 21 0.00137 13 21 0.00127 10 17 0.000349
20 Rotated Ellipse 2 2 (5,-5) 1 3 0.000438 1 3 0.00044 1 3 0.00056 1 3 0.000501
21 DIAGONAL 1 2 (1,1) 13 24 0.005212 12 19 0.00367 12 20 0.00372 15 23 0.003264
22 DIAGONAL 2 2 (1,1) 14 19 0.003093 9 12 0.00236 10 13 0.00229 12 13 0.00164
23 Aluffi-Pentini 2 (1,1) 5 8 0.000786 5 8 0.00073 5 8 0.00119 6 10 0.000516
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The figures indicate that the proposed algorithms outperformed the classical FR
algorithm based on the number of iterations and function evaluation. This shows that
the new methods are ranked out of the FR method, thus competing favorably with the
existing method.

5. Conclusions

In conclusion, we have developed a new modified conjugate gradient formula and
introduced three new conjugate gradient methods, BT1, BT2, and BT3, which propose
different options for the conjugacy parameter. The new choices are designed to enhance
image processing tasks, particularly in image restoration applications. By employing Wolfe
line search conditions, we established the global convergence properties of these new
methods. Our comprehensive simulation studies demonstrated that the BT1, BT2, and BT3
methods significantly reduce the number of iterations and function evaluations required,
thus improving the computational efficiency of the methods on unconstrained optimization
problems. Moreover, these methods were further shown to effectively restore image quality,
surpassing the performance of the traditional conjugate gradient method.

The results highlight the potential of BT1, BT2, and BT3 methods to advance the field
of image processing. Their ability to achieve higher accuracy with less computational effort
makes them valuable tools for practitioners and researchers equally. Future work will focus
on further optimizing these methods and exploring their application to a broader range of
image processing challenges.
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