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Abstract: In this paper, the Fibonacci sequence, renowned for its significance across various fields, its
ability to illuminate numerical concepts, and its role in uncovering patterns in mathematics and nature,
forms the foundation of this research. This study introduces innovative concepts of weighted density,
weighted statistical summability, weighted statistical convergence, and weighted statistical Cauchy,
uniquely defined via the Fibonacci sequence and modulus functions. Key theorems, relationships,
examples, and properties substantiate these novel principles, advancing our comprehension of
sequence behavior. Additionally, we extend the notion of statistical cluster points within a broader
framework, surpassing traditional definitions and offering deeper insights into convergence in
a statistical context. Our findings in this paper open avenues for new applications and further
exploration in various mathematical fields.
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1. Introduction

The concept of convergence plays a pivotal role, providing foundational understand-
ing in various branches of mathematics. The classical notions of convergence have been
thoroughly explored and widely applied across a multitude of mathematical areas. How-
ever, these classical methods often fail to capture the more complex behaviors of sequences
in mathematics. To address these limitations, the concept of statistical convergence was
proposed. This idea was first independently put forward by Fast [1] and Steinhaus [2] in
close succession. The idea behind statistical convergence can also be traced back to earlier
work, specifically in [3], where the notion of almost convergence was discussed. This
earlier concept has since been shown to be equivalent to what is now known as statistical
convergence. Let Ξ ⊂ N (the set of natural numbers). Then, the natural density of Ξ is
denoted as δ(Ξ) and is formally defined by

δ(Ξ) = lim
ν→∞

1
ν
|{λ ≤ ν : λ ∈ Ξ}|,
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if the limit exists, in which |{λ ≤ ν : λ ∈ Ξ}| represents the count of elements in Ξ that are
less than or equal to ν (see [4]).

A sequence T = (Tk) is defined to be statistically convergent to T0 if the set
{k ∈ N : |Tk −T0| ≥ ϱ} has a natural density zero for all ϱ > 0, that is,

lim
ν→∞

1
ν
|{k ≤ ν : |Tk −T0| ≥ ϱ}| = 0.

Maddox [5] broadened the scope of this concept to include sequences within Hausdorff
locally convex topological vector spaces. Kolk [6] initiated the examination of its relevance
to Banach space theory. In [7], the researchers identified a notable link between statistical
convergence and various classical properties. They specifically characterized Banach spaces
with separable duals in a unique way that is not possible through conventional convergence
methods. Recent studies on this concept can be found in references [8–10].

Karakaya and Chishti [11] initially defined weighted statistical convergence, and Mur-
saleen et al. [12] later refined the concept. Recently, Ghosal [13] updated and clarified the
framework of weighted statistical convergence.

Let µ = (µk) be a sequence of non-negative numbers such that Mν =
ν

∑
k=0

µk → ∞ as

ν → ∞ and µ0 > 0.
Let Ξ ∈ N. A weighted density of Ξ is defined by

δN(Ξ) = lim
ν→∞

1
Mν

|{λ ≤ Mν : λ ∈ Ξ}|,

provided the limit exists.
A sequence T = (Tk) is defined as weighted statistically convergent to T0 if for every

ϱ > 0,

lim
ν→∞

1
Mν

|{k ≤ Mν : µk|Tk −T0| ≥ ϱ}| = 0.

A Fibonacci sequence, as described in [14], is a sequence in which each term results
from adding the two previous terms and follows the recurrence relation fν = fν−1 + fν−2
for ν ≥ 2. Consequently, the sequence begins as follows:

( fν) = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .).

Fibonacci numbers possess several fundamental characteristics, including

ν

∑
k=0

fk = fν+2 − 1, ν ∈ N,

∑
k

1
fk

converges,

fν−1 fν+1 − f 2
ν = (−1)ν+1, ν ≥ 1 (Cassinis formula),

lim
ν→∞

fν+1

fν
=

√
5 + 1
2

= ρ (Golden ratio).

Kara and Basarir [15] were the pioneers in incorporating the Fibonacci sequence into
sequence space theory. Basarir et al. [16] developed the Fibonacci difference sequence
spaces, denoted as c0

(
F̂
)

and c
(
F̂
)

, in which c0 and c denote the paces of null and
convergent sequences, respectively, i.e.,

c0

(
F̂
)
=

{
T = (Tk) : lim

k→∞
F̂k(T ) = 0

}
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and

c
(
F̂
)
=

{
T = (Tk) : lim

k→∞
F̂k(T ) = T0 for some number T0

}
,

in which F̂k(T ) represents the F̂−transform of (Tk), defined as

F̂k(T ) =


f0
f1

T0 = T0, k = 0,

fk
fk+1

Tk −
fk+1

fk
Tk−1, k ≥ 1.

Further details and uses concerning the use of the Fibonacci sequence are available
in [17–20].

The concept of a modulus function was first outlined in [21]. A function Φ : [0, ∞) →
[0, ∞) is considered a modulus function (or simply, a modulus) if it satisfies the follow-
ing criteria:

1. Φ(x) = 0 ⇔ x = 0;
2. Φ(x1 + x2) ≤ Φ(x1) + Φ(x2) for every x1, x2 ∈ [0, ∞);
3. Φ is continuous from the right at 0;
4. Φ is increasing.

This type of function can exhibit either unbounded or bounded. For example, Φ(x) = xq,
q ∈ (0 , 1], exemplifies an unbounded modulus, while Φ(x) = x

x+1 is an instance of a
bounded modulus. We refer to F(un.) and F(boun.) as the collections of all unbounded and
bounded modulus functions, respectively, in this study. In the context of sequence spaces,
modulus functions serve as a crucial tool for defining and analyzing various types of con-
vergence and summability. Various contributors have formulated and established different
sequence spaces through the use of modulus functions, leveraging them to introduce and
develop a diverse array of sequence spaces, thereby making significant contributions to the
field (for an example, see [22–26]).

The primary results of this study include the development of novel definitions for
weighted Φ-Fibonacci statistical summability, weighted Φ-Fibonacci statistical convergence,
and weighted Φ-Fibonacci statistical Cauchy. Furthermore, we extend the concepts of
weighted Fibonacci Φ-statistical limit points and weighted Fibonacci Φ-statistical cluster
points. In the context of this research, the motivation for using the Fibonacci structure
lies in its particular appropriateness for extending classical concepts of convergence and
summability. By leveraging its recursive and weighted properties, we introduce novel
definitions that offer a richer perspective on sequence behavior. This approach not only
generalizes traditional convergence methods but also bridges them with naturally occurring
patterns, making this study more intuitive and widely applicable. Thus, the Fibonacci
sequence serves as a natural and mathematically elegant basis for advancing the theoretical
framework of weighted statistical convergence and summability.

This paper is organized as follows: In Section 2, we present the main definitions,
foundational concepts, and theorems that form the basis of our study. Section 3 introduces
and examines the concepts of weighted Fibonacci Φ-statistical convergence and weighted
Fibonacci Φ-statistical cluster points, including a detailed analysis of their properties and
implications. Finally, the conclusion summarizes the key results, highlights the contribu-
tions of this work, and suggests potential directions for future research in related fields.

2. Main Section

Definition 1. Let Φ ∈ F(un.) and Ξ ∈ N. A weighted Φ−density of Ξ is defined by

δΦ
N(Ξ) = lim

ν→∞

1
Φ(Mν)

Φ(|{λ ≤ Mν : λ ∈ Ξ}|),

provided the limit exists.
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Definition 2. Let Φ ∈ F(un.). For a sequence T = (Tk), we set

tν

[
F̂ (T )

]
=

1
Mν

ν

∑
k=0

µkF̂k(T ), n = 0, 1, 2, . . . .

Then, it is said that the sequence T is weighted Φ−Fibonacci statistically summable based on
the sequence (µk) (or concisely,

[
F̂SΦ

tk

(
N, µk

)]
−summable) to T0 if

lim
ν→∞

1
Φ(ν)

Φ
(∣∣∣{k ≤ ν :

∣∣∣tk[F̂ (T )
]
−T0

∣∣∣ ≥ ϱ
}∣∣∣) = 0.

In this context, we state
[
F̂SΦ

tk

(
N, µk

)]
− lim Tk = T0. Throughout this study, the class of

all
[
F̂SΦ

tk

(
N, µk

)]
−summable sequences is denoted by

[
F̂SΦ

tk

(
N, µk

)]
, that is,[

F̂SΦ
tk

(
N, µk

)]
=
{

T :
[
F̂SΦ

tk

(
N, µk

)]
− lim Tk = T0 for some number T0

}
.

Definition 3. A sequence T = (Tk) is said to be weighted Fibonacci convergent (in short,[
F̂
(

N, µk
)]
−convergent) to T0 if lim

k→∞
µk

∣∣∣F̂k(T )−T0

∣∣∣ = 0.

Definition 4. Let Φ ∈ F(un.). Then, a sequence T = (Tk) is defined to be weighted Φ−Fibonacci

statistically convergent (or concisely,
[
F̂SΦ(N, µk

)]
−convergent) to

T0 if δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
})

= 0 for every ϱ > 0, i.e.,

lim
ν→∞

1
Φ(Mν)

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣) = 0.

In this instance, we state
[
F̂SΦ(N, µk

)]
− limTk = T0. The set of all

[
F̂SΦ(N, µk

)]
−convergent

sequences will be denoted by
[
F̂SΦ(N, µk

)]
, that is,[

F̂SΦ(N, µk
)]

=
{

T :
[
F̂SΦ(N, µk

)]
− lim Tk = T0 for some number T0

}
.

Theorem 1. Let Φ ∈ F(un.) and T = (Tk) be a sequence. If T is
[
F̂SΦ(N, µk

)]
−convergent

to T0 and there exists U > 0 such that µk

∣∣∣F̂k(T )−T0

∣∣∣ ≤ U for all k ∈ N, then T is[
F̂SΦ

tk

(
N, µk

)]
−summable to T0; however, the converse is not generally correct.

Proof. Define the sets Ξ(Mν, ϱ) =
{

k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}

and Ξc(Mν, ϱ) ={
k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ < ϱ
}

. Since T is
[
F̂SΦ(N, µk

)]
−convergent to T0,

δΦ
N

({
k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
})

= 0.
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So, we have

∣∣∣tk[F̂ (T )
]
−T0

∣∣∣ = ∣∣∣∣∣ 1
Mν

ν

∑
k=1

µkF̂k(T )−T0

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

Mν

ν

∑
k=1

k∈Ξ(Mν ,ϱ)

µk

(
F̂k(T )−T0

)
+

1
Mν

ν

∑
k=1

k∈Ξc(Mν ,ϱ)

µk

(
F̂k(T )−T0

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

Mν

ν

∑
k=1

k∈Ξ(Mν ,ϱ)

µk

(
F̂k(T )−T0

)∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

1
Mν

ν

∑
k=1

k∈Ξc(Mν ,ϱ)

µk

(
F̂k(T )−T0

)∣∣∣∣∣∣∣∣
≤ 1

Mν

ν

∑
k=1

k∈Ξ(Mν ,ϱ)

µk

∣∣∣F̂k(T )−T0

∣∣∣+ 1
Mν

ν

∑
k=1

k∈Ξc(Mν ,ϱ)

µk

∣∣∣F̂k(T )−T0

∣∣∣
≤ U

Mν

∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣+ 1

Mν

ν

∑
k=1

k∈Ξc(Mν ,ϱ)

ϱ

=
U
Mν

∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣

+
ϱ

Mν

∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ < ϱ
}∣∣∣→ 0 + ϱ

as ν → ∞. That is, tk
[
F̂ (T )

]
→ T0. So, for any ϱ > 0, there exists n0 ∈ N such that∣∣∣tk[F̂ (T )

]
−T0

∣∣∣ < ϱ for k ≥ n0. It follows that the set
{

k ∈ N :
∣∣∣tk[F̂ (T )

]
−T0

∣∣∣ ≥ ϱ
}

is
finite and so that

lim
ν→∞

1
Φ(ν)

Φ
(∣∣∣{k ≤ ν :

∣∣∣tk[F̂ (T )
]
−T0

∣∣∣ ≥ ϱ
}∣∣∣) = 0.

Therefore, T is
[
F̂SΦ

tk

(
N, µk

)]
−summable to T0. To illustrate the converse, we present

the following example:

Example 1. Define the sequence T = (Tk) by

F̂k(T ) =


1 if k = u2 − u, u2 − u + 1, . . . , u2 − 1;

−u if k = u2, u = 2, 3, 4, . . . ;

0 otherwise.

Then,

tν

[
F̂ (T )

]
=

1
1 + ν

ν

∑
k=0

F̂k(T ) =


r+1
ν+1 if r = 0, 1, . . . , u − 1; ν = u2 − u + r; u = 2,3,4, . . . ;

0 otherwise.

Taking Φ(x) = x, then lim
ν→∞

tν

[
F̂ (T )

]
= 0 and thus

[
F̂SΦ

tk

(
N, µk

)]
− lim Tk = 0, i.e., T

is
[
F̂SΦ

tk

(
N, µk

)]
−summable to 0. However, T is not

[
F̂SΦ(N, µk

)]
−convergent to 0.
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The following theorem provides a weighted Φ−Fibonacci statistical formulation of
the well-established APO property [27].

Theorem 2. Let Φ ∈ F(un.) and (Ξi) ⊂ P(N) be a sequence of sets such that δΦ
N(Ξi) = 0 for

any i ∈ N. Then, there is a sequence (Υi) ⊂ P(N) such that Ξi\Υi is finite and Υi ⊂ Ξi for every

i ∈ N, and δΦ
N

( ⋃
i∈N

Υi

)
= 0.

Proof. Consider the sequence of sets
(

Ξ
′
i

)
given by Ξ

′
1 = Ξ1, Ξ

′
2 = Ξ2\Ξ1, Ξ

′
3 = Ξ3\(Ξ1 ∪ Ξ2),

. . . . It is clear that these sets are mutually disjoint. We observe that δΦ
N

(
j⋃

i=1
Ξ

′
i

)
= 0 for

every j ∈ N. Therefore, there is a strictly increasing sequence
(
k j
)

of natural numbers
such that

1
Φ(Mν)

Φ

(
Mν

∑
i=1

j

∑
m=1

χΞ′
m
(i)

)
≤ 1

j

whenever Mν ≥ k j. For every Mν ≥ k1, let qν ∈ N such that kqν ≤ Mν < kqν+1, it is
obvious that qν → ∞ as ν → ∞. For every m ∈ N, we define Υ

′
m = Ξ

′
m\{1, 2, . . . , km}. Let

us take Υ =
⋃

i∈N
Υ

′
i. Then, we have

lim
ν

sup
1

Φ(Mν)
Φ

(
Mν

∑
i=1

χΥ(i)

)
= lim

ν
sup

1
Φ(Mν)

Φ

(
Mν

∑
i=1

∞

∑
m=1

χΥ′
m
(i)

)

= lim
ν

sup
1

Φ(Mν)
Φ

(
Mν

∑
i=1

qν

∑
m=1

χΥ′
m
(i)

)

≤ lim
ν

sup
1

Φ(Mν)
Φ

(
Mν

∑
i=1

qν

∑
m=1

χΞ′
m
(i)

)

≤ lim
ν

sup
1
qν

= 0,

where the second equality arises from the condition that if m > qν, it follows that min Υ
′
m >

km ≥ kqν+1 > ν. So, χΥ′
m
(i) = 0 if i ≤ Mν and so that

∞
∑

m=qν+1
χΥ′

m
(i). To summarize, we

deduce that

lim
ν

1
Φ(Mν)

Φ

(
Mν

∑
i=1

χΥ(i)

)
= 0,

i.e., δΦ
N(Υ) = 0. Now, take Υ

′
1 = Υ1, Υ

′
1 ∪ Υ

′
2 = Υ2, Υ

′
1 ∪ Υ

′
2 ∪ Υ

′
3 = Υ3, . . . . Therefore,

δΦ
N

( ⋃
i∈N

Υi

)
= 0 and it is clear that the family (Υi) fulfills all the requested property.

Theorem 3. Let Φ, Ψ ∈ F(un.) and T = (Tk) be a sequence.

1. If

lim
x→∞

Φ(x)
Ψ(x)

> 0, (1)

and T is
[
F̂SΨ(N, µk

)]
−convergent, then T is

[
F̂SΦ(N, µk

)]
−convergent and the in-

clusion may be strict, that is,
[
F̂SΨ(N, µk

)]
⫋
[
F̂SΦ(N, µk

)]
.

2. If

0 < lim
x→∞

Φ(x)
Ψ(x)

= β < ∞, (2)
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then T is
[
F̂SΨ(N, µk

)]
−convergent if and only if it is

[
F̂SΦ(N, µk

)]
−convergent, that

is,
[
F̂SΨ(N, µk

)]
=
[
F̂SΦ(N, µk

)]
.

Proof. Part (1). Suppose that (1) holds and T is
[
F̂SΨ(N, µk

)]
−convergent to T0. For any

ϱ > 0, there exists n0 ∈ R such that

(α − ϱ)Ψ(x) < Φ(x) < (α + ϱ)Ψ(x)

for x > n0 (we may choose ϱ > 0 so small that α − ϱ > 0). So, we obtain the inequality
Φ(x) < 2αΨ(x) if x > n0. Now, we get

Ψ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣) ≥ 1

2α
Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

or

Ψ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

Ψ(Mν)

≥ 1
2α

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

Φ(Mν)

Φ(Mν)

Ψ(Mν)
, (3)

if
∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣ > n0 (so ν > n0). Taking the limits as ν → ∞ on

both sides of the inequality (3), we get

lim
ν→∞

1
Φ(Mν)

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣) = 0.

Therefore, T is
[
F̂SΦ(N, µk

)]
−convergent to T0. To show that[

F̂SΨ(N, µk
)]

⫋
[
F̂SΦ(N, µk

)]
.

Let us consider the sequence T defined by

F̂k(T ) =


2k

3k+1 , if k ̸= ν2,

k, otherwise.
ν ∈ N.

Then, T is
[
F̂SΦ(N, µk

)]
−convergent but it is not

[
F̂SΨ(N, µk

)]
−convergent if we

take Ψ(x) = log(x + 1) and Φ(x) = 3
√

x.
Part (2). Given any ϱ > 0. Then, we have the following equality:

Ψ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

Ψ(Mν)

=
Ψ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

·
Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

Φ(Mν)
· Φ(Mν)

Ψ(Mν)
. (4)
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Since (2) holds, then lim
x→∞

Ψ(x)
Φ(x) =

1
β . Using this fact from (4), we have

lim
ν→∞

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

Φ(Mν)
= 0

⇔ lim
ν→∞

Ψ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}∣∣∣)

Ψ(Mν)
= 0. (5)

Therefore, T is
[
F̂SΨ(N, µk

)]
−convergent if and only if it is

[
F̂SΦ(N, µk

)]
− conver-

gent and so that
[
F̂SΨ(N, µk

)]
=
[
F̂SΦ(N, µk

)]
.

Theorem 4. Let Φ ∈ F(un.) and T = (Tk) be a sequence.

1. If T is
[
F̂SΦ(N, µk

)]
−convergent, then it is

[
F̂S
(

N, µk
)]
− convergent.

2. If lim
x→∞

Φ(x)
x , then a sequence T is

[
F̂SΦ(N, µk

)]
− convergent if and only if it is[

F̂S
(

N, µk
)]
− convergent.

Proof. The proof of part (1) is derived directly from the first part of the proof of Theorem 3
by considering the specific case where Ψ(x) = x. Likewise, the proof of part (2) is derived by
utilizing the second part of the proof of Theorem 3 with the assumption that Ψ(x) = x.

Definition 5. Let Φ ∈ F(un.). Then, a sequence T = (Tk) is defined to be weighted Φ−Fibonacci

statistically Cauchy (or briefly,
[
F̂SΦ(N, µk

)]
−Cauchy) if there exists J ∈ N such that set{

k ∈ N : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ ≥ ϱ

}
has φ−weighted density zero for every ϱ > 0, i.e.,

lim
ν→∞

1
Φ(Mν)

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ ≥ ϱ

}∣∣∣) = 0.

The set of all
[
F̂SΦ(N, µk

)]
−Cauchy sequences will be represented by

[
F̂SCΦ(N, µk

)]
.

That is,[
F̂SCΦ(N, µk

)]
=

{
T : ∃J ∈ N, lim

ν→∞

1
Φ(Mν)

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ ≥ ϱ

}∣∣∣) = 0
}

.

Definition 6. Let Φ ∈ F(un.), Ξ be an infinite subset of N and T = (Tk) be a sequence.

1. If δ
N(Ξ) = 0, then T = (Tk)k∈Ξ is defined to be a weighted thin subsequence of T ;

otherwise, it is defined to be a weighted non-thin subsequence of T .
2. If δΦ

N(Ξ) = 0, then T = (Tk)k∈Ξ is defined to be a Φ−weighted thin subsequence of T ;
otherwise, it is defined to be a Φ−weighted non-thin subsequence of T .

Theorem 5. Let Φ ∈ F(un.) and T = (Tk) be a
[
F̂SΦ(N, µk

)]
− Cauchy sequence which has a

Φ− weighted convergent non-thin subsequence. Then, T is
[
F̂SΦ(N, µk

)]
− convergent.

Proof. Let Ξ be the set of indices of the weighted Φ−non-thin subsequence of T . Since T

is a
[
F̂SΦ(N, µk

)]
−Cauchy, for each ϱ > 0, there exists J ∈ N such that

δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ ≥ ϱ

3

})
,
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that is,

lim
ν→∞

1
Φ(Mν)

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ ≥ ϱ

3

}∣∣∣) = 0.

We set Ξ∗ =
{

k ∈ N : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ ≥ ϱ

3

}
. Then, (N\Ξ∗) ∩ Ξ in infinite; oth-

erwise, we can write Ξ = (Ξ ∩ Ξ∗) ∪ ((N\Ξ∗) ∩ Ξ). Since (Ξ ∩ Ξ∗) ⊂ Ξ∗, then we have
δΦ

N(Ξ ∩ Ξ∗) ≤ δΦ
N(Ξ

∗). This means δΦ
N(Ξ ∩ Ξ∗) = 0 since δΦ

N(Ξ
∗) = 0. And, δΦ

N((N\Ξ∗)∩ Ξ) ̸=
0 because Ξ would have zero weighted Φ−density, a contradiction. So, for some i ∈
(N\Ξ∗) ∩ Ξ, µi

∣∣∣F̂i(T )−T0

∣∣∣ ≤ ϱ
3 and µi

∣∣∣F̂i(T )− F̂J(T )
∣∣∣ ≤ ϱ

3 . Since∣∣∣F̂J(T )−T0

∣∣∣ ≤ ∣∣∣F̂J(T )− F̂i(T )
∣∣∣+ ∣∣∣F̂i(T )−T0

∣∣∣,
we have

{
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ > ϱ
}

⊂
{

k ∈ N : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ > ϱ

3

}
. This im-

plies that

δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ > ϱ
})

≤ δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ > ϱ

3

})
.

Since δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )− F̂J(T )
∣∣∣ > ϱ

3

})
, then δΦ

N

({
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ >
ϱ}) = 0 and the sequence T is

[
F̂SΦ(N, µk

)]
−convergent to T0.

Theorem 6. Let Φ ∈ F(un.) and T = (Tk) be a sequence. If there exists an
[
F̂SΦ(N, µk

)]
−

convergent sequence ζ = (ζk) such that δΦ
N

({
k ∈ N : F̂k(T ) ̸= F̂k(ζ)

})
= 0. Then, T is[

F̂SΦ(N, µk
)]
− convergent.

Proof. Suppose that ζ is
[
F̂SΦ(N, µk

)]
−convergent to T0. For any ϱ > 0,

{
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ > ϱ
}
⊂
{

k ∈ N : F̂k(T ) ̸= F̂k(ζ)
}
∪
{

k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ < ϱ
}

.

Since ζ is
[
F̂SΦ(N, µk

)]
−convergent to T0, this set comprises a fixed number of

integers, which we denote as e = e(ϱ). Since Φ ∈ F(un.), then

1
Φ(Mν)

Φ
(∣∣∣{k ≤ Mν : µk

∣∣∣F̂k(T )−T0

∣∣∣ > ϱ
}∣∣∣)

≤ 1
Φ(Mν)

Φ
(∣∣∣{k ≤ Mν : F̂k(T ) ̸= F̂k(ζ)

}∣∣∣)+ Φ(e)
Φ(Mν)

. (6)

Since 1
Φ(Mν)

Φ
(∣∣∣{k ≤ Mν : F̂k(T ) ̸= F̂k(ζ)

}∣∣∣) → 0 and Φ(e)
Φ(Mν)

→ 0 and ν → ∞,

then T is
[
F̂SΦ(N, µk

)]
− convergent to T0.

Theorem 7. Let Φ, Ψ ∈ F(un.).

1. If (1) holds, then a sequence T = (Tk) is
[
F̂SΨ(N, µk

)]
− Cauchy if it is

[
F̂SΦ(N, µk

)]
−

Cauchy.
2. If (2) holds, then a sequence T = (Tk) is

[
F̂SΨ(N, µk

)]
− Cauchy if and only if it is[

F̂SΦ(N, µk
)]
− Cauchy.

Proof. The proof adopts the same techniques as shown in Theorem 2.

Based on Theorem 7, we derive the following result.
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Corollary 1. Let Φ ∈ F(un.).

1. If T is
[
F̂SΦ(N, µk

)]
− Cauchy, then it is

[
F̂S
(

N, µk
)]
− Cauchy.

2. If lim
x→∞

Φ(x)
x , then a sequence T is

[
F̂SΦ(N, µk

)]
− Cauchy if and only if it is

[
F̂S
(

N, µk
)]
−

Cauchy.

3. Weighted Fibonacci Φ−Statistical Cluster Points

Definition 7. Let Φ ∈ F(un.) and T = (Tk) be a sequence.

1. A number T0 is defined to be a weighted Fibonacci limit point of T if there exists a subsequence

of T which is weighted Fibonacci convergent to T0. In this context, F̂
[

L
N(T )

]
represents

the set of all weighted Fibonacci limit points of T .
2. A number T0 is defined to be a weighted Fibonacci statistical limit point of T if there

exists a weighted non-thin subsequence of T which is weighted Fibonacci convergent to T0.
F̂S
[
Λ

N(T )
]

represents the set of all weighted statistical limit points of T .

3. A number T0 is defined to be a weighted Fibonacci Φ−statistical limit point of T if there
exists a weighted Φ−non-thin subsequence of T which is weighted Fibonacci convergent to
T0. F̂S

[
ΛΦ

N(T )
]

represents the set of all weighted Φ−statistical limit points of T .

4. A number T0 is defined to be a weighted Fibonacci statistical cluster point of T if for every

ϱ > 0, δ
N

({
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ < ϱ
})

̸= 0. F̂S
[
Γ

N(T )
]

represents the set of all
weighted Fibonacci statistical cluster points of T .

5. A number T0 is defined to be a weighted Fibonacci Φ−statistical cluster point of T if for

every ϱ > 0, δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ < ϱ
})

̸= 0. F̂S
[
ΓΦ

N(T )
]

represents the set
of all weighted Fibonacci Φ−statistical cluster points of T .

Theorem 8. Let Φ ∈ F(un.) and T = (Tk) be a sequence.

1. F̂S
[
Λ

N(T )
]
⊂ F̂S

[
ΛΦ

N(T )
]
.

2. F̂S
[
Γ

N(T )
]
⊂ F̂S

[
ΓΦ

N(T )
]
.

3. F̂S
[
ΛΦ

N(T )
]
⊂ F̂S

[
ΓΦ

N(T )
]
.

4. F̂S
[
Λ

N(T )
]
⊂ F̂S

[
Γ

N(T )
]
.

5. F̂S
[
ΓΦ

N(T )
]
⊂ F̂

[
L

N(T )
]
.

Proof. Since
[
F̂SΦ(N, µk

)]
−convergence implies

[
F̂S
(

N, µk
)]
−convergence by the first

part of Theorem 4, then the proofs of part (1) and part (2) follow immediately.
(3) To prove F̂S

[
ΛΦ

N(T )
]
⊂ F̂S

[
ΓΦ

N(T )
]
, let T0 ∈ F̂S

[
ΛΦ

N(T )
]
. Then, there exists

an infinite Υ ⊂ N such that δΦ
N(Υ) ̸= 0 and lim

k∈Υ
µk|Tk −T0| = 0. For any ϱ > 0, the set

Ξ(ϱ) =
{

k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}

is finite. This implies that

δΦ
N(Υ\Ξ(ϱ)) ≥ δΦ

N(Υ)− δΦ
N(Ξ(ϱ)) = δΦ

N(Υ) ̸= 0.

Since Φ is increasing and Υ\Ξ(ϱ) ⊂
{

k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ < ϱ
}

, then

δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ < ϱ
})

≥ δΦ
N(Υ\Ξ(ϱ)) ̸= 0.

Thus, T0 ∈ F̂S
[
ΓΦ

N(T )
]
.

(4) The proof of this part is obtained in the case when Φ(x) = x from part (3).
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(5) To show that F̂S
[
ΓΦ

N(T )
]
⊂ F̂

[
L

N(T )
]
. Let T0 ∈ F̂S

[
ΓΦ

N(T )
]
. So, for every

i ∈ N,

δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ < 1
i

})
̸= 0.

Consider Ξ(i) =
{

k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ < 1
i

}
which is an infinite set of natural

numbers and Ξ(i + 1) ⊂ Ξ(i) for each i ∈ N. Now, we can take an increasing sequence
k1 < k2 < . . . with ki ∈ Ξ(i). If ν ∈ N and ν ≥ i, then

µkν

∣∣∣F̂kν
(T )−T0

∣∣∣ < 1
ν
≤ 1

i
.

So, (Tkν
)ν is a weighted Fibonacci convergent subsequence of T . Therefore,

F̂S
[
ΓΦ

N(T )
]
⊂ F̂

[
L

N(T )
]
.

Example 2. Consider the set Y = {1, 4, 9, 16, . . .}, (Mν) = (1), Y(Mν) = {λ ≤ Mν : λ ∈ Y}
and Φ(x) = log(x + 1). Then, F̂S

[
Λ

N

(
χN\Y(Mν)

)]
= {1} and F̂S

[
ΛΦ

N

(
χN\Y(Mν)

)]
=

{0, 1} since δ
N(Y) = 0, δΦ

N(Y) =
1
2 and δΦ

N(N\Y) = 1. Additionally, we have

F̂S
[
ΓN

(
χN\Y(Mν)

)]
= {1} and F̂S

[
ΓΦ

N

(
χN\Y(Mν)

)]
= {0, 1}.

That is,

F̂S
[
ΛN

(
χN\Y(Mν)

)]
⫋ F̂S

[
ΛΦ

N

(
χN\Y(Mν)

)]
and

F̂S
[
ΓN

(
χN\Y(Mν)

)]
⫋ F̂S

[
ΓΦ

N

(
χN\Y(Mν)

)]
.

Let Ξ = N such that

|Ξ(Mν)| =
⌊
M

1√
log(ν+1)

ν

⌋
and let (qν) be a sequence such that qν ∈ Q for all ν ∈ N, which is defined by

Tν =


qν, if ν ∈ Ξ,

ν, if ν ∈ N\Ξ .

Since δΦ
N(Ξ) = 0, then F̂S

[
ΓΦ

N(T )
]
= ∅ while the fact that (qν) is dense in R implies that

F̂S
[

L
N(T )

]
= R.

The subsequent below of relations, which is derived from the results of Theorem 8 and
Example 2, provides a detailed examination and illustration of the relationships between
the various sets discussed.

Corollary 2. Let Φ ∈ F(un.) and T = (Tk) be a sequence. Then,

F̂S
[
Λ

N(T )
]

⫋ F̂S
[
ΛΦ

N(T )
]

⫋ ⫋

F̂S
[
Γ

N(T )
]

⫋ F̂S
[
ΓΦ

N(T )
]

⫋ F̂
[

L
N(T )

]
.



Mathematics 2024, 12, 3764 12 of 15

Theorem 9. Let Φ ∈ F(un.) and T = (Tk) be a sequence. Then,

F̂
[

LN(T )
]
=
⋃{

F̂S
[
ΓΦ

N(T )
]

: for all Φ ∈ F(un.)

}
.

Proof. Since F̂S
[
ΓΦ

N(T )
]
⊂ F̂

[
L

N(T )
]

for every modulus Φ by Theorem 8, it remains to
show that

F̂
[

LN(T )
]
=
⋃{

F̂S
[
ΓΦ

N(T )
]

: for all Φ ∈ F(un.)

}
.

Let T0 ∈ F̂
[

L
N(T )

]
. Assume that T0 /∈ F̂S

[
ΓΦ

N(T )
]

for every Φ ∈ F(un.). Then,

there is ϱΦ > 0 such that δΦ
N

({
k ∈ N : µk

∣∣∣F̂k(T )−T0

∣∣∣ < ϱΦ

})
= 0 for every Φ ∈

F(un.). From another perspective, since T0 ∈ F̂
[

L
N(T )

]
, there is an infinite subset Ξ

of N such that lim
k∈Ξ

µk|Tk −T0| = 0. This means that for every ϱ > 0, the set Υϱ ={
k ∈ Ξ : µk

∣∣∣F̂k(T )−T0

∣∣∣ ≥ ϱ
}

is finite.

Next, we need to show that there exists a function Ψ such that δΨ
N(Ξ) = 1. Define

a new modulus function Ψ
′

: N → N such that Ψ
′
(1) = 1, Ψ

′
(2) = min{ν : |ΞMν | = 2},

and for k ≥ 2, Ψ
′
(k + 1) = max

{
min

{
ν : |ΞMν | = 1 + Ψ

′
(k)
}

, 2Ψ
′
(k)− Ψ

′
(k − 1)

}
, where

|ΞMν | = |{λ ≤ Mν : λ ∈ Ξ}|. According to the construction, Ψ
′

is increasing and∣∣∣ΞΨ′
(k+1)

∣∣∣ = ∣∣∣{λ ≤ Ψ
′
(k + 1) : λ ∈ Ξ

}∣∣∣ ≥ 1 + Ψ
′
(k).

Proceed to define a function Ψ : [0, ∞) → [0, ∞) by Ψ(0) = 0. Moreover, for ν ∈ N, we
set Ψ

(
Ψ

′
(ν)
)
= ν. So, for k > Ψ

′
(2), there is ν ∈ N with Ψ

′
(Mν + 1) ≤ k ≤ Ψ

′
(Mν + 2).

This implies that

Ψ(|ΞMν |)
Ψ(Mν)

≥
Ψ
(∣∣∣ΞΨ′

(Mν+1)

∣∣∣)
Ψ
(
Ψ′(Mν + 2)

) ≥
Ψ
(

Ψ
′
(Mν) + 1

)
Ψ
(
Ψ′(Mν + 2)

) ≥
Ψ
(

Ψ
′
(Mν)

)
Ψ
(
Ψ′(Mν + 2)

) =
Mν

Mν + 2
→ 1

as ν → ∞. It fulfills that if the set Ξ ⊂ N is infinite, we can choose Ψ ∈ F(un.) such that
δΨ

N(Ξ) = 1. Therefore, δΨ
N

(
Ξ\ΥϱΨ

)
= 1 and

Ξ\ΥϱΨ =
{

ν ∈ Ξ : Mν

∣∣∣F̂ν(T )−T0

∣∣∣ < ϱΨ

}
⊂
{

ν ∈ N : Mν

∣∣∣F̂ν(T )−T0

∣∣∣ < ϱΨ

}
.

This leads to a contradiction since δΨ
N

({
ν ∈ N : Mν

∣∣∣F̂ν(T )−T0

∣∣∣ < ϱΨ

})
= 0.

Theorem 10. Let Φ ∈ F(un.), and let T = (Tk) and ζ = (ζk) be two sequences of numbers.

If δΦ
N

({
ν ∈ N : F̂ν(T ) ̸= F̂ν(ζ)

})
= 0, then F̂S

[
ΛΦ

N(T )
]

= F̂S
[
ΛΦ

N(ζ)
]

and

F̂S
[
ΓΦ

N(T )
]
= F̂S

[
ΓΦ

N(ζ)
]
.

Proof. Let T0 ∈ F̂S
[
ΛΦ

N(T )
]
. Then, there exists an infinite Υ ⊂ N such that δΦ

N(Υ) ̸= 0

and lim
k∈Υ

µk|Tk −T0| = 0. Let us take Ξ =
{

ν ∈ N : F̂ν(T ) ̸= F̂ν(ζ)
}

, where δΦ
N(Ξ) = 0.

Consider a subsequence (ζk)k∈Υ\Ξ′ of ζ which is weighted Fibonacci convergent to T0 and
is weighted Φ−non-thin. Indeed, if δΦ

N(Υ\Ξ) = 0, then

δΦ
N(Ξ ∪ Υ) = δΦ

N(Ξ ∪ (Υ\Ξ)) ≤ δΦ
N(Ξ) + δΦ

N(Υ\Ξ) = 0.
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However, Υ ⊂ Ξ ∪ Υ and δΦ
N(Υ) ̸= 0. It means that T0 ∈ F̂S

[
ΛΦ

N(ζ)
]

and the other

inclusion can be derived similarly by applying symmetry. Let T0 ∈ F̂S
[
ΓΦ

N(T )
]
. Then,

for each ϱ > 0,
δΦ

N

({
ν ∈ N : Mν

∣∣∣F̂ν(T )−T0

∣∣∣ < ϱ
})

̸= 0.

Consider Υϱ =
{

ν ∈ N : Mν

∣∣∣F̂ν(T )−T0

∣∣∣ < ϱ
}

and Θϱ =
{

ν ∈ N : Mν

∣∣∣F̂ν(ζ)−T0

∣∣∣
< ϱ}. Now, we have Υϱ\Ξ ⊂ Θϱ and so that

δΦ
N

(
Θϱ

)
≥ δΦ

N

(
Υϱ\Ξ

)
≥ δΦ

N

(
Υϱ

)
− δΦ

N(Ξ) = δΦ
N

(
Υϱ

)
̸= 0.

Thus, T0 ∈ F̂S
[
ΓΦ

N(ζ)
]

and the corresponding inclusion can be obtained through a
symmetrical argument.

Theorem 11. Let Φ ∈ F(un.) and T = (Tk) be a sequence of numbers. Then, there exists a

sequence ζ = (ζk) such that F̂
[

L
N(ζ)

]
= F̂S

[
ΓΦ

N(T )
]
, and the terms of ζ are the same as the

terms of T , except on a set of weighted Φ−density zero.

Proof. Let u ∈ F̂
[

L
N(T )

]
\F̂S

[
ΓΦ

N(T )
]

(since F̂S
[
ΓΦ

N(T )
]
⊂ F̂

[
L

N(T )
]

by Theorem 7,
then the other cases are trivial), then there exists ϱu > 0 such that

δΦ
N

({
ν ∈ N : Mν

∣∣∣F̂ν(T )− u
∣∣∣ < ϱu

})
= 0.

We have that F̂
[

L
N(T )

]
\F̂S

[
ΓΦ

N(T )
]

is separable and

F̂
[

LN(T )
]
\F̂S

[
ΓΦ

N(T )
]
=

 ⋃
u∈F̂

[
L

N
(T )

]
\F̂S

[
ΓΦ

N
(T )

] {y ∈ R : µk|u − y| < ϱ for k ∈ N}

.

By the Lindelöf property, there exists (uk)k ⊂ F̂
[

L
N(T )

]
\F̂S

[
ΓΦ

N(T )
]

such that

F̂
[

LN(T )
]
\F̂S

[
ΓΦ

N(T )
]
=

(⋃
k∈N

{
y ∈ R : µk

∣∣∣F̂k(u)− y
∣∣∣ < ϱuk

})
.

For every k ∈ N, let Ξk =
{

ν ∈ N : Mν

∣∣∣F̂ν(x)− F̂k(u)
∣∣∣ < ϱuk

}
with δΦ

N(Ξk) = 0. By

Theorem 2, there exists (Υk) ⊂ P(N) such that Ξk\Υk is finite for each k ∈ N and δΦ
N(Υ) = 0,

where Υ =
⋃

k∈N
Υk. Let us write N\Υ = {t1, t2, . . .} with t1 < t2 < . . . and define ζ = (ζk)

by

ζν =


Ttν , if ν ∈ Υ,

Tν, if ν ∈ N\Υ.

Let w ∈ F̂
[

L
N(ζ)

]
⊂ F̂

[
L

N(T )
]
. Assume that w /∈ F̂S

[
ΓΦ

N(T )
]
, then there exists

r ∈ N such that w ∈
{

y ∈ R : µr

∣∣∣F̂r(u)− y
∣∣∣ < ϱur

}
. So, there exists an infinite Θ ⊂ N\Υ

such that
(Tk)k∈Θ ⊂

{
y ∈ R : µr

∣∣∣F̂r(u)− y
∣∣∣ < ϱur

}
.
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We have that Θ ⊂ Ξm and Θ ⊂ Ξm ∩ Θ ⊂ Ξm\Υ is finite. This is a contradiction. Thus,
w ∈ F̂S

[
ΓΦ

N(T )
]

and so that w ∈ F̂
[

L
N(ζ)

]
⊂ F̂S

[
ΓΦ

N(T )
]
. The reverse inclusion is a

consequence of Theorem 10.

4. Conclusions

This research introduces the notions of weighted Φ-Fibonacci statistical summabil-
ity, weighted Φ-Fibonacci statistical convergence, and weighted Φ-Fibonacci statistical
Cauchy, along with the broader concepts of weighted Fibonacci Φ-statistical limit points
and weighted Fibonacci Φ-statistical cluster points. These new definitions provide a more
generalized framework than previously established concepts.

This paper aims to offer meaningful insights that can drive future research in related
fields. For example, the concept of double sequences examined in [28] can be extended
to introduce notions of weighted Φ-Fibonacci statistical summability, weighted Fibonacci
statistical convergence, and weighted Φ-Fibonacci statistical Cauchy for double sequences.
Such extensions not only enhance existing theoretical frameworks but also present new
directions for research and application within mathematical analysis.

Furthermore, the integration of these concepts into Korovkin-type theorems, as dis-
cussed in [29–33], offers potential for practical applications in computational mathematics.
Specifically, the use of Fibonacci-weighted approaches could aid in solving large structured
linear systems more efficiently, presenting an exciting direction for further exploration.
Future work may also explore modifications and extensions of these methods to other types
of sequences, such as lacunary or strongly summable sequences, or examine the applica-
tion of modulus functions in new mathematical areas, including sequence space analysis
and functional analysis. These possibilities underscore the versatility and wide-ranging
potential of the methods introduced in this paper.
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