
Academic Editor: Fahim K Sufi

Received: 12 December 2024

Revised: 5 January 2025

Accepted: 6 January 2025

Published: 10 January 2025

Citation: Lin, H.-W.; Ho, T.-T.; Tu,

C.-T.; Lin, H.-J.; Yu, C.-H. MeTa

Learning-Based Optimization of

Unsupervised Domain Adaptation

Deep Networks. Mathematics 2025, 13,

226. https://doi.org/10.3390/

math13020226

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

MeTa Learning-Based Optimization of Unsupervised Domain
Adaptation Deep Networks
Hsiau-Wen Lin 1,*, Trang-Thi Ho 2, Ching-Ting Tu 3,*, Hwei-Jen Lin 2,* and Chen-Hsiang Yu 4

1 Department of Information Management, Chihlee University of Technology, Taipei 220305, Taiwan
2 Department of Computer Science and Information Engineering, Tamkang University, Taipei 251301, Taiwan
3 Department of Applied Mathematics, National Chung Hsing University, Taichung 402202, Taiwan
4 Multidisciplinary Graduate Engineering, College of Engineering, Northeastern University,

Boston, MA 02115, USA; jones.yu@northeastern.edu
* Correspondence: freyah.lin@mail.chihlee.edu.tw (H.-W.L.); cttu@nchu.edu.tw (C.-T.T.);

086204@gms.tku.edu.tw (H.-J.L.)

Abstract: This paper introduces a novel unsupervised domain adaptation (UDA) method,
MeTa Discriminative Class-Wise MMD (MCWMMD), which combines meta-learning with
a Class-Wise Maximum Mean Discrepancy (MMD) approach to enhance domain adapta-
tion. Traditional MMD methods align overall distributions but struggle with class-wise
alignment, reducing feature distinguishability. MCWMMD incorporates a meta-module
to dynamically learn a deep kernel for MMD, improving alignment accuracy and model
adaptability. This meta-learning technique enhances the model’s ability to generalize
across tasks by ensuring domain-invariant and class-discriminative feature representations.
Despite the complexity of the method, including the need for meta-module training, it
presents a significant advancement in UDA. Future work will explore scalability in diverse
real-world scenarios and further optimize the meta-learning framework. MCWMMD offers
a promising solution to the persistent challenge of domain adaptation, paving the way for
more adaptable and generalizable deep learning models.

Keywords: unsupervised domain adaptation; maximum mean discrepancy (MMD);
discriminative class-wise MMD (DCWMMD); meta-learning; deep kernel; feature
distributions; domain shift; transfer learning

MSC: 68T05

1. Introduction
The success of deep learning relies heavily on large annotated datasets. However,

annotating a substantial number of images with object content is a time-consuming and
labor-intensive task. The advent of Generative Adversarial Networks (GANs) [1] has
partially alleviated this issue, facilitating advancements in deep learning by enabling the
creation of synthetic data. Despite this progress, existing learning algorithms often struggle
with limited generalization across different datasets—a challenge known as domain adapta-
tion (DA). Traditional recognition tasks typically assume that training data (source domain)
and testing data (target domain) share a common distribution. In practice, this assumption
rarely holds, as test data can come from diverse sources and modalities, leading to poor
generalization and the phenomenon known as domain shift.

Various methods have been proposed to tackle domain adaptation [2–6], focusing
mainly on aligning feature distributions between domains by measuring and minimizing
differences. Another approach in UDA leverages meta-learning to generalize across new,

Mathematics 2025, 13, 226 https://doi.org/10.3390/math13020226

https://doi.org/10.3390/math13020226
https://doi.org/10.3390/math13020226
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3705-2416
https://doi.org/10.3390/math13020226
https://www.mdpi.com/article/10.3390/math13020226?type=check_update&version=2

Mathematics 2025, 13, 226 2 of 23

unlabeled domains by learning adaptable representations. For instance, Vettoruzzo et al. [7]
proposed a meta-learning framework that optimizes model parameters to achieve effective
adaptation across domains with minimal labeled data, showing strong adaptability even
with limited unlabeled test samples. This method emphasizes efficient domain adaptation,
leveraging knowledge from prior domains to improve generalization under distribution
shifts. Recent advancements in deep unsupervised domain adaptation (UDA) have in-
troduced more sophisticated strategies. For instance, a comprehensive 2022 review [8]
examined developments such as feature alignment, self-supervision, and representation
learning, highlighting current trends and future directions. A 2023 approach employing
domain-guided conditional diffusion models [9] demonstrated enhanced transfer per-
formance by generating synthetic samples for the target domain, thus bridging domain
gaps more effectively. Additionally, cross-domain contrastive learning [10] has shown
promise in promoting domain-invariant features by minimizing feature distances across
domains, and manifold-based techniques like Discriminative Manifold Propagation [11]
have leveraged probabilistic criteria and metric alignment to achieve both transferability
and discriminability.

Domain-Adversarial Neural Networks (DANNs) [4] introduced adversarial training
with a gradient reversal layer, laying the groundwork for adversarial domain adaptation
approaches. ADDA (Adversarial Discriminative Domain Adaptation) [5] further improved
this framework by incorporating untied weight sharing for flexible feature alignment. Deep
Adaptation Networks (DANs) [6] employed Maximum Mean Discrepancy (MMD) for
kernel-based feature alignment, establishing an influential precedent in UDA. Techniques
such as CyCADA [12] combined pixel-level and feature-level adaptations to comprehen-
sively mitigate domain shifts, while MCD (Maximum Classifier Discrepancy) [13] used
classifier-based discrepancy maximization to enhance target domain adaptation.

A significant challenge in domain adaptation lies in effectively measuring these dis-
tances [2,14]. Classical metrics such as Quadratic [15], Kullback–Leibler [16], and Maha-
lanobis [17] distances often lack flexibility and fail to generalize across models. Maximum
Mean Discrepancy (MMD) [18], which embeds distribution metrics within a Reproduc-
ing Kernel Hilbert Space, has gained traction due to its robust theoretical foundation
and application in various settings, such as transfer learning [19], kernel Bayesian infer-
ence [20], approximate Bayesian computation [21], and MMD GANs [22]. Despite its
simplicity, selecting the optimal bandwidth for Gaussian kernels in MMD remains chal-
lenging. Liu et al. [23] addressed this by introducing a parameterized deep kernel, known
as Maximum Mean Discrepancy with a Deep Kernel (MMDDK), which adapts kernel
parameters for more precise domain alignment.

MMD effectively aligns overall domain distributions but struggles with precise class-
wise feature alignment. Long et al. [24] addressed this by proposing Class-Wise Maximum
Mean Discrepancy (CWMMD), which maps samples from both domains into a shared space
and calculates the MMD for each category, summing them to derive the CWMMD. However,
these approaches often involve linear transformations, which may not capture complex
relationships needed for deeper alignment. Wang et al. [25] provided insights into the
MMD’s theoretical foundations, highlighting its role in extracting shared semantic features
across diverse categories while maximizing intra-class distances between source and target
domains. This approach, however, reduced feature discriminativeness and relied on linear
transformations with L2 norm estimations, which may not suffice for general, nonlinear
relationships [26,27]. In contrast, deep neural networks, particularly convolutional neural
networks (CNNs), excel at learning expressive, nonlinear transformations. Our previous
work [28] proposed training a CNN architecture to automatically learn task-specific feature
representations.

Mathematics 2025, 13, 226 3 of 23

Meta-learning, or “learning to learn”, has gained attention for its ability to rapidly
adapt to new tasks [29,30]. This proposal introduces a novel UDA method that leverages a
class-wise, deep kernel-based MMD, optimized through meta-learning. This approach aims
to enhance the adaptability and performance of UDA models by incorporating flexible,
data-driven kernel learning mechanisms.

The contributions of this paper are summarized as follows: (1) It presents the de-
velopment of the novel MCWMMD framework, which combines meta-learning with a
Class-Wise MMD approach, specifically enhancing class-wise distribution alignment for
unsupervised domain adaptation (UDA). (2) It introduces a meta-module that dynamically
learns a deep kernel, optimizing domain alignment by adapting to the unique characteris-
tics of each class distribution. (3) It provides a demonstration of improved cross-domain
recognition performance, validated through extensive experiments on diverse benchmark
datasets, showcasing the framework’s adaptability and effectiveness.

2. Related Work and Key Concepts
This section delves into the foundations and advancements of the Maximum Mean

Discrepancy (MMD) metric, a widely used method for measuring the difference between
distributions in domain adaptation tasks. We review the evolution of MMD, discussing
its theoretical underpinnings, variations, and applications across different models. Addi-
tionally, we explore how recent research has extended the MMD to address more complex
distributional challenges, including conditional and joint distributions, and we highlight the
limitations that these methods seek to overcome. This study considers only two domains
for domain adaptation, one source domain and one target domain. Xs and Xt represent
the sample sets from the source domain and the target domain, respectively, and X (or Xst)
represents the union of all sample sets in both domains, i.e., X = Xst = Xs ∪ Xt. More
symbols and notations are presented in a nomenclature table provided in Table 1.

Table 1. Parameters and variables.

Symbol Meaning

Xs Set of samples from the source domain.

Xt Set of samples from the target domain.

Xc
s Set of samples of class c from the source domain.

Xc
t Set of samples of class c from the target domain.

Xc Union of source and target samples for class c.

X Union of all samples from source and target domains.

xs A single sample from the source domain.

xt A single sample from the target domain.

Zs Set of feature vectors of samples from the source domain.

Zt Set of feature vectors of samples from the target domain.

zs Feature vector of sample xs from the source domain.

zt Feature vector of sample xt from the target domain.

ns, nt Number of samples in the source and target domains, respectively.

nc
s , nc

t Number of samples of class c in the source and target domains, respectively.

ms, mt Mean of samples in the source and target domains, respectively.

mc
s , mc

t Mean of samples of class c in the source and target domains, respectively.

h(x) Deep kernel function mapping features into latent space.

Θ Set of parameters of the feature extractor network.

γ, λ Hyperparameters for balancing loss components.

η Learning rate for optimization.

Mathematics 2025, 13, 226 4 of 23

2.1. Domain Adaptation

In machine learning, domain adaptation (DA) is a subfield of transfer learning that
focuses on the scenario where there is a significant difference between the data distribution
of the training set (source domain) and the test set (target domain). The goal of domain
adaptation is to adapt a model trained on the source domain so that it performs well on the
target domain despite the differences in data distributions.

The source domain ∆s is the domain from which we have access to labeled data.
Let Xs = {(xsi, ysi)}m

i=1 denote the set of m labeled data points from the source domain
∆s, where xsi represents the i-th data point, and ysi is the corresponding label indicating
the class to which xsi belongs. The label ysi belongs to a set of predefined class labels
C = {1, · · · , C}. The target domain ∆t is the domain to which we want to apply the learned
model, but where we only have access to unlabeled data. Let Xt =

{
xtj
}n

j=1 denote the
set of n unlabeled data points from the target domain ∆t. Each data point xtj belongs to
one of the classes in C, but its corresponding label yti is not observed during training. The
source and target domains share a common set of class labels C = {1, · · · , C}. This implies
that, theoretically, the same classes exist in both domains, but the way these classes are
represented (i.e., the data distribution) may differ. For instance, the source domain might
consist of high-resolution images, while the target domain could consist of lower-resolution
images or images taken under different lighting conditions. This distributional difference
between the domains poses significant challenges for traditional machine learning models,
which typically assume that the training and test data are drawn from the same distribution.
To address this challenge, domain adaptation techniques often involve aligning the data
distributions between the source and target domains by transforming the feature space
or modifying the learning algorithm. One effective method for this is Maximum Mean
Discrepancy (MMD), which minimizes the distance between the distributions of the source
and target domains in a common latent space. By reducing this distribution shift, MMD
helps improve the model’s generalization ability on the target domain, making it a crucial
technique for successful domain adaptation.

2.2. RKHS, Kernels, and the Kernel Trick

A Reproducing Kernel Hilbert Space (RKHS) [31] is a powerful mathematical frame-
work widely used in kernel-based learning algorithms. In an RKHS, every function f can be
represented as an inner product involving a kernel function k, which serves as a measure of
similarity between data points. Specifically, for any function f in the RKHS and any point
x, the value of f at x can be represented as shown in Equation (1), where ⟨·, ·⟩H denotes the
inner product in the RKHS, and k(x, ·) is the kernel function centered at x.

f (x) = ⟨ f , k(x, ·)⟩H (1)

The kernel function k(x, y) implicitly maps data into a high-dimensional feature space,
enabling the capture of complex relationships that may not be apparent in the original lower-
dimensional space. A widely used kernel is the Gaussian (or RBF) kernel, defined as shown
in Equation (2), where σ is a parameter that controls the width of the kernel. The Gaussian
kernel measures the similarity between two points, x and y, based on their distance.

k(x, y) = exp

(
−
∥x− y2

2∥
2σ2

)
(2)

The kernel trick is a crucial technique that enables efficient computation in high-
dimensional spaces without explicitly performing mapping. This trick leverages the kernel
function to compute the inner product between two points in the feature space H directly

Mathematics 2025, 13, 226 5 of 23

in the input space X without needing to know the explicit form of the mapping φ(·). For
example, let φ(x) and φ(y) be the mappings of data points x and y into the feature space.
The inner product in x and y can be directly evaluated as shown in Equation (3), where
k(x, y) is the kernel function. This means that the product of two elements in the high-
dimensional feature space can be evaluated directly in the original input space using the
kernel function, such as the Gaussian kernel given in Equation (2).

⟨φ(x), φ (y)⟩H = k(x, y) (3)

By utilizing the kernel trick, algorithms can efficiently handle nonlinear patterns in
the data, making RKHS, kernels, and the kernel trick fundamental components of modern
machine learning. This approach simplifies the learning process and reduces compu-
tational complexity, enabling operations that would typically require high-dimensional
computations to be performed directly in the original input space.

2.3. Maximum Mean Discrepancy (MMD)

Assume that the random samples X = {x1, . . . , xm} and Y = {y1, . . . , yn} come from
two probability distributions P and Q, respectively. The kernel mean embeddings for these
distributions are given by µP = Ex∼P[ϕ(x)] and µQ = Ey∼Q[ϕ(y)], where the function ϕ(·)
maps the samples into a Reproducing Kernel Hilbert Space (RKHS) H. The Maximum
Mean Discrepancy (MMD) [18] between X and Y is defined as the difference between these
means in the RKHS, as shown in Equation (4), where F is the set of functions in the unit
ball of the universal RKHS. By squaring the MMD, we can use the kernel trick to compute
it directly on the samples with a kernel function k without needing the explicit form of ϕ(·),
as illustrated in Equation (5). The Gaussian kernel shown in Equation (2) is usually used as
the kernel function. In practice, for samples X and Y, the MMD formula can be adjusted to
yield an unbiased estimate, as described in Equation (6).

MMD(P, Q) = ∥ µP − µQ ∥H (4)

MMD2(P, Q) = ⟨µP − µQ, µP − µQ⟩H = ⟨µP, µP⟩H + ⟨µQ, µQ⟩H − 2⟨µP, µQ⟩H =

Ex,x′∼P[k(x, x′)] +Ey,y′∼Q[k(y, y′)]− 2Ex∼P,y∼Q[k(x, y)]
(5)

MMD2
u(X, Y) =

1
m(m− 1) ∑m

i ̸=j k
(
xi, xj

)
+

1
n(n− 1) ∑n

i ̸=j k
(
yi, yj

)
− 2

mn ∑m,n
i,j k

(
xi, yj

)
(6)

2.4. The Mean Discrepancy with a Deep Kernel

While the Maximum Mean Discrepancy (MMD) defined in a Reproducing Kernel
Hilbert Space (RKHS) is a powerful tool for measuring the mean difference between
two samples, one of the significant challenges lies in the selection of the bandwidth σ for
the Gaussian kernel used in the computation. The choice of σ is crucial as it directly impacts
the sensitivity of the MMD to differences in distributions. However, there is no definitive
method for optimally selecting this bandwidth, which can limit the effectiveness of the
MMD in practice. To address the issue of bandwidth selection, Liu et al. [23] introduced the
Maximum Mean Discrepancy with a Deep Kernel (MMDDK), as described in Equation (7).
In this approach, Fd represents a deep neural network that is employed to extract features
from the input data. Within this learned feature space, an inner kernel κ is applied, typically
a Gaussian function with bandwidth σϕ, as shown in Equation (8). Additionally, an inner
kernel q is applied directly in the input space, also using a Gaussian function but with
bandwidth σq, as depicted in Equation (9).

The MMDDK framework innovatively combines these kernels by defining a composite
kernel function kω(x, y) that integrates both the feature space kernel and the input space

Mathematics 2025, 13, 226 6 of 23

kernel. The bandwidth parameters σϕ and σq, the weight ϵ, and the deep network parame-
ters θd are all jointly optimized through a deep learning approach. This joint optimization
allows for adaptive bandwidth selection and improved alignment between the source and
target distributions.

The entire MMDDK framework is denoted by Fω, where ω =
(
θd, σϕ, σq, ϵ

)
, encap-

sulating all the parameters involved in the model. The training process aims to maximize
an objective function Jλ, as shown in Equation (10), which balances the MMD-based
discrepancy measure MMDDK2

u and the variance σ̂2
H1,λ, defined in Equation (11) and

Equation (12), respectively. Here, H1 refers to the alternative hypothesis in a two-sample
test, P ̸= Q, where λ is a regularization constant that ensures stability in the optimization
process. The function Hi,j, as defined in Equation (13), calculates the contribution of pairs of
samples from both domains, integrating the kernel evaluations across different sample pairs
to compute the overall discrepancy. This MMDDK approach addresses the limitations of
traditional MMD by allowing for more flexible and adaptive kernel learning, improving the
effectiveness of domain adaptation in scenarios where the optimal bandwidth is difficult to
determine. The assumption of equal sample sizes in both domains (i.e., m = n) simplifies
the computations and ensures that the statistical properties of the test remain robust.

kω(x, y) = [(1− ϵ)κ(Fd(x), Fd(y)) + ϵ]q(x, y) (7)

κ(a, b) = exp

(
−∥a− b∥2

2
2σ2

ϕ

)
(8)

q(a, b) = exp

(
−∥a− b∥2

2
2σ2

q

)
(9)

Jλ(X, Y; kω) =
MMDDK2

u(X, Y; kω)

σ̂H1,λ(X, Y; kω)
(10)

MMDDK2
u(X, Y; kω) =

1
n(n− 1) ∑i ̸=j Hi,j (11)

σ̂2
H1,λ =

4
n3 ∑n

i=1

(
∑n

j=1 Hi,j

)2
− 4

n4

(
∑n

i=1 ∑n
j=1 Hi,j

)2
+ λ (12)

Hi,j = kω

(
xi, xj

)
+ kω

(
yi, yj

)
− kω

(
xi, yj

)
− kω

(
yi, xj

)
(13)

2.5. Class-Wise Maximum Mean Discrepancy

In domain adaptation, the key challenge arises from the differences between the
source and target domains in both marginal and conditional distributions. The marginal
distribution captures the overall sample distribution within a domain, while the conditional
distribution refers to the distribution of samples within specific classes. Although the
Maximum Mean Discrepancy (MMD) is a powerful tool for measuring distributional
differences, its common application focuses solely on aligning marginal distributions,
often neglecting the alignment of samples with the same labels across domains. This can
result in suboptimal performance, particularly when the conditional distributions between
the source and target domains differ significantly. To address this issue, Long et al. [24]
proposed Joint Distribution Adaptation (JDA), which extends the use of MMD to align both
marginal and conditional distributions within a shared linear transformation space. JDA
aims to generate feature representations that not only bridge the domain gap but are also
robust to significant distributional differences.

In JDA, the source domain samples, Xs ∈ Rd×ns , and the target domain samples,
Xt ∈ Rd×nt , are mapped onto a common feature space through a linear orthogonal transfor-
mation. Here, ns and nt denote the number of samples in the source and target domains,

Mathematics 2025, 13, 226 7 of 23

respectively, and d is the dimension of the samples. The transformation matrix A, which
is of size d× K, maps the original data points into a K-dimensional feature space. The
transformed data points for the source domain are given by ATxi, and similarly, for the
target domain by ATxj. The primary objective of this transformation is to minimize the
discrepancy between the means of the transformed samples from the source and target
domains in this new feature space. The discrepancy is formalized in Equation (14), which
represents the MMD they define, where the terms 1

ns
∑xi∈Xs ATxi and 1

nt
∑xj∈Xt ATxj repre-

sent the mean vectors of the transformed data points from the source and target domains,
respectively. Their goal is to minimize the Euclidean distance between these two mean
vectors, which effectively aligns the marginal distributions of the two domains in the new
feature space. On the right side of Equation (14), the trace operation tr

(
ATXst M0XT

st A
)

is
used to express the squared Euclidean distance between the means in a matrix form; the
matrix Xst = [Xs|Xt] is the concatenated data matrix containing both the source and target
samples, resulting in a matrix of size d× (ns + nt); and the matrix M0 ∈ Rnst×nst , defined
in Equation (15), is constructed to measure the pairwise relationships between samples in
the source and target domains. The elements (M0)ij define how the relationship between
pairs of samples is weighted during the optimization process. When both samples xi and xj

belong to the source domain (xi, xj ∈ Xs), the element (M0)ij is assigned a positive weight
1

nsns
. Similarly, when both samples belong to the target domain (xi, xj ∈ Xt), the weight is

1
ntnt

. These positive weights contribute to aligning the means of the samples within each
domain. For pairs where one sample is from the source domain and the other from the
target domain, (M0)ij is assigned a negative weight −1

nsnt
. These negative weights are crucial

for minimizing the discrepancy between the source and target domain means by penalizing
large differences between them. The matrix M0 plays a pivotal role in the optimization
objective by guiding the linear transformation A to map the source and target samples
into a common feature space where their distributions are aligned. The trace operation
in Equation (14) sums the weighted differences across all pairs of samples, driving the
minimization process towards the optimal alignment of both marginal and conditional
distributions. The JDA method, through the use of the linear transformation matrix A and
the carefully constructed matrix M0, effectively addresses the limitations of traditional
MMD by jointly aligning both marginal and conditional distributions. This joint alignment
is crucial for improving the performance of domain adaptation tasks, particularly in sce-
narios where the source and target domains exhibit significant distributional differences.
The mathematical framework provided by Equations (14) and (15) ensures that the adapta-
tion process considers the complex relationships between the source and target domains,
leading to more robust and generalizable models.

MMD2 =

∣∣∣∣∣∣∣∣ 1
ns

∑xi∈Xs
ATxi −

1
nt

∑xj∈Xt
ATxj

∣∣∣∣|22 = tr
(

ATXst M0XT
st A
)

(14)

(M0)ij =


1

nsns
, xi, xj ∈ Xs

1
ntnt

, xi, xj ∈ Xt
−1

nsnt
, otherwise

(15)

The challenge of matching conditional distributions (i.e., distributions conditioned on
class labels) arises from the difficulty of doing so without labeled data in the target domain.
To address this, Long et al. [24] proposed using pseudo labels for the target samples. These
pseudo labels can be inferred by applying classifiers trained on the labeled source data to the
unlabeled target data. This allows for the approximation of class-conditional distributions
in the target domain, enabling the calculation of the discrepancy between class-conditional
distributions in the source and target domains. To quantify this discrepancy, Long et al.

Mathematics 2025, 13, 226 8 of 23

introduced the Class-Wise Maximum Mean Discrepancy (CWMMD), which modifies the
standard MMD to focus on class-conditional distributions. The formulation of CWMMD
is given in Equation (16), where Xc

s and Xc
t represent the data samples belonging to the

c-th class from the source and target domains, respectively; nc
s and nc

s are the numbers
of samples in the c-th class for the source and target domains, respectively; and A is a
projection matrix that maps the data into a common subspace where the distributions
are compared. The term on the left-hand side of Equation (16) represents the squared
Euclidean distance between the class-conditional distributions of the source and target
domains after projection by A. The right-hand side expresses this same discrepancy in its
matrix trace form, where Xst = [Xs, Xt] denotes the combined source and target data and
Mc is a class-specific matrix that encodes the relationships between pairs of samples from
the source and target domains within the same class, as defined in Equation (17).

CWMMD2 = ∑C
c=1

∣∣∣∣∣∣∣∣ 1
nc

s
∑xi∈Xc

s
ATxi −

1
nc

t
∑xj∈Xc

t
ATxj

∣∣∣∣|22 = ∑C
c=1 tr

(
ATXst McXT

st A
)

(16)

(Mc)ij =



1
nc

snc
s
, xi, xj ∈ Xc

s
1

nc
t nc

t
, xi, xj ∈ Xc

t

−1
nc

snc
t
,

{
xi ∈ Xc

s , xj ∈ Xc
t

xj ∈ Xc
s , xi ∈ Xc

t

0, otherwise

(17)

To achieve effective transfer learning, Long et al. proposed the Joint Distribution Adap-
tation (JDA) framework, which combines the marginal MMD (addressed in Equation (14)
with the class-conditional CWMMD addressed in Equation (16). The resulting optimization
problem is shown in Equation (18), where ∑C

c=0 tr
(

ATXst McXT
st A
)

combines the marginal
and conditional discrepancies into a single objective, where c = 0 corresponds to the
marginal distribution, α∥A∥2

F is a regularization term that controls the scale of the pro-
jection matrix A, ensuring the problem is well posed and prevents overfitting, and the
constraint ATXst HstXT

st A = IK×K restricts the total variation in the projected data to a fixed
value, preserving important statistical information. Here, Hst = Inst×nst − 1

nst
1nst×nst is a

centering matrix that ensures the projected data are centered, with nc
st = nc

s + nc
s repre-

senting the total number of samples. This optimization problem is designed to find the
optimal projection matrix A that aligns both marginal and conditional distributions across
domains, thereby enabling effective domain adaptation even when the target domain lacks
labeled data.

min
A

∑C
c=0 tr

(
ATXst McXT

st A
)
+ α∥A∥2

F s.t. ATXst HstXT
st A = IK×K (18)

2.6. Discriminative Class-Wise MMD Based on Euclidean Distance

The use of MMD aims to extract shared common features between the source and
target domains by minimizing the mean difference for each pair of classes, even when
their distributions are distinct. How is this achieved in practice? Wang et al. [25] provided
valuable insights, illustrating that the principles of MMD closely mirror human transferable
learning behaviors. Their approach treats each category as a distinct group, analyzing
and adjusting the means of specific categories in both the source and target domains. For
example, in the case of a specific class shared by the source and target domains, the category
means are progressively aligned by minimizing the mean difference between the pairs,
maximizing their intra-class distances. As the domain adaptation (DA) process progresses,
the means of these classes from the two domains converge, reducing joint variance and
improving feature alignment. This process reflects how humans naturally extract shared

Mathematics 2025, 13, 226 9 of 23

features from underlying semantics, capturing broad patterns while forgoing some finer
details. The progressive alignment of category means exemplifies how MMD enhances
feature generalization across domains, facilitating robust domain adaptation.

Wang et al. [25] presented Lemmas 1–3 as follows, where Lemmas 2 and 3 were both
proven by them, and Lemma 1 follows the identity about the inter-class (or between-class)
distance according to [32]:

Lemma 1. The inter-class scatter Sb is defined as the squared inter-class distance and can be
expressed as

Sb = tr
(

ATSb A
)
=

1
n ∑C

c=1 ∑C
k=c+1 ncnktr

(
AT Dck A

)
, (19)

where Dij =
(
mi −mj)(mi −mj)T , Sb = ∑C

i=1 ni(mi −m
)(

mi −m
)Tis the inter-class scatter

matrix, ni is the number of data instances in the i-th category, mi represents the mean of data
samples from the i-th category, and m represents the mean of the whole data samples. For brevity,
we omit the proofs.

Lemma 2. The squared inter-class distance equals to the data variance minus the squared intra-
class distance:

Sb = Sv − Sw, (20)

where Sv = tr
(

ATSv A
)

is the variance,Sw = tr
(

ATSw A
)

is the squared intra-class (or within-
class) distance, Sv = ∑n

i=1(xi −m)(xi −m)T , and Sw = ∑C
c=1 ∑xj∈Xc

(
xj −m

)(
xj −m

)T .

Lemma 3. The following identity describes the Class-Wise Maximum Mean Discrepancy (CWMMD):

CWMMD = ∑C
c=1 tr

(
AT XMcXT A

)
= ∑C

c=1
nc

s + nc
t

nc
snc

t
tr
(

AT(Sst)
c
b A
)
= ∑C

c=1
nc

s + nc
t

nc
snc

t
tr
(

AT(Sst)
c
v A
)
−∑C

c=1
nc

s + nc
t

nc
snc

t
tr
(

AT(Sst)
c
w A
)

, (21)

where
(Sst)

c
b = ∑i∈{s, t} nc

i (m
c
i −mc

st)(m
c
i −mc

st)
T , (22)

(Sst)
c
v = ∑nc

st
i=1(xi −mc

st)(xi −mc
st)

T , (23)

and
(Sst)

c
w = ∑i∈{s, t}∑

nc
i

j=1

(
xj −mc

i
)(

xj −mc
i
)T . (24)

where nc
i denotes the number of data instances in the c-th category from domain i (where i can be

either source s or target t), and nc
st = nc

s + nc
t . Additionally, mc

i represents the mean of data in the
c-th category from domain i, while mc

st denotes the mean of data in the c-th category from both the
source and target domains combined. The subscription st of Sst signifies that both the source and
target domains are considered together.

Notably, in this paper, we correct a statement proposed by Wang et al. The original
statement, “The inter-class distance equals the data variance minus the intra-class distance”,
should be revised to “The squared inter-class distance equals the data variance minus the
squared intra-class distance”.

Let Sc
b = tr

(
ATXst McXT

st A
)

be the squared inter-class distance in the transformed
space based on transformation matrix A for class c between the source and target domains.
Then, let Sb = ∑C

c=1 Sc
b so that Equation (18) can be written as Equation (25). According

to the identity, Sb = Sv − Sw, derived by Wang et al. [25], Equation (25) can be written as
Equation (26), where Sw is the squared intra-class distance between the source and target
domains, and Sv is their variance. Therefore, minimizing the squared inter-class distance
Sb is equivalent to maximizing the squared intra-class distance Sw while simultaneously
minimizing their variance Sv, thereby reducing feature distinguishability. To propose a

Mathematics 2025, 13, 226 10 of 23

solution, a balance parameter β (−1 ≤ β ≤ 1) is directly applied to the hidden squared
intra-class distance in Sw to regulate its variation, as shown in Equation (27).

min
A

(
Sb + MMD2 + α∥A∥2

F

)
s.t. ATXst HstXT

st A = Ik×k (25)

min
A

(
Sv − Sw + MMD2 + α∥A∥2

F

)
s.t. ATXst HstXT

st A = Ik×k (26)

min
A

(
Sv + β·Sw + MMD2 + α∥A∥2

F

)
s.t. ATXst HstXT

st A = Ik×k (27)

2.7. Discriminative Class-Wise MMD Based on Gaussian Kernels

Wang et al. [25] extended the work of Long et al. [24] by introducing a discriminative
Class-Wise MMD, which retains the use of linear transformations to project samples into
the feature space and employs the Euclidean distance to measure the mean difference
between the distributions of samples from two domains. However, linear transformations
are generally less effective and efficient compared to nonlinear transformations, such as
those applied in the Reproducing Kernel Hilbert Space (RKHS), where more complex
patterns and relationships between domains can be captured.

In our previous research [28], we redefined the MMD proposed by Wang et al. by
incorporating a Gaussian kernel within the RKHS framework, as RKHS based on the
Gaussian kernel is universal [33]. This modification enables the MMD to be computed more
efficiently and flexibly using the kernel trick, enhancing its applicability to a broader range
of scenarios. Firstly, we redefined the squared inter-class distance Sb, the squared intra-
class distance Sw, and the variance Sv as Sinter, Sintra, and Svar, respectively, in Definitions 1
through 3. We then proved that under the Gaussian kernel MMD, the MMD representing
the inter-class distance between the source and target domains can be decomposed into the
intra-class distance and variance within the source and target domains.

Definition 1. The squared inter-class distance between the source and target domains is defined as
Sinter = ∑C

c=1(Sst)
c
inter, where(Sst)

c
inter is the squared inter-class distance for class c between the

source and target domains, as shown in Equation (28).

(Sst)
c
inter =

1

(nc
s)

2 ∑xi ,xj∈Xc
s

〈
xi, xj

〉
H +

1

(nc
t)

2 ∑xi ,xj∈Xc
t

〈
xi, xj

〉
H −

2
nc

snc
t
∑xi∈Xc

s ,xj∈Xc
t

〈
xi, xj

〉
H (28)

Definition 2. The squared intra-class distance between the source and target domains is defined as
Sintra = ∑C

c=1(Sst)
c
intra, where(Sst)

c
intra is the squared intra-class distance for class c between the

source and target domains, as shown in Equation (29).

(Sst)
c
intra =

nc
s + nc

t
nc

snc
t

[
∑xi∈Xc

st
⟨xi, xi⟩H −

1
nc

s
∑xi ,xj∈Xc

s

〈
xi, xj

〉
H −

1
nc

t
∑xi ,xj∈Xc

t

〈
xi, xj

〉
H

]
(29)

Definition 3. The variance between the source and target domains is defined as Svar = ∑C
c=1(Sst)

c
var,

where (Sst)
c
var is the total variance for class c between the source and target domains, as shown in

Equation (30).

(Sst)
c
var =

nc
s + nc

t
nc

snc
t

∑xj∈Xc
st

〈
xj, xj

〉
H
− 1

nc
snc

t
∑xi ,xj∈Xc

s

〈
xi, xj

〉
H
− 1

nc
snc

t
∑xi ,xj∈Xc

t

〈
xi, xj

〉
H
− 2

nc
snc

t
∑xi∈Xc

s ,xj∈Xc
t

〈
xi, xj

〉
H

(30)

Mathematics 2025, 13, 226 11 of 23

Theorem 1. Sinter = Svar − Sintra.

Our previous work [28] established Theorem 1 and provided proof. Traditional MMD,
without categorization, is the inter-class distance of samples from the two domains, referred
to as marginal MMD, defined in Equation (31). Class-Wise MMD refers to the inter-class
distance of samples from specific categories in the two domains, termed conditional MMD.
For example, (S)c

inter is the squared MMD or the squared inter-class distance for class
c between the two domains and can be defined as MMD2

c = (S)c
inter. As a result, the

loss function Lcwmmd based on Class-Wise Maximum Mean Discrepancy is defined as the
sum of and the squared inter-class distance Sinter and the squared marginal MMD, as
shown in Equation (32), which can also be written as Equation (33) according to Theorem 1.
To address the reduction in feature discriminability, we adopt the strategy proposed by
Wang et al. [25], introducing a balance parameter β(−1 ≤ β ≤ 1) to the hidden squared
intra-class distance within the squared inter-class distance Sinter. This modification adjusts
the loss function, resulting in Ldcwmmd, as shown in Equation (34).

MMD2(Xs, Xt) =
1

(ns)
2 ∑xi∈Xs ∑xj∈Xs

〈
xi, xj

〉
H +

1

(nt)
2 ∑xi∈Xt ∑xj∈Xt

〈
xi, xj

〉
H −

2
nsnt

∑xi∈Xs ∑xj∈Xt

〈
xi, xj

〉
H (31)

Lcwmmd = Sinter + MMD2(Xs, Xt) (32)

Lcwmmd = Svar − Sintra + MMD2(Xs, Xt) (33)

Ldcwmmd = Svar + β·Sintra + MMD2(Xs, Xt) (34)

3. The Proposed Method
The proposed unsupervised domain adaptation (UDA) approach primarily utilizes

Discriminative Class-Wise Maximum Mean Discrepancy (MMD) to align the class-level
data distributions of the source and target domains, which addresses the issue of reduced
feature distinguishability when MMD minimizes the mean deviation between two different
domains, thereby effectively achieving the goal of UDA. However, the MMD used here
is learned with a meta-module MTMMD to obtain MMD with deep kernels (MMDDK).
The framework of the proposed method is directly called MeTa Discriminative Class-Wise
MMD (MCWMMD), as shown in Figure 1. The orange block represents the feature extractor
F, which is responsible for extracting domain-invariant features. The green block represents
the classifier C, which predicts class labels based on the extracted features. The light red
block represents the meta-module MTMMD, referred to as “MMDDK”, which is designed
to measure the distance between feature distributions of samples from the two domains.

The training objective of the meta-module MTMMD is to enhance its ability to discrim-
inate between the two domains. This is achieved by updating MMDDK to maximize the
feature distance measurement values of samples from the two domains. Conversely, the
training objective of the MCWMMD module is to update the feature extractor F so that the
feature distance measurement values of samples from the two domains, computed using
the current MTMMD, are minimized.

These opposing training objectives result in a process resembling adversarial training,
where the two modules iteratively adjust to counteract each other. This alternating training
process allows each module to improve its performance while balancing the influence of
the other. The remainder of this section will introduce the detailed training processes of
these two modules.

Mathematics 2025, 13, 226 12 of 23Mathematics 2025, 13, x FOR PEER REVIEW 12 of 24

Figure 1. Training framework for MCWMMD.

3.1. Deep Kernel Training Network

According to the Maximum Mean Discrepancy with Deep Kernels (MMDDK) de-
fined by Liu et al. [23], as explained in Equation (7), we construct a training network for
MMDDK, as depicted in Figure 2. The input to the training network for MMDDK is the
feature vector 𝑧 = 𝐅(𝑥) extracted from the MCWMMD network, where two vectors, 𝑧௦ =𝐅(𝑥௦) and 𝑧௧ = 𝐅(𝑥௧) (referred to as first-order features), are used to compute the Gauss-
ian function value 𝑞(𝑧௦, 𝑧௧) in Equation (9). Additionally, they are separately input into
another feature extractor 𝐅ௗ to obtain 𝑧̂௦ = 𝐅ௗ(𝑧௦) and 𝑧̂௧ = 𝐅ௗ(𝑧௧) (referred to as sec-
ond-order features), which are used to compute the Gaussian function value 𝜅(𝑧̂௦, 𝑧̂௧) in
Equation (8). Subsequently, the two Gaussian function values 𝑞(𝑧௦, 𝑧௧) and 𝜅(𝑧̂௦, 𝑧̂௧) are
combined using the operator 𝑘ఠ defined in Equation (7) to calculate the deep kernel dis-
tance 𝑘ఠ(𝑧௦, 𝑧௧). The parameters 𝜎థ,𝜎௤, weight 𝜖, and network parameters 𝜃ௗ of the net-
work 𝐅ௗ are jointly trained using this deep neural network, denoted as 𝐅ఠ, where 𝜔 =(𝜃ௗ, 𝜎థ, 𝜎௤, 𝜖). Its training is based on maximizing the objective function 𝐽ఒ in Equation
(10). The network training algorithm is presented in Algorithm 1.

Figure 1. Training framework for MCWMMD.

3.1. Deep Kernel Training Network

According to the Maximum Mean Discrepancy with Deep Kernels (MMDDK) defined
by Liu et al. [23], as explained in Equation (7), we construct a training network for MMDDK,
as depicted in Figure 2. The input to the training network for MMDDK is the feature
vector z = F(x) extracted from the MCWMMD network, where two vectors, zs = F(xs)

and zt = F(xt) (referred to as first-order features), are used to compute the Gaussian
function value q(zs, zt) in Equation (9). Additionally, they are separately input into another
feature extractor Fd to obtain ẑs = Fd(zs) and ẑt = Fd(zt) (referred to as second-order
features), which are used to compute the Gaussian function value κ(ẑs, ẑt) in Equation (8).
Subsequently, the two Gaussian function values q(zs, zt) and κ(ẑs, ẑt) are combined using
the operator kω defined in Equation (7) to calculate the deep kernel distance kω(zs, zt). The
parameters σϕ,σq, weight ϵ, and network parameters θd of the network Fd are jointly trained
using this deep neural network, denoted as Fω, where ω =

(
θd, σϕ, σq, ϵ

)
. Its training

is based on maximizing the objective function Jλ in Equation (10). The network training
algorithm is presented in Algorithm 1.

Algorithm 1 Training the MMDDK

Input: η1;
Initialize ω ← (θd, σϕ, σq, ϵ);
repeat until convergence

(Xs, Ys) = {(xs1, ys1), (xs2, ys2), . . . , (xsN , ysN)} ←mini-batch from ∆s;
Xt = {xt1, xt2, . . . , xtN} ←mini-batch from ∆t;
Zs ← F(Xs); Zt ← F(Xt);
Ẑs ← Fd(Zs); Ẑt ← Fd(Zt);
M(ω)← MMDDK2

u(Zs, Zt; kω) ; #using (11)
V(ω)← σ2(Zs, Zt; kω) ; #using (12) with λ = 0
J(ω)← M(ω) /

√
V(ω) ; #using (10)

#update parameters:
ω ← ω + η1∇ω J(ω) ; #maximizing J

end repeat

Mathematics 2025, 13, 226 13 of 23

Mathematics 2025, 13, x FOR PEER REVIEW 12 of 24

Figure 1. Training framework for MCWMMD.

3.1. Deep Kernel Training Network

According to the Maximum Mean Discrepancy with Deep Kernels (MMDDK) de-
fined by Liu et al. [23], as explained in Equation (7), we construct a training network for
MMDDK, as depicted in Figure 2. The input to the training network for MMDDK is the
feature vector 𝑧 = 𝐅(𝑥) extracted from the MCWMMD network, where two vectors, 𝑧௦ =𝐅(𝑥௦) and 𝑧௧ = 𝐅(𝑥௧) (referred to as first-order features), are used to compute the Gauss-
ian function value 𝑞(𝑧௦, 𝑧௧) in Equation (9). Additionally, they are separately input into
another feature extractor 𝐅ௗ to obtain 𝑧̂௦ = 𝐅ௗ(𝑧௦) and 𝑧̂௧ = 𝐅ௗ(𝑧௧) (referred to as sec-
ond-order features), which are used to compute the Gaussian function value 𝜅(𝑧̂௦, 𝑧̂௧) in
Equation (8). Subsequently, the two Gaussian function values 𝑞(𝑧௦, 𝑧௧) and 𝜅(𝑧̂௦, 𝑧̂௧) are
combined using the operator 𝑘ఠ defined in Equation (7) to calculate the deep kernel dis-
tance 𝑘ఠ(𝑧௦, 𝑧௧). The parameters 𝜎థ,𝜎௤, weight 𝜖, and network parameters 𝜃ௗ of the net-
work 𝐅ௗ are jointly trained using this deep neural network, denoted as 𝐅ఠ, where 𝜔 =(𝜃ௗ, 𝜎థ, 𝜎௤, 𝜖). Its training is based on maximizing the objective function 𝐽ఒ in Equation
(10). The network training algorithm is presented in Algorithm 1.

Figure 2. Training framework for MMDDK.

3.2. Meta-Learning of Maximum Mean Discrepancy

In this section, we redefine and compute the Maximum Mean Discrepancy (MMD)
originally defined and calculated by Wang et al. [25] in the context of linear transforma-
tion spaces, but now in the Reproducing Kernel Hilbert Space (RKHS) using the kernel
trick for straightforward MMD computation. Consequently, we also redefine their def-
initions of between-class distance squared (Sinter), within-class distance squared (Sintra),
and variance (Svar), and demonstrate that under the Gaussian kernel-based MMD, the
between-class distance-squared MMD between the source and target domains can be de-
composed into the sum of within-class distance-squared MMDs from both domains and
their variance difference.

As described in Section 2, minimizing the between-class distance squared Sinter is
equivalent to maximizing the within-class distance squared Sintra for both the source and
target domains while simultaneously minimizing their total variance Svar, which leads
to decreased feature discriminability. To address this issue, a balancing parameter β

(−1 ≤ β ≤ 1) is applied to the hidden within-class distance squared Sintra within Sinter,
proposing the discriminability class-level loss function Ldcwmmd defined in Equation (34),
which can be rewritten as Equation (35).

For convenience, let us define MMD0 = (Sst)
0
inter = MMD. Hence, Equation (35) can

also be rewritten as Equation (36), where the second term represents the sum of marginal
MMD and conditional MMD, and the coefficient β′ = β + 1 adjusts between 0 and 2,
i.e., 0 ≤ β′ ≤ 2.

Ldcwmmd = (β + 1)·Sintra + Svar − Sintra + MMD2(Zs, Zt)= (β + 1)·Sintra + Sinter + MMD2(Zs, Zt) (35)

Ldcwmmd = β′·∑C
c=1(Sst)

c
intra + ∑C

c=0 MMD2
c (36)

Although we adopt the Discriminative Class-Wise Maximum Mean Discrepancy
(DCWMMD), where MMD is computed based on a Gaussian function in a Reproducing
Kernel Hilbert Space (RKHS), there is no reliable method to select the appropriate band-
width value for the Gaussian function. Therefore, in this study, we choose the Maximum
Mean Discrepancy with Deep Kernels (MMDDK) proposed by Liu et al. [23], where the
bandwidth is learned by the network, endowing the MMDDK with stronger discriminative

Mathematics 2025, 13, 226 14 of 23

power. To further adapt the MMDDK to the mean discrepancy calculations for different
domain pairs, we employ meta-learning to learn this MMDDK, resulting in a method
called MeTa Maximum Mean Discrepancy (MTMMD), which is more suitable for efficient
optimization using gradient descent [34,35].

Our proposed MTMMD network architecture, as shown in Figure 3, is based on
concepts similar to previous meta-learning loss functions [36]. It parameterizes the Maxi-
mum Mean Discrepancy through a neural network Fψ, which receives the second-order
features Ẑs and Ẑt predicted by the MMDDK model Fψ, along with bandwidths σϕ and σq

and the weight ϵ. We aim to learn the parameters ψ such that when ω =
(
θd, σϕ, σq, ϵ

)
is updated through Fψ, the final performance is optimal. The learning of parameters
ω =

(
θd, σϕ, σq, ϵ

)
involves maximizing not only the original objective function J but also

the meta-learning objective function Jmt output by Fψ =
(

Mψ, Vψ

)
. The parameters ω and

ψ are alternately updated, as shown in Equations (37) and (38).

Mathematics 2025, 13, x FOR PEER REVIEW 14 of 24

different domain pairs, we employ meta-learning to learn this MMDDK, resulting in a
method called MeTa Maximum Mean Discrepancy (MTMMD), which is more suitable for
efficient optimization using gradient descent [34,35].

Our proposed MTMMD network architecture, as shown in Figure 3, is based on con-
cepts similar to previous meta-learning loss functions [36]. It parameterizes the Maximum
Mean Discrepancy through a neural network 𝐹ట, which receives the second-order fea-
tures 𝑍መ௦ and 𝑍መ௧ predicted by the MMDDK model 𝐹ట, along with bandwidths 𝜎థ and 𝜎௤ and the weight 𝜖. We aim to learn the parameters 𝜓 such that when 𝜔 = (𝜃ௗ, 𝜎థ, 𝜎௤, 𝜖)
is updated through 𝐹ట, the final performance is optimal. The learning of parameters 𝜔 =(𝜃ௗ, 𝜎థ, 𝜎௤, 𝜖) involves maximizing not only the original objective function 𝐽 but also the
meta-learning objective function 𝐽௠௧ output by 𝐹ట = (𝑀ట, 𝑉ట). The parameters 𝜔 and 𝜓
are alternately updated, as shown in Equations (37) and (38).

The primary goal of both updates is to maximize the value of the mean discrepancy
function; hence, we aim for both 𝐽௠௧ and 𝐽 to be maximized, with the parameter adjust-
ments being positive multiples of the partial derivatives. The MTMMD network training
architecture is illustrated in Figure 3. Since MMDDK and MTMMD are trained together,
the gradient values of the MMDDK objective function 𝐽 are also used to update its pa-
rameters 𝜔, modifying Equations (37)–(39). The MTMMD network training and inference
algorithms are presented in Algorithms 2 and 3, respectively. Subsequently, the domain
adaptation training uses the two-domain mean discrepancy loss function, where the 𝑀𝑀𝐷௖ଶ in 𝐿ௗ௖௪௠௠ௗ is replaced by the meta-learning 𝑀௠௧௖ in Equation (40), resulting in
the loss function 𝐿௠௧ௗ௖௪௠௠ௗ in Equation (41). 𝜔௧ାଵ ← 𝜔௧ + 𝛼ଵ ∙ డ௃೘೟(ிഗ(ிഘ೟(௓ೞ,௓೟;௞ഘ೟)))డఠ೟ (37)

𝜓௧ାଵ ← 𝜓௧ + 𝛼ଶ ∙ డ௃(ிഘ೟శభ(௓ᇱೞ,௓ᇱ೟;௞ഘ೟శభ))డట೟ (38)

𝜔௧ାଵ ← 𝜔௧ + 𝛼଴ ∙ డ௃(ிഘ೟(௓ೞ,௓೟;௞ഘ೟))డఠ೟ + 𝛼ଵ ∙ డ௃೘೟(ிഗ(ிഘ೟(௓ೞ,௓೟;௞ഘ೟)))డఠ೟ (39)

𝑀௠௧௖ = 𝑀ట(𝐹ఠ(𝑍௦௖, 𝑍௧௖; 𝑘ఠ) (40)

𝐿௠௧ௗ௖௪௠௠ௗ = 𝛽′ ∙ ∑ (𝑆௦௧)௜௡௧௥௔௖஼௖ୀଵ + ∑ 𝑀௠௧௖஼௖ୀ଴ (41)

Figure 3. MTMMD network training process.

The primary goal of both updates is to maximize the value of the mean discrep-
ancy function; hence, we aim for both Jmt and J to be maximized, with the parameter
adjustments being positive multiples of the partial derivatives. The MTMMD network
training architecture is illustrated in Figure 3. Since MMDDK and MTMMD are trained
together, the gradient values of the MMDDK objective function J are also used to update
its parameters ω, modifying Equations (37)–(39). The MTMMD network training and
inference algorithms are presented in Algorithms 2 and 3, respectively. Subsequently, the
domain adaptation training uses the two-domain mean discrepancy loss function, where
the MMD2

c in Ldcwmmd is replaced by the meta-learning Mc
mt in Equation (40), resulting in

the loss function Lmtdcwmmd in Equation (41).

ωt+1 ← ωt + α1·
∂Jmt

(
Fψ(Fωt(Zs, Zt; kωt))

)
∂ωt (37)

ψt+1 ← ψt + α2·
∂J(Fωt+1(Z′s, Z′t; kωt+1))

∂ψt (38)

Mathematics 2025, 13, 226 15 of 23

ωt+1 ← ωt + α0·
∂J(Fωt(Zs, Zt; kωt))

∂ωt + α1·
∂Jmt

(
Fψ(Fωt(Zs, Zt; kωt))

)
∂ωt (39)

Mc
mt = Mψ(Fω(Zc

s , Zc
t ; kω) (40)

Lmtdcwmmd = β′·∑C
c=1(Sst)

c
intra + ∑C

c=0 Mc
mt (41)

The MMDDK model Fω passes its predictions Fωt to the meta-module MTMMD Fψ,
which outputs Fψt =

(
Mt

mt, Vt
mt
)
, where Mt

mt is the mean discrepancy value and Vt
mt is

the variance. We optimize ψ to ensure that when optimizing the MMDDK model for Jmt

with Fωt+1(Z′s, Z′t; kωt+1), the updated ωt+1 performs better (i.e., there is a higher value of
the MMDDK objective function J). To achieve this, we take a gradient step on the meta-
module’s objective function Jmt to update the MMDDK model parameters ωt+1, and then
we update ψ by evaluating ωt+1 using the MMDDK objective function J.

Algorithm 2 Training MTMMD

Input: α0, α1, α2;
Initialize ω and ψ: sets of parameters for MMDDK Model Fω and MTMDD Model Fψ, T ← 10, 000 ;
#ω = (θd, σϕ, σq, ϵ);
for t← 0 to T do

(Xs, Ys) = {(xs1, ys1), (xs2, ys2), . . . , (xsN , ysN)} ←mini-batch from ∆s;
Xt = {xt1, xt2, . . . , xtN} ←mini-batch from ∆t;
Zs ← F(Xs); Zt ← F(Xt);(
Ẑs, Ẑt, σϕ, σq, ϵ

)
← Fω(Zs, Zt; kω) ; #Ẑs = Fd(Zs); Ẑt = Fd(Zt);

#alternatively update parameters ω and ψ:
M← MMDDK2

u(Zs, Zt; kω) ; #using (11)
V ← σ2(Zs, Zt; kω) ; #using (12) with λ = 0
J ← M/

√
V; #using (10)

if t is even then
(Mmt, Vmt)← Fψ

(
Ẑs, Ẑt, σϕ, σq, ϵ

)
;

Jmt ← Mmt/
√

Vmt ;
ω ← ω + α0∇ω J + α1∇ω Jmt ; #maximizing Jmt

else
ω ← ω + α2∇ψ J ; #maximizing J

end for

Algorithm 3 MTMMD Inferencing

Input: ω and ψ;
(Xs, Ys) = {(xs1, ys1), (xs2, ys2), . . . , (xsN , ysN)} ←mini-batch from ∆s;
Xt = {xt1, xt2, . . . , xtN} ←mini-batch from ∆t;
Zs ← F(Xs); Zt ← F(Xt);(
Ẑs, Ẑt, σϕ, σq, ϵ

)
← Fω(Zs, Zt; kω) ; #Ẑs = Fd(Zs); Ẑt = Fd(Zt);

(Mmt, Vmt)← Fψ

(
Ẑs, Ẑt, σϕ, σq, ϵ

)
;

return Mmt

3.3. MeTa Discriminative Class-Wise Maximum Mean Discrepancy

The proposed UDA approach, based on MeTa Discriminative Class-Wise Maximum
Mean Discrepancy (MCWMMD), includes a feature extractor F for extracting domain-
invariant features for the classifier C, as shown in Figure 1. Inputs xs and xt are fed into
the feature extractor F, resulting in outputs zs = F(xs) and zs = F(xt). These outputs are
then input into the classifier C for classification predictions, producing ↕̂s = C(zs) and
↕̂t = C(zt). In practice, the batch size for both the source domain and the target domain
is set to N, with a total of C category labels. The feature extractor F extracts features
from input samples Xs = {xsi}N

i=1 and Xt =
{

xtj
}N

j=1, and outputs Zs = {zsi}N
i=1 and

Zt =
{

ztj
}N

j=1, respectively. These features, Zs and Zt, are then input into the classifier C
for classification. In the diagram, F and C are depicted twice to correspond to the data

Mathematics 2025, 13, 226 16 of 23

paths of the source and target domains, with a dashed line in between to indicate shared
parameters. The MTMMD network will be trained by minimizing the total loss function
Ltotal , as defined in Equation (42), where Ldcwmtmmd is defined in Equation (41) and Lls

cls is
defined in Equation (44). It is a label-smoothed version of the classification cross-entropy
in Equation (43), designed to encourage samples to fall into compact, uniform, and well-
separated clusters. The original prediction ysi is replaced by (1− α)yc

si + α/C, where 1 is
a vector of ones with C dimensions, and α is the smoothing parameter. Additionally, Lent

represents the predicted label entropy of the target sample, as shown in Equation (45). The
network training algorithm for this MCWMMD module is presented in Algorithm 4.

Ltotal = Lmtdcwmmd + ω2·Lls
cls + ω3·Lent (42)

Lcls(Zs, Ys) = −
1
ns

∑ns
i=1 ∑C

c=1 yc
si log ↕̂c

si (43)

Lls
cls(Zs, Ys) = −

1
ns

∑ns
i=1 ∑C

c=1((1− α)yc
si + α/C) log ↕̂c

sj (44)

Lent(Zt) = −
1
N ∑N

j=1 ∑C
c=1 ↕̂

c
tj log ↕̂c

tj (45)

Algorithm 4 Training MCWMMD model

Input: ∆s, ∆t, β1, β2, η2;
Initialize parameters θF and θC;
train the model parameters θF and θC on ∆s and∆t;
repeat until convergence

(Xs, Ys) = {(xs1, ys1), (xs2, ys2), . . . , (xsN , ysN)} ←mini-batch from ∆s;
Xt = {xt1, xt2, . . . , xtN} ← mini-batch from ∆t;
Zs ← F (Xs); Zt ← F(Xt);
#generate pseudo labels:

L̂t =
{
↕̂t1, ↕̂t2, . . . , ↕̂tN

}
← C(F(Xt)); #classify target samples

Yt = {yt1, yt2, . . . , ytN} ←
{

psd
(
↕̂t1

)
, psd

(
↕̂t2

)
, . . . , psd

(
↕̂tN

)}
; #obtain pseudo labels

psd((v1, v2, . . . , vC)) = argmax
1≤c≤C

vc;

evaluate losses:
Lmcwmmd(Xs, Xt) = β′·∑C

c=1(Sst)
c
intra + ∑C

c=0 Mc
mt; #using (41)

Lls
cls ←

1
N ∑N

i=1 ∑C
c=1
(
(1− α)yc

si + α/C
)

log ↕̂c
sj; #using (44)

Lent ← 1
N ∑N

j=1 ∑C
c=1 ↕̂c

tj log ↕̂c
tj; #using (45)

Ltotal ← Lmcwmmd + β1Lls
cls + β2Lent; #using (42)

update θF and θC to minimize Ltotal ;
θF ← θF − η2 ∇θF Ltotal ;
θC ← θC − η2∇θC Ltotal ;

end repeat

4. Experimental Results
This section presents a comprehensive evaluation of the JDA approach on standard

UDA datasets for image classification tasks. The details of the data preparation process
are outlined in Section 4.1, while the experimental setup, including model configurations
and parameters, is discussed in Section 4.2. Finally, Section 4.3 provides the experimental
results and comparisons with baseline methods to demonstrate the effectiveness of the
proposed approach.

4.1. Data Preparation

The proposed approach was evaluated on both digit and office object datasets. The
digit datasets used in this study included the MNIST (Modified National Institute of
Standards and Technology) database [37], USPS (U.S. Postal Service) [38], and SVHN

Mathematics 2025, 13, 226 17 of 23

(Street View House Numbers) [39]. The MNIST and USPS consist of grayscale images of
handwritten digits, with the MNIST offering 60,000 training samples and 10,000 testing
samples and USPS comprising 9298 images, divided into 7291 training and 2007 testing
samples. In contrast, SVHN provides 73,257 color training images and 26,032 testing
images, depicting digits captured in a street-view context. Figure 4 shows sample images
from the MNIST, USPS, and SVHN, with training samples highlighted in blue.

Mathematics 2025, 13, x FOR PEER REVIEW 17 of 24

 # update 𝜃𝐅 and 𝜃𝐂 to minimize 𝐿௧௢௧௔௟;
 𝜃𝐅 ← 𝜃𝐅 − 𝜂ଶ 𝛻ఏ𝐅𝐿௧௢௧௔௟;
 𝜃𝐂 ← 𝜃𝐂 − 𝜂ଶ𝛻ఏ𝐂𝐿௧௢௧௔௟;
end repeat

4. Experimental Results
This section presents a comprehensive evaluation of the JDA approach on standard

UDA datasets for image classification tasks. The details of the data preparation process
are outlined in Section 4.1, while the experimental setup, including model configurations
and parameters, is discussed in Section 4.2. Finally, Section 4.3 provides the experimental
results and comparisons with baseline methods to demonstrate the effectiveness of the
proposed approach.

4.1. Data Preparation

The proposed approach was evaluated on both digit and office object datasets. The
digit datasets used in this study included the MNIST (Modified National Institute of
Standards and Technology) database [37], USPS (U.S. Postal Service) [38], and SVHN
(Street View House Numbers) [39]. The MNIST and USPS consist of grayscale images of
handwritten digits, with the MNIST offering 60,000 training samples and 10,000 testing
samples and USPS comprising 9298 images, divided into 7291 training and 2007 testing
samples. In contrast, SVHN provides 73,257 color training images and 26,032 testing im-
ages, depicting digits captured in a street-view context. Figure 4 shows sample images
from the MNIST, USPS, and SVHN, with training samples highlighted in blue.

Figure 4. Digit data: (a) MNIST, (b) USPS, and (c) SVHN.

For the office object datasets, we used Office-31 [40] and Office-Home [41]. The Office-
31 dataset consists of 4652 images within 31 categories collected from three distinct do-
mains: Amazon (A), which contains images from online merchants; DSLR (D), with high-
resolution images taken using a digital SLR camera; and Webcam (W), featuring low-res-
olution images captured using a web camera. This dataset covers 31 common office object
categories, totaling 4110 images. The Office-Home dataset introduces a more complex do-
main shift, with four distinct domains—Art (Ar), Clipart (Cl), Product (Pr), and Real
World (Rw)—spanning 65 object categories and approximately 15,500 images, each offer-
ing varied visual styles. Figures 5 and 6 provide sample images from the Office-31 and
Office-Home datasets, respectively.

Figure 4. Digit data: (a) MNIST, (b) USPS, and (c) SVHN.

For the office object datasets, we used Office-31 [40] and Office-Home [41]. The
Office-31 dataset consists of 4652 images within 31 categories collected from three distinct
domains: Amazon (A), which contains images from online merchants; DSLR (D), with
high-resolution images taken using a digital SLR camera; and Webcam (W), featuring
low-resolution images captured using a web camera. This dataset covers 31 common
office object categories, totaling 4110 images. The Office-Home dataset introduces a more
complex domain shift, with four distinct domains—Art (Ar), Clipart (Cl), Product (Pr), and
Real World (Rw)—spanning 65 object categories and approximately 15,500 images, each
offering varied visual styles. Figures 5 and 6 provide sample images from the Office-31 and
Office-Home datasets, respectively.

Mathematics 2025, 13, x FOR PEER REVIEW 18 of 24

Figure 5. Office-31 data: (a) Webcam, (b) DSLR, and (c) Amazon.

Figure 6. Office-Home data.

4.2. Experimental Setting

An initial learning rate of 0.001 was used for all experiments, decayed by a factor of
0.1 every 10 epochs. The batch size was set to 128 for the digit datasets and 64 for the office
object datasets. The Adam optimizer was used with parameters β1= 0.99 and β2 = 0.999, and
it was chosen for its ability to handle sparse gradients. Training lasted for 50 epochs on
the digit datasets and 100 epochs on the office object datasets to ensure convergence. A
regularization term of 0.0005 was applied to prevent overfitting. The Gaussian kernel used
in the MMD calculations had an initial bandwidth of 1.0, dynamically optimized through
the meta-learning framework. At the beginning of each epoch, pseudo-labels for all target
domain training data were generated based on the current classifier parameters. This it-
erative process helped refine domain alignment while maintaining computational effi-
ciency.

Experiments were conducted on a server equipped with NVIDIA RTX 2080 GPUs
(manufactured by NVIDIA Corporation, Santa Clara, CA, USA) and 256 GB of system
RAM (provided by ADATA, Taiwan). The implementation was carried out using Python
with the PyTorch deep learning library (version 1.8), along with NumPy and SciPy for
data preprocessing and statistical computations.

Figure 5. Office-31 data: (a) Webcam, (b) DSLR, and (c) Amazon.

4.2. Experimental Setting

An initial learning rate of 0.001 was used for all experiments, decayed by a factor
of 0.1 every 10 epochs. The batch size was set to 128 for the digit datasets and 64 for
the office object datasets. The Adam optimizer was used with parameters β1= 0.99 and
β2 = 0.999, and it was chosen for its ability to handle sparse gradients. Training lasted
for 50 epochs on the digit datasets and 100 epochs on the office object datasets to ensure
convergence. A regularization term of 0.0005 was applied to prevent overfitting. The
Gaussian kernel used in the MMD calculations had an initial bandwidth of 1.0, dynamically
optimized through the meta-learning framework. At the beginning of each epoch, pseudo-
labels for all target domain training data were generated based on the current classifier

Mathematics 2025, 13, 226 18 of 23

parameters. This iterative process helped refine domain alignment while maintaining
computational efficiency.

Mathematics 2025, 13, x FOR PEER REVIEW 18 of 24

Figure 5. Office-31 data: (a) Webcam, (b) DSLR, and (c) Amazon.

Figure 6. Office-Home data.

4.2. Experimental Setting

An initial learning rate of 0.001 was used for all experiments, decayed by a factor of
0.1 every 10 epochs. The batch size was set to 128 for the digit datasets and 64 for the office
object datasets. The Adam optimizer was used with parameters β1= 0.99 and β2 = 0.999, and
it was chosen for its ability to handle sparse gradients. Training lasted for 50 epochs on
the digit datasets and 100 epochs on the office object datasets to ensure convergence. A
regularization term of 0.0005 was applied to prevent overfitting. The Gaussian kernel used
in the MMD calculations had an initial bandwidth of 1.0, dynamically optimized through
the meta-learning framework. At the beginning of each epoch, pseudo-labels for all target
domain training data were generated based on the current classifier parameters. This it-
erative process helped refine domain alignment while maintaining computational effi-
ciency.

Experiments were conducted on a server equipped with NVIDIA RTX 2080 GPUs
(manufactured by NVIDIA Corporation, Santa Clara, CA, USA) and 256 GB of system
RAM (provided by ADATA, Taiwan). The implementation was carried out using Python
with the PyTorch deep learning library (version 1.8), along with NumPy and SciPy for
data preprocessing and statistical computations.

Figure 6. Office-Home data.

Experiments were conducted on a server equipped with NVIDIA RTX 2080 GPUs
(manufactured by NVIDIA Corporation, Santa Clara, CA, USA) and 256 GB of system
RAM (provided by ADATA, Taiwan). The implementation was carried out using Python
with the PyTorch deep learning library (version 1.8), along with NumPy and SciPy for data
preprocessing and statistical computations.

4.3. Results

ResNet-18 and ResNet-50 [42] were employed as the network architectures for feature
extraction from the digit and office object datasets, respectively. Both models were fine-
tuned using pre-trained ImageNet parameters. The performance of the proposed method
was evaluated on the above-mentioned datasets: digit datasets, Office-31, and Office-Home.
For the digit datasets, we tested domain adaptation between pairs such as MNIST to USPS
(M→ U), USPS to MNIST (U→M), and SVHN to MNIST (S→M). In the Office-31 dataset,
we examined six domain adaptation pairs (e.g., Amazon to DSLR (A→ D) and Webcam
to DSLR (W→ D)). For the Office-Home dataset, we created 12 domain adaptation pairs
across four domains (Art, Clipart, Product, and Real-World), including examples like Art
to Clipart (Ar→ Cl), Product to Real-World (Pr→ Rw), and so on.

Table 2 compares our method with several domain adaptation techniques on the
digit datasets, including ADDA [5], ADR [43], CDAN [44], CyCADA [12], SWD [45],
SHOT [46], and our previous work, DCWMMD [28]. Table 3 provides a comparison of the
Office-31 dataset, including methods such as that by Wang et al. [25], DAN [6], DANN [4],
ADDA, MADA [47], SHOT, CAN [3], MDGE [2], DACDM [9], CDCL [10], DMP [11], and
DCWMMD [28]. Table 4 compares the results of the Office-Home dataset with methods like
that used by Wang et al., DAN, DACDM [9], DMP [11], and DCWMMD. Please note that the
results are directly referenced from published papers. The best-performing method for each
source-to-target combination is highlighted in bold. The bold numbers in the tables indicate
the best-performing accuracy for each source-to-target combination. The “Source-only”
category represents a classifier trained solely on source data, while “Target-supervised”

Mathematics 2025, 13, 226 19 of 23

denotes a classifier trained and tested on target domain data, typically representing lower
and upper bounds for domain adaptation performance.

Table 2. Accuracies (%) of several approaches on some digit datasets.

Source→Target Methods M→U U→M S→M Average

Source-only 69.6 82.2 67.1 73.0
ADDA [5] 90.1 89.4 76.0 85.2
ADR [43] 93.1 93.2 95.0 93.8
CDAN [44] 98.0 95.6 89.2 94.3
CyCADA [12] 96.5 95.6 90.4 94.2
SWD [45] 97.1 98.1 98.9 98.0
SHOT [46] 97.8 97.6 99.0 98.1
DCWMMD [28] 98.0 98.2 98.8 98.3
MCWMMD 98.5 98.3 98.9 98.6
Target-supervised 98.9 99.4 99.4 99.2

Table 3. Accuracies (%) for domain adaptation experiments on the Office-31 dataset.

Methods A→D A→W D→A D→W W→A W→D Average

Source-only 68.90 68.40 62.50 96.70 60.70 99.30 76.10
Wang et al. [25] 90.80 88.90 75.48 98.50 75.20 99.80 88.10
DAN [6] 78.60 80.50 63.60 97.10 62.80 99.60 80.40
DANN [4] 79.70 82.00 68.20 96.90 67.40 99.10 82.20
ADDA [5] 77.80 86.20 69.50 96.20 68.90 98.40 82.90
MADA [47] 87.80 90.00 70.30 97.40 66.40 99.60 85.20
SHOT [46] 93.90 90.10 75.30 98.70 75.00 99.90 88.80
CAN [3] 95.00 94.50 78.00 99.10 77.00 99.80 90.60
MDGE [2] 90.60 89.40 69.50 98.90 68.40 99.80 86.10
DACDM [9] 95.31 95.51 78.26 98.58 78.43 99.93 91.01
CDCL [10] 96.00 96.00 77.20 99.20 75.50 100 90.60
DMP [11] 91.00 93.00 71.40 99.00 70.20 100 87.40
DCWMMD [28] 96.30 94.90 77.90 99.50 76.50 99.60 90.80
MCWMMD 96.70 96.60 78.40 99.60 78.60 99.83 91.62
Target-supervised 98.00 98.70 86.00 98.70 86.00 98.00 94.30

Table 4. Accuracies (%) for domain adaptation experiments on the Office-Home dataset.

Methods Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average

source-only 28.07 38.30 42.05 26.15 40.57 39.14 25.94 28.40 46.61 27.10 30.12 55.35 35.65
Wang et al. [25] 58.44 77.79 79.32 61.60 72.81 73.03 62.71 55.33 78.91 70.42 60.09 83.24 69.47
DAN [6] 43.60 57.00 67.90 45.80 56.50 60.40 44.00 43.60 67.70 63.10 51.50 74.30 56.28
DANN [4] 45.60 59.30 70.10 47.00 58.50 60.90 46.10 43.70 68.50 63.20 51.80 76.80 57.63
DACDM [9] 60.94 79.27 83.34 69.67 81.53 80.40 65.06 58.97 83.45 75.90 65.61 85.99 74.18
DMP [11] 59.00 81.20 86.30 68.10 72.80 78.80 71.20 57.60 84.90 77.30 61.50 82.90 73.50
DCWMMD [28] 59.69 80.23 81.31 70.24 79.45 82.65 69.20 57.87 85.12 74.80 64.20 83.14 73.99
MCWMMD 62.21 81.46 83.92 71.45 79.98 83.42 71.08 59.12 85.64 76.10 65.32 85.48 75.43
target-supervised 93.24 92.35 92.08 91.16 92.35 92.08 91.16 93.24 92.08 91.16 93.24 92.35 92.21

In Table 2, our method achieves an average accuracy of 98.60% across digit datasets,
outperforming other methods and closely approaching the target-supervised scenario. This
highlights the robustness of our approach in aligning domain distributions and achiev-
ing class-wise alignment. Table 3 presents the results of the Office-31 dataset, where our
method achieved an average accuracy of 91.62%, consistently outperforming other un-
supervised adaptation methods and closely matching the target-supervised benchmark.
This result underscores the effectiveness of our Class-Wise MMD optimization method in
adapting complex, real-world data. In Table 4, our method achieves an average accuracy
of 75.43% on the Office-Home dataset, a challenging multi-domain setting with diverse
visual characteristics. These results highlight the adaptability and robustness of our ap-
proach as it generalizes effectively across multiple domains and significantly closes the
gap with the target-supervised benchmark. This performance demonstrates our method’s
capability to handle complex domain shifts while maintaining high accuracy across diverse
visual domains.

Mathematics 2025, 13, 226 20 of 23

t-SNE (t-distributed Stochastic Neighbor Embedding) [48] is a nonlinear dimension-
ality reduction technique commonly used to visualize high-dimensional data in a lower-
dimensional space (typically 2D or 3D). By preserving local structures within the data,
t-SNE excels in representing clusters and relationships, making it particularly useful for vi-
sualizing stochastic settings and complex data distributions. In this study, we employ t-SNE
to visualize the feature representations learned by our model for both the source and target
domains, highlighting the effectiveness of the proposed domain adaptation approach.

Columns (a) and (b) of Figure 7 depict the distributions of source features and target
features, respectively, with different digits represented by distinct colors. Specifically, the
10 colors correspond to the digits 0 through 9, where each color uniquely represents a
digit for clear differentiation in the visualization. Column (c) of Figure 7 provides an
integrated view of both distributions to highlight their alignment. As observed, the source
and target features are well aligned, demonstrating the effectiveness of our approach. The
t-SNE visualization effectively highlights the alignment between source and target feature
distributions, reflecting the improved feature alignment achieved by our method compared
to the baseline.

Mathematics 2025, 13, x FOR PEER REVIEW 21 of 25

in a lower-dimensional space (typically 2D or 3D). By preserving local structures within
the data, t-SNE excels in representing clusters and relationships, making it particularly
useful for visualizing stochastic settings and complex data distributions. In this study, we
employ t-SNE to visualize the feature representations learned by our model for both the
source and target domains, highlighting the effectiveness of the proposed domain
adaptation approach.

Columns (a) and (b) of Figure 7 depict the distributions of source features and target
features, respectively, with different digits represented by distinct colors. Specifically, the
10 colors correspond to the digits 0 through 9, where each color uniquely represents a
digit for clear differentiation in the visualization. Column (c) of Figure 7 provides an
integrated view of both distributions to highlight their alignment. As observed, the source
and target features are well aligned, demonstrating the effectiveness of our approach. The
t-SNE visualization effectively highlights the alignment between source and target feature
distributions, reflecting the improved feature alignment achieved by our method
compared to the baseline.

M  U

U  M

S  M

 (a) (b) (c)

Figure 7. t-SNE visualization of three tasks on digit datasets: (a) source, (b) target, and (c) source
(red color) + target (blue color) (best viewed in color).

5. Discussion and Conclusions
The proposed method, MeTa Discriminative Class-Wise MMD (MCWMMD),

represents a significant advancement in unsupervised domain adaptation by integrating
meta-learning with a Class-Wise Maximum Mean Discrepancy (MMD) approach. While
traditional MMD methods align overall distributions between source and target domains,
they often fail to achieve precise class-wise alignment, reducing feature distinguishability
and generalization performance. MCWMMD addresses these limitations by introducing

Figure 7. t-SNE visualization of three tasks on digit datasets: (a) source, (b) target, and (c) source (red
color) + target (blue color) (best viewed in color).

5. Discussion and Conclusions
The proposed method, MeTa Discriminative Class-Wise MMD (MCWMMD), rep-

resents a significant advancement in unsupervised domain adaptation by integrating
meta-learning with a Class-Wise Maximum Mean Discrepancy (MMD) approach. While
traditional MMD methods align overall distributions between source and target domains,
they often fail to achieve precise class-wise alignment, reducing feature distinguishability

Mathematics 2025, 13, 226 21 of 23

and generalization performance. MCWMMD addresses these limitations by introducing
dynamic kernel adaptability and a focus on class-wise alignment, resulting in robust and
domain-invariant representations.

A key innovation of MCWMMD is its dynamic kernel adaptability, achieved through
a meta-module that adjusts kernel parameters based on class-specific features. This en-
ables more precise domain alignment compared to traditional static kernels, significantly
enhancing alignment and generalization. The alternating training process between the
feature extractor and the meta-module, inspired by adversarial training, further refines the
model’s ability to handle complex domain shifts. However, this adaptability introduces
computational complexity, which could be a limitation for time-sensitive applications.
Future research could explore simplifying the meta-module to reduce overhead while
preserving adaptability.

The method’s class-wise alignment approach applies MMD in a class-specific manner,
ensuring that each class is individually aligned between source and target domains. This
produces compact, domain-invariant, and class-discriminative feature clusters, ultimately
improving cross-domain classification performance. However, its reliance on accurate
pseudo-labels for class-wise alignment may lead to errors when the pseudo-label quality is
low. Developing robust pseudo-labeling strategies is a crucial direction for future research.

MCWMMD is also optimized for scalability through efficient batch processing and
streamlined meta-module training, enabling practical application to large datasets without
compromising alignment accuracy. However, scaling it extremely large or dynamically
evolving datasets remains a challenge. Future work could investigate distributed or online
learning paradigms to extend the method’s applicability to these scenarios.

Despite its strengths, MCWMMD involves complex meta-module training and
adversarial-like processes, which may pose implementation challenges, particularly for
practitioners with limited computational resources. Further validation in real-world sce-
narios with highly diverse and complex domain shifts is also needed. Promising future
directions include simplifying the meta-module for enhanced accessibility, improving
pseudo-labeling mechanisms, and extending the method to handle online and incremental
domain adaptation for dynamic datasets. Additionally, exploring cross-domain generaliza-
tion to unseen categories or settings could further enhance the method’s adaptability.

In summary, MCWMMD advances unsupervised domain adaptation by combining
meta-learning with a Class-Wise MMD approach, addressing the limitations of traditional
techniques. Its dynamic kernel adaptability and focus on class-wise alignment enable robust
feature alignment and generalization. While challenges such as computational complexity
and reliance on pseudo-labels remain, MCWMMD provides a strong foundation for future
innovations, paving the way for more adaptable and generalizable deep learning models.

Author Contributions: Conceptualization, H.-W.L., C.-T.T. and H.-J.L.; Methodology, H.-W.L.; Soft-
ware, T.-T.H. and C.-T.T.; Validation, H.-W.L. and C.-T.T.; Formal Analysis, H.-J.L.; Investigation,
T.-T.H. and H.-W.L.; Resources, T.-T.H.; Data Curation, C.-H.Y.; Writing—Original Draft Prepara-
tion, H.-J.L.; Writing—Review and Editing, H.-W.L.; Visualization, C.-H.Y.; Supervision, H.-W.L.;
Project Administration, H.-J.L.; Funding Acquisition, H.-J.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Science and Technology Council, Taiwan, R.O.C.,
under grant NSTC 113-2221-E-032-020.

Mathematics 2025, 13, 226 22 of 23

Data Availability Statement: (1) SVHN dataset [39]: available online: https://www.openml.org/
search?type=data&sort=runs&id=41081&status=active (accessed on 1 March 2024). (2) Office-31
dataset [40]: Introduced by Kate Saenko et al. in Adapting Visual Category Models to New Domain.
(3) Office-Home dataset [41]. Available online: https://www.hemanthdv.org/officeHomeDataset.
html (accessed on 1 March 2024). (4) t-SNE [48]: available online: http://www.jmlr.org/papers/v9
/vandermaaten08a.html (accessed on 1 March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lin, Y.; Chen, J.; Cao, Y.; Zhou, Y.; Zhang, L.; Tang, Y.Y.; Wang, S. Cross-domain recognition by identifying joint subspaces of

source domain and target Domain. IEEE Trans. Cybern. 2017, 47, 1090–1101. [CrossRef]
2. Khan, S.; Guo, Y.; Ye, Y.; Li, C.; Wu, Q. Mini-batch dynamic geometric embedding for unsupervised domain adaptation. Neural

Process. Lett. 2023, 55, 2063–2080. [CrossRef]
3. Zhang, W.; Ouyang, W.; Li, W.; Xu, D. Collaborative and adversarial network for unsupervised domain adaptation. In Proceedings

of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
[CrossRef]

4. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain adversarial
training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35. [CrossRef]

5. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971. [CrossRef]

6. Long, M.; Cao, Y.; Wang, J.; Jordan, M.I. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 97–105.

7. Vettoruzzo, A.; Bouguelia, M.-R.; Rögnvaldsson, T.S. Meta-learning for efficient unsupervised domain adaptation. Neurocomputing
2024, 574, 127264. [CrossRef]

8. Liu, X.; Yoo, C.; Xing, F.; Oh, H.; El Fakhri, G.; Kang, J.-W.; Woo, J. Deep Unsupervised Domain Adaptation: A Review of Recent
Advances and Perspectives. arXiv 2022, arXiv:2208.07422v1. [CrossRef]

9. Zhang, Y.; Chen, S.; Jiang, W.; Zhang, Y.; Lu, J.; Kwok, J.T. Domain-Guided Conditional Diffusion Model for Unsupervised
Domain Adaptation. arXiv 2023, arXiv:2309.14360v1. [CrossRef] [PubMed]

10. Wang, R.; Wu, Z.; Weng, Z.; Chen, J.; Qi, G.-J.; Jiang, Y.-G. Cross-Domain Contrastive Learning for Unsupervised Domain
Adaptation. arXiv 2022, arXiv:2106.05528v2. [CrossRef]

11. Luo, Y.-W.; Ren, C.-X.; Dai, D.-Q.; Yan, H. Unsupervised Domain Adaptation via Discriminative Manifold Propagation. IEEE
Trans. Pattern Anal. Machine Intell. 2022, 44, 1653–1669. [CrossRef] [PubMed]

12. Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.Y.; Isola, P.; Saenko, K. Cycada: Cycle-consistent adversarial domain adaptation. In
Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1989–1998.

13. Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum Classifier Discrepancy for Unsupervised Domain Adaptation. arXiv
2018, arXiv:1712.02560v4. [CrossRef]

14. Chen, Y.; Li, W.; Sakaridis, C.; Dai, D.; Van Gool, L. Domain adaptive faster R-CNN for object detection in the wild. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3339–3348.

15. Si, S.; Tao, D.; Geng, B. Bregman divergence based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Eng.
2010, 22, 929–942. [CrossRef]

16. Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Wortman, J. Learning bounds for domain adaptation. In Proceedings of the
Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 129–136.

17. Ding, Z.; Fu, Y. Robust transfer metric learning for image classification. IEEE Trans. Image Process. 2017, 26, 660–670. [CrossRef]
18. Gretton, A.; Borgwardt, K.; Rasch, M.; Sch, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773.
19. Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 2011,

22, 199–210. [CrossRef] [PubMed]
20. Song, L.; Gretton, A.; Bickson, D.; Low, Y.; Guestrin, C. Kernel belief propagation. In Proceedings of the 14th International

Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 707–715.
21. Park, M.; Jitkrittum, W.; Sejdinovic, D. K2-ABC: Approximate bayesian computation with kernel embeddings. In Proceedings of

the 19th International Conference on Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 398–407.
22. Li, Y.; Swersky, K.; Zemel, R.S. Generative moment matching networks. In Proceedings of the 32nd International Conference on

Machine Learning, Lille, France, 6–11 July 2015; pp. 1718–1727.
23. Liu, F.; Xu, W.; Lu, J.; Zhang, G.; Gretton, A.; Sutherland, D. Learning deep kernels for non-parametric two-sample tests. arXiv

2020, arXiv:2002.09116.

https://www.openml.org/search?type=data&sort=runs&id=41081&status=active
https://www.openml.org/search?type=data&sort=runs&id=41081&status=active
https://www.hemanthdv.org/officeHomeDataset.html
https://www.hemanthdv.org/officeHomeDataset.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/TCYB.2016.2538199
https://doi.org/10.1007/s11063-023-11167-7
https://doi.org/10.1109/CVPR.2018.00400
https://doi.org/10.48550/arXiv.1505.07818
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1016/j.neucom.2024.127264
https://doi.org/10.1561/116.00000192
https://doi.org/10.1016/j.neunet.2024.107031
https://www.ncbi.nlm.nih.gov/pubmed/39778293
https://doi.org/10.1109/TMM.2022.3146744
https://doi.org/10.1109/TPAMI.2020.3014218
https://www.ncbi.nlm.nih.gov/pubmed/32749963
https://doi.org/10.48550/arXiv.1712.02560
https://doi.org/10.1109/TKDE.2009.126
https://doi.org/10.1109/TIP.2016.2631887
https://doi.org/10.1109/TNN.2010.2091281
https://www.ncbi.nlm.nih.gov/pubmed/21095864

Mathematics 2025, 13, 226 23 of 23

24. Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer feature learning with joint distribution adaptation. In Proceedings of the
IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; IEEE Computer Society: Sydney,
Australia, 2013; pp. 2200–2207.

25. Wang, W.; Li, H.; Ding, Z.; Wang, Z. Rethink maximum mean discrepancy for domain adaptation. arXiv 2020, arXiv:2007.00689.
[CrossRef]

26. Devroye, L.; Lugosi, G. Combinatorial Methods in Density Estimation; Springer: New York, NY, USA, 2001. [CrossRef]
27. Baraud, Y.; Birgé, L. Rho-estimators revisited: General theory and applications. Ann. Statist. 2018, 46, 3767–3804. [CrossRef]
28. Lin, H.-W.; Tsai, Y.; Lin, H.J.; Yu, C.-H.; Liu, M.-H. Unsupervised domain adaptation deep network based on discriminative

class-wise MMD. AIMS Math. 2024, 9, 6628–6647. [CrossRef]
29. Andrychowicz, M.; Denil, M.; Colmenarejo, S.G.; Hoffman, M.W.; Pfau, D.; Schaul, T.; de Freitas, N. Learning to learn by gradient

descent by gradient descent. arXiv 2016, arXiv:1606.04474v2. [CrossRef]
30. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.
31. Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [CrossRef]
32. Zheng, S.; Ding, C.; Nie, F.; Huang, H. Harmonic mean linear discriminant analysis. IEEE Trans. Knowl. Data Eng. 2019,

31, 1520–1531. [CrossRef]
33. Borgwardt, K.M.; Gretton, A.; Rasch, M.J.; Kriegel, H.-P.; Sch, B.; Smola, A.J. Integrating structured biological data by kernel

maximum mean discrepancy. Bioinformatics 2006, 22, e49–e57. [CrossRef]
34. Gao, W.; Shao, M.; Shu, J.; Zhuang, X. Meta-BN Net for few-shot learning. Front. Comput. Sci. 2023, 17, 171302. [CrossRef]
35. Bechtle, S.; Molchanov, A.; Chebotar, Y.; Grefenstette, E.; Righetti, L.; Sukhatme, G.; Meier, F. Meta-learning via learned loss. arXiv

2019, arXiv:1906.05374.
36. Müller, R.; Kornblith, S.; Hinton, G. When does label smoothing help? In Proceedings of the Conference on Computer Vision and

Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.
37. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
38. Hull, J.J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Machine Intell. 1994, 16, 550–555.

[CrossRef]
39. SVHN Dataset. Available online: https://www.openml.org/search?type=data&sort=runs&id=41081&status=active (accessed on

1 March 2024).
40. Saenko, K.; Kulis, B.; Fritz, M.; Darrell, T. Adapting visual category models to new domains. In Lecture Notes in Computer Science;

Springer: Berlin/Heidelberg, Germany, 2010; Volume 6314, pp. 213–226. [CrossRef]
41. Office-Home Dataset. Available online: https://www.hemanthdv.org/officeHomeDataset.html (accessed on 1 March 2024).
42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer

Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
43. Saito, K.; Ushiku, Y.; Harada, T.; Saenko, K. Adversarial dropout regularization. arXiv 2018, arXiv:1711.01575. [CrossRef]
44. Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional adversarial domain adaptation. In Proceedings of the 32nd Conference on

Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 1647–1657.
45. Lee, C.Y.; Batra, T.; Baig, M.H.; Ulbricht, D. Sliced wasserstein discrepancy for unsupervised domain adaptation. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 10285–10295.

46. Liang, J.; Hu, D.; Feng, J. Do we really need to access the source data? Source hypothesis transfer for unsupervised domain
adaptation. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020; Volume 119,
pp. 6028–6039.

47. Pei, Z.; Cao, Z.; Long, M.; Wang, J. Multi-adversarial domain adaptation. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [CrossRef]

48. van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. Available online:
http://www.jmlr.org/papers/v9/vandermaaten08a.html (accessed on 1 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2007.00689
https://doi.org/10.1007/978-1-4613-0125-7
https://doi.org/10.1214/17-AOS1675
https://doi.org/10.3934/math.2024323
https://doi.org/10.48550/arXiv.1606.04474
https://doi.org/10.1090/S0002-9947-1950-0051437-7
https://doi.org/10.1109/TKDE.2018.2861858
https://doi.org/10.1093/bioinformatics/btl242
https://doi.org/10.1007/s11704-021-1237-4
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/34.291440
https://www.openml.org/search?type=data&sort=runs&id=41081&status=active
https://doi.org/10.1007/978-3-642-15561-1_16
https://www.hemanthdv.org/officeHomeDataset.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1711.01575
https://doi.org/10.1609/aaai.v32i1.11767
http://www.jmlr.org/papers/v9/vandermaaten08a.html

	Introduction
	Related Work and Key Concepts
	Domain Adaptation
	RKHS, Kernels, and the Kernel Trick
	Maximum Mean Discrepancy (MMD)
	The Mean Discrepancy with a Deep Kernel
	Class-Wise Maximum Mean Discrepancy
	Discriminative Class-Wise MMD Based on Euclidean Distance
	Discriminative Class-Wise MMD Based on Gaussian Kernels

	The Proposed Method
	Deep Kernel Training Network
	Meta-Learning of Maximum Mean Discrepancy
	MeTa Discriminative Class-Wise Maximum Mean Discrepancy

	Experimental Results
	Data Preparation
	Experimental Setting
	Results

	Discussion and Conclusions
	References

