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Abstract: The study is dedicated to the statistical optimization of radar imaging of surfaces
with the synthetic aperture radar (SAR) technique, assuming a static surface area and
applying the ability to move a sensor along a nonlinear trajectory via developing a new
method and validating its operability for remote sensing and non-destructive testing. The
developed models address the sensing geometry for signals reflected from a surface along
with the observation signal–noise equation, including correlation properties. Moreover, the
optimal procedures for coherent radar imaging of surfaces with the static SAR technology
are synthesized according to the maximum likelihood estimation (MLE). The features of the
synthesized algorithm are the decoherence of the received oscillations, the matched filtering
of the received signals, and the possibility of using continuous signal coherence. Further-
more, the developed optimal and quasi-optimal algorithms derived from the proposed
MLE have been investigated. The novel framework for radio imaging has demonstrated
good overall operability and efficiency during simulation modeling (using the MATLAB
environment) for real sensing scenes. The developed algorithms of spatio–temporal signal
processing in systems with a synthesized antenna with nonlinear carrier trajectories open a
promising direction for creating new methods of high-precision radio imaging from UAVs
and helicopters.

Keywords: remote sensing; non-destructive testing; SAR systems; static-aperture synthesis;
coherent image; maximum likelihood estimation

MSC: 60G35; 68U10

1. Introduction
Systems operating in different wave bands, such as optical [1,2], infrared [3,4], or

radio [5,6], are used to obtain images of studied objects or areas. Each of these bands has its
characteristics, a specific field of application, and different degrees of development of the
component base. Moreover, they can be used separately or in combination with others [7–9].
Despite the larger dimensions of radio systems compared to optical and infrared sensors,
radio imaging systems have improved for over 50 years. The importance of radio systems
is associated with the following advantages of the radio band: low dependence on weather
conditions and independence from the time of day, illumination, and the presence of high
informational content of electromagnetic waves scattered by the surface. In earth surface
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exploration applications, the SAR systems are the most developed [10–12]. Those systems
are installed on space (or airborne) carriers. They can be used not only as mapping systems
but also in the study of the underlying surface [13], in monitoring the state of natural
resources [14], tracking the state of agricultural areas [15], and studying and preventing
environmental disasters [16], among others. The spatial resolution of the restored SAR
images can reach decimeter resolution from low-orbiting satellites, which is comparable to
the same satellites’ optical systems.

Another area of studying objects in the radio band frequencies consists of systems that
generate and process signals according to aperture synthesis technology [17,18]. The most
widespread and developed are ground-based interferometric systems used in studying
space objects and in radio telescopes [19,20]. In such systems, the angular resolution reaches
milli-arcseconds or even micro-arcseconds.

Global radiovision from aerospace platforms represents a challenge addressed using
different approaches, such as models developed using laboratory settings or anechoic
chambers to conduct static experiments to localize objectives [21–23]. The generation of
representative test imagery for surfaces, ground-based structures, aircraft, and various
technological systems remains a pressing concern [24–26]. Furthermore, the advancement of
technologies for designing components, devices, and assemblies with integrated capabilities
for non-destructive testing is continually progressing [27–29]. These systems enable novel
approaches to remote testing by optimizing testing environments, trajectory configurations,
and measurement equipment, encompassing diverse wavebands, antenna designs, and
operational modes.

Space-based systems cannot solve (or can solve with certain limitations) the tasks of
local radiovision. They are cumbersome, have too much weight, rely on the Earth’s orbit
and rotation, and their imaging algorithms depend on a high altitude above the measured
area. In the case of ground-based aperture synthesis systems, it is necessary to have spatial
bases between the radio telescopes of around tens of kilometers to obtain high resolution.
Also, there is a dependence on the Earth’s rotation to fill in the spatial frequencies of the
restored images.

Over the past decades, many SAR systems have been implemented to acquire im-
ages of objects located within close range of the system [30–33]. However, such systems’
disadvantages are their large size, design based on engineering experience and opinion,
and the lack of an optimization problem. Also, these systems can realize a strictly side
view only when the carrier moves in a straight line. In contrast, modern systems, such
as Unmanned Aerial Vehicles (UAVs) or software-defined scanning devices, can change
their position and direction of movement quite abruptly, i.e., the motion trajectory can
be nonlinear. In this case, the movement trajectory can serve as an additional source of
information, contributing to enhanced image resolution. Moreover, this feature can also
support signal modulation, the application of Multiple-Input Multiple-Output (MIMO)
principles in antenna design, and the integration of separate spatially distributed antennas
within systems of interferometric aperture synthesis.

Thus, a contradiction arises: implementing the classical SAR algorithm in the labora-
tory by multiple passes is quite time-consuming, and the range resolution is insufficient.
Aperture synthesis methods also cannot be placed in an anechoic chamber due to the large
areas of antenna deployment, and coherent processing is also expensive. At the same time,
radio engineering systems for forming radio images of a static scene from small distances
and conditions in the laboratory are relevant and require further development.

Resuming the drawbacks of the exposed literature approaches: An important scientific
problem exists in developing statistical methods and algorithms for forming high-resolution
radio images of static areas and performing some practical implementations of proposed
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techniques in remote sensing and non-destructive testing systems. This study is focused on
solving the mentioned problems. The principal contributions of this study are as follows:

1. Theoretical models of sensing, exploration of the sensing geometry for signals reflected
from the surface, along with a signal–noise equation that includes correlation properties.

2. MLE algorithms are used for coherent radar imaging of surfaces in static SAR technology.
3. Simulation modeling of the designed radar imaging for real sensing scenes that justifies

good general operability and efficiency.

2. Materials and Methods
This section presents the statistical optimization of the radar system structure for

imaging surfaces with the technology of static-aperture synthesis. The section considers
the observation geometry of a static surface area by a radar moving at a specific height
along nonlinear trajectories for further signal processing and formation of a high-resolution
surface image. The models of the received informative signals, internal noise, observation
equations, and their correlation properties are defined. Furthermore, optimal and quasi-
optimal methods of radio image formation with the static-aperture synthesis technology
are obtained. Based on the developed method, algorithmic operations are proposed, and a
signal processing block diagram is developed. Moreover, potential accuracies of forming a
radio image of a surface are investigated.

2.1. Geometry, Signal–Noise Models, and Observation Equation
2.1.1. Geometry

Let us assume that a radar sensor as a high-frequency transmitting and receiving path

with an antenna whose surface is described by the coordinates
→
r
′

moves along an arbitrary
trajectory parallel to the x, y plane and emits a sensing signal in a wide sector of angles:

st(t) = A(t)cos(2π f0t + ϕ) = Re
{ .

A(t)ejω0t
}

, (1)

where
.
A(t) = A(t)ejϕ is the sensing signal’s complex envelope; A(t) is the sensing sig-

nal’s amplitude; ϕ is the initial phase; ω0 = 2π f0 is the angular frequency; and f0 is
the frequency.

The complex envelope
.
A(t) describes the change in phase and amplitude of the sensing

signal. It can take many known models of continuous and pulsed signals, including those
with complex intra-pulse modulation, e.g., linear frequency-modulated, phase-shift-keyed,
stochastic, among others. Pulse- and multi-frequency modulated signals have a complex
envelope of the following form:

.
A(t) =

P

∑
p=1

.
Sp(t − pTP),

.
A(t) =

Q

∑
q=1

.
Sqejωqt.

The geometry along which the sensor moves is shown in Figure 1. For further calcula-
tions, the following notations are introduced:

→
r = (x, y, z) is the coordinate of the surface,

→
r
′
= (x′, y′, z′) is the coordinate of the scattered signal registration area, d

→
r = dxdy is

an elementary plane on the surface that reflects the sensing signals,
→
rt is the shift of the

signal registration area center when the sensor is moved,
→
r −→

rt is the coordinates of the
elementary plane d

→
r , D is the area of all possible surface coordinates, D′ is the area of

all possible registration area coordinates, D′
p is the area of all possible values of the non-

synthesized antenna, H is the height at which observations are made,
→
ϑ =

(
ϑx, ϑy

)
is the

vector of directional cosines, R
(→

r ,
→
rt

)
is the distance from the center of the scattered signal
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registration to each point of the surface, and R
(→

r ,
→
r
′
,
→
rt

)
represents the distance between

any given point within the scattered signal registration area and each corresponding point
on the surface.
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2.1.2. Received Signals

Using the phenomenological approach [34] for determining the sensing signals scat-
tered by the surface when the surface is assumed to be statistically homogeneous, we can
write the received signals by each point in the registration area as follows:

sr

(
t,
→
r
′
,
→
rt

)
= Re

{∫
D

.
F
(→

r
) .

s0

(
t,
→
r ,

→
r
′
,
→
rt

)
d
→
r
}

, (2)

where
.
F
(→

r
)

is a surface coherent image representing the quantitative value of the reflection
coefficient of incident waves by each of its points, and

.
s0

(
t,
→
r ,

→
r
′
,
→
rt

)
=

.
I
(→

r
′) .

A
(

t − tdel

(→
r ,

→
r
′
,
→
rt

))
ej2π f0(t−tdel(

→
r ,

→
r
′
,
→
rt )), (3)

is a single signal that is expected to be received by each point of the registration area
→
r
′

when the sensor is placed at point
→
rt from each elementary plane d

→
r on the surface with

coordinates
→
r , and

.
F
(→

r
)
= 1,

tdel

(→
r ,

→
r
′
,
→
rt

)
=

2R
(→

r ,
→
r
′
,
→
rt

)
c

(4)

is the time taken to propagate the signal from the antenna center (during transmission)
to each point of the surface and vice versa, considering the sensor movement along the
→
rt coordinate,

R
(→

r ,
→
r
′
,
→
rt

)
= R(x, y, x′, y′, yt, xt) =√

H2 + [x − (xt + x′)]2 + [y − (yt + y′)]2.
(5)
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Considering the research in Section 1, we can perform all further mathematical operations
in the Fresnel zone, using only the quadratic terms when expanding the distance (5) into the
Taylor series. For such measurement conditions, we apply the following constraints:∣∣x −

(
xt + x′

)∣∣≪ H,
∣∣y −

(
yt + y′

)∣∣≪ H, x′ ≪ H, y′ ≪ H. (6)

Let us develop Equation (5) for the Fresnel zone; see Appendix A.1.

R
(→

r ,
→
r
′
,
→
rt

)
= R(x, y, x′, y′, xt, yt) =

√
H2 + [(x − xt) + x′]2 + [(y − yt) + y′]2

=

√(
R0

(→
r −→

rt

))2
− 2(x − xt)x′ − 2(y − yt)y′ + (x′)2 + (y′)2

= R0

(→
r −→

rt

)√
1 + −2(x−xt)x′−2(y−yt)y′+(x′)2+(y′)2(

R0

(→
r −→

rt

))2

≈ R0

(→
r −→

rt

)
− (x−xt)x′

R0

(→
r −→

rt

) − (y−yt)y′

R0

(→
r −→

rt

) + 1
2

(x′)2

R0

(→
r −→

rt

) + 1
2

(y′)2

R0

(→
r −→

rt

) ,

given (1 + x)
1
2 = 1 + 1

2 x − 1
8 x2,

(7)

where

R0

(→
r −→

rt

)
= R0(x − xt, y − yt) =

√
H2 + (x − xt)

2 + (y − yt)
2 =

√
H2 +

∣∣∣→r −→
rt

∣∣∣2. (8)

is a new expression for the distance from the center of the scattered signal-receiving area to
the surface with coordinates

→
r .

Typically, in radar measurement practice, the size of the non-synthesized antenna is

much smaller than the range (8), so the components (x′)2

R0

(→
r −→

rt

) and (y′)2

R0

(→
r −→

rt

) can be reduced.

Considering these simplifications, expression (7) can be represented as follows:

R
(→

r ,
→
r
′
,
→
rt

)
= R

(
x, y, x′, y′, yt, xt

)
= R0

(→
r −→

rt

)
− (x − xt)x′

R0

(→
r −→

rt

) − (y − yt)y′

R0

(→
r −→

rt

) . (9)

The reflection coefficient of electromagnetic waves by the surface
.
F
(→

r
)

is assumed to
be a delta-correlated process:

.
RF

(→
r1,

→
r2

)
=
〈 .

F
(→

r1

) .
F
(→

r2

)〉
= σ0

(→
r1

)
δ
(→

r1 −
→
r2

)
, (10)

where σ0
(→

r1

)
is the normalized radar cross-section of the area.

2.1.3. Observation Equation

Received signals in the receiver are always observed with internal noise n
(

t,
→
r
′)

.
Then, we use an additive model of the following form to optimize the observation equation.

u
(

t,
→
r
′
,
→
rt

)
= sr

(
t,
→
r
′
,
→
rt

)
+ n

(
t,
→
r
′)

. (11)

2.1.4. Signal and Noise Correlations

The noise in each processing channel is assumed to be mutually uncorrelated. The
noise model is described by a Gaussian distribution with the following correlation function:

Rn

(
t1, t2,

→
r1

′
,
→
r2

′)
=
〈

n
(

t1,
→
r1

′)
n
(

t2,
→
r2

′)〉
=

N0n

2
δ(t1 − t2)δ

(→
r1

′
−→

r2
′)

. (12)
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The noise energy, i.e., the power spectral density, is assumed to be the same for each
receiving channel.

Considering the stochastic nature of the electromagnetic field scattered by the surface,
the informative signal’s correlation function can be represented by the following equation:

Rs

(
t1, t2,

→
r1

′
,
→
r2

′
,
→
rt1 ,

→
rt2

)
=
〈

Re
.
s
(

t1,
→
r1

′
,
→
rt1

)
Re

.
s
(

t2,
→
r2

′
,
→
rt2

)〉
≈ 1

2 Re
〈 .

s
(

t1,
→
r1

′
,
→
rt1

) .
s*
(

t2,
→
r2

′
,
→
rt2

)〉
= 1

2 Re
∫

D

∫
D

〈
.
F
(→

r1

) .
F*
(→

r2

)〉 .
s0

(
t1,

→
r1,

→
r1

′
,
→
rt1

) .
s∗0
(

t2,
→
r2,

→
r2

′
,
→
rt2

)
d
→
r1 d

→
r2.

(13)

Let us rewrite Equation (13) considering Equation (10):

Rs

(
t1, t2,

→
r1

′
,
→
r2

′
,
→
rt1 ,

→
rt2

)
=

1
2

Re
∫

D
σ0
(→

r
) .

s0

(
t1,

→
r ,

→
r1

′
,
→
rt1

) .
s∗0
(

t2,
→
r ,

→
r2

′
,
→
rt2

)
d
→
r . (14)

The total correlation function of the waves to be further processed, based on the
previous equations, is presented as follows:

Ru

(
t1, t2,

→
r1

′
,
→
r2

′
,
→
rt1 ,

→
rt2

)
=
〈

u
(

t1,
→
r1

′
,
→
rt1

)
u
(

t2,
→
r2

′
,
→
rt2

)〉
= Rs

(
t1, t2,

→
r1

′
,
→
r2

′
,
→
rt1 ,

→
rt2

)
+ Rn

(
t1, t2,

→
r1

′
,
→
r2

′)
= 1

2 R
∫

D σ0
(→

r
) .

s0

(
t1,

→
r ,

→
r1

′
,
→
rt1

) .
s∗0
(

t2,
→
r ,

→
r2

′
,
→
rt2

)
d
→
r + N0n

2 δ(t1 − t2)δ
(→

r1
′
−→

r2
′)

.

(15)

The primary information about the surface is contained within the parameter known as
the power spectral density of the statistically heterogeneous complex radio wave reflection
coefficient,

.
F
(→

r
)

. This factor is further defined as the radar image of the surface.

2.2. Synthesis of the Optimal Algorithm for Radio Imaging

The optimal restoration of the radar image of the surface, described by the power spec-
tral density of the statistically inhomogeneous complex radio wave reflection coefficient,

denoted as σ0(r), must be performed according to the received signals sr

(
t,
→
r
′
,
→
rt

)
in the

observation area with coordinates
→
r
′

while the radar sensor moves with the coordinate
→
rt ,

observed in the presence of additive Gaussian noise n
(

t,
→
r
′)

.
We use the MLE method for the case of the stochastic signals [35] to get the optimal

estimation of σ0(r). We modified this function for the case of a static scene observation
and possible inspection of the surface along an arbitrary trajectory. Let us denote T as
the observation time duration, D′ as the area containing all feasible coordinate values
within the registration area, and Dt as the area containing all potential positions of the
system above the observation area. Then, the modified MLE can be presented in the
following form:

P
[
u
(

t,
→
r
′
,
→
rt

) ∣∣∣ σ0
(→

r
)]

= κ
[
σ0
(→

r
)]

×exp
{
− 1

2
s

T
s

D′
s

Dt
u
(

t1,
→
r1

′
,
→
rt1

)
W
(

t1, t2,
→
r1

′
,
→
r2

′
,
→
rt1 ,

→
rt2 , σ0

(→
r
))

×u
(

t2,
→
r2

′
,
→
rt2

)
dt1 dt2 d

→
r1

′
d
→
r2

′
d
→
rt1 d

→
rt2

}
,

(16)

where the factor κ
[
σ0
(→

r
)]

is characterized by a complex functional dependency on the

radio image. Additionally, W
(

t1, t2,
→
r1

′
,
→
r2

′
,
→
rt1 ,

→
rt2 , σ0

(→
r
))

defines the inverse correla-
tion function.

The inverse correlation function is defined through the solution of the integral equation:
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∫
T

∫
D′
∫

Dt
Ru

(
t1, t2,

→
r1

′
,
→
r2

′
,
→
rt1 ,

→
rt2 ,σ0

(→
r
))

W
(

t2, t3,
→
r2

′
,
→
r3

′
,
→
rt2 ,

→
rt3 ,σ0

(→
r
))

d
→
rt2 d

→
r2

′
dt2

= δ(t1 − t3)δ
(→

r1
′
−→

r3
′)
δ
(

d
→
rt1 − d

→
rt3

)
.

(17)

The MLE using Equation (16) is obtained by calculating the variational derivative and
putting it equal to zero. The resulting radar image is expressed as a spatial coordinate
function, and the variation σ0

(→
r
)

is represented as follows:

σ̂0
(→

r
)
= σ0

opt

(→
r
)
+ δσ0

(→
r
)

, (18)

where σ0
opt

(→
r
)

is the optimal estimate of the radio image, and δσ0
(→

r
)

is the variation of
the radio image estimate, representing some small deviation from the optimally recovered
image. The arbitrary function δσ0

(→
r
)

can be written as

δσ0
(→

r
)
= αγ

(→
r
)

, (19)

where γ
(→

r
)

is an arbitrary function of unit amplitude, and α is a small deviation of the
variation from the optimal value.

Let us simplify the variational derivative of the function δσ0
(→

r
)

using partial deriva-
tives according to a degree, α. The MLE utilizes an exponential function characterized
by a monotonic relationship with its input argument. Thus, taking the derivative of the
likelihood function’s logarithm instead of the function’s derivative will not change its
maximum. Taking this into account, we can write as follows:

δlnP
[
u
(

t,
→
r
′
,
→
rt

) ∣∣∣ σ0
(→

r
)]

δσ0
(→

r
)

∣∣∣∣∣∣∣
σ0(

→
r )=σ0

opt(
→
r )

==
dlnP

[
u
(

t,
→
r
′
,
→
rt

) ∣∣∣ σ0
opt

(→
r
)
+ αγ

(→
r
)]

dα

∣∣∣∣∣∣∣
α=0

= 0, (20)

where δ and d are notations for the variational and conventional derivatives.
The result of differentiation (20) can be written as follows:

−
s

T
s

D′
s

Dt

dRu

(
t1,t2,

→
r1

′
,
→
r2

′
,
→
rt1 ,

→
rt2 ,σ0

opt

(→
r
)
+αγ

(→
r
))

dα

×W
(

t2, t3,
→
r2

′
,
→
r3

′
,
→
rt2 ,

→
rt3 , σ0

opt

(→
r
)
+ αγ

(→
r
))

d
→
rt1 d

→
rt2 d

→
r1

′
d
→
r2

′
dt1 dt2

=
s

T
s

D′
s

Dt
u
(

t1,
→
r1

′
,
→
rt1

) dW
(

t2,t3,
→
r2

′
,
→
r3

′
,
→
rt2 ,

→
rt3 ,σ0

opt

(→
r
)
+αγ

(→
r
))

dα

×u
(

t2,
→
r2

′
,
→
rt2

)
d
→
rt1 d

→
rt2 d

→
r1

′
d
→
r2

′
dt1 dt2.

(21)

Considering the integral Equation (17), we can rewrite (20) in the form:

Re
∫

D γ
(→

r
){

1
4

∫
D σ0

(→
r1

)∫
T

∫
D′
∫

Dt

.
s0

(
t1,

→
r ,

→
r1

′
,
→
rt1

) .
s∗0W

(
t1,

→
r1,

→
r1

′
,
→
rt1

)
d
→
rt1 d

→
r1

′
dt1

×
∫

T

∫
D′
∫

Dt

.
s∗0
(

t2,
→
r ,

→
r2

′
,
→
rt2

) .
s0W

(
t2,

→
r1,

→
r2

′
,
→
rt2

)
d
→
rt2 d

→
r2

′
dt2d

→
r1

+ 1
2

N0n
2

∫
T

∫
D′
∫

Dt

.
s0W

(
t3,

→
r ,

→
r3

′
,
→
rt3

) .
s∗0W

(
t3,

→
r ,

→
r3

′
,
→
rt3

)
d
→
rt3 d

→
r3

′
dt3

− 1
2

∫
T

∫
D′
∫

Dt
u
(

t1,
→
r1

′
,
→
rt1

) .
s0W

[
t1,

→
r1

′
,
→
rt1 , σ0

(→
r
)]

d
→
rt1 d

→
r1

′
dt1

×
∫

T

∫
D′
∫

Dt

.
s∗0W

[
t2,

→
r2

′
,
→
rt2 , σ0

(→
r
)]

u
(

t2,
→
r2

′
,
→
rt2

)
d
→
rt2 d

→
r2

′
dt2

}
d
→
r = 0,

(22)

or

Re
∫

D
γ
(→

r
){1

4

∫
D

σ0
(→

r1

)∣∣∣ .
ΨW

(→
r ,

→
r1

)∣∣∣2 d
→
r1 +

N0n

2
EW

(→
r
)
− 1

2

∣∣∣ .
Y
(→

r
)∣∣∣2}d

→
r = 0. (23)
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where

EW

(→
r
)
=

1
2

∫
T

∫
D′

∫
Dt

∣∣∣ .
s0W

(
t3,

→
r3

′
,
→
rt3 , σ0

(→
r
))∣∣∣2 d

→
rt3 d

→
r3

′
dt3. (24)

is the energy of the matched signal
.
s0W

(
t3,

→
r3

′
,
→
rt3 , σ0

(→
r
))

, considering its decorrelation.
The entire Equation (23) will be equal to zero if the inequality under the integral of the

variable d
→
r is exactly equal to zero, i.e.:∣∣∣ .

Y
(→

r
)∣∣∣2 =

1
2

∫
D

σ0
(→

r1

)∣∣∣ .
ΨW

(→
r ,

→
r1

)∣∣∣2 d
→
r1 + N0nEW

(→
r
)

. (25)

The following equations are used in Equations (22) and (23):

.
Y
(→

r
)
=
∫

T

∫
D′

∫
Dt

u
(

t1,
→
r1

′
,
→
rt1

) .
s0W

[
t1,

→
r1

′
,
→
rt1 , σ0

(→
r
)]

d
→
rt1 d

→
r1

′
dt1 (26)

is the optimal algorithm for processing the received oscillations u
(

t1,
→
r1

′
,
→
rt1

)
by each

element of the antenna array in different spatial positions
→
rt1 . The processing procedure

corresponds to the classical matched filtering in accordance with the observation equation
with a reference signal:

.
s0W

[
t1,

→
r1

′
,
→
rt1 , σ0

(→
r
)]

=
∫

T

∫
D′

∫
Dt

W
(

t1, t3,
→
r1

′
,
→
r3

′
,
→
rt1 ,

→
rt3 , σ0

(→
r
)) .

s0

(
t3,

→
r ,

→
r3

′
,
→
rt3

)
d
→
rt3 d

→
r3

′
dt3. (27)

which is previously formed coinciding with the applied geometry. The innovation of the
proposed algorithm lies in the novel operation of decorrelating the received oscillations

using a filter defined by the impulse response W
(

t2, t3,
→
r2

′
,
→
r3

′
,
→
rt2 ,

→
rt3 , σ0

opt

(→
r
))

. Addition-
ally, it includes a matched filtering of the received signals aligned with the sensor’s motion
coordinates

→
rt1 . Further analytical and simulation-based studies are required to evaluate

and optimize the selection of efficient 2D trajectory configurations for the radio sensor’s
movement over stationary ground.

In Equations (22) and (23), the function

.
ΨW

(→
r ,

→
r1

)
=
∫

T

∫
D′

∫
Dt

.
s0

(
t1,

→
r1,

→
r1

′
,
→
rt1

) .
s∗0W

[
t1,

→
r1

′
,
→
rt1 , σ0

(→
r1

)]
d
→
rt1 d

→
r1

′
dt1. (28)

is the ambiguity function of the radar imaging system, where σ0
(→

r
)

is the spatial distri-
bution of the normalized radar cross-section, characterizing the system’s response to a
point radiation source. The ambiguity function in Equation (28) defines the radar system’s
angular resolution capabilities, which are critical for generating radar images of the surface
using static-aperture synthesis technology.

The designed optimal method of radio imaging (26) also can be represented at the
level of envelope processing after their detection.

.
Y
(→

r
)
=

1
2

∫
T

∫
D′

∫
Dt

.
U
(

t1,
→
r1

′
,
→
rt1

) .
S
∗
0W

[
t1,

→
r1

′
,
→
rt1 , σ0

(→
r
)]

d
→
rt1 d

→
r1

′
dt1. (29)

The obtained Equations (26) and (29) explain the physical nature of radar imaging in
the case of static scenes using a radar sensor placed on a moving platform and scanning
along arbitrary trajectories. The processing procedure consists of coherent convolution

for the received oscillations at a high frequency u
(

t1,
→
r1

′
,
→
rt1

)
in Equation (26) or a low

frequency
.

U
(

t1,
→
r1

′
,
→
rt1

)
in Equation (29) using a matched filter in the form of a reference

signal generated according to the sensing geometry. The difference between the results
obtained in this study and the classical theory of finding the maximum of the correlation
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integral lies in the decorrelation operation for a single signal using the optimal inverse

filter W
(

t1, t3,
→
r1

′
,
→
r3

′
,
→
rt1 ,

→
rt3 , σ0

(→
r
))

. As a result of a single signal decorrelation and the
following matched filtering, the size of speckles (multiplicative interference) in radar
surface images becomes much smaller than with classical processing. Further filtering of
such images can enhance the radar resolution. The application of a decorrelation operation
gives a super-resolution effect, achieved through the use of an inverse filter described by
its impulse response. This approach is commonly used to solve incorrect inverse problems
with functions or image reconstruction [36].

2.3. Analysis of the Developed Optimal Algorithm

Let us analyze the algorithm (29) in the case of the absence of a decorrelation procedure.

.
Y
(→

r
)
=

1
2

∫
T

∫
D′

∫
Dt

.
U
(

t1,
→
r1

′
,
→
rt1

) .
S∗

0

[
t1,

→
r ,

→
r1

′
,
→
rt1

]
d
→
rt1 d

→
r1

′
dt1, (30)

where, considering Equation (9),

.
S∗

0

(
t1,

→
r ,

→
r1

′
,
→
rt1

)
=

.
I∗
(→

r1
′) .

A∗
(

t −
2R
(→

r ,
→
r1

′
,
→
rt1

)
c

)
ej2π f0

2R(
→
r ,
→
r1
′
,
→
rt1

)

c

≈
.

I∗
(→

r1
′)

e
−j2π f0

2
c

(
→
r −→

rt1
)

R0(
→
r −→

rt1
)

→
r1

′

×
.

A∗
(

t −
2R0

(→
r −→

rt1

)
c

)
ej2π f0

2R0(
→
r −→

rt1
)

c ,

(31)

and
(→

r − →
rt1

)→
r1

′
= (x − xt1)x′1 + (y − yt1)y

′
1, which is the scalar product of vectors(→

r − →
rt1

)
and

→
r1

′
. We can obtain, substituting (31) into (30), the following equation:

.
Y
(→

r
)
= 1

2

∫
Dt

∫
T

∫D′
.

U
(

t1,
→
r1

′
,
→
rt1

) .
I∗
(→

r1
′)

e
−j2π f0

2
c

(
→
r −→

rt1
)

R0(
→
r −→

rt1
)

→
r1

′

d
→
r1

′


×

.
A∗
(

t −
2R0

(→
r −→

rt1

)
c

)
dt1 ej2π f0

2R0(
→
r −→

rt1
)

c d
→
rt1

= 1
2

∫
Dt

[∫
T

.
U.

I

(
t1,

→
r ,

→
rt1

) .
A∗
(

t −
2R0

(→
r −→

rt1

)
c

)
dt1

]
ej2π f0

2R0(
→
r −→

rt1
)

c d
→
rt1 .

(32)

According to (32), the processing procedure’s essence can be explained as follows. A
scanner with a radio sensor receives signals along a predefined trajectory in the

→
rt coor-

dinates. The recorded oscillations at each antenna array element are processed using the
weighting coefficients in the complex–conjugate amplitude–phase distribution, denoted as

.
I∗
(→

r1
′)

. Following the amplification phase, the signals at each array element are aligned to

a common phase center by applying the phase shift factor e
−j2π f0

2
c

(
→
r −rt1

)

R0(
→
r −→

rt1
)

→
r1

′

. A multi-beam
radiation pattern is formed by averaging the phased signals, with the antenna array con-
stantly focused on each surface point

→
r when the sensor changes along the

→
rt1 coordinates.

After the signal processing in the antenna array, the oscillations undergo time matching for

subsequent processing. The form of the complex envelope is
.

A∗
(

t −
2R0

(→
r −→

rt1

)
c

)
. Then,

the time processing can be any-pulse, continuous, without or with intra-pulse modulation.
The critical aspect of time processing is the precise amplitude and phase-matched detection
of the received signals. This detection is performed at the level of detected amplitudes,
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which are known as a trajectory signal when accumulated during the spatial scanning
process. These detected amplitudes are then processed through a filter described by the
following impulse response during the radio image synthesis phase:

ej2π f0
2

√
H2+|→r −→

rt1
|
2

c . (33)

When the detection results are digitized and processed computationally, generating a
reference signal with a square root in the argument of the e function poses no significant
challenge. However, suppose the processing is carried out directly within a radio system
hardware. In that case, expressing the resulting function (33) as a basis function associated
with well-established Fresnel or Fourier transforms is more practical. Let us simplify the
function (33) by expanding the root

√
H2 +

∣∣∣→r − →
rt1

∣∣∣2 = H

√√√√
1 +

∣∣∣→r − →
rt1

∣∣∣2
H2 , (34)

in the Taylor series under condition

∣∣∣→r −→
rt1

∣∣∣2
H2 ≤ 1, obtaining

H

1 +
1
2

∣∣∣→r − →
rt1

∣∣∣2
H2

 = H +
(x − xt1)

2 + (y − yt1)
2

2H
= H +

(x − xt1)
2

2H
+

(y − yt1)
2

2H
. (35)

Substituting Equation (35) into Equation (32), we write the processing procedure
as follows:

.
Y
(→

r
)
= exp

{
j2π f0

2H
c

}
1
2

∫
Dyt

∫
Dxt

[∫
T

.
U.

I

(
t1,

→
r ,

→
rt1

) .
A∗
(

t −
2R0

(→
r −→

rt1

)
c

)
dt1

]
×ej2π f0

(x−xt1
)2

cH ej2π f0
(y−yt1

)2

cH dxt1 dyt1 .

(36)

According to Equation (25), once the optimal output effect in Equation (36) has been
formed, the computation of its squared modulus is required. Since the squared modulus
of ej2π f0

2H
c equals one, this step can be omitted in the formation of

.
Y
(→

r
)

. In general, the
spatial coordinate (xt1, yt1) processing involves performing operations akin to the general
inverse spatial Fresnel transform. Through these optimal processing steps, the aperture of
the radio system’s antenna array D is synthesized to the dimensions of the scanning area
Dt. The synthesis quality is impacted by the trajectory of the radio sensor along the spatial
coordinates (xt1, yt1). The spatial resolution of radar for surface radio imaging using the
static-aperture synthesis technique will be analyzed by defining the ambiguity function
and demonstrated through results from simulation modeling.

2.4. System’s Ambiguity Function Without the Reference Signal Decorrelation

We can represent the modulus square of the function (28), considering
Equations (3), (9) and (35) in such form:
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∣∣∣ .
Ψ
(→

r ,
→
r1

)∣∣∣2 =

∣∣∣∣∣∫T

∫
D′
∫

Dt

.
I
(→

r1
′) .

A

(
t1 −

2R0

(→
r −→

rt1

)
c

)
ej2π f0t1 e−j2π f0

2H
c e−j2π f0

|→r −→
rt1

|
2

cH

×e
j2π f0

2
c

→
r −→

rt1
R0(

→
r −→

rt1
)

→
r1

′
.

I∗
(→

r1
′) .

A∗
(

t1 −
2R0

(→
r1−

→
rt1

)
c

)
e−j2π f0t1 ej2π f0

2H
c

×ej2π f0
|→r1−

→
rt1

|
2

cH e
−j2π f0

2
c

→
r1−

→
rt1

R0(
→
r −→

rt1
)
·→r1

′

d
→
rt1 d

→
r1

′
dt1

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∫

Dt

∫
D′

∣∣∣ .
I
(→

r1
′)∣∣∣2e

j2π f0
2
c

→
r −→

rt1
R0(

→
r −→

rt1
)

→
r1

′

e
−j2π f0

2
c

→
r1−

→
rt1

R0(
→
r −→

rt1
)

→
r1

′

d
→
r1

′

×
∫

T

.
A

(
t1 −

2R0

(→
r −→

rt1

)
c

)
.

A∗
(

t1 −
2R0

(→
r1−

→
rt1

)
c

)
dt1e−j2π f0

|→r −→
rt1

|
2

cH ej2π f0
|→r1−

→
rt1

|
2

cH d
→
rt1

∣∣∣∣∣
2

=

∣∣∣∣∣RA

(→
r ,

→
r1

) .
Ψ .

I

(→
r −→

r1

)∫
Dt

e−j2π f0
|→r −→

rt1
|
2

cH ej2π f0
|→r1−

→
rt1

|
2

cH d
→
rt1

∣∣∣∣∣
2

,

(37)

where

RA

(→
r ,

→
r1

)
=
∫

T

.
A

t1 −
2R0

(→
r − →

rt1

)
c

 .
A∗

t1 −
2R0

(→
r1 −

→
rt1

)
c

 dt1 (38)

is the autocorrelation function of the sensing signal complex envelope, and

.
Ψ .

I

(→
r −→

r1

)
=
∫

D′

∣∣∣ .
I
(→

r1
′)∣∣∣2e

j2π f0
2
c

→
r −→

r1
R0(

→
r −→

rt1
)

→
r1

′

d
→
r1

′
(39)

is the convolution of the antenna array’s complex radiation pattern.
As observed in Appendix A.2, the integral under the modulus sign in Equation (37),

when considering scanning across all possible coordinates within the rectangular area Dt,
can be denoted as:

∫
Dxt

∫
Dyt

e−j2π f0
(x−xt1

)2

cH e−j2π f0
(y−yt1

)2

cH ej2π f0
(x1−xt1

)2

cH ej2π f0
(y1−yt1

)2

cH dxt1 dyt1

=
∫ Dxt

2

− Dxt
2

e−j2π f0
(x−xt1

)2

cH

×ej2π f0
(x1−xt1

)2

cH dxt1

∫ Dyt
2

−
Dyt

2

e−j2π f0
(y−yt1

)2

cH ej2π f0
(y1−yt1

)2

cH dyt1

= e−j2π f0
x2−x2

1
cH e−j2π f0

y2−y2
1

cH Dxt sin c
(

2π f0
x−x1

cH Dxt

)
Dyt sin c

(
2π f0

y−y1
cH Dyt

)
.

(40)

Substituting (40) into (37), we obtain∣∣∣ .
Ψ
(→

r ,
→
r1

)∣∣∣2 =
∣∣∣ .
Ψ(x, y, x1, y1)

∣∣∣2
= |RA(x, y, x1, y1)

.
Ψ .

I
(x − x1, y − y1)e−j2π f0

x2−x2
1

cH e−j2π f0
y2−y2

1
cH

×Dxt sin c
(

2π f0
x−x1

cH Dxt

)
Dyt sin c

(
2π f0

y−y1
cH Dyt

)∣∣∣2
=
∣∣∣RA(x, y, x1, y1)

.
Ψ .

I
(x − x1, y − y1)Dxt sin c

(
2π f0

x−x1
cH Dxt

)
Dyt sin c

(
2π f0

y−y1
cH Dyt

) ∣∣∣2.

(41)

So, in such systems, the width of the ambiguity function is defined by the autocorrela-
tion properties of the signals, the convolution of the antenna array far-field patterns, and
the sin c(·) function, whose width is inversely proportional to the scanner’s motion area Dt.
The analysis of Equation (41) highlights that a distinctive feature of the proposed method is
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its capacity to achieve high resolution without requiring modulation of the sensing signal.
For instance, when a continuous signal is used, the function RA remains nearly constant, of-
fering no resolution in spatial coordinates. In such cases, the width of the

.
Ψ(x − x1, y − y1)

function is inversely related to the dimensions of the radio system’s antenna array and
is usually much wider than the function Dxt sin c

(
2π f0

x−x1
cH Dxt

)
Dyt sin c

(
2π f0

y−y1
cH Dyt

)
.

Thus, we obtain a high-resolution estimation of σ0
(→

r
)

by implementing only coherent

processing along the
→
rt coordinates.

A point worth mentioning is that this case of ambiguity function evaluation is only
a specific case. Other, potentially faster trajectories for achieving high-precision radar
imaging remain to be explored in future research.

2.5. Radar Radio Imaging with the Static-Aperture Synthesis Technique

Consider the basic signal processing operations according to Equation (26). The os-

cillations u
(

t,
→
r
′
,
→
rt

)
received by each antenna element located at coordinates

→
r
′

over the

time interval T, as the sensor moves along a specified trajectory coordinates
→
rt , should

be first processed via the antenna-applied weight averaging with an amplitude–phase

distribution
.
I
(→

r
′)

. Following this initial processing, the signals are shifted to an inter-
mediate frequency and subjected to a matched filtering in the receivers using a complex
amplitude

.
A(t). Moreover, in order to enhance the informational content of the signals,

the envelopes resulting from the matched filtering are passed through a decorrelation
filter, where the degree of decorrelation is proportional to the pre-determined normalized
radar cross-section of the surface. The primary operation of the static-aperture synthesis
entails performing the matched filtering of the signal envelopes using the trajectory signal
accumulated during the movement of the radio sensor along

→
rt . This matched filtering

is performed as a convolution between the received oscillations and reference signals.
Through matched filtering along the sensor trajectory, a high-resolution radar image is
reconstructed, impacted by the cross-section of the ambiguity function

.
ΨW

(→
r ,

→
r1

)
. All

these operations can be seen in a block diagram (Figure 2).
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2.6. Modeling of Radio Imaging of Surfaces by Systems with Static-Aperture Synthesis

Equation (25) describes the principal processing operations in the radar with the
static-aperture synthesis technique. The right side of this equation represents the physical
output effect that should be obtained from signal processing. This processing effect can be
expressed as the sum of two components. The first is the convolution of the actual radar
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image with the squared modulus of the ambiguity function, while the second represents
the cumulative energy of the received signals with noise. In the absence of a decorrelation
operation, the second component remains constant. A simulation model for radar image
construction was developed based on the first component, and its structure is shown as the
block diagram of key mathematical operations in Figure 3.
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The diagram presented in Figure 3 includes the following components: the ideal
radar image, representing a pre-stored “ideal” high-resolution radar image; two-dimensional
Gaussian noise units, used to produce spatially discrete Gaussian noise with unit variance;
operation blocks, labeled, such as +, ×,

√
, (·)* and |·|2, which correspondingly represent

a symbol of the addition, the product, the square root operation, the complex conjugation
and the modulus square calculation operations; the ambiguity function

.
Ψ
(→

r ,
→
r1

)
, which is a

previously generated two-dimensional ambiguity function, and the test radar image being
the resulting test radar image of the simulation modeling.

3. Results and Discussion
This section presents the outputs of the simulation model presented in the previous

section and discusses the results to find the key insights. The experimental setup is
described below.

A series of test ambiguity functions was employed in the simulation model illustrated
in Figure 3. The series was generated by varying the carrier trajectories, which corresponds
to modifying

→
rt1 in expression (37). The initial parameters for the simulation were set

as follows: the maximum dimensions of the carrier trajectory area Dxt = 0.5 m and
Dyt = 0.5 m, height H = 0.25 m, and signal frequency f0 = 3 GHz.

Figures 4–13 show the motion trajectories within a rectangular study area and the

ambiguity functions
∣∣∣ .
Ψ(∆x, ∆y)

∣∣∣2 for scenarios involving the observation of a point source.
The ambiguity function values for different sensing trajectories are obtained according to
Equation (41), assuming a continuous sensing signal followed by normalization.
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The ambiguity functions obtained from the model presented in Figures 4–13 were used
to generate the radar images (Figure 14b–k). The ideal (true) radar image [37] is shown in
Figure 14a.
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motion; (f) hourglass-shape motion; (g) Y-shaped motion; (h) Z-shaped motion; (i) square motion; 
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Analyzing the results of the proposed model can be effectively achieved by compar-
ing the difference between an ideal radar image and a series of images generated using 
various ambiguity functions. For this purpose, the following benchmark metrics were 
chosen: mean square error (MSE), peak signal-to-noise ratio (PSNR), and the structural 
similarity index measure (SSIM). A point worth mentioning is that these metrics were 
employed to evaluate 500 estimations for each motion trajectory. The average results are 
shown in Table 1. 

Figure 14. Ideal radar image (a) and radar images obtained for the following motion trajectories:
(b) linear motion along the x-coordinate; (c) linear diagonal motion; (d) L-shaped motion, (e) circular
motion; (f) hourglass-shape motion; (g) Y-shaped motion; (h) Z-shaped motion; (i) square motion;
(j) “isosceles triangle” motion; (k) W-shaped motion.
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Analyzing the results of the proposed model can be effectively achieved by comparing
the difference between an ideal radar image and a series of images generated using various
ambiguity functions. For this purpose, the following benchmark metrics were chosen:
mean square error (MSE), peak signal-to-noise ratio (PSNR), and the structural similarity
index measure (SSIM). A point worth mentioning is that these metrics were employed
to evaluate 500 estimations for each motion trajectory. The average results are shown in
Table 1.

Table 1. Average results of the radar image recovery in accordance with criteria MSE, PSNR, and
SSIM. The best results for each criterion are highlighted in bold.

Figure Motion Trajectory MSE PSNR SSIM

Figure 14a - 0 Inf 1

Figure 14b Linear along
x-coordinate 0.0368 14.387 0.2093

Figure 14c Linear diagonal motion 0.0365 14.575 0.2434

Figure 14d L-shaped motion 0.0322 15.131 0.2422

Figure 14e Circular motion 0.0292 15.545 0.2179

Figure 14f Hourglass-shape motion 0.0277 15.723 0.2247

Figure 14g Y-shaped motion 0.0308 15.324 0.2796

Figure 14h Z-shaped motion 0.0345 14.864 0.2457

Figure 14i Square motion 0.0263 15.991 0.1992

Figure 14j “Isosceles triangle”
motion 0.0288 15.579 0.2479

Figure 14k W-shaped motion 0.0295 15.502 0.2718

Based on the simulation results, the best radio scanner trajectories among the presented
ones can be considered the square trajectory (the best performance according to MSE and
PSNR values) and the Y-shaped trajectory (the best performance according to the SSIM
measure). Instead, the worst of the proposed ones can be considered a linear motion along
the x-coordinate, which, in a sense, reflects the classical synthesis of the aperture typical for
a side-looking SAR system.

If we compare the results for the trajectories shown in Figure 14b,i, we can see that
changing the trajectory from the radio scanner’s linear movement along the x-coordinate to
the square trajectory will improve the image recovery’s PSNR by up to 12%.

It is advisable to study cases when the motion trajectory is not ideal, as this is always
the case in practice, because each positioning system has its own spatial coordinate change
step and displacement. To investigate this effect, we selected the square trajectory, which
was found to be the best for ideal movement, and added some variation to this geome-
try. The resulting trajectories with 2.5 mm, 5 mm, and 7.5 mm variations are shown in
Figure 15a,c,e, respectively. For each of these trajectories, ambiguity functions |

.
Ψ(∆x, ∆y)|2

were obtained for the cases of observing a point source (Figure 15b,d,f, respectively).
It can be argued with a visual comparison of the ambiguity function for the idealized

trajectory (see Figure 11b) with the obtained ambiguity functions in Figure 15 that, at a
variation of 2.5 mm (Figure 15b), the level of the side lobes of the ambiguity function of the
system increases; at a variation of 5 mm (Figure 15d), the level of the side lobes begins to
change abruptly, and their width value changes; and at a variation of 7.5 mm (Figure 15f)
the effects of the curvature of the side lobes become more distinct as some amplitudes
increase and the plane becomes heterogeneous.
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7.5 mm. 

Since trajectory variations deteriorate the quality of the obtained image, the limiting 
factors of the variations were investigated by computing the MSE for variations from 0.1 
mm to 10 mm, averaging 500 estimations for each variation value employed. Figure 17 
shows the dependence of the MSE on the value of the variation of the radio scanner tra-
jectory for moving in a square shape. 

Figure 15. Scanner trajectories and corresponding ambiguity functions for a square motion with
(a,b) 2.5 mm variation; (c,d) 5 mm variation; (e,f) 7.5 mm variation.

Figure 16 shows the obtained radar images for the studied trajectories with the varia-
tions presented in Figure 15. If we visually compare the obtained radar image for the ideal
trajectory with the restored radar images, the following conclusion can be stated: As the
trajectory variation grows, the appearance of more high-intensity spots increases, which
can lead to incorrect interpretations of the presence of additional objects in the image.
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Figure 16. Radar images obtained for the square trajectory with variations: (a) 2.5 mm; (b) 5 mm;
(c) 7.5 mm.

Since trajectory variations deteriorate the quality of the obtained image, the limiting
factors of the variations were investigated by computing the MSE for variations from
0.1 mm to 10 mm, averaging 500 estimations for each variation value employed. Figure 17
shows the dependence of the MSE on the value of the variation of the radio scanner
trajectory for moving in a square shape.
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Based on the obtained results, it can be concluded that to restore radio images of a static
scene with dimensions of 0.5 m × 0.5 m (which are also the limits of the radio scanner’s
movement) at a height of 0.25 m and a signal frequency of 3 GHz, the accuracy of the radio
scanner’s movement should be at least 5 mm for the best output result. Currently, modern
numerically controlled machines can position a sensor with millimetric precision. Therefore,
it is technically possible to fulfill this movement variation constraint. Nevertheless, the
list of radio scanner trajectories and their ambiguity functions presented and studied in
this work is not exhaustive, and further simulation scenarios should be investigated. This
manuscript is limited to studying a specific list of cases; however, future research will focus
on analyzing a broader range of simulation cases.
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4. Conclusions
This study develops a method for optimal coherent radar surface imaging using static-

aperture synthesis technology. Unlike existing ones, this technology allows radio imaging of
a stationary area with high resolution in range and azimuth due to coherent spatiotemporal
processing of continuous signals in complex nonlinear radar sensor motion trajectories.

The classical principles of radar systems for coherent surface imaging from moving
carriers have been developed, and principal procedures in processing for a radar system
with the static-aperture technique that improve the quality of high-precision radio imaging
for a fixed observation area have been designed. The novel framework for radio imaging has
demonstrated good general operability and efficiency during simulation modeling for real
sensing scenes. The cases of test image recovery for 10 different trajectories (Figures 4–13) of
the system motion were modeled (according to the diagram in Figure 3), which implements
the static-aperture synthesis method developed in this article. Based on the obtained
simulation results (Figure 14), the reference metrics were calculated (Table 1). According to
two of the three metrics (MSE and PSNR), the best trajectory among the presented ones is
the square motion trajectory, whose improvement over the linear trajectory in MSE is 28.5%,
and PSNR is 10%. The hourglass-shape motion trajectory also showed excellent results:
an improvement over the linear trajectory in MSE is 25%, PSNR is 9%, and SSIM is 7%.
The study of the hourglass-shape motion trajectory, as the best of the presented trajectory,
with the presence of variations from 0.1 to 10 mm, showed (Figure 17) that to achieve
MSE values comparable to the level of the idealized trajectory, the accuracy of the system
positioning on which the device antenna is located should not be worse than 5 mm. Also,
based on the simulation results, it can be seen that using the developed method of aperture
synthesis improves every metric compared with the classical method with a side-looking
view mode.

This design forms the theoretical base for developing advanced high-precision ra-
diovision systems for a stationary observation area, including laboratory prototypes of
aerospace remote-sensing radars and non-destructive testing radio systems applications.
However, the proposed method, as well as all existing coherent radiovision methods based
on aperture synthesis, can be affected by speckle noise, which may lead to incorrectly
depicting the remotely sensed object. Another limitation of the proposed method is the
positioning accuracy requirements of the radio sensor motion device. These requirements
can specifically affect the study of large areas because, for example, rails of greater length
have a more significant positioning variation along the axes. Therefore, in future investiga-
tions, we plan to employ the designed approach to other geometry-sensing configurations
to improve radar imaging performance and perform experimental examinations of an
imaging system prototype according to the developed block diagram in a real environment
to calculate the marginal errors of the proposed method and mathematically and practically
determine the limitations of its use.
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The distance between any point within the scattered signal registration area and
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Appendix A.2. Development of Equation (40)

The development of the integral under the modulus sign in Equation (37), assuming
scanning across all possible coordinates within the rectangular area Dt, is as follows:
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