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Abstract: Interior design, which integrates art and science, is vulnerable to infringements
such as copying and tampering. The unique and often intricate nature of these designs
makes them vulnerable to unauthorized replication and misuse, posing significant chal-
lenges for designers seeking to protect their intellectual property. To solve the above
problems, we propose a deep learning-based zero-watermark copyright protection method.
The method aims to embed undetectable and unique copyright information through image
fusion technology without destroying the interior design image. Specifically, the method
fuses the interior design and a watermark image through deep learning to generate a highly
robust zero-watermark image. This study also proposes a zero-watermark verification
network with U-Net to verify the validity of the watermark and extract the copyright
information efficiently. This network can accurately restore watermark information from
protected interior design images, thus effectively proving the copyright ownership of the
work and the copyright ownership of the interior design. According to verification on an
experimental dataset, the zero-watermark copyright protection method proposed in this
study is robust against various image-oriented attacks. It avoids the problem of image
quality loss that traditional watermarking techniques may cause. Therefore, this method
can provide a strong means of copyright protection in the field of interior design.

Keywords: deep learning; zero-watermark; image fusion; interior design protection

MSC: 68T07; 68T01; 54H30

1. Introduction
Interior design is a type of design that is a creative output of human society. As a

discipline that integrates art and science, it produces a variety of media forms that carry
designers’ unique creative concepts. The digital age has provided more possibilities for
design innovation and application. Many researchers have tried to use human designers’
design data to batch-generate designs with specific decorative styles and spatial functions
and have retrained diffusion models to create new datasets of interior decorative styles,
thus further expanding the creative boundaries of design [1]. In addition, the increas-
ing expansion of the channels for the dissemination of design works, which promotes
design sharing and communication, also brings new challenges. Design works are more
susceptible to theft, tampering, and illegal copying in digital environments and are ex-
posed to the risk of copyright infringement [2–4]. These actions not only infringe upon
the intellectual property rights of the original creators but also may lead to substantial
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economic losses. Therefore, protecting the rights and interests of original designs and
establishing a sound mechanism for copyright protection and technology maintenance are
of great significance for safeguarding the rights and interests of designers and promoting
the benign development of the industry.

As an essential method of embedding copyright information into digital media, water-
marking technology can achieve the purpose of copyright protection and content verifica-
tion. However, traditional watermarking technology has certain limitations in protecting
interior design. Firstly, visible watermarking can reduce the visual quality and original
expression of design works and weaken the aesthetic relationships in artistic communi-
cation. Secondly, to ensure the robustness of watermarking, traditional techniques often
require a sizable embedding intensity, especially in high-contrast areas of a watermark em-
bedded in a design image, which can also lead to the destruction of the color hierarchy and
texture details. For this reason, the development of zero-watermarking techniques brings
a new perspective. Unlike traditional watermarking techniques that directly modify the
carrier image, zero-watermarking techniques provide copyright protection by extracting
the inherent features of an image [5]. However, there are still some problems with existing
zero-watermarking methods. Firstly, most of the zero-watermarking techniques based
on image transformations have poor robustness when an image is geometrically oriented
because their manual features are easily affected by the relative positions of images. Sec-
ondly, interior design has rich color levels and texture details, but most zero-watermarking
methods are limited to gray-scale images for feature extraction. This feature extraction
method can only capture shallow information, and it is not easy to fully reflect the complex
structure of an image. Especially when facing interior design with complex colors and
textures, the robustness of existing methods is insufficient, which limits their application in
real scenarios.

To solve the above problems, we propose an interior design protection scheme based
on image fusion through deep learning. The scheme first extracts the higher-order features
of the color and texture of the host image and the watermarked image’s salient regions and
edge features, respectively, using deep learning techniques. Subsequently, to construct a
more complex and robust feature space, we organically fuse these two types of features to
generate a zero-watermark image for copyright protection. In the copyright determination
stage, the host image is superimposed with the zero-watermark image and input into the
zero-watermark authentication network to extract the copyright protection information
and realize accurate copyright determination. This scheme effectively solves the problem of
the insufficient robustness of traditional methods in complex image scenarios. It is vital to
improve the copyright protection system for interior design and promote the development
of the industry.

The contributions of this study are as follows:

• A novel zero-watermark method for interior design preservation based on image
fusion through deep learning is proposed.

• A zero-watermark authentication network for extracting copyright protection infor-
mation for accurate copyright identification for interior design is proposed.

• Our proposed method has good robustness against various types of attacks.

The remainder of this article is structured as follows: Section 2 introduces the related
work on zero-watermark methods. Section 3 presents the proposed method. Section 4
describes the experimental validation of this study’s method. Sections 5 and 6 discuss and
summarize the process, respectively.
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2. Related Work
2.1. Watermark Protection Methods

Currently, the development of watermarking technology, as an essential method of
embedding copyright information into digital media, has evolved from simply visible
watermarking to complex invisible watermarking [6]. Traditional watermarking technol-
ogy achieves the purpose of copyright protection and content verification by embedding
information such as text, images, or digital data into the spatial or frequency domain [7,8].
Research has shown that an effective watermarking system needs to satisfy the three ba-
sic metrics of covertness, robustness, and security simultaneously [9]. Watermarking to
protect copyrights should not affect the standard display of the disseminated creative
content and should provide resistance to external theft and attacks [10]. In recent years,
with the rapid development of digital media technology, it has been gradually revealed
that, in practical applications, traditional watermarking technology has the limitations
of insufficient attack resistance and limited embedding capacity [11]. Since the current
watermarking technology for interior design image protection is mainly reflected in the
visual domain [12], traditional watermarking technology in the protection of interior design
will face two types of limitations. Firstly, the direct embedding method of traditional
watermarking can lead to an irreversible loss of image quality, destroying an image’s color
hierarchy and texture details [13]. As a result, visible watermarking can degrade the visual
quality and original expression of design work and even weaken the aesthetic relationships
in artistic communication. For example, embedding traditional watermarks in marble
design images resulted in the distortion of material gloss and texture details. Secondly,
traditional watermarking often lacks robustness in complex image processing, and it is
usually challenging to determine the optimal embedding region [14]. In addition, although
watermarking is widely used as an effective protection method, its technology also has
certain security risks. In particular, if the watermarking algorithm is not secure enough, an
attacker may remove or tamper with the watermark information.

Therefore, as interior design ideas flow through the marketplace in the future, water-
marking technology should be compatible with different image formats and processing
flows to better enable watermarking algorithms to strike a balance between protecting
information and maintaining image quality.

2.2. Zero-Watermark Protection Methods

In contrast to traditional watermarking methods, zero-watermarking techniques can
protect intellectual property rights in design works without changing the initial design by
extracting image features for formal copyright authentication [5]. Based on the concept
of zero-watermarking, Liu et al. designed a zero-watermarking technology scheme by
combining a dual-tree complex wavelet transform and discrete cosine transforms and
experimentally verified that the scheme showed better performance in the presence of
multiple image attacks (DCT) [15]. However, in current practice, the problem of the
poor robustness of extracted image features remains, which leads to the emergence of the
weak performance of zero-watermarking methods. Therefore, more and more teams are
trying to utilize deep neural networks to learn and build automatic image watermarking
algorithms [16]. Such deep learning-based zero-watermarking techniques have attracted
the interest of scholars concerned with current digital image copyright protection due to
their automated and efficient image feature extraction.

Several existing studies have shown that a fusion mechanism based on deep feature
extraction not only enhances the robustness of the zero-watermarking method but also
provides a barrier to intellectual property protection for artistic creators [17]. Xiang et al.
constructed image style features for zero-watermarking construction [18]. In addition,
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Shi et al. proposed a zero-watermarking algorithm based on multiple features and chaotic
encryption to improve the distinguishability of different zero-watermark images [19], and
Li et al. pointed out that deep learning-based zero-watermarking technology is driving
change in the field of copyright protection at an unprecedented speed [20]. Further, other
studies have also attempted the application of deep feature extraction in zero-watermarking
methods. Cao’s team [21] designed a multi-scale feature fusion mechanism to accurately ex-
tract watermark information during image propagation even when it encounters malicious
attacks such as geometric transformation, compression, or cropping. This deep learning-
based zero-watermarking method performs well against various attacks and maintains the
image’s visual quality, providing new ideas for copyright protection for interior design
works [22].

3. Method
3.1. Overview

The flowchart of the methodology proposed in this study is shown in Figure 1. It
consists of two primary parts: zero-watermark construction based on an image fusion
network and zero-watermark authentication utilizing an inspection network (ISN).

Figure 1. The overall structure of the proposed zero-watermark method.
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In the zero-watermark construction phase, the protected interior design and wa-
termark images are processed through an encoder to extract their respective features.
Subsequently, these extracted features are fused, and the fused feature representation is
passed through the decoder to generate a robust zero-watermark image, which is then
stored. The construction approach aims to leverage deep learning techniques to integrate
the interior design with the watermark image, ensuring that the zero-watermark image
contains the salient features of both the interior design and the watermark image. Our
construction approach can significantly enhance the robustness of the watermark against
various forms of image attacks.

An inspection network (ISN) is employed to verify the zero-watermark image. The ISN
is trained to separate the zero-watermark image and reconstruct the embedded watermark
image. During the authentication process, the interior design is verified, and the zero-
watermark image is used as the input to the network, thereby obtaining the extraction and
authentication of the initially embedded watermark image information.

3.2. Zero-Watermark Construction

Here, the interior design is defined as ID = {F(i, j)}N×M. The watermark image
is denoted by WI = {G(i, j)}N×M. F(i, j) denotes the pixel value at position (i, j) of ID.
G(i, j) denotes the pixel value at position (i, j) of WI.

Firstly, zero-watermark generation takes ID and WI as inputs and performs feature
extraction based on the encoder.

Secondly, the features extracted from ID and WI will undergo feature fusion.
Thirdly, the decoder turns the fused features into a zero-watermark image.
Finally, the zero-watermark image is sent back to the previous feature extraction

encoder, and the loss for training is calculated.

3.2.1. Feature Extraction

Input: Interior design ID = {F(i, j)}N×M and watermark image WI =

{G(i, j)}N×M.
Output: The extracted features of the interior design FeaID ∈ RH×W×C and the

watermark image FeaWI ∈ RH×W×C. H and W represent the height and weight of the
feature, respectively. C represents the channel of the feature.

During zero-watermark construction, the encoder can transform the interior design
and watermark image into high-dimensional feature representations, providing a reliable
base for zero-watermark generation. Considering the efficiency and performance require-
ments of zero-watermark construction, MobileNet v2 [23], with its lightweight design, is
introduced for the efficient extraction of features from image content. It is a lightweight
model that employs depthwise-separable convolution and an inverted residual structure
to achieve efficient feature extraction by reducing the amount of computation and the
number of parameters. In this study, MobileNet v2 adopts a four-layer inverse residual
structure, with a step size of 1 for the first and third layers and a step size of 2 for the second
and fourth layers. The feature extraction network is denoted by Enc, and its structure is
summarized in Table 1.

Table 1. The structure of the feature extraction network.

Layer Kernel Size Input Channel Output Channel Stride Expansion Ratio

Conv2d 3 3 8 1 1
Inverted Residual Block − 8 8 1 1
Inverted Residual Block − 8 16 2 6
Inverted Residual Block − 16 16 1 6
Inverted Residual Block − 16 24 2 6

Conv2d 1 24 24 1 −
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Firstly, the input interior design ID and watermark image WI perform convolution
operations with a kernel size of 3 × 3 to obtain the shallow features. The process can be
represented as follows:

Fea1 = Enc1(ID) (1)

Fea2 = Enc2(WI) (2)

Enc(X) = ReLU6(BN(Conv3×3(X))) (3)

BN(X) = γ
X − µX√

σ2
X + ϵ

+ β (4)

µX =
1
m

m

∑
i=1

Xi (5)

σ2
X =

1
m

m

∑
i=1

(Xi − µX)
2 (6)

ReLU6(x) = min(max(0, x), 6) (7)

Here, Enc1 and Enc2 denote the feature extraction networks for the interior design
and the watermark, respectively. Fea1 and Fea2 represent the results of the shallow features.
Conv3×3 denotes convolution operations with a kernel size of 3 × 3, BN denotes batch
normalization, ReLU6 is the activation function, µX represents the mean value of X, and σ2

X
represents the variance of X. γ and β represent the scaling factor and offset, respectively.

Secondly, four inverted residual blocks are introduced to reduce the model parameters
while maintaining model performance. Each block contains an expansion layer, depthwise-
separable convolution, and residual connections. The extension layer aims to increase
the number of channels through 1 × 1 convolution. After the inverted residual blocks, a
convolution layer with a kernel size of 1 × 1 is used to obtain the features extracted from
images. The process can be represented as follows:

Fea3 = IRB(4)(Fea1) (8)

Fea4 = IRB(4)(Fea2) (9)

IRB(X) =

{
X + DSConv3×3(Conv1×1(X))stride = 1

DSConv3×3(Conv1×1(X))stride = 2
(10)

FeaID = Conv1×1(Fea3) (11)

FeaWI = Conv1×1(Fea4) (12)

Here, IRB(4) represents residual blocks that have been inverted four times, and
DSConv3×3 denotes depthwise-separable convolution with a kernel size of 3 × 3. The
extracted features of the interior design and watermark image are denoted by FeaID and
FeaWI , and they will be used for the subsequent feature fusion.
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3.2.2. Feature Fusion

Input: The extracted feature of the interior design is FeaID ∈ RH1×W1×C1 , and the
extracted feature of the watermark image is FeaWI ∈ RH1×W1×C1 . H1 and W1 represent the
height and weight of the extracted feature, and C1 represents the channel of the feature.

Output: The fused feature is FeaF ∈ RH2×W2×C2 . H2 and W2 represent the height and
weight of the feature, and C2 represents the channel of the feature.

Generally, zero-watermark images constructed by relying only on a single feature are
prone to loss or corruption in the face of common attacks, such as noise, compression, and
cropping. To this end, we effectively improve the performance of zero-watermark features
by fusing the features of protected and watermarked images to generate more complex and
robust feature representations.

After feature extraction, we take FeaID and FeaWI as inputs and fuse them to obtain
the fused feature FeaF with Equation (13).

FeaF = α × FeaID + (1 − α)× FeaWI (13)

Here, α is a control coefficient responsible for regulating the fusion ratio of FeaID

and FeaWI .

3.2.3. Zero-Watermark Image Generation

Input: The fused feature FeaF ∈ RH2×W2×C2

Output: A zero-watermark image Z.
The generation of zero-watermark images is based on the decoder. The decoder

reduces the fused features to a zero-watermarked image, aiming to generate a robust zero-
watermarked image based on semantic features. This approach ensures that the generated
zero-watermark image contains both the fused features of the interior design and the wa-
termark image and makes the generated zero-watermark image highly resistant to attacks,
which improves the overall robustness and applicability of the zero-watermarking method.

Here, the decoder achieves feature upsampling and reduction through transpose
convolution and batch normalization to gradually generate zero-watermarked images from
the fused feature maps. Meanwhile, the ReLU activation function enhances the nonlinear
representation capability. The detailed structure is shown in Table 2.

Table 2. The structure of the decoder.

Layer Input Channel Output Channel Kernel Size Stride Padding

ConvTranspose2D + BN + ReLU 24 32 3 2 1
ConvTranspose2D + BN + ReLU 32 16 3 2 1
ConvTranspose2D + BN + ReLU 16 8 3 2 1

Conv2D + Tanh 8 3 3 1 1

The calculation process can be represented as follows:

Z = Decoder(FeaF) (14)

Decoder(X) = FinalConv(UpBlock(3)(X)) (15)

FinalConv(X) = Tanh(Conv3×3(X)) (16)

Tanh(x) =
ex − e−x

ex + e−x (17)

UpBlock(X) = ReLU(BN(TConv3×3(X))) (18)
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Here, Z denotes the generated zero-watermark image, and FinalConv denotes the
convolution operation to adjust the number of channels. Tanh and ReLU are the activa-
tion functions. UpBlock(3) denotes a block that has been upsampled three times. TConv
represents the transpose convolution operation.

To ensure that the extracted interior design and watermarked image features maintain
integrity and their correlation with the generated zero-watermarked image, we designed a
two-way reconstruction mechanism. Specifically, the generated zero-watermark image is
sequentially fed into the encoder, which extracts the features of the interior design (Enc1)
and the watermark image (Enc2) for further processing. It can ensure the quality and feature
correlation of the generated zero-watermark image. The process is expressed as follows:

Fea
′
ID = Enc1(Z) (19)

Fea
′
WI = Enc2(Z) (20)

Here, Fea
′
WI is the generated feature of Z for FeaWI , and Fea

′
ID is the generated feature

of Z for FeaID.
Thus, the overall loss can be defined as Lloss, and the calculation can be expressed

as follows:

Lloss(WI, ID, Z) = ηLWatermark(WI, Z) + (1 − η)LImage(ID, Z) (21)

where η is the control parameter.
This consists of two parts. Firstly, LWatermark(WI, Z) is used to measure the watermark

difference between the watermark image WI and the zero-watermark image Z, and it is
expressed as

LWatermark(WI, Z) =
1

H1 × W1
∑
i,j

(
FeaWI(i, j)− Fea

′
WI(i, j)

)2
(22)

Here, Fea
′
WI(i, j) represents the generated feature of Z for FeaWI at position (i, j), while

FeaWI represents the pixel value of the watermark image at position (i, j).
Secondly, LWatermark(ID, Z) is used to measure the interior design difference between

the interior design ID and the zero-watermark image Z, and it is expressed as

LImage(ID, Z) =
1

H1 × W1
∑
i,j

(
FeaID(i, j)− Fea

′
ID(i, j)

)2
(23)

Here, Fea
′
ID(i, j) represents the generated feature of Z for FeaID at position (i, j), and

FeaID represents the pixel value of the watermark image at position (i, j).
Through network training and by minimizing the loss Lloss, the network constructs a

zero-watermark image containing information on both the interior design and the water-
mark, which provides a certain degree of security and is challenging to illegally crack due
to the complexity of the fused features. Further, the zero-watermark image is robust due to
the extraction and fusion for the generation of stable image features.

3.3. Zero-Watermark Verification

The zero-watermark verification process consists of two steps. First, the interior design
to be tested (denoted by ID′) and the zero-watermark image are fed into the inspection
network (ISN). Second, the ISN transforms the input to obtain the reconstructed copyright
image WI′.
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ISN

The ISN is based on the UNet [24] shown in Figure 1. The network consists of three
parts: the encoder, bottleneck layer, and decoder. The encoder section consists of four
convolutional blocks, and each is followed by a 2 × 2 max pooling layer, thus gradually
reducing the size of the feature map and increasing the number of feature channels. The
bottleneck layer contains a convolutional module that processes the feature map output
by the encoder for input into the decoder. The decoder restores the feature map size
through a stepwise upsampling operation (using transposed convolutional layers) and
combines it with the encoder output of the corresponding layer for skip connections. This
section contains four convolutional blocks that process the concatenated results of the
upsampled feature map and the corresponding layer’s feature map in the encoder. Finally,
the output layer uses a 1 × 1 convolution to map the number of channels to the target
output channel number.

Firstly, we simulate various image attacks on image ID and obtain the set of attacked
images IDatt. IDatt is expressed in Equation (24).

IDatt = {IDatt|IDatt = τ(ID, θ), θ ∈ Θ} (24)

Here, τ is the attack operation function, and θ ∈ Θ represents the parameter combina-
tions of different attack strategies or intensities.

Secondly, we take the generated zero-watermark image Z and the set of attacked
images IDatt as the input and regard the watermark image WI as the target output for
ISN training. Secondly, the training loss for verification (denoted by Lv) is defined in
Equation (25).

Lv =
1

N × M ∑
i∈N,j∈M

(WI(i, j)− WI′(i, j))2 (25)

Here, WI′ denotes the reconstructed copyright image, and N × M is the dimension of
the copyright image.

After the ISN completes training, we take the generated zero-watermark image Z and
the detected image ID′ as the input for the ISN to obtain the reconstructed copyright image
WI′ for copyright verification.

Compared with traditional verification methods, this method can still effectively
recover the original watermark features from a damaged image when facing high-intensity
image attacks, enhancing its overall robustness.

4. Experiments
4.1. Dataset and Evaluation Indexes

We selected two interior design datasets for testing, namely, interior_design https:
//www.kaggle.com/datasets/aishahsofea/interior-design (accessed on 24 February 2025)
and a synthetic dataset for home interiors https://www.kaggle.com/datasets/luznoc/
synthetic-dataset-for-home-interior/ (accessed on 24 February 2025). Both datasets were
taken from the Kaggle project. The interior_design (I_D) dataset includes 4147 interior
design photos with different locations and styles. The synthetic dataset for home inte-
riors (SHI) consists of diverse annotated composite data for computer vision projects,
and it includes 85 high-quality composite RGB interior design images showcasing rich
interior scenes.

In our experiment, five images were selected from the I_D dataset, and four were
selected from the SHI dataset for performance evaluation. The image size was 256× 256× 3.
A copyrighted watermark image is shown in Figure 2, with a size of 256 × 256 × 3. Adam
was adopted in the model as the optimization method.

https://www.kaggle.com/datasets/aishahsofea/interior-design
https://www.kaggle.com/datasets/aishahsofea/interior-design
https://www.kaggle.com/datasets/luznoc/synthetic-dataset-for-home-interior/
https://www.kaggle.com/datasets/luznoc/synthetic-dataset-for-home-interior/
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We adopted the peak signal-to-noise ratio (PSNR) and normalized coefficient (NC) to
verify the performance of the proposed method.

Firstly, the PSNR is commonly used to measure the quality of an image—or, more
precisely, the quality of a watermark image and reconstructed copyright image [25]. The
higher the PSNR value, the better the image quality. The calculation is demonstrated in
Equation (26).

PSNR = 10 · log10

(
MAX2

Img

MSE

)
(26)

where MAXImg represents the maximum value of the image, and MSE denotes the mean
squared error.

Secondly, the NC verifies the robustness of the watermarking method by calculating
the similarity between the reconstructed copyright image and the original embedded
watermark image [26]. The range of NC is (−1,1), and the closer the NC value is to 1, the
better the algorithm’s robustness. The calculation is demonstrated in Equation (27).

NC =
∑

q
k=1 ∑m

i=1 ∑n
j=1[Y(i, j, k)× Y′(i, j, k)]

∑
q
k=1 ∑m

i=1 ∑n
j=1[Y(i, j, k)]2

(27)

Here, Y(i, j, k) and Y′(i, j, k) denote the pixel values of the watermark image and
reconstructed copyright image at position (i, j, k), respectively.

4.2. Robustness Evaluation
4.2.1. Conventional Attacks

To verify the robustness of the proposed method when facing conventional attacks,
we applied different conventional attacks on interior design images and evaluated the
watermark images with the extracted copyright image of the attacked images. The conven-
tional attacks comprised three types of noise attacks on images (Gaussian, salt-and-pepper,
and speckle noise) and three types of filtering attacks (Gaussian filter, mean filter, and
median filter). Table 3 shows the specific attack types and intensities. Table 4 and Table 5,
respectively, show the PSNR and NC results of the proposed method for the I_D dataset,
while Table 6 and Table 7, respectively, show the PSNR and NC results of the proposed
method for the SHI dataset. Figure 2 shows the images receiving the conventional attacks
and the extracted copyright image.

Table 3. The types and intensities of conventional attacks.

Type Intensity

Gaussian noise 0.005, 0.01, 0.05, 0.1
Salt-and-pepper noise 0.05, 0.01, 0.05, 0.1
Speckle noise 0.01, 0.05, 0.1, 0.2
Gaussian blur 3 × 3, 5 × 5, 7 × 7, 9 × 9
Mean blur 3 × 3, 5 × 5, 7 × 7, 9 × 9
Median blur 3 × 3, 5 × 5, 7 × 7, 9 × 9

The experimental results show that the proposed method is robust against conven-
tional noise and filter processing attacks. For the three noise types (Gaussian, salt-and-
pepper, and speckle noise), the values of NC and PSNR decrease slightly with the increase
in the noise intensity. Still, the overall change is small, and in the experiments, the aver-
age PSNR and NC values were 25.30 and 0.987, which shows that the method has good
robustness. For the three filters (Gaussian blur, mean blur, and median blur), the effects of
different filtering treatment strengths on the NC and PSNR values are more moderate. In
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the experiments, the average PSNRs of the test were 25.46 and 0.988, indicating that the
method can effectively resist filtering interference. Generally, traditional zero-watermark
schemes suffer from degradation under intense noise or filtering attacks. Our method
can maintain high robustness under attacks compared with traditional zero-watermark
methods. This stability can be attributed to the advantage of deep learning in stable feature
extraction. In addition, the experimental results indicate that although different types of
noise and filtering can cause defects in the original image, the overall structural integrity
of the extracted copyright information remains largely unchanged. Overall, the technique
demonstrates better robustness when oriented to conventional noise.

Figure 2. The interior designs after conventional attacks and the extracted copyright images.

Table 4. The PSNR results of conventional attacks for the I_D dataset.

Noise Type Intensity Img1 Img2 Img3 Img4 Img5

Gaussian noise

0.005 27.25 24.71 27.42 22.99 18.86
0.01 27.20 24.70 27.37 22.95 18.84
0.05 26.76 24.48 27.10 22.74 18.78
0.1 26.25 23.97 26.85 22.64 18.69

Salt-and-pepper noise

0.005 27.35 24.76 27.44 23.01 18.86
0.01 27.32 24.76 27.41 23.00 18.86
0.05 27.12 24.61 27.29 22.91 18.81
0.1 26.82 24.50 27.03 22.84 18.75

Speckle noise

0.01 27.32 24.75 27.45 23.01 18.86
0.05 27.25 24.71 27.40 22.97 18.85
0.1 27.09 24.67 27.30 22.93 18.85
0.2 26.86 24.57 27.15 22.85 18.83

Gaussian blur

3 27.36 24.78 27.48 23.02 18.87
5 27.31 24.75 27.47 23.02 18.86
7 27.23 24.69 27.46 23.01 18.86
9 27.21 24.63 27.44 23.00 18.85

Mean blur

3 27.33 24.77 27.46 23.02 18.86
5 27.21 24.66 27.45 23.00 18.85
7 27.15 24.47 27.39 22.98 18.84
9 27.09 24.16 27.34 22.95 18.83

Median blur

3 27.29 24.72 27.46 23.01 18.86
5 27.28 24.60 27.44 23.00 18.86
7 27.21 24.49 27.40 22.99 18.84
9 27.12 24.27 27.36 22.97 18.84
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Table 5. The NC results of conventional attacks for the I_D dataset.

Noise Type Intensity Img1 Img2 Img3 Img4 Img5

Gaussian

0.005 0.9921 0.9902 0.9928 0.9803 0.9717
0.01 0.9920 0.9901 0.9927 0.9801 0.9713
0.05 0.9909 0.9888 0.9922 0.9789 0.9698
0.1 0.9895 0.9867 0.9916 0.9785 0.9673

Salt-and-pepper

0.005 0.9923 0.9904 0.9929 0.9804 0.9720
0.01 0.9923 0.9903 0.9928 0.9804 0.9719
0.05 0.9918 0.9896 0.9926 0.9799 0.9707
0.1 0.9911 0.9889 0.9920 0.9795 0.9691

Speckle

0.01 0.9923 0.9904 0.9928 0.9804 0.9720
0.05 0.9921 0.9902 0.9927 0.9802 0.9719
0.1 0.9917 0.9900 0.9925 0.9800 0.9716
0.2 0.9911 0.9896 0.9921 0.9796 0.9712

Gaussian blur

3 0.9924 0.9904 0.9929 0.9804 0.9720
5 0.9922 0.9903 0.9929 0.9804 0.9720
7 0.9920 0.9900 0.9928 0.9803 0.9718
9 0.9919 0.9897 0.9928 0.9803 0.9717

Mean blur

3 0.9923 0.9903 0.9929 0.9804 0.9720
5 0.9919 0.9899 0.9928 0.9803 0.9717
7 0.9917 0.9891 0.9926 0.9801 0.9715
9 0.9915 0.9878 0.9925 0.9799 0.9713

Median blur

3 0.9922 0.9901 0.9929 0.9804 0.9719
5 0.9921 0.9896 0.9928 0.9803 0.9718
7 0.9918 0.9891 0.9927 0.9802 0.9716
9 0.9916 0.9882 0.9926 0.9801 0.9714

Table 6. The PSNR results of conventional attacks for the SHI dataset.

Noise Type Intensity 792_0_10 792_0_20 792_0_30 792_0_40

Gaussian noise

0.005 26.368 28.5459 25.1772 26.8649
0.01 26.2916 28.5069 25.0331 26.8171
0.05 25.923 28.2786 24.2669 26.5831
0.1 25.4766 27.9902 23.3293 26.3135

Salt-and-pepper noise

0.005 26.3923 28.5753 25.2254 26.8768
0.01 26.3847 28.5876 25.1876 26.8667
0.05 26.2468 28.4429 24.8377 26.7824
0.1 26.0655 28.3914 24.289 26.6147

Speckle noise

0.01 26.3646 28.5603 25.2329 26.8644
0.05 26.2371 28.4381 25.169 26.8023
0.1 26.0362 28.2711 24.8813 26.6255
0.2 25.5213 28.1337 24.3831 26.3736

Gaussian blur

3 26.3773 28.573 25.135 26.8334
5 26.3334 28.5761 25.1525 26.7931
7 26.29 28.578 25.1315 26.7627
9 26.253 28.5728 25.0954 26.7397

Mean blur

3 26.3891 28.5858 25.1608 26.8557
5 26.373 28.5823 25.1599 26.8361
7 26.3455 28.5775 25.1626 26.8059
9 26.3264 28.5776 25.1574 26.798

Median blur

3 26.3837 28.5901 25.1485 26.832
5 26.3212 28.5836 25.1435 26.8021
7 26.2157 28.5918 25.0948 26.7724
9 26.1799 28.5936 25.0845 26.7587
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Table 7. The NC results of conventional attacks for the SHI dataset.

Noise Type Intensity 792_0_10 792_0_20 792_0_30 792_0_40

Gaussian noise

0.005 0.9913 0.9930 0.9852 0.9948
0.01 0.9912 0.9929 0.9846 0.9946
0.05 0.9899 0.9924 0.9809 0.9939
0.1 0.9885 0.9918 0.9753 0.9930

Salt-and-pepper noise

0.005 0.9915 0.9931 0.9854 0.9948
0.01 0.9914 0.9931 0.9852 0.9948
0.05 0.9910 0.9928 0.9837 0.9945
0.1 0.9904 0.9927 0.9810 0.9940

Speckle noise

0.01 0.9914 0.9930 0.9854 0.9948
0.05 0.9909 0.9928 0.9852 0.9946
0.1 0.9904 0.9925 0.9839 0.9941
0.2 0.9886 0.9922 0.9816 0.9933

Gaussian blur

3 0.9914 0.9931 0.9850 0.9948
5 0.9912 0.9931 0.9850 0.9947
7 0.9911 0.9931 0.9849 0.9946
9 0.9910 0.9931 0.9847 0.9945

Mean blur

3 0.9914 0.9931 0.9851 0.9948
5 0.9914 0.9931 0.9851 0.9948
7 0.9913 0.9931 0.9851 0.9947
9 0.9912 0.9931 0.9850 0.9947

Median blur

3 0.9914 0.9931 0.9851 0.9948
5 0.9913 0.9931 0.9851 0.9947
7 0.9909 0.9931 0.9848 0.9947
9 0.9908 0.9931 0.9848 0.9947

4.2.2. Geometric Attacks

To verify the robustness of the method proposed in this study under geometric attacks,
we set up several geometric attacks, as shown in Table 8, to test on the images, and the ex-
perimental results of their PSNRs and NCs for the I_D dataset are shown in Tables 9 and 10.
The PSNR and NC results for the SHI dataset are shown in Tables 11 and 12. In addition,
Figure 3 shows the images receiving the geometric attacks and the extracted copyright images.

Figure 3. The interior designs after geometric attacks and the extracted copyright images.

Table 8. The types and intensities of geometric attacks.

Type Intensity

Rotation (clockwise and counterclockwise) 5◦, 10◦, 15◦, 20◦

Crop 1/16, 1/8, 1/4, 1/2
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Table 9. The PSNR results of geometric attacks for the I_D dataset.

Noise Type Intensity Img1 Img2 Img3 Img4 Img5

Counterclockwise

5 26.14 23.60 26.75 22.80 18.78
10 25.99 23.50 26.58 22.71 18.75
15 26.02 23.42 26.51 22.64 18.70
20 26.04 23.34 26.50 22.62 18.70

Clockwise

5 26.10 23.67 26.76 22.79 18.78
10 25.90 23.47 26.57 22.68 18.76
15 25.86 23.45 26.50 22.64 18.75
20 25.86 23.41 26.46 22.61 18.72

Crop

1/16 27.11 24.54 27.22 22.99 18.86
1/8 26.97 24.54 27.17 22.98 18.86
1/4 26.88 24.45 26.82 22.95 18.83
1/2 26.43 24.36 26.42 22.90 18.85

Table 10. The NC results of geometric attacks for the I_D dataset.

Noise Type Intensity Img1 Img2 Img3 Img4 Img5

Left Rotate

5 0.9889 0.9846 0.9911 0.9790 0.9699
10 0.9883 0.9837 0.9905 0.9783 0.9688
15 0.9885 0.9835 0.9903 0.9779 0.9677
20 0.9884 0.9828 0.9901 0.9778 0.9674

Right Rotate

5 0.9888 0.9850 0.9910 0.9789 0.9700
10 0.9882 0.9836 0.9905 0.9782 0.9697
15 0.9880 0.9831 0.9903 0.9779 0.9690
20 0.9879 0.9832 0.9901 0.9777 0.9681

Crop

1/16 0.9917 0.9894 0.9923 0.9803 0.9720
1/8 0.9913 0.9896 0.9922 0.9802 0.9720
1/4 0.9909 0.9892 0.9914 0.9800 0.9718
1/2 0.9895 0.9887 0.9904 0.9804 0.9717

Table 11. The PSNR results of geometric attacks for the SHI dataset.

Noise Type Intensity 792_0_10 792_0_20 792_0_30 792_0_40

Counterclockwise

5 25.5953 27.5978 24.4165 26.2865
10 25.5234 27.3850 24.2657 26.2495
15 25.4684 27.2192 24.1623 26.2174
20 25.8142 27.9167 24.5861 26.4263

Clockwise

5 25.5708 27.5423 24.3065 26.3431
10 25.4909 27.2814 24.2651 26.2974
15 25.4595 27.1405 24.1981 26.2672
20 25.7739 27.9125 24.5253 26.4627

Crop

1/16 26.2977 27.8842 24.7494 26.8182
1/8 26.2093 27.3478 24.6772 26.8672
1/4 26.2054 26.5427 24.5023 26.8722
1/2 26.0395 25.2697 23.7512 26.8912
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Table 12. The NC results of geometric attacks for the SHI dataset.

Noise Type Intensity 792_0_10 792_0_20 792_0_30 792_0_40

Counterclockwise

5 0.9890 0.9913 0.9821 0.9934
10 0.9887 0.9910 0.9815 0.9932
15 0.9883 0.9906 0.9810 0.9932
20 0.9897 0.9919 0.9828 0.9938

Clockwise

5 0.9889 0.9912 0.9816 0.9936
10 0.9886 0.9907 0.9815 0.9935
15 0.9884 0.9905 0.9812 0.9934
20 0.9895 0.9919 0.9825 0.9939

Crop

1/16 0.9911 0.9918 0.9836 0.9947
1/8 0.9909 0.9908 0.9835 0.9949
1/4 0.9909 0.9892 0.9829 0.9949
1/2 0.9906 0.9863 0.9802 0.9950

According to the results in Tables 9–12, it can be seen that the average PSNR and
NC values of the method proposed in this study are more than 24.874 and 0.986 for the
extraction of watermarks when encountering geometric attacks, indicating that the process
is robust against geometric attacks. Specifically, in rotation attacks, the average PSNR and
NC values are more significant than 24.716 and 0.985, respectively. In cropping attacks, the
average PSNR and NC values are greater than 25.032 and 0.987, respectively, which shows
superior resistance to geometric attacks. Geometric attacks are inherently more challenging
than traditional noise or filtering attacks, as they alter the spatial position of the original
image. However, the experimental results confirm that our proposed method outperforms
traditional methods in handling these distortions, making it more suitable for common
real-world applications of geometric transformations.

4.2.3. Comparisons with Existing Methods

To further verify the robustness of our method, we compared it with several zero-
watermark methods while including conventional and geometric attacks. Table 13 shows
the results of the comparison. As shown in Table 13, our proposed method exhibits higher
robustness than other methods in the presence of different attack modes. Our new method
demonstrates significant advantages, especially in resisting geometric attacks, such as
rotation attacks. When the image is rotated by 20 degrees, many other methods show a
significant decrease in performance, but our method still maintains a high performance
index of 0.9879 under the same conditions. Therefore, the zero-watermark algorithm
proposed in this study has more advantages in overall robustness.

Table 13. Comparative results for the NC under different attacks.

Attack Method Gaussian Noise (Intensity) Median Blur (Intensity) Rotation (Intensity) Crop (Intensity)

Shen et al. [27] 0.9012 (0.05) 0.9746 (3 × 3) 0.9609 (30) 0.9377 (25%)
Gong et al. [28] 0.8900 (0.05) - 0.9400 (2) 0.9500 (8%)
Nawaz et al. [29] 0.7300 (0.01) 0.8200 (3 × 3) 0.8600 (20) 0.9600 (20%)
Li et al. [30] 0.9543 (0.1) 0.9957 (3 × 3) 0.9832 (3) 0.9688 (6.25%)
Our Proposed Method 0.9867 (0.1) 0.9929 (3 × 3) 0.9879 (20) 0.9718 (25%)

4.3. Uniqueness Evaluation

Since zero-watermark information is generated based on image features, it is necessary
to ensure that the generated watermark information is unique to a specific image. Also,
zero-watermark images generated from distinct datasets should be different [31].
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Here, an experiment was conducted to confirm the uniqueness of the generated
zero-watermark images. Specifically, we generated zero-watermark images of five tested
images and calculated the NC values among them in pairs. Figure 4 shows the generated
zero-watermark information. In addition, the NC results are summarized in Table 14. The
results show that the similarity between the zero-watermark images generated from the five
images is low, as it is less than 0.2. This indicates significant differences between the zero-
watermark images generated based on different images, which verifies the uniqueness of
the proposed zero-watermark methods for generating zero-watermark information. Since
this method generates zero-watermark information by fusing the features of the watermark
and image, the generated zero-watermark content has high uniqueness and can effectively
distinguish different images, providing strong technical support for copyright protection.

Figure 4. The generated zero-watermark results.

Table 14. Verification of uniqueness using the NC values for zero-watermark images.

Img 1 Img 2 Img 3 Img 4 Img 5

Img 1 1.000 0.045 0.026 0.042 0.071
Img 2 0.045 1.000 0.114 0.036 0.020
Img 3 0.026 0.114 1.000 0.013 0.080
Img 4 0.042 0.036 0.013 1.000 0.052
Img 5 0.071 0.020 0.080 0.052 1.000

4.4. Efficiency Analysis

Efficiency analysis provides a deeper understanding of the model’s feasibility in
practical applications. Here, we referred to the experimental setup used by Li et al. [32]
and conducted tests using images of the same size. The proposed method was performed
10 times, and the average time was calculated. Meanwhile, we compared the model
parameters of three other methods. Table 15 shows the efficiency results for the different
models. According to the results, the time required for zero-watermark generation by
the proposed method is lower than that of the other methods. Although the compared
methods are based on convolutional neural networks, Liu’s method requires a different
style of learning information for the host image. It requires more extended training and
inference time, resulting in increased memory requirements due to the model’s complexity.
In addition, the ResNet101 network based on Nawaz’s model has a relatively large depth,
thus requiring more parameters and a greater inference time. However, the proposed
method uses a lightweight MobileNet as the image encoder. Compared with CNNs, the
lightweight model reduces the required parameters and inference time while retaining a
good feature extraction ability and improving the overall efficiency.
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Table 15. Comparison of processing time and model parameters with other models.

Method Liu et al. [33] Nawaz et al. [29] Our Proposed
Method with CNN

Our Proposed
Method

Average processing
time 2440 ms 1384 ms 49.6 ms 46.8 ms

Model parameters 2.51 M 44.54 M 0.039 M 0.037 M

5. Discussion
Original interior design drafts are highly valuable and face significant risks of piracy

and tampering [34]. Protecting these works is crucial to preserving designers’ intellectual
property rights and fostering innovation within creative industries [35]. However, existing
methods for protecting intellectual property often lack robustness or practicality in real-
world scenarios, as they suffer from insufficient resilience to complex attacks [36]. Our
proposed method addresses these challenges by proposing a zero-watermark method that
promises to enhance the security and usability of copyright protection for interior design.

Deep learning provides a robust foundation for zero-watermarking techniques to
adapt to increasingly complex image types and diverse application scenarios [29]. By
integrating image fusion and deep learning, this study effectively fused the features of
interior design and watermark images in a high-dimensional space. The fused features not
only contained the visual features of the interior design and the features of the watermarked
image but also enhanced the robustness of the zero-watermark information. This also
promises to improve the security and usability of copyright protection systems for interior
design drafts.

5.1. Ambiguity Attack Analysis

Watermark methods often face the challenge of ambiguity attacks. However, our
method has certain advantages in effectively resisting such attacks. On the one hand, our
zero-watermark method is based on deep learning image fusion, which integrates complex
information between the host and watermark images. Through uniqueness experiments,
we found that each generated zero-watermark image has significant differences, which
makes it difficult for attackers to approximate the original zero-watermark image through
similar zero-watermark images, thus increasing the difficulty of deception attacks. On the
other hand, our deep learning-based zero-watermark method flexibly adjusts different hy-
perparameters when generating zero-watermark information. It is also necessary to verify
the information of these hyperparameters. This feature further enhances the resistance of
our method in the face of ambiguity attacks. In summary, our zero-watermarking method
has a certain degree of resistance against ambiguity attacks.

5.2. Model Application Analysis

With its demonstrated robustness against common attacks and the ability to maintain
uniqueness, the proposed method is well suited for real-world applications in protecting
the intellectual property of interior design. Figure 5 shows a copyright protection and
verification scenario based on the proposed zero-watermark method.

Firstly, after completing an interior design, the designer combines the copyright
information that needs to be embedded into the interior design and generates a zero-
watermark image using the proposed method. Secondly, the generated zero-watermark
image will be sent to an intellectual property protection agency for protection. At this
point, the interior design can be communicated with clients online or directly used for
spatial layout planning. If the designer discovers an interior design with a copyright
dispute online, a verification application can be submitted to the intellectual property
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protection agency. The intellectual property protection agency will provide designers with
saved zero-watermark images. At this point, the designer can extract embedded copyright
information through the proposed zero-watermark verification network and verify their
copyright ownership.

Figure 5. Copyright protection and verification scenarios based on the proposed zero-
watermark method.

To further verify the application of the model in actual scenarios, we selected
five modern interior designs online https://www.decorilla.com/online-decorating/
modern-interior-design-ideas/ (accessed on 24 February 2025). and verified them with
the proposed zero-watermark method. The results are shown in Figure 6. In these selected
samples, the model demonstrates good robustness. Even under strong attacks, it remains
feasible to extract relatively intact copyright information. This highlights the effectiveness
of our method in preserving essential copyright ownership details under different chal-
lenging conditions. The proposed method generates robust and distinctive zero-watermark
information, which can serve as reliable evidence for establishing copyright ownership
and ensuring the integrity of interior designs. Furthermore, in cases of unauthorized use
or tampering, the method enables efficient extraction and verification of the embedded
zero-watermark information, thus facilitating the rapid detection of infringement and
providing robust legal support for copyright enforcement.

Beyond interior design, the proposed method has broad applicability in protecting
intellectual property rights in various design-related fields. In architectural design, it can
protect floor plans and 3D renderings, ensure the traceability of original designs, and
prevent unauthorized use. In fashion design, this method can protect digital sketches
and textile patterns, helping designers maintain ownership of their works. In addition, in
product and industrial design, prototypes and conceptual models are often shared digitally,
and the proposed method ensures that design ownership is verifiable and can prevent
tampering. This method may provide creators with a broad solution, reducing the risk of
unauthorized copying or abuse.

Despite its promising results, the method still faces some challenges. First, attacks
on interior design are often more complex and varied, which can reduce the feasibility of
extracting watermark images with our method. Second, the time and computational costs
bring specific challenges. In the future, we will continue to explore zero-watermark ap-
proaches that can handle more challenging and advanced attack scenarios. In addition, we
will consider employing knowledge distillation to reduce the time and computational costs.

https://www.decorilla.com/online-decorating/modern-interior-design-ideas/
https://www.decorilla.com/online-decorating/modern-interior-design-ideas/
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Figure 6. The practical effects of applying the copyright protection model to real-life scenarios.

6. Conclusions
This study presents a novel zero-watermark method designed to protect interior

design. By leveraging deep learning, this method achieves robust feature extraction and
the effective integration of watermarks and interior design through image fusion. The
experimental results demonstrate that the proposed method is robust against conventional
and geometric attacks. In addition, this work highlights the potential of deep learning and
image fusion in advancing zero-watermark technology and provides a solid foundation for
addressing complex copyright protection scenarios.
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