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Abstract: Abnormal gait recognition, which aims to detect and identify deviations from
normal walking patterns indicative of various health conditions or impairments, holds
promising applications in healthcare and many other related fields. Currently, Wi-Fi-based
abnormal gait recognition methods in the literature mainly distinguish the normal and
abnormal gaits, which belongs to coarse-grained classification. In this work, we explore
fine-grained gait rectification methods for distinguishing multiple classes of abnormal
gaits. Specifically, we propose a deep learning-based framework for multi-class abnormal
gait recognition, comprising three key modules: data collection, data preprocessing, and
gait classification. For the gait classification module, we design a hybrid deep learning
architecture that integrates convolutional neural networks (CNNs), bidirectional gated
recurrent units (BiGRUs), and an attention mechanism to enhance performance. Compared
to traditional CNNs, which rely solely on spatial features, or recurrent neural networks
like long short-term memory (LSTM) and gated recurrent units (GRUs), which primarily
capture temporal dependencies, the proposed CNN-BiGRU network integrates both spatial
and temporal features concurrently. This dual-feature extraction capability positions the
proposed CNN-BiGRU architecture as a promising approach for enhancing classification
accuracy in scenarios involving multiple gaits with subtle differences in their characteristics.
Moreover, the attention mechanism is employed to selectively focus on critical spatiotem-
poral features for fine-grained abnormal gait detection, enhancing the model’s sensitivity
to subtle anomalies. We construct an abnormal gait dataset comprising seven distinct gait
classes to train and evaluate the proposed network. Experimental results demonstrate that
the proposed method achieves an average recognition accuracy of 95%, surpassing classical
baseline models by at least 2%.
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1. Introduction
Gait, as a significant biological characteristic for humans, can serve as an early in-

dicator of underlying health issues. Deviations from normal gait patterns may signal
conditions stemming from brain function deterioration, neurological disorders, or muscu-
loskeletal problems, such as Parkinson’s disease [1]. Abnormal gait recognition involves
the detailed analysis of biomechanical features and movement patterns during walking to
identify irregularities [2]. Accurate identification of abnormal gait patterns not only facili-
tates prompt and targeted medical interventions but also significantly enhances treatment
efficacy, potentially leading to better patient outcomes and quality of life [3].

Recently, human activities analysis based on Channel State Information (CSI) has
gained much attention due to advantages of its noninvasive nature, ubiquity, better cover-
age, cost efficiency, and privacy protection [4–9]. The studies by [4,5] focused on identity
recognition using gait features, specifically aiming to identify or verify an individual’s
identity based on their unique walking patterns. In our previous work [6], a deep learning
architecture based on CNN and Bidirectional Long Short-Term Memory (BiLSTM) was pro-
posed for recognizing complex continuous human activities. The results demonstrate that
the proposed network achieves high accuracy in recognizing human movements involving
rapid and drastic actions. In Ref. [7], a passenger-counting system based on Wi-Fi sensing is
proposed and validated through practical deployment on buses, demonstrating its potential
for real-time application scenarios. The study presented in [8] proposes a fine-grained fin-
ger gesture recognition system using commercial Wi-Fi. This system leverages the principal
components of CSI and selects critical subcarriers for accurate gesture recognition. The
extraction of principal components enables the system to adapt to individual diversity and
gesture inconsistency.

These pioneering studies on Wi-Fi sensing highlight the effectiveness of wireless
signals in recognizing human activities and identifying individuals. They have further
inspired the work of [10], which focused on distinguishing between normal and abnormal
gait patterns. Such a work belongs to a coarse-grained binary classification problem.
However, in practical applications, it is often necessary to identify specific types of abnormal
gaits, requiring fine-grained classification of various abnormal gait types [11]. To the best
of our knowledge, research on multi-class fine-grained abnormal gait recognition remains
scarce. This gap motivates our study, which aims to develop a fine-grained gait recognition
system capable of distinguishing multiple types of abnormal gaits.

In this work, we propose a deep learning architecture fine-grained abnormal gait
recognition from Wi-Fi CSI. The proposed framework comprises three key modules, i.e.,
data collection, data preprocessing, and deep learning-based classification. In the data
collection phase, we construct a Wi-Fi sensing platform using two commercial Intel 5300
network interface cards (NICs), one for transmitting and the other for receiving, allow-
ing CSI data collection and dataset building. In terms of data preprocessing, we apply
wavelet filtering and linear calibration to reduce the noise and nonlinear distortion in
the amplitude and phase of CSI, respectively. We construct a deep learning classification
module based on CNN-BiGRU with attention mechanism for gait recognition from the
processed CSI data. Here, CNN is used to extract spatial features of the motion, while
BiGRU is employed to learn bidirectional temporal features of the motion’s past and future.
Compared to traditional recurrent network structures such as LSTM and GRU, BiGRU
utilizes a bidirectional feature extraction structure (i.e., considering both past and future
information) to process temporal information and capture the correlation and dependence
of sequential data before and after. To verify the impact of different environments on the
recognition performance of the proposed method, experiments were conducted under
various conditions in different locations, demonstrating that this method can achieve high-



Mathematics 2025, 13, 1227 3 of 17

precision recognition of abnormal gaits with an average recognition accuracy exceeding
95%. Compared with baseline methods, the proposed approach achieves at least a 2%
improvement in recognition accuracy.

The contributions of this paper are summarized as follows:

(1) We investigate a fine-grained abnormal gait recognition method using Wi-Fi CSI.
Our goal is to identify seven distinct gait classes, including six abnormal and one
normal gait. This work focuses on multi-class classification, an area that has not been
extensively explored in the context of Wi-Fi sensing.

(2) We propose a novel deep learning architecture for fine-grained abnormal gait recogni-
tion, combining CNN, BiGRU, and an attention mechanism. This architecture captures
both spatial and temporal features of CSI data through CNN and BiGRU, respec-
tively, addressing the limitations of relying on a single feature extraction method.
The attention mechanism is incorporated to enhance feature focus, further improving
overall performance.

(3) Unlike traditional designs that only consider amplitude, this paper comprehensively
takes into account both amplitude and phase information. Experiments demonstrate
that phase information improves the recognition performance for gait.

2. System Model
Figure 1 illustrates the overall structure of the Wi-Fi perception system, which com-

prises three core modules: data acquisition, data preprocessing, and activity classification.
Specifically, the data acquisition module captures raw CSI data using a network interface
card. Subsequently, the data preprocessing module processes these raw data, including
noise reduction and calibration of amplitude attenuation and phase shifts, and distin-
guishes between active and inactive regions of the CSI data based on amplitude variance.
Finally, the activity classification module employs a classifier built using a neural network,
which receives the denoised and calibrated CSI data from the active regions, automatically
extracts spatial and temporal features of the CSI, and performs classification.

Data collection
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Noise reduction
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Phase

Linear transformations

Data collection

Gait classification
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Figure 1. Overall architecture of the Wi-Fi sensing system.
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2.1. Data Collection Module

We construct a data collection platform based on two personal computers (PCs), each
equipped with an Intel 5300 NIC, as shown by Figure 2. It is noted that we did not
using the commercial Wi-Fi router as the transmitter, since we found that it sometimes
lost data packages. In order to make our data collecting high quality, we designed our
specialized transceiver using the two NICs. At the transmit side, we used only one out of
the three antennas of the NIC, and left the other two unused. At the receive side, we used
all three antennas of the receiving NIC. In this way, a 1 × 3 single-input multiple-output
(SIMO) Wi-Fi wireless transceiver was constructed, and we utilized the famous CSI Tool,
which was proposed by [12], to parse and obtain three channels of CSI. Most existing
commercial Wi-Fi technologies employ the IEEE 802.11 a/g/n wireless communication
protocols, with their core using orthogonal frequency division multiplexing (OFDM) to
modulate signals onto multiple subcarriers for parallel transmission.

Figure 2. Wi-Fi sensing platform.

The essence of OFDM is to convert a broadband channel into multiple parallel nar-
rowband channels, where the channel on each subcarrier can be regarded as a flat-fading
channel, thereby significantly reducing the complexity of the receiver equalizer [13]. The
baseband signal after down-conversion in OFDM at the m-th receive antenna can be ex-
pressed as

Ym = HmX + Nm (1)

where m ∈ {1, 2, 3} denotes the index of the receive antennas, Hm ∈ CK×T is the
CSI matrix at the m-th antenna, Ym ∈ CK×T is the received baseband signal matrices,
Nm represents the noise matrix during the transmission process, X ∈ CK×T denotes the
transmitted data at the transmit side. K and T denote the number of subcarriers and time
slots, respectively.

The entries of the OFDM CSI matrix are dependent on the wireless signal propagation
environment. Factors like path loss, reflection, scattering, and refraction affect the CSI of
OFDM subcarriers. Moving objects in the physical space dynamically impact the time–
frequency characteristics of CSI. To show this intuitively, examples of three-dimensional
(3D) plots of the collected CSI amplitude are shown in Figure 3, with the packet index
representing the time domain and the subcarrier index representing the frequency domain.
The objective of Wi-Fi gate recognition is to analyze the time and frequency characteristics
of the CSI data to identify types of human activity.
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Figure 3. Examples of raw CSI data.

2.2. Data Preprocessing Module
2.2.1. Amplitude Processing

To handle outliers and noise in the CSI data, we first apply a Hampel filter with a
sliding window to detect and replace outliers caused by environmental interference or
equipment anomalies. Data points outside the [µ − γσ, µ + γσ] range are identified as
outliers and replaced with the median µ of the window, where γ is typically set to 3 [14].
Next, we use wavelet transform to reduce noise [15]. This involves decomposing the signal,
applying a threshold to quantize coefficients, and reconstructing the signal to obtain a
denoised version while preserving important features of the useful signal. Figure 4 shows
the effect of outlier removal using the Hampel filter and noise reduction using wavelet
transform (illustrated with an example of Scissors Gait data).
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Figure 4. Comparison of amplitudes before and after data preprocessing.
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2.2.2. Phase Calibration

The phase information extracted from the original CSI data contains carrier frequency
offset (CFO) and sample frequency offset (SFO), which makes it unusable directly. Therefore,
a linear transformation method is utilized to calibrate the phase information [16]. The
original phase on the i-th subcarrier obtained after calibration is denoted as

ϕ̂i = ϕi − 2π
ki
N

∆t + β + z (2)

In this context, ϕ̂i represents the original phase, ϕi represents the true phase, ∆t is the
time offset caused by the SFO (sample frequency offset), β is the unknown phase offset
caused by CFO (carrier frequency offset), z is measurement noise, k denotes the index of
the i-th subcarrier, and N is the length of the Fast Fourier Transform (in IEEE 802.11n,
N = 64). Next, by subtracting the linear term aki + b from the original phase, ∆t and β can
be eliminated, resulting in the calibrated phase. Here, the linear term is defined as

a =
ϕ̂n − ϕ̂1

kn − k1
, b =

1
n

n

∑
j=1

ϕ̂j (3)

After calibration using the linear transformation, the phase can be expressed as:

ϕ̃i = ϕ̂i − aki − b = ϕi −
ϕn − ϕ1

kn − k1
ki −

1
n

n

∑
j=1

ϕj (4)

The phase comparison before and after data preprocessing, as shown in Figure 5 (using
Scissors Gait as an example), renders the phase a detectable signal.
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Figure 5. Comparison of phase before and after data preprocessing.

2.2.3. Activity Segmentation

Due to the presence of static information, namely the inactive parts, in CSI data,
feeding this portion of the data into a neural network would increase the complexity of
the algorithm. Therefore, it is essential to effectively distinguish between the active and
inactive parts of the data, discard the inactive parts, and use the amplitude and phase
information of the active parts as input to the neural network. Complete active data are
also key to improving the classification accuracy of the neural network. For complex and
vigorous continuous activities, the variance of the active part data is much greater than that
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of the inactive part data. Hence, based on this phenomenon, an activity threshold ζ is preset.
Additionally, due to the sensitivity of CSI, there may be brief fluctuations in the inactive
parts that could be mistakenly classified as active parts. To obtain more complete and
accurate active data, a window threshold η is introduced, aiming to eliminate the erroneous
classifications caused by these fluctuations. The specific steps of the dual-threshold-based
activity segmentation method proposed in this paper are as follows.

Step 1: Apply PCA to the matrix composed of amplitudes, automatically select the prin-
cipal components that represent the most common variations in the CSI time series, and ob-
tain the principal component matrix, which reflects the variations in subcarrier amplitudes.

Step 2: Perform activity segmentation using the first principal component. By applying
a sliding window approach, calculate the variance of the data points within the window and
return the data sequence composed of these variances. This results in the moving variance
of the first principal component, which is used as an indicator for activity segmentation.

Step 3: Given an activity threshold ζ, activity is deemed to start when the variance of
the first principal component exceeds the threshold ζ, and activity is deemed to end when
the variance of the first principal component falls below the threshold ζ. Sample points
with variances greater than ζ are marked as the active portions of the CSI data.

Step 4: By introducing the window threshold η, we once again label sample points
with a window size (i.e., packet index) smaller than η as inactive data, thereby obtaining
the final labeled data.

Figure 6 illustrates this effect, where the dashed-line boxes roughly outline the indexed
segments marked as active, while solid circles represent brief fluctuations.
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Figure 6. Activity segmentation.

2.3. Gait Recognition Module

The preprocessed CSI data are then sent to the gait classification module, where the
CSI contains not only the spatial features of actions but also their temporal features. LSTM
and GRU are capable of learning dependencies and correlations between long sequences of
information, capturing historical information and significant events with large intervals or
delays. However, LSTM and GRU networks, which possess temporal modeling capabilities,
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do not consider the extraction of spatial features of actions. CNN, characterized by local
connections and weight sharing, possesses powerful feature extraction capabilities but
neglects the correlation between temporal information. Furthermore, due to their structural
characteristic of transmitting temporal information in a single direction, LSTM and GRU
can only consider past temporal information of actions, neglecting the learning of patterns
from future information. BiGRU can extract temporal features from both past and future
directions, but it assigns equal weights to the features of all CSI, whereas different features
may contribute differently to the recognition of abnormal gait actions. Therefore, activity
recognition systems in existing work have not fully exploited the spatiotemporal features
of actions, leading to suboptimal recognition accuracy. To address this, this paper proposes
a novel Wi-Fi-based abnormal gait perception framework that integrates CNN-BiGRU with
an attention mechanism.

The model architecture is illustrated in Figure 7, where the input signal is a two-
dimensional matrix obtained by stacking and expanding the amplitude and phase compo-
nents of the CSI matrix Hm, m ∈ {1, 2, 3}, which corresponds to the three antennas of the
Wi-Fi network card.

H̄ = [| H1 |, | H2 |, | H3 |,∠H1,∠H2,∠H3]2MK×T (5)

In this context, Hm and ∠Hm represent the amplitude matrix and phase matrix, re-
spectively, obtained by extracting the amplitude and phase of each element in the matrix
Hm. Here, M = 3 indicates that there are data from a total of three antennas.

Neural networks require consistent input data dimensions. However, due to the
varying durations of each action, the lengths of their data packets differ. Additionally,
increasing the input data dimension will also increase the time complexity of the algorithm.
Therefore, to ensure consistent input data dimensions and reduce the complexity of the
algorithm, the designed network applies a sliding window at the input layer to segment
the two-dimensional matrix along the time series direction. Segments with less than 60% of
labeled active sample points are discarded to remove inactive data from the CSI, obtaining
data segments of the same dimension. The retained segmented data segments serve as the
final input to the network. The input data undergo feature extraction through two branches,
with feature fusion serving as the basis for the final classification. The first branch is built on
a one-dimensional CNN to extract features in the spatial dimension of gait movements. The
second branch is built on GRU and BiGRU to extract features in the temporal dimension.
The extracted features from both the spatial and temporal dimensions are integrated and
used as the final basis for classification, with the softmax function employed to classify
the actions.
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2.3.1. GRU and BiGRU

RNN (Recurrent Neural Network) has the ability of short-term memory and has
significant advantages in dealing with short-term time series problems. However, when
dealing with time series of high dimensionality, the issue of vanishing gradients may
arise. The subsequent proposals of LSTM and GRU have improved this issue. GRU is an
advanced variant of LSTM. Compared to LSTM, it simplifies the gating mechanism and
does not introduce additional memory units. It controls the updating of information only
through the update gate and reset gate. The GRU structure is shown in Figure 8a, which
includes three parameters: the update gate zt, the reset gate rt, and the hidden state ht.
These parameters are updated through Equations (6)–(9).

zt = σ(Wz[ht−1, xt]) (6)

rt = σ(Wr[ht−1, xt]) (7)

h̃t = tanh(W[rtht−1, xt]) (8)

ht = (1 − zt)ht−1 + zt h̃t (9)

where Wz, Wr, and W are weight matrices, xt represents the temporal information at time t,
ht−1 denotes the hidden state at time (t − 1), and σ is the sigmoid activation function.

Since the collected gait movements are continuous actions, both past and future
information are equally important for action recognition. BiGRU can extract temporal
features from both past and future directions. Therefore, BiGRU is selected to learn the
bidirectional patterns of motion features in order to extract more comprehensive features.
The bidirectional GRU structure is shown in Figure 8b. BiGRU consists of forward and
backward GRUs, and the final state ht is jointly determined by the hidden states of both
forward and backward GRUs. This state is then taken as the output of BiGRU.

GRU

GRU

GRU

GRU

GRU

GRU

hidden state

backward layer

forward layer

input layer

… …

… …

1th − 1th +th

1tx − tx 1tx +

σ σ tanh

1-

1th −

th

tx

tr tz th

(a) GRU (b) BiGRU

Figure 8. GRU and BiGRU architecture.

2.3.2. Attention Mechanism

The CNN-BiGRU model architecture proposed above can effectively classify actions
with significantly different gait patterns. However, for actions with subtle differences in
gait, such as Parkinsonian and myopathic gaits, which both exhibit a forward-leaning
posture but differ in hand and foot movements, how can we focus on these fine-grained
distinctions? To address this, our model architecture incorporates an attention mechanism.

The attention mechanism was initially designed for machine translation and has since
been widely applied in the fields of image processing and natural language processing.
This concept can be intuitively explained through the analogy of human visual perception:
when a person visually perceives objects, they typically focus on specific regions of interest
based on their needs. In this way, when similar scenarios reappear in the future, the
individual will learn to direct their attention to those relevant areas [17]. BiGRU assigns
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equal weights to all features of CSI, whereas different features may contribute differently
to gait pattern recognition. For instance, both Parkinsonian and myopathic gaits exhibit
forward-leaning postures, but their distinct hand and foot movements—one with knee and
upper limb flexion, the other with uncoordinated limb movements—significantly impact
CSI, as illustrated in Figure 9. These differences necessitate greater focus on variations in
hand and foot movement-related CSI. Therefore, implementing an attention mechanism
allows higher weights to be assigned to more critical features, enhancing the influence of
key information, and thereby, improving the network’s recognition performance.
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(b) Myopathic gait

Figure 9. Parkinsonian and myopathic gait waveform comparison. The red dashed circles in the
figure highlight the regions where the two gait amplitude waveforms exhibit significant differences.

The attention mechanism is illustrated in Figure 10. The input to the attention model
is the sequence features learned from the BiGRU network, denoted as ht, where 1 ⩽ t ⩽ n.
The importance score gt for each feature vector is calculated using the tanh function,
expressed as:

gt = tanh(WTht + b) (10)

where WT is the weight vector and b is the bias. Subsequently, the scores are normalized
using zt = softmax(gt). Finally, the product of the feature vectors and the normalized
scores is taken as the final output of the attention mechanism, expressed as:

O =
n

∑
t=1

ztht (11)

…

tanh

softmax

multiplication

O

tn

tg

T
W b

1h 2h 1nh − nh

Figure 10. Attention mechanism.
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3. Experiment and Result Analysis
To verify the effectiveness of the proposed method, multiple comparative experiments

were conducted in this paper. The experimental scenarios and contents are as follows.

3.1. Data Acquisition

Data collection was conducted in both office and laboratory environments to evaluate
the proposed method. The experimental scenarios are shown in Figure 11, where TX
represents the transmitting end, RX represents the receiving end, and the test subject
performs the corresponding actions between TX and RX. Seven volunteers (five males and
two females) were recruited. The volunteers simulated various abnormal gait movements
by watching patient videos. Each tester walked along a specified route within a given time
limit (7 s), repeating each gait 30 times. The testers remained stationary at the beginning
and end of each activity to reduce interference from nonwalking movements and ensure
data accuracy.

The experiment designed six common abnormal gaits and one normal gait, with
specific descriptions of each gait movement as follows:

• Parkinson Gait: The tester shows forward bending of the head and neck, flexed knees,
and upper limbs, with extended fingers. While walking, the testers take small steps
and exhibit an involuntary forward lean, leading to accelerated pacing.

• Fall Gait: The tester leans to one side due to unstable center of gravity while walking.
• Hemiplegia Gait: When walking, the tester drags one lower limb along the ground,

with either the foot’s heel or outer side touching the ground first.
• Scissors Gait: When walking, the tester’s two thighs adduct, causing the knee joints to

almost touch each other, forming a crossed-leg forward-moving posture.
• Ataxic Gait: During walking, the tester exhibits unstable side-to-side swaying, making

it difficult to maintain a straight and stable walking path (similar to the gait observed
after intoxication).

• Myopathic Gait: The tester exhibits uncoordinated movements of the hands and feet
while walking, and demonstrates a forward-leaning posture of the body.

• Normal Gait: The tester walks along the route with normal arm swinging.

Although the dataset can be augmented by synthetic data generation methods, such
as Generative Adversarial Network (GAN)-based augmentation [18], we did not adopt
this approach in our current task. This decision was made due to concerns that GANs
may introduce imperceptible phase shifts or amplitude distortions, which could disrupt
the authentic physical relationships between signals and environmental interactions (e.g.,
errors in multipath reflection modeling).

TX

RX

TX

RX

TX

RX

TX

RX

(a) Office (b) Laboratory

Figure 11. Experimental scenes.
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3.2. Model and Training Parameter Settings

This paper divides the dataset into a training set, a validation set, and a test set in a
ratio of 7:2:1. The detailed parameter settings of the model are shown in Table 1, and the
configuration data for the experimental environment are presented in Table 2.

Table 1. Detailed parameter settings for the model.

Parameters Settings

Sliding window size 0.2 s
Convolution kernel size 3

Number of convolution kernels 128, 256
GRU hidden units 200

BiGRU hidden units 400
Attention mechanism hidden units 400
Fully connected layer parameters 128, 7

Table 2. Experimental environment configuration data.

Parameters Settings

CPU Intel Xeon Silver 4210R
Graphics Card RTX2060-6G

Deep Learning Framework TensorFlow
Optimizer Adam

Loss Function Cross-Entropy
Learning Rate 0.00003

Epochs 300
Batch Size 64

3.3. Experimental Evaluation

This paper employs various evaluation metrics to validate the reliability and effective-
ness of the proposed method, including accuracy, precision, recall, and F1 score [19].

Accuracy represents the proportion of correctly classified samples to the total number
of samples, mathematically expressed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision (also known as positive predictive value) indicates the proportion of samples
predicted to be positive that are actually positive, mathematically expressed as:

Precision =
TP

TP + FP
(13)

Recall (also known as sensitivity or true positive rate) indicates the proportion of
actual positive samples among the predicted positive samples relative to the total number
of actual positive samples in the entire dataset, mathematically expressed as:

Recall =
TP

TP + FN
(14)

F1 score is defined as the weighted average of precision and recall, calculated as:

F1 =
2 · Precision · Recall
Precision + Recall

(15)
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3.3.1. Environmental Experiments

Tests were performed in two settings: a relatively open office and a more complex
laboratory, to check how well the method works. Figure 12 shows confusion matrices
for both settings, with columns for predicted categories and rows for actual categories of
gaits. These matrices show that the method can accurately classify seven types of gaits, six
abnormal and one normal, with an average accuracy of 95.6% in the office and 95.1% in the
lab. The results also show that the recognition accuracy for Hemiplegia and Ataxic Gait
is relatively low. This is because the difference between these two movements lies only
in the leg movements: in the former, one lower limb is dragged on the ground, while in
the latter, the legs exhibit unstable swaying from side to side. The proposed CNN-BiGRU
architecture is unable to achieve higher accuracy in classifying movements with very subtle
differences. For example, in the laboratory environment, 7% of Ataxic Gait cases were
misclassified as Hemiplegia Gait, and 4% of Hemiplegia Gait cases were misclassified as
Ataxic Gait. Other misclassifications also mostly occurred among movements that involve
similar motion components. Figure 13 shows the precision, recall, and F1 scores for each
activity in both the office and laboratory settings, indicating that all activities were classified
within reasonable ranges.

(a) Office (b) Laboratory

Figure 12. Confusion matrices.
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Figure 13. Precision, recall, and F1 scores.
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3.3.2. Deep Learning Algorithm Experiments

This paper conducts comparative experiments using five deep-learning-based sens-
ing algorithms, with the experimental results and time costs of different deep learning
algorithms summarized in Table 3. As can be seen from the results, the accuracy of Vision
Transformer (ViT) is lower than that of the proposed CNN-BiGRU architecture. This may
be due to the limited generalization ability of ViT in small sample scenarios. The CNN-
BiGRU-Attention architecture, on the other hand, performs more robustly in small sample
scenarios due to its structural characteristics, such as the local receptive field of CNN and
the recurrent memory of BiGRU. Compared to the proposed CNN-BiGRU structure, the
GRU and ABLSTM models cannot achieve as high accuracy, but they do have certain
advantages in terms of computation time. The proposed CNN-BiGRU architecture with an
attention mechanism comprehensively considers the spatiotemporal features of gait actions,
establishing a mapping relationship between CSI data and abnormal gait actions. Although
this method incurs the highest training and testing time costs, it achieves recognition
accuracy improvements of 2% to 20% over classical algorithms. Additionally, experimental
tests show that the testing time for the proposed CNN-BiGRU structure is less than 5 s.
Therefore, the proposed method not only achieves higher recognition accuracy but also
maintains a certain level of real-time performance.

Table 3. Recognition accuracy and time costs of each algorithm.

Model
The Average

Recognition Accuracy in
Office Environment

The Average
Recognition Accuracy in
Laboratory Environment

Time Cost/s

MLP 78.4% 73.1% 130
CNN 90.1% 87.6% 182
LSTM 91.9% 90.3% 236

ViT 92.0% 91.2% 420
GRU 92.7% 91.5% 210

ABLSTM 93.2% 92.6% 390
CNN-BiGRU 95.6% 95.1% 519

3.3.3. Ablation Experiment

This paper evaluates the impact of each component within the proposed method
framework on recognition performance, including the base signals, data preprocessing,
and network architecture. The average recognition accuracy of different modules in an
office environment is presented in Table 4 and the average recognition accuracy of different
modules in a laboratory environment is presented in Table 5, where “✓” indicates that the
experiment included that particular component.

Firstly, experiments were conducted to assess the selection of three types of base signals.
Without any preprocessing, using only amplitude information resulted in higher accuracy
compared to the combination of amplitude and phase. This is because unprocessed phase
information suffers from severe random phase shifts, making it unsuitable for activity
discrimination and thereby affecting overall recognition accuracy. The comparison of
results between Experiment 4 and Experiment 6 in Tables 4 and 5 shows that the recognition
accuracy is higher when using both preprocessed amplitude and phase as basic signals
compared to using only preprocessed amplitude as basic signals. This also confirms the
previously mentioned point that phase data can enhance gait recognition.

Secondly, when the combination of amplitude and phase was chosen as the base
signal and subjected to noise reduction and calibration processing separately, the highest
recognition accuracy was achieved.
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Finally, this study examined the influence of individual modules within the attention-
mechanism-based CNN-BiGRU model on recognition performance. Training models
using CNN and BiGRU alone still yielded high recognition accuracy, which validates the
effectiveness of the chosen network architecture. Furthermore, incorporating the attention
mechanism into the model led to further performance improvements, achieving the optimal
recognition accuracy.

Table 4. Average recognition accuracy of different modules in an office environment.

Experiment

Whether or Not This Module Is Included
Average Recognition

Accuracy
Base Signal

Preprocessing
Network Architecture

Amplitude Phase CNN BiGRU Attention

1 ✓ ✓ ✓ ✓ 93.2%
2 ✓ ✓ ✓ ✓ 60.5%
3 ✓ ✓ ✓ ✓ ✓ 92.3%
4 ✓ ✓ ✓ ✓ ✓ 94.1%
5 ✓ ✓ ✓ ✓ ✓ 80.3%
6 ✓ ✓ ✓ ✓ ✓ ✓ 95.6%
7 ✓ ✓ ✓ ✓ ✓ 93.7%
8 ✓ ✓ ✓ ✓ 90.1%
9 ✓ ✓ ✓ ✓ ✓ 94.3%

Table 5. Average recognition accuracy of different modules in a laboratory environment.

Experiment

Whether or Not This Module Is Included
Average Recognition

Accuracy
Base Signal

Preprocessing
Network Architecture

Amplitude Phase CNN BiGRU Attention

1 ✓ ✓ ✓ ✓ 92.4%
2 ✓ ✓ ✓ ✓ 59.3%
3 ✓ ✓ ✓ ✓ ✓ 91.3%
4 ✓ ✓ ✓ ✓ ✓ 93.2%
5 ✓ ✓ ✓ ✓ ✓ 79.4%
6 ✓ ✓ ✓ ✓ ✓ ✓ 95.1%
7 ✓ ✓ ✓ ✓ ✓ 92.6%
8 ✓ ✓ ✓ ✓ 87.6%
9 ✓ ✓ ✓ ✓ ✓ 93.7%

3.3.4. Real Scene Experiment

This paper validates the effectiveness of the proposed method in real-world scenarios.
The experiments were conducted in a corridor, with the actual experimental setup and
results shown in Figure 14. As illustrated in Figure 14a, test personnel simulated various
abnormal gait movements between the transceiver. The results in Figure 14b present the
confusion matrix of the proposed method in real-world conditions, demonstrating recogni-
tion accuracies above 85% for each action. The average recognition accuracy across seven
actions reached 92.5%. Compared to office and laboratory settings, the recognition accuracy
decreased slightly. This is primarily attributed to the complexity of the environment—a
semi-enclosed space with significant surrounding noise (proximity to a road and human
presence), which introduced greater signal interference and impacted accuracy. Overall,
the proposed method achieved a recognition accuracy of 92.5% in real-world scenarios,
validating its effectiveness in practical applications.
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(a) Experimental scenario (b) Experimental results

Figure 14. Real-world experimental scenarios and results.

4. Conclusions
This paper proposes a fine-grained abnormal gait recognition method that integrates

an attention mechanism with CNN-BiGRU. The proposed approach effectively extracts rich
spatiotemporal features from abnormal gait movements, enabling high-precision recog-
nition of complex and continuous abnormal gaits. Experimental results demonstrate that
the method achieves an average recognition accuracy exceeding 95% in ideal office and
laboratory scenarios. However, its accuracy slightly decreases to 92.5% in real-world corri-
dor environments, with most misclassifications occurring between gait patterns containing
similar motion components.

Future work will focus on the following directions. The current study has only
validated seven abnormal gait types in controlled environments, and its applicability to real
clinical scenarios remains uncertain. Subsequent research should employ transfer learning
techniques to address cross-domain generalization challenges. Additionally, model training
and inference speeds will be optimized while maintaining recognition accuracy. Under
the premise of preserving data fidelity, we will explore the use of GANs to enhance model
generalization capability and improve classification accuracy. Furthermore, we aim to
extend this research to multi-person abnormal gait recognition and advance the practical
implementation of Wi-Fi sensing technologies.
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