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Abstract: This paper introduces a token-based digital currency (TBDC) model for standard-
izing service delivery in an aviation technical support as a service (ATSaaS) platform. The
model addresses the challenges of service standardization and valuation by integrating cost,
time, and quality parameters into a unified framework. Unlike traditional cryptocurrencies,
this specialized digital currency incorporates intrinsic service valuation mechanisms that
dynamically reflect the worth of aviation technical support services. The research presents
a mathematical formulation for token value calculation, including a Service Passport frame-
work for comprehensive documentation and a systematic approach for service integration.
The model is validated through a numerical case study focusing on maintenance, repair,
and overhaul services, demonstrating its effectiveness in generating fair token values
across diverse service types. The study introduces optimization techniques using machine
learning to enhance token calculations, successfully standardizing heterogeneous services
while maintaining flexibility and transparency. Implementation challenges and future
developments are identified. The TBDC model provides a foundation for transforming
aviation technical support services, particularly benefiting small airlines through improved
efficiency, standardization, and accessibility.

Keywords: aviation technical support as a service; token-based model; digital currency;
multi-criteria optimization; digital platform; machine learning optimization; maintenance;
service passport; digital economy

MSC: 93A15

1. Introduction
1.1. Background and Motivation

The aviation industry is undergoing a transformative shift, with increasing reliance
on digital platforms to deliver technical support, maintenance, and operational services
efficiently. The concept of an Aviation Technical Support as a Service (ATSaaS) platform
is a response to these evolving demands, offering a scalable and integrated solution for
addressing the diverse needs of airlines, maintenance providers, and other stakeholders
in the aviation ecosystem [1]. However, the implementation of such a platform presents
unique challenges, particularly in the standardization and accessibility of services.

A key issue lies in the variability in aviation technical support services. These services
range from routine maintenance and component repair to document processing, inspection
services, and training. Each offering differs significantly in the complexity, cost, and
value delivered, making it difficult to establish a unified approach for pricing, evaluating,
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and consuming these services. This complexity can create barriers for users in resource
allocation and for providers in pricing standardization.

To address these challenges, this study proposes the introduction of a service payment
currency within the ATSaaS platform. The token-based digital currency model (TBDCM)
represents service transactions through predefined digital units, enabling transparent and
standardized exchanges. Token values are assigned based on metrics such as cost, time,
and service complexity, ensuring an objective and structured pricing framework.

The TBDCM enhances service accessibility and flexibility by creating a standardized
pricing mechanism that adapts to evolving aviation needs. Tokens act as a universal
currency, simplifying transactions, enabling service bundling, and fostering loyalty through
reward programs. For example, customers can earn bonus tokens for repeat usage or
redeem tokens across a range of services, creating a seamless and engaging user experience.

Additionally, this model supports scalability and innovation. As new services are
introduced, their token values can be dynamically calculated using the same standardized
framework, ensuring their integration into the platform without disrupting existing pro-
cesses. The model dynamically adjusts token valuation in response to fluctuating service
demands and operational constraints.

The TBDCM facilitates service standardization by linking token valuation to aviation
compliance metrics and industry benchmarks. This approach not only optimizes the
delivery of existing services but also lays the groundwork for sustainable growth and
innovation in the aviation industry.

1.2. Related Works

The concept of a service-token model has garnered significant attention in recent years,
particularly with the rise of blockchain technology and decentralized finance.

A study by Park and Youm [2] proposed a novel service model for investment in
tokenized assets and trading in blockchain-based security tokens. The authors identified
potential security threats and specified requirements to counter these threats, emphasizing
privacy protection and anti-money-laundering measures. The proposed model facilitates
user investment in tokenized tangible and intangible assets, addressing challenges in
existing investment service models.

Reference [3] discusses a Token-as-a-Service (TaaS) framework for software-defined
zero-trust networking. The study proposed a genetic-algorithm-based service optimization
that generates unique tokens to maintain a trusted zone in multi-tenant environments.
This approach reduces authentication and authorization loads in cloud servers by dis-
tributing databases across OpenFlow switches, enhancing security in complex network
infrastructures.

Reference [4] presents a mechanism for secure service session management using
blockchain capabilities. The study explores NFTs as digital proof of policy agreements
for secure and immutable service-consumption tracking. This integration of blockchain
technology into zero-trust networking provides a decentralized and secure method for
managing service sessions.

Reference [5] examines Steemit’s blockchain-based incentive model, highlighting its
token-driven reward system. The study proposed a process for building a desirable token
economy model, emphasizing the importance of incentive design in achieving sustainable
growth. The authors highlight how a well-structured token economy could program human
behavior through incentives, contributing to the platform’s value creation.

Reference [6] explores the emergent start-up token funding model, known as an initial
coin offering. An ICO enables startups to raise capital by issuing digital tokens, creating
an alternative to traditional venture funding. The study examined the implications of this
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funding mechanism, shedding light on the evolving landscape of token-based business
models and their potential to disrupt conventional financial systems.

In [7], the concept of conditional tokens (CTs) in supply-chain finance is introduced.
Conditional tokens (CTs) encode service requirements into smart contracts, automating
compliance and execution in financial transactions. The study proposed functions for
CT operations, aiming to enhance transparency and efficiency in supply-chain financial
transactions through programmable tokens.

Reference [8] explores volatility mitigation in digital assets by designing self-sustaining
token economies with embedded stability mechanisms. The authors propose a formalized
approach to designing self-sustaining token models within blockchain platforms, aiming to
enhance business organizations’ interest in blockchain applications by mitigating concerns
over token value instability.

Reference [9] introduces a systematic method for formulating service specifications in
service-based applications (SBAs), enabled by blockchain technology. The study integrates
specification patterns with blockchain to create a quality-of-service framework that sup-
ports service selection and workflow composition, enhancing the reliability and efficiency
of SBAs.

Reference [10] presents a generalized understanding of blockchain technology using
adapted stochastic processes. Focusing on financial instruments, the study introduces a
valuation model that stabilizes token economics through stochastic analysis.

The research agenda in [11] evaluates blockchain’s role in service management, em-
phasizing its transformative impact on efficiency and security. The study discusses how
blockchain can transform service interactions, emphasizing the need for further investiga-
tion into its implications for service design, delivery, and quality assurance.

The service-token model aligns with industry standards set by the European Union
Aviation Safety Agency (EASA), Federal Aviation Administration (FAA), and International
Air Transport Association (IATA) to ensure regulatory compliance and operational effi-
ciency. These organizations establish industry benchmarks crucial for evaluating aviation
technical support services. Below is a detailed review of their contributions and relevance
to the model, with direct links to key documents.

The EASA is the regulatory authority responsible for ensuring civil aviation safety
in Europe. Its comprehensive framework includes maintenance standards, personnel
qualifications, and compliance mechanisms that shape standardized service delivery in
aviation support. The key guidelines and standards that have relevance to the token model
are as follows:

• Part-M [12] and Part-145 [13] define maintenance standards, ensuring compliance in
aviation technical support;

• Part-66 [14] highlights personnel qualifications, influencing cost and complexity com-
ponents;

• Guidance material and acceptable means of compliance [15] ensure transparency in
defining service-level agreements and quality expectations.

The FAA governs civil aviation in the United States, offering complementary standards
to EASA’s framework. Its guidelines emphasize safety, quality, and operational reliability.
The key guidelines and standards that have relevance to the token model are as follows:

• 14 CFR Part 43 [16] contributes to defining reliability metrics;
• Advisory Circulars [17] and the Continuous Airworthiness Maintenance Program [18]

offer best practices for quality assurance and risk management;
• The Continuous Airworthiness Maintenance Program [18] ensures ongoing compli-

ance with safety requirements for commercial operators;
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• The Repair Station Regulations (14 CFR Part 145) [19] ensure standardization in the
evaluation of maintenance services, affecting both cost and complexity.

The IATA provides a global perspective on aviation operations, focusing on safety,
efficiency, and digital transformation. Its resources are essential for aligning the token model
with international benchmarks. The key guidelines and standards that have relevance to
the token model are the following:

• The IATA Operational Safety Audit (IOSA) [20] is a globally recognized certification
program for evaluating operational management and control systems;

• The Airline Operational Cost Management Guidelines [21] provide benchmarking
data for direct operating costs, including maintenance expenses;

• The Guidance on Digital Transformation [22] encourages adopting digital platforms
to enhance operational efficiency and customer satisfaction.

The reviewed works demonstrate a growing interest in token-based models across
various domains, including investment services, network security, decentralized platforms,
and supply-chain finance. These studies highlight the versatility of tokens in representing
value, enforcing policies, and incentivizing behaviors within digital ecosystems.

1.3. Research Gap and the Paper’s Contributions and Structure

Despite the growing interest in token-based service models across various industries,
existing studies often focus on financial systems, blockchain applications, or specific niche
services without addressing the complex requirements of aviation technical support. Prior
research predominantly emphasizes theoretical frameworks or isolated use cases, lacking a
unified and adaptable model suitable for diverse service types in aviation. Additionally,
current models fail to comprehensively integrate cost, time, and quality parameters into
a standardized evaluation framework that can dynamically adjust to user feedback. This
gap hinders the adoption of scalable and customer-centric solutions in ATSaaS platforms,
particularly for small airlines and service providers with limited resources.

This paper addresses these gaps by introducing a service-token model tailored for
ATSaaS platforms. The model offers several key contributions, as follows:

• A mathematical model that standardizes service valuation by integrating cost, time,
and quality metrics into a single token-based system;

• Incorporates real-time user feedback to recalibrate token values, ensuring alignment
with service quality and customer satisfaction;

• A structured digital documentation system that defines, evaluates, and communicates
service characteristics, fostering transparency and trust;

• Demonstrates the model’s applicability across a wide range of aviation services, from
routine maintenance to specialized training and consulting;

• The model’s effectiveness is illustrated through a numerical case study focusing on
maintenance, repair, and overhaul (MRO) services, showcasing its ability to generate
fair, transparent, and adaptive token values.

By addressing the challenges of service standardization, accessibility, and quality
assurance, this research lays the groundwork for transforming aviation technical support
services.

The structure of this paper is as follows: Section 2 introduces the ATSaaS concept,
outlines the methodology for developing the TBDCM, and details the process of data
collection, model design, and validation. Section 3 presents the TBDCM framework,
including the mathematical formulation, normalization process, and Service Passport. A
numerical case study illustrates the model’s practical application. Section 4 compares
the TBDCM with traditional pricing models, highlighting its advantages, challenges, and
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limitations. Future research directions are proposed to enhance the model’s scalability,
transparency, and adaptability. Section 5 summarizes the research findings, emphasizing
the TBDCM’s potential to optimize aviation technical support services and its implications
for future developments.

2. Materials and Methods
2.1. Aviation Technical Support as a Service

ATSaaS has emerged as an innovative solution designed specifically to address the
unique challenges faced by small airlines in maintaining their aircraft and managing tech-
nical operations. This concept represents a significant shift from traditional maintenance
models by combining advanced digitalization methods, collaborative frameworks, and
customizable service offerings.

Small airlines face several critical challenges in maintaining their aircraft. They often
operate with limited financial and human resources compared to larger carriers, which
affects their ability to invest in state-of-the-art maintenance facilities and skilled personnel.
Additionally, these airlines frequently lack in-house technical expertise and struggle with
accessing spare parts and components in a timely and cost-effective manner. They must
also navigate complex regulatory requirements while keeping pace with evolving industry
technologies and methodologies.

The ATSaaS model addresses these challenges through several key components. At
its core is a central platform that serves as a hub for communication, collaboration, and
data exchange between service providers, airlines, and other stakeholders. This platform
includes features such as user authentication, centralized dashboards, communication tools,
document management, service request systems, and data integration capabilities.

A distinguishing feature of ATSaaS is its emphasis on customization and scalability.
The service can be tailored to meet the specific needs of each airline, considering factors
such as fleet size, operational requirements, and regulatory obligations. This flexibility
allows airlines to adjust their technical support services as their needs evolve, enabling cost
optimization and improved operational efficiency.

ATSaaS operates within a collaborative ecosystem that connects various stakeholders.
This includes the primary service provider, small airlines, aircraft manufacturers, spare
parts suppliers, MRO providers, regulatory bodies, training centers, research institutions,
and technology providers. Each stakeholder contributes specific expertise and resources,
fostering a comprehensive support network that benefits all participants.

A key advantage of ATSaaS is its cost structure. The pay-as-you-go or subscription-
based model eliminates the need for significant upfront investments, making high-quality
technical support services more accessible to small airlines. This approach allows air-
lines to optimize their maintenance costs while ensuring access to necessary expertise
and resources.

2.2. Materials and Methods of the Study

The aims of this study are the development and validation of a structured service-token
model for an ATSaaS platform. A mixed-methods approach was employed, integrating
domain-specific regulatory data, expert evaluations, pilot service feedback, and numerical
modeling techniques. The methodology consists of the following three core phases: model
development, pilot implementation, and validation.

2.2.1. Data Sources

Standards from the EASA (Part-M, Part-145, and Part-66) [12–14], FAA (14 CFR Part 43
and Part 145) [16,19], and IATA (IOSA standards and Airline Operational Cost Management
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Guidelines) [20] served to define baseline compliance requirements, influencing quality
and cost parameters within the model.

A total of 14 semi-structured interviews were conducted with stakeholders across the
following three groups: (1) small airline operators (n = 5) with a fleet size < 15 aircraft;
(2) MRO and aviation service providers (n = 6); and (3) aviation quality/safety auditors
(n = 3). Interviews focused on quantifying the time requirements, cost structures, and
quality metrics associated with services such as routine maintenance, component repair,
inspections, and training. Additionally, 62 structured survey responses were obtained from
platform users during a controlled pilot.

Operational data were collected during 12 real-life service transactions (4 routine
maintenance, 3 inspections, 3 document processing, and 2 training sessions) carried out
within the ATSaaS test environment. These services were priced using preliminary token
assignments.

2.2.2. Model Development

The model’s structure was formulated to quantify the service value via normalized
metrics of cost (e.g., direct, indirect, and variable), time (e.g., preparation, execution, and
support), and quality (e.g., satisfaction, reliability, effectiveness, and complexity). Initial
weighting coefficients for each service type were determined using the analytic hierarchy
process based on expert pairwise comparisons.

2.2.3. Pilot Testing and Feedback Loop

Pilot testing involved the deployment of the token-based pricing mechanism on
the ATSaaS platform for the 12 selected services. Upon service completion, customers
completed a feedback questionnaire rating cost fairness, delivery time, and quality (on
a 5-point Likert scale). These data were utilized to compute realized quality and inform
recalibration of token values.

2.2.4. Validation and Calibration

Token values generated by the model were compared to those derived from con-
ventional time-and-materials pricing and expert valuation. Discrepancies exceeding 15%
triggered weight adjustments using a feedback-based correction algorithm.

The validation of the token-based digital currency model follows a rigorous multi-
dimensional approach to ensure its practical applicability, accuracy, and robustness. The
validation framework incorporates both real-world operational data and controlled simu-
lations, enabling a comprehensive assessment of the model’s performance across diverse
service scenarios.

For empirical validation, data from three primary sources were collected, as follows:

• Operational service transactions—12 real service deliveries performed within the
ATSaaS test environment (4 routine maintenance, 3 inspections, 3 document pro-
cessing, and 2 training sessions) with measurements of the actual cost, time, and
quality metrics;

• User feedback—62 structured survey responses from platform users participating in
the pilot, evaluating service satisfaction, perceived value, and preference comparisons
between token-based and traditional pricing;

• Expert evaluations—structured assessments from 14 domain experts regarding the
fairness and accuracy of token values assigned to specific services.

For statistical validation, the following were employed:

• Comparative analysis for which token values were benchmarked against conventional
time-and-materials pricing, with discrepancies quantified and analyzed;
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• Convergence testing by statistical analysis of the token value stabilization across 50
iterative feedback cycles;

• Sensitivity analysis by systematic variation in the input parameters to assess the
model’s robustness and identify boundary conditions.

The validation metrics included the following:

• Mean absolute percentage error (MAPE) between the token-derived service valuation
and expert consensus valuation;

• Coefficient of variation (CV) across iterations to quantify convergence stability;
• Correlation coefficient between user satisfaction ratings and quality parameter

weights;
• Consistency ratio in the AHP process to ensure logical coherence in expert judgments.

These validation approaches collectively address the model’s mathematical correct-
ness, operational feasibility, and alignment with stakeholder expectations—three critical
dimensions for ensuring the practical value of the proposed framework.

2.3. Framework for the Service-Token Model of an ATSaaS Platform

The service-token model provides a structured approach to standardizing the valua-
tion and payment of services on an ATSaaS platform. It uses tokens as a unified currency,
enabling transparency, scalability, and efficiency in service transactions. This model ad-
dresses the diverse nature of aviation technical support services by providing a consistent
framework for evaluating and accessing offerings, ensuring fairness and predictability for
customers while fostering operational efficiency for providers.

At its core, the TBDCM standardizes service valuation through the following three
key parameters: cost, time, and quality. Cost reflects the monetary resources required to
deliver the service, including direct costs (e.g., labor and materials), indirect costs (e.g.,
overheads), and variable costs that scale with demand. Time captures the duration of
the preparation, execution, and post-service support, while quality encompasses both
objective and subjective metrics, such as customer satisfaction, reliability, effectiveness, and
complexity.

The taxonomy of the main components of these parameters are shown in Figure 1.
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3. Results
3.1. Baseline Token Valuation Method
3.1.1. Service-Token Model for a Baseline Token Valuation Method

The service-token model is based on a weighted formula that integrates the following
three main parameters: cost, time, and quality, each contributing to the token value assigned
to a service. Below is a detailed description of the model.

The main variables and parameters of the model are as follows:

Si—A specific service, i (e.g., consulting, training, and spare parts);
Ci—Cost of providing service i (e.g., operational cost and labor cost);
Ti—Time or effort required for service i;
Qi—Quality factor for service i (e.g., reliability, customer satisfaction rating, and
complexity);
Di—Demand for service i (number of requests or users per time);
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Vi—Base token value assigned to service i;
V—Unit monetary value of one token (e.g., USD 1 per token);
Wi—Weight for the relative importance of service attributes for i;
K—Platform operational multiplier for overhead or profit margin;
R—Revenue generated from point consumption;
Ai—Adjusted tokens, which is the final point value for service i, dynamically calculated
based on the demand and availability.

Each service is assigned a base token value based on its attributes, as follows:

Vi = wcCi + wtTi + wqQi (1)

where wc + wt + wq = 1.
Tokens are dynamically adjusted based on the demand and availability, as follows:

Ai = Vi·
(

1 +
Di − D

D

)
where D is the average demand for all services.

If Di > D, tokens increase to reflect the higher demand; if Di < D, tokens decrease to
incentivize usage.

Revenue from a service is calculated as follows:

Ri = Ai·Ui·V

where Ui is the number of units of service i consumed.
Platform profitability is calculated as follows:

Pro f it =
n

∑
i=1

Ri −
n

∑
i=1

Ci

The platform can optimize token values to maximize profit or customer satisfaction,
as follows:

max
Pi

n

∑
i=1

(Ri − Ci)

which is subject to the following constraints:

Ai ≥ Vi—Adjusted points cannot drop below the base points;
Ai ≤ Max Tokens Allowed f or i—Prevention of the overpricing of services.

The model evaluates each service, Si, based on the parameters of cost, time, and
quality.

To represent the definition of cost, time, and quality for each service, we break each
parameter into its components with the next mathematical formulation.

1. Cost, which refers to the monetary resources required for service delivery, as follows:

C = Cd + Cin + Cv

where Cd—direct costs (e.g., labor, materials, and equipment); Cin—indirect costs (e.g.,
overheads and administrative expenses); and Cv—variable costs (e.g., costs that scale
with usage).

2. Time, which is the total time required for delivering the service, as follows:

T = Tp + Te + Ts
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where Tp—preparation time (e.g., scheduling and setup); Te—execution time (e.g., perform-
ing the service); and Ts—support time (e.g., follow-up activities).

3. Quality, which is a composite score reflecting customer satisfaction and service perfor-
mance, as follows:

Q = wqs Qs + wqr Qr + wqe Qe + wqc Qc

where

Qs is the customer satisfaction score (e.g., survey ratings and Likert scale);
Qr is the reliability (e.g., consistency of outcomes and timeliness);
Qe is the effectiveness (e.g., achievement of desired outcomes);
Qc is the complexity (e.g., difficulty or resource intensity);
wqs , wqr , wqe , and wqc are the weights reflecting the importance of each quality component,
as follows:

Qs =
Sum o f Raitings

Number o f Raitings

Qr = 1 − Number o f Failures
Total Service Instances

Qc =
Achived Outcomes
Expected Outcomes

and Qe—is the score assigned based on qualitative factors such as customization or task
difficulty, normalized to a 0–1 scale.

Normalization across services ensures that the evaluation and comparison of diverse-
services on the ATSaaS platform are fair, consistent, and scalable. Given the varying nature
of aviation technical support services—ranging from routine maintenance to specialized
training—normalization involves standardizing the cost, time, and quality metrics to a
common scale. This process enables the calculation of token values that are comparable
across different services, regardless of their complexity or operational context. For instance,
time durations may be normalized as a proportion of the maximum execution time for any
service, while cost components can be expressed as percentages of a defined baseline (e.g.,
average service cost). Similarly, quality parameters such as satisfaction and reliability are
normalized to a 0–1 scale, ensuring uniform representation in the weighted formula. By
implementing normalization, the platform maintains transparency, avoids bias in service
valuation, and supports dynamic adjustments as new services are introduced or exist-
ing ones are refined. This approach not only facilitates fairness but also aligns with the
scalability requirements of a token-based system.

To ensure the comparability of cost, time, and quality across different services, the
following were used:

CN
i =

Ci
max (C)

, TN
i =

Ti
max (T)

, QN
i =

Qi
max (Q)

where CN
i is the normalized cost, TN

i is the normalized time, and QN
i is the normalized

quality.
The total token value, TV , for a service is calculated as a weighted sum of the three

parameters in accordance of Expression (1), as follows:

TV = wcC + wtT + wqQ (2)
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where TV—total token value for the service; wc, wt, and wq are the weights assigned to cost,
time, and quality, respectively,

The model allows for adjustments based on an external or dynamic factor:

• Demand adjustment: to account for periods of high or low demand, a demand adjust-
ment factor D is applied, as follows:

TV = TV(1 + D)

where D > 0 is a high demand (increases the token value) and D < 0 is a low demand
(reduces the token value).

• Feedback adjustment, F: the realized quality, Qr, from the customer feedback can
adjust the token value, as follows:

TV = TV(1 + F) (3)

where F > 0 is a positive feedback adjustment and F < 0 is a negative feedback adjustment.
The adjustment factor, F, is derived as follows:

F = wq∆Q (4)

where wq is the weight assigned to quality in the token formula. This factor determines the
magnitude of the token value adjustment based on the quality deviation.

The model incorporates feedback loops to adjust token values dynamically, as follows:

• Periodic reassessment of weights and parameters based on operational data;
• Customer satisfaction and realized quality inform recalibrations;
• Simulations assess the model’s robustness when introducing new services or handling

increased volumes.

3.1.2. Techniques for Calculating Weight Coefficients in Multi-Criteria Decision Making

Determining weight coefficients is a critical step in multi-criteria decision-making
processes, as it reflects the relative importance of each criterion or alternative. Common
methods for calculating weights include the following:

• Direct weight assignment whereby experts directly assign weights to criteria or alter-
natives based on their judgment [23];

• Ranking and rating methods whereby criteria are ranked or rated, and the weights are
derived based on these ranks or ratings [24];

• Pairwise comparison methods, including the analytic hierarchy process (AHP), which
uses pairwise comparisons to calculate weights [25];

• Entropy-based methods whereby weights are calculated based on the variability or
entropy of data [26];

• Regression or optimization models, which are used when data-driven approaches are
required [27].

Among these, the AHP method is particularly suited for discussed situations involving
multiple criteria and subjective judgments because of the following:

• Accommodates both qualitative and quantitative criteria;
• Structures the decision problem hierarchically, facilitating clarity in evaluation;
• Incorporates subjective expert opinions into a consistent mathematical framework;
• Handles both individual and group decision-making scenarios effectively;
• By applying the AHP method, the weights derived are consistent and transparent,

reducing the risk of biased or arbitrary decisions.
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Sequence of applying the AHP method.

1. Case of one expert, as follows:

• Define the criteria or alternatives to be evaluated;
• Construct a pairwise comparison matrix where each element represents the

relative importance of one criterion compared to another;
• Normalize the matrix by dividing each element by the sum of its column;
• Calculate the priority vector (i.e., weights) by averaging the normalized values

across each row;
• Check the consistency ratio to ensure the logical consistency of judgments.

2. Case of multiple experts, as follows:

• Each expert independently completes a pairwise comparison matrix;
• Aggregate the individual matrices into a single group matrix, typically using the

geometric mean;
• Normalize the aggregated matrix and compute the priority vector as above;
• Check the consistency ratio for the aggregated matrix.

3.1.3. Example of Determining Weighting Factors for Service Using AHP

The methodology of the AHP for TBDCM includes the next main steps, as follows:

• Define the criteria: the criteria (cost, time, and quality) are evaluated independently
for each service;

• Pairwise comparisons: each expert performs pairwise comparisons for the three
criteria for each service;

• Aggregate judgments: the geometric mean is used to combine the judgments of the
three experts for each service, as follows: for n experts and their pairwise comparison
values a1, a2, . . . , an for a specific comparison, where ai is the pairwise comparison
value provided by the i-th expert, as follows:

Geometric Mean =

(
n

∏
i=1

ai

) 1
n

• Normalize: the aggregated pairwise comparison matrix is normalized;
• Calculate the weights: the priority vector (i.e., weights) is calculated by averaging the

rows of the normalized matrix;
• Repeat for each service: the process is repeated separately for routine maintenance

(RM) and document processing (DP).

The following figures illustrate the step-by-step application of the AHP method for
determining weighting factors for the criteria cost, time, and quality across the following
two services: routine maintenance (RM) and document processing (DP).

Figure 2 illustrates the initial individual judgments provided by three experts for each
criterion pair (cost vs. time, cost vs. quality, and time vs. quality) for the two services.

The values in this figure represent dimensionless comparison ratios on the Saaty
scale (1–9), where 1 indicates equal importance among criteria, 3 indicates moderate
importance of one criterion over another, 5 indicates strong importance, 7 indicates very
strong importance, 9 indicates extreme importance, and 2, 4, 6, and 8 are intermediate
values [25].

Figure 3 visualizes the aggregated pairwise comparisons provided by the experts for
each criterion comparison using the geometric mean. These values are also dimensionless
ratios derived from the geometric mean calculation of the expert judgments, following the
same Saaty scale as in Figure 2. The comparisons include cost vs. time, cost vs. quality, and
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time vs. quality for both services. It highlights the relative importance assigned by experts
in the first step of the AHP process.

Mathematics 2025, 13, x FOR PEER REVIEW  13  of  36 
 

 

 

Figure 2. Pairwise comparisons by experts. 

The values in this figure represent dimensionless comparison ratios on the Saaty scale 

(1–9),  where  1  indicates  equal  importance  among  criteria,  3  indicates moderate  im-

portance of one criterion over another, 5  indicates strong  importance, 7  indicates very 

strong  importance, 9  indicates extreme  importance, and 2, 4, 6, and 8 are  intermediate 

values [25]. 

Figure 3 visualizes the aggregated pairwise comparisons provided by the experts for 

each criterion comparison using the geometric mean. These values are also dimensionless 

ratios derived from the geometric mean calculation of the expert judgments, following the 

same Saaty scale as in Figure 2. The comparisons include cost vs. time, cost vs. quality, 

and time vs. quality for both services. It highlights the relative  importance assigned by 

experts in the first step of the AHP process. 

 

Figure 3. Geometric means of the pairwise comparisons (step 1). 

Figure 4 displays the aggregated pairwise matrices for the two services after combin-

ing expert  judgments. The matrix  includes all pairwise comparisons among the criteria 

(cost, time, and quality) and serves as the basis for normalization in the subsequent step. 

The values shown are dimensionless comparison ratios, with diagonal elements always 

equal  to 1  (representing self-comparison). Off-diagonal elements  follow  the Saaty scale 

interpretation. 

Figure 2. Pairwise comparisons by experts.

Mathematics 2025, 13, x FOR PEER REVIEW  13  of  36 
 

 

 

Figure 2. Pairwise comparisons by experts. 

The values in this figure represent dimensionless comparison ratios on the Saaty scale 

(1–9),  where  1  indicates  equal  importance  among  criteria,  3  indicates moderate  im-

portance of one criterion over another, 5  indicates strong  importance, 7  indicates very 

strong  importance, 9  indicates extreme  importance, and 2, 4, 6, and 8 are  intermediate 

values [25]. 

Figure 3 visualizes the aggregated pairwise comparisons provided by the experts for 

each criterion comparison using the geometric mean. These values are also dimensionless 

ratios derived from the geometric mean calculation of the expert judgments, following the 

same Saaty scale as in Figure 2. The comparisons include cost vs. time, cost vs. quality, 

and time vs. quality for both services. It highlights the relative  importance assigned by 

experts in the first step of the AHP process. 

 

Figure 3. Geometric means of the pairwise comparisons (step 1). 

Figure 4 displays the aggregated pairwise matrices for the two services after combin-

ing expert  judgments. The matrix  includes all pairwise comparisons among the criteria 

(cost, time, and quality) and serves as the basis for normalization in the subsequent step. 

The values shown are dimensionless comparison ratios, with diagonal elements always 

equal  to 1  (representing self-comparison). Off-diagonal elements  follow  the Saaty scale 

interpretation. 

Figure 3. Geometric means of the pairwise comparisons (step 1).

Figure 4 displays the aggregated pairwise matrices for the two services after combin-
ing expert judgments. The matrix includes all pairwise comparisons among the criteria
(cost, time, and quality) and serves as the basis for normalization in the subsequent step.
The values shown are dimensionless comparison ratios, with diagonal elements always
equal to 1 (representing self-comparison). Off-diagonal elements follow the Saaty scale
interpretation.

Figure 5 shows the normalized pairwise comparison values for each matrix element.
The normalization process ensures that the sum of each column equals 1, enabling consistent
calculation of priority weights. The figure provides insight into the relative contributions
of each criterion.

This summary in Figure 6 presents the final weights for cost, time, and quality for
both services. It consolidates the results from all steps, providing a clear comparison of the
relative importance of each criterion.
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For routine maintenance, quality (0.410) has the highest weight, slightly exceeding
cost (0.396), reflecting its importance in ensuring long-term effectiveness.

For document processing, cost (0.557) dominates, followed by quality (0.252), indicat-
ing a focus on cost-effectiveness with a secondary emphasis on accuracy.

3.1.4. Numerical Case Study

To illustrate the application and versatility of the service-token model, this section
presents an expanded example calculation that incorporates multiple MRO-oriented ser-
vices. The MRO services, being core to aviation technical support, are characterized by their
complexity, resource intensity, and critical role in ensuring airworthiness. By applying the
TBDCM, we demonstrate how diverse services—such as routine maintenance, component
repair, and comprehensive inspections—are evaluated using the standardized parameters
of cost, time, and quality.

This expanded example not only highlights the detailed breakdown of each parameter
but also showcases how the model accommodates service-specific factors like labor costs,
execution durations, and quality metrics such as reliability and complexity. The inclusion
of adjustments for dynamic factors, such as demand fluctuations and customer feedback,
further emphasizes the adaptability and practicality of the model. By analyzing MRO-
oriented services, this example provides a robust demonstration of the model’s capability
to handle the intricacies of high-stakes aviation operations while ensuring fairness and
transparency in service valuation.

The next example demonstrates the application of the service-token model for evaluat-
ing token values across the main MRO-oriented services. Each service is assessed based on
the standardized parameters of cost, time, and quality, which are weighted to calculate the
final token values.

The initial data for the selected services are presented in Table 1. The values are
categorized under the three main parameters, with further breakdowns for specific sub-
components.

Table 1. Initial data for all services.

Service Cost (USD) Time (h) Quality Metrics
Labor Materials Overheads

Component Repair 600 200 100
Routine Maintenance 1250 150 200
Inspection Services 600 200 50

Consulting 1000 - 200
Training 640 100 -

Document Processing 500 - 50

The missing data in Table 1 reflect the inherent differences in the nature and operational
requirements of the services being evaluated. Not all services involve every type of cost
or operational element, and this is accounted for in the service-token model to ensure
accuracy and relevance in valuation. For instance, certain services, such as consulting
and document processing, may not involve physical materials or complex overheads,
which are more relevant for resource-intensive MRO services like routine maintenance
or component repair. For example, consulting relies heavily on labor costs (e.g., expert
time) and minimal overheads, with no material costs, while document processing primarily
involves automation tools with minimal human intervention.

The inclusion or omission of specific cost, time, or quality metrics depends on the
operational structure of the service. For instance, metrics like materials are irrelevant for
services like consulting or training, which do not involve tangible components, while
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overheads may not significantly impact low-resource services like document processing.
These omissions reflect the simplicity or automation of some services compared to the
complexity of others.

Even with missing data, the service-token model ensures fair valuation through its
normalization and weighting mechanisms. Normalization allows for the comparison of
services only for relevant components, while the weighting system accounts for the absence
of certain metrics by redistributing focus to the elements that are most significant for a
particular service. For example, in consulting, the absence of material costs means labor
and overheads dominate the cost component, while for document processing, the cost of
software tools and automation efficiency drive the valuation.

To enable a fair comparison, we normalize all parameters to a 0–1 scale using the
maximum values for each parameter across all services.

The maximum values across all services are as follows:

• max C = USD 1600;
• max T = 30 h;
• max Q = 1.0.

The normalized values of the parameters are presented in Table 2.

Table 2. Normalized values of parameters.

Service Normalized Cost Normalized Time Normalized Quality

Component Repair 0.562 0.6 1.0
Routine Maintenance 1.0 1.0 0.976
Inspection Services 0.531 0.4 0.937

Consulting 0.75 0.933 1.0
Training 0.462 0.4 0.934

Document Processing 0.312 0.267 0.934

The allocation of weighting coefficients for cost, time, and quality in the service-token
model depends on the specific characteristics and priorities of each service type. Different
services place varying levels of importance on these parameters based on their operational
demands, safety implications, and resource requirements. Table 3 provides a proposed
weighting scheme for the discussed service types on the basis of expert conclusions.

Table 3. Weightings for the different service types.

Service Type Weight for
Cost

Weight for
Time

Weight for
Quality Explanation

Component
Repair 0.3 0.2 0.5

Quality is critical because of the safety and reliability concerns. Cost is
moderate, as repairs involve parts and labor, while time is less critical

unless urgent.

Routine
Maintenance 0.2 0.3 0.5

Quality remains important to ensure compliance and reliability. Cost
and time are equally weighted because of regularity and resource

requirements.

Inspection
Services 0.2 0.2 0.6

Quality is paramount as inspections directly impact safety and
regulatory compliance. Cost and time have less influence compared to

accuracy and thoroughness.

Consulting 0.4 0.2 0.4
Both cost and quality are significant. Cost is critical for resource

allocation, and quality ensures the consulting delivers value. Time is less
critical.

Training 0.3 0.3 0.4
Quality is essential for effective knowledge transfer. Cost and time are
equally important to balance affordability and efficiency in delivering

the training.

Document
Processing 0.2 0.3 0.5

Quality dominates because problems with the execution of documents
will require checking all the work described in them. Time is important

to maintain operational flow, while quality is relatively less critical.
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Using Formula (1) with the weights in Table 3, we obtain the results shown in Table 4.

Table 4. Summary table with outcomes.

Service Tokens Insights

Component Repair 705 Balances cost, time, and quality efficiently.
Routine Maintenance 993 Highest point value due to resource-intensive and high-quality metrics.
Inspection Services 614 Lower cost and time requirements balance its high quality.

Consulting 975 High complexity and time contribution drive the value of this expertise-rich service.
Training 656 Cost-effective and delivers strong quality performance.

Document Processing 541 Low-cost and efficient service but with lower complexity.

A general analysis of the results obtained shows the following:

1. MRO-oriented services

• Routine maintenance scores the highest among MRO services because of its
significant cost and time requirements, alongside high reliability;

• Component repair is moderately valued, balancing resource use and excellent
quality;

• Inspection services have the lowest point value among MRO services because of
its low time and cost, despite strong quality metrics.

2. Non-MRO services

• Consulting has a high point value, reflecting its resource-intensive and high-
complexity nature;

• Training provides excellent quality at a moderate cost, making it highly efficient;
• Document processing, while the most cost-effective, scores lower because of

its simpler and less resource-intensive nature. It is important to note, however,
that this assessment reflects only the characteristics of the document processing
services evaluated during the pilot phase, which involved routine, template-
based operations with minimal regulatory variation. In real-world scenarios,
the complexity of document processing can vary significantly—particularly in
cases involving newer aircraft, first-time maintenance procedures, or jurisdiction-
specific compliance documentation. For such services, the quality and complex-
ity components may carry greater weight, and the token value would adjust
accordingly. The model is designed to accommodate such variability through its
feedback-driven recalibration mechanism and flexible weighting system based
on service-specific parameters.

This integrated example highlights the flexibility of the service-token model in evalu-
ating a wide range of services, from high-complexity MRO operations to resource-efficient
administrative tasks. The model’s ability to normalize data and assign fair point values
ensures transparency, scalability, and adaptability across the ATSaaS platform.

3.1.5. Service Passport in the Service-Token Model

The Service Passport is a central element of the TBDCM, providing a structured digital
record that defines, standardizes, and communicates the value of each service offered on a
platform. It serves as a comprehensive repository of information, including operational
characteristics, resource requirements, performance expectations, and evaluation metrics,
ensuring transparency and consistency across diverse services. Within the ATSaaS platform,
the Service Passport is essential for documenting and justifying the assigned token values,
fostering clarity and fairness for stakeholders while supporting scalability and adaptability.
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The Service Passport is designed with a clear structure to encompass all critical com-
ponents of the service-token model. The structure of the Service Passport is shown in
Table 5.

Table 5. Taxonomy table for the Service Passport.

Category Subcategory Description

Service Identification Name Unique identifier for the service.
Description Purpose and scope of the service.

Category Classification of service.
Operational Characteristics Cost Direct, indirect, and variable costs.

Time Preparation, execution, and support time.
Quality Metrics Satisfaction Customer feedback and customization.

Reliability Consistency and compliance.
Effectiveness Resolution success and objective achievement.
Complexity Task difficulty and resource intensity.

Token Assignment Calculated Token Value Final token value based on normalized metrics.
Normalization Factors Scaling values for comparison across services.

Performance Data Historical Metrics Past performance of the service.
Feedback Aggregated customer ratings and qualitative inputs.

Standardization Compliance Adherence to regulatory and safety standards.
SLAs Documented performance guarantees.

Scalability and Updates Scalability Ability to handle changing demand.
Updates Mechanisms for periodic revisions.

The Service Passport ensures clarity in token assignment by providing a transparent
rationale for the calculated value, helping stakeholders understand how cost, time, and
quality contribute to the service’s evaluation. It serves as a basis for comparing hetero-
geneous services, enabling fair evaluation despite differences in scope, complexity, and
resource requirements. Furthermore, it supports continuous improvement by integrat-
ing performance data and customer feedback, ensuring token values remain reflective
of current realities. As a scalable tool, the Service Passport simplifies the integration of
new services into the platform through its standardized template, maintaining uniformity
across offerings.

Despite its advantages, implementing a Service Passport presents challenges. Collect-
ing accurate and comprehensive data for cost, time, and quality metrics can be resource-
intensive, and the dynamic nature of the services requires continuous updates to ensure
relevance. Achieving standardization across multiple service providers may also demand
stringent guidelines and oversight. However, these challenges are outweighed by the
benefits of transparency, fairness, and adaptability.

The Service Passport is poised to evolve with advancements in technology. Automa-
tion through AI and machine learning can streamline data collection and real-time updates.
Integration with blockchain technology could enhance transparency and immutability,
while advanced analytics could predict trends, optimize resource allocation, and refine
service valuation. These developments will further strengthen the Service Passport’s role
as a cornerstone of the TBDCM, driving innovation and efficiency within the aviation
technical support industry. By documenting and justifying service values comprehensively,
the Service Passport ensures clarity, fairness, and scalability, making it an indispensable
tool for platforms like ATSaaS.

3.1.6. Initial Definition of Token Value for a New Services

Once the Service Passport has been structured to define the essential characteristics of
the service—such as its scope, regulatory requirements, and performance expectations—the
next step is to assign an initial token value. This process uses the defined parameters as
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inputs for estimating a fair and adaptive starting point for service valuation within the
token-based framework.

Defining the initial token value for a new service within the service-token model is
a critical step that requires precision, transparency, and alignment with both platform
objectives and stakeholder expectations. The token value reflects the service’s intrinsic
worth by integrating its cost, time, and quality components into a single, normalized metric.

Figure 7 illustrates the workflow for defining the initial token value of a new service.
It outlines the sequential steps—from parameter decomposition and expert evaluation to
simulation and pilot feedback—that guide the structured initialization process. This visual
representation helps clarify the model’s practical implementation and highlights its reliance
on both expert judgment and adaptive recalibration.
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The following steps are recommended for calculating the initial token value.

Step 1. Parameter Decomposition. Break down the service into the three core parameters—
cost, time, and quality. Each of these is further detailed into subcomponents as defined in
Section 3.1.1 (e.g., direct labor, preparation time, customer satisfaction proxies).
Step 2. Analogous estimation. Identify a comparable service from the platform or external
reference (e.g., from MRO or consulting databases) that shares operational or structural
similarities. Use its normalized values as a starting point for assigning baseline metrics to
the new service.
Step 3. Expert evaluation: Employ structured techniques such as the Delphi method or
AHP with a panel of domain experts to estimate weights and relative parameter values.
This is particularly valuable for assessing quality dimensions like complexity or expected
reliability, which are otherwise difficult to quantify at launch.
Step 4. Use of parametric cost models. Apply parametric estimation formulas when avail-
able (e.g., cost per hour for inspection personnel, cost per training module, or document
complexity coefficients). These models are well-established in aviation project management
and logistics literature and help provide a grounded initial cost estimate.
Step 5. Simulation-based sensitivity testing. Before deploying the service on the platform,
simulate token calculations under various parameter combinations to evaluate sensitivity
and detect potential valuation anomalies. This also allows testing how demand or user
feedback might influence recalibration in early iterations.
Step 6. Provisional token assignment and monitoring. Assign an initial token value based
on the above estimates and launch the service under pilot conditions. Collect feedback
from users during the first service cycles to measure actual performance (e.g., delivery time,
perceived quality, cost deviation). Use these data to perform the first round of token value
recalibration.

This hybrid approach ensures that the initial token value reflects domain-specific
knowledge, analogous service benchmarks, and established cost-estimation principles.
It also aligns with best practices found in software sizing (e.g., function point analysis),
manufacturing (e.g., parametric cost modeling), and service pricing strategies discussed in
prior works. By grounding the initial valuation in systematic estimation and expert input,
the model avoids arbitrary assumptions and supports early-stage accuracy until sufficient
empirical data become available.
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3.1.7. Correction of Token Value Based on User Feedback About Quality

The correction of token values based on user feedback is a crucial process in the
service-token model, ensuring that the assigned token value accurately reflects a service’s
real-world performance. The quality parameter, which includes metrics such as customer
satisfaction, reliability, effectiveness, and complexity, is inherently dynamic and subject to
change as services are delivered and users provide feedback. Incorporating this feedback
allows the platform to adapt token values to evolving service performance and user expec-
tations. Figure 8 illustrates the step-by-step workflow for correcting token values based on
user feedback.
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The process begins with the collection of user feedback through various mechanisms,
such as surveys, rating systems, and qualitative reviews. Users are prompted to evaluate
the service across specific quality dimensions, including satisfaction with the outcome,
timeliness, and overall reliability. These data form the foundation for assessing realized
service quality.

Once collected, the feedback is aggregated to create a composite quality score for
the service, which represents the realized quality based on user experiences. This step
minimizes the influence of outliers and biases by averaging data across multiple users.
Aggregation ensures that the quality assessment is robust and reflective of the broader
user base.

The realized quality score is compared to the initially assumed quality value used in
the original token calculation. The difference quantifies whether the service has exceeded
expectations or underperformed. This comparison highlights the need for any token value
adjustments.

Before making adjustments, the platform investigates the causes of any quality dis-
crepancies, for example, as follows:

• A negative deviation may indicate service delivery issues, such as delays or inconsis-
tent outcomes;

• A positive deviation may reflect unanticipated excellence in service execution. This
step ensures that adjustments are informed by the root causes of quality deviations
rather than surface-level metrics.

If necessary, at the step 5 the quality parameter is adjusted to reflect the updated score.
The adjustment factor is derived in accordance of Formula (4). Using the adjusted quality
parameter, the new token value is recalculated at the step 6 in accordance of Expression (3).

The final step involves validating the recalculated token value with stakeholders,
including service providers and users, to ensure alignment with expectations and feedback.
The rationale for the adjustment is documented in the Service Passport, and the updated
token value is communicated transparently to all stakeholders. This builds trust in the
platform’s responsiveness and fairness.

Correcting token values based on user feedback about quality is essential to main-
taining the TBDCM’s integrity and adaptability. By systematically incorporating realized
quality metrics into token calculations, the platform ensures that token values accurately
reflect real-world service performance.
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3.1.8. Service-Token Model Validation

The validation of the service-token model is essential to ensure its effectiveness,
reliability, and applicability in real-world scenarios. This process assesses the model’s
ability to assign accurate, fair, and dynamic token values to services on the ATSaaS platform.
Validation focuses on the following three critical aspects: the accuracy of token values,
responsiveness to feedback, and scalability across diverse services.

To evaluate the model’s accuracy, a series of simulations were conducted using real and
hypothetical service data. The simulation included 50 iterative cycles, each representing
a single feedback loop where service performance data were used to adjust token values
and weighting coefficients. These simulations involved generating cost, time, and quality
parameters for various services, such as routine maintenance, component repair, consulting,
and document processing. Initial token values were calculated using the model’s weighted
formula, integrating these parameters. The calculated values were then compared against
industry standards, expert evaluations, and user expectations. This process demonstrated
the model’s ability to generate token values that align with the intrinsic characteristics of
services, ensuring fairness and consistency across different service types.

To illustrate the practical application of these validation results, consider the routine
maintenance service scenario. In this use case, the initial weight distribution (cost: 0.2, time:
0.3, and quality: 0.5) reflected traditional service valuation priorities where quality held a
slight premium over operational factors.

The validation results for this routine maintenance scenario demonstrated the model’s
effectiveness. Starting with service costs ranging between USD 500 and USD 1500, execution
times varying from 5 to 20 h, and quality scores between 0.6 and 1.0, the model successfully
adapted its weight distribution while maintaining coherent service valuations.

Figure 9 illustrates the weight evolution during the validation process over 50 iter-
ations, showing the dynamic adjustment of component weights from their initial values
to their final target distribution. This transition demonstrates the model’s capability to
systematically adjust service evaluation parameters based on operational requirements and
performance feedback.
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Operational analysis revealed that a modified weight distribution (cost: 0.2, time and
quality: about 0.4) would better align with service efficiency and customer satisfaction
objectives. The weight evolution graph reveals several key characteristics of the model’s
adaptation process, as follows:

• Smooth transition from initial to target weights, indicating stable adjustment mecha-
nisms;

• Maintenance of the unity sum constraint throughout the adaptation process;
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• Consistent convergence behavior across all three parameters;
• Appropriate response to the specified target distribution while avoiding oscillatory

behavior.

Figure 10 presents the token value trend throughout the validation period, showing a
controlled decrease from an initial value of approximately 900 to a final stable value around
600. This systematic reduction in token value reflects the model’s ability to respond to
changing weight distributions while maintaining predictable valuation behavior.
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The initial token value of approximately 900 reflected the higher initial cost weighting,
while the final stabilized value of around 600 better represented the optimized weight
distribution that emphasized time and quality factors. The token value evolution exhibits
several notable characteristics, as follows:

• Gradual, controlled transition between initial and final values;
• Maintained stability with minor variations reflecting real-world fluctuations;
• Consistent convergence pattern aligned with weight adjustments;
• Absence of dramatic fluctuations that could destabilize service pricing.

Figures 9 and 10 visualize the evolution of weight coefficients and token values across
iterations. Each point on the graph corresponds to a discrete simulation step, and the
connecting lines illustrate the continuous adjustment trend over time. The values between
points are meaningful, as the model’s recalibration logic is mathematically continuous—
allowing interpolated states between discrete updates. This helps to demonstrate conver-
gence behavior and system stability.

The purpose of this visualization is not to reflect real-time empirical data, but to
test the model’s robustness and sensitivity under controlled dynamic conditions. The
trends confirm that the model reaches stable valuations and weight distributions over time,
validating its ability to adapt to user feedback without introducing volatility.

The validation results demonstrate that the service-token model achieves both mathe-
matical consistency and practical applicability. Table 6 summarizes the key quantitative
findings from our validation process.

Table 6. Summary of the validation results.

Validation Metric Target Value Actual Value Notes

MAPE from expert valuations <15% 12.4% Calculated across all 12 validation services
Weight convergence time <30 iterations 27 iterations Number of iterations to reach stability (CV < 3%)
Token value stability (CV) <5% 2.7% Final 10 iterations

User satisfaction correlation >0.7 0.76 Correlation between feedback and token adjustment
AHP consistency ratio <0.1 0.067 Indicates logical consistency of expert judgments
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The validation confirmed that the model successfully integrates cost, time, and quality
parameters into a unified valuation framework. The mean absolute percentage error
(MAPE) between token-calculated values and expert consensus valuations was 12.4%,
below our acceptable threshold of 15%. This indicates that the model generates token
values that align well with expert judgment.

The convergence patterns illustrated in Figures 9 and 10 show that the weight coeffi-
cients and token values stabilize within approximately 27 iterations. Stability was defined
as achieving a coefficient of variation (CV) below 3% in the final 10 iterations, indicating that
the model reaches equilibrium efficiently without requiring excessive recalibration cycles.

Statistical analysis of user feedback revealed a strong positive correlation (r = 0.76)
between service quality ratings and corresponding quality parameter weights, confirming
that the feedback mechanism effectively captures user perceptions and translates them into
appropriate token value adjustments. The consistency ratio in the AHP was 0.067, which is
well below the 0.1 threshold, indicating the logical coherence in expert judgments used for
initial weight determination.

A sensitivity analysis was conducted by systematically varying the input parameters
(cost: ±20%, time: ±30%, and quality: ±25% from baseline values) to assess model
robustness. The results show that the token values remained within acceptable bounds
under these variations, with the quality parameter changes having the most significant
impact. This finding confirms the importance of reliable quality metrics and justifies our
emphasis on comprehensive feedback collection.

The model was further tested through scaled simulation involving 100 hypothetical
service profiles with randomized but plausible parameter ranges. This simulation con-
firmed the model’s ability to maintain computational efficiency and logical token valuations
even when handling diverse service types simultaneously, with an average processing time
of 1.2 s per service profile on standard computing infrastructure.

These validation results collectively demonstrate that the service-token model provides
a reliable, efficient, and mathematically sound framework for service valuation within the
ATSaaS platform. The model successfully balances accuracy, stability, and responsiveness
to feedback, making it suitable for real-world implementation.

3.1.9. Baseline Token Value Determination Algorithm

The baseline token valuation method provides a systematic approach to determining
initial token values for services within the ATSaaS platform. The algorithm integrates
cost, time, and quality parameters through a structured evaluation process that ensures
consistency and fairness in service valuation (Figure 11).

The algorithm accepts as input a service description containing operational parameters,
historical cost data, time estimates, and quality metrics. Additional inputs include regu-
latory compliance requirements and service-specific constraints. The algorithm produces
a baseline token value and a comprehensive Service Passport documenting all valuation
parameters and decisions.

The process begins with parameter decomposition, breaking down the three primary
components into their constituent elements.

A normalization phase follows to ensure comparability across different services. Each
parameter is normalized against the maximum value observed across all services.

The algorithm then applies service-specific weights to these normalized parameters.
Weight determination follows the AHP methodology, incorporating expert judgments and
service characteristics.

This base value undergoes two adjustment phases. First, a demand adjustment D
modifies the token value based on market conditions.
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Subsequently, a feedback adjustment is applied based on the initial service perfor-
mance and user feedback.

The final output includes both the adjusted token value and a Service Passport.
The algorithm maintains an audit trail of all calculations and decisions, enabling

transparency and facilitating future adjustments. The Service Passport serves as a com-
prehensive record of the valuation process and provides a baseline for future token value
optimizations.

This baseline method ensures a systematic and transparent approach to token valua-
tion while maintaining flexibility through its adjustment mechanisms and provides a stable
foundation for more advanced optimization techniques.

3.1.10. Adaptive Weighting Mechanism

A core enhancement of the TBDCM is an adaptive weighting mechanism that dy-
namically adjusts the importance of cost, time, and quality based on service performance
and customer feedback. Based on Animasaun et al. [28], Animasaun et al. [29], and Wang
et al. [30], this mechanism relies on statistical analysis, machine learning techniques, and
optimization models to recalibrate weight coefficients in response to the following:

• Identifying patterns in past transactions and adjusting token valuations accordingly;
• If multiple users rate a service’s quality as lower than expected, the model dynamically

increases the weight of the quality component, ensuring a more accurate reflection of
service value;

• If service providers consistently complete tasks faster than expected, the time parame-
ter weight is reduced, making tokens more responsive to real-world execution times.
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Mathematically, the adaptive weights wc, wt, and wq, or cost, time, and quality, respec-
tively, are adjusted using the following iterative update rule, as follows:

w(t+1)
i = w(t)

i + α(Si − Ei)

where w(t)
i is the weight of parameter i at iteration t, α is the learning rate (a small constant

to control the rate of adaptation), Si is the realized service performance, and Ei is the
expected service performance.

The weights are normalized as follows: wc + wt + wq = 1.
This iterative approach allows for smooth adaptation to changing operational condi-

tions while preventing drastic fluctuations in token values.

3.1.11. Machine Learning for Token Optimization

A further improvement is the integration of ML models to predict token values based
on historical performance data and real-time service attributes. The model is trained
using features such as past token values, service completion time, quality scores from user
feedback, and market demand trends and external factors such as service availability and
seasonal variations.

The ML model learns complex relationships between these factors and optimizes token
values to maintain fairness and efficiency. Reinforcement learning (RL) techniques can fur-
ther refine this process by continuously experimenting with token adjustments and learning
which pricing strategies yield optimal customer satisfaction and provider efficiency.

The RL-based model continuously updates token values based on real-world service
interactions. Using a reward function that balances provider profitability and customer
satisfaction, RL models adjust token values to optimize service allocation. The reward
function R(s, α) is defined as follows:

R(s, α) = β1
(
Uc − Uc,target

)
+ β2(Pp − Pp,target)

where Uc is the user satisfaction score, Uc,target is the desired satisfaction score threshold,
Pp is the provider profitability, Pp,target is the target profitability level, and β1 and β2 are the
weights assigned to user satisfaction and provider profitability.

Through continuous learning, the RL model refines token valuations, ensuring long-
term equilibrium between service affordability, fairness, and business sustainability.

3.1.12. Use Case Illustration

To validate the effectiveness of the adaptive token model, we conducted a simulation
of 50 service iterations. The service used in this case study was routine maintenance within
the ATSaaS platform.

The reasoning for this service selection, as follows:

• Routine maintenance involves labor, materials, and operational overhead, making it a
suitable candidate for token-based valuation adjustments;

• The execution time for routine maintenance can fluctuate based on aircraft type, main-
tenance complexity, and technician availability, making dynamic weight adjustment
relevant;

• Maintenance services are regularly evaluated based on effectiveness, compliance with
safety standards, and customer feedback, aligning well with the adaptive weighting
mechanism used in the model.
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Thus, the routine maintenance service was used in this simulation to showcase how
token values are dynamically adjusted in response to historical service data, real-time
feedback, and operational performance.

Initially, cost, time, and quality weights were set at 30%, 30%, and 40%, respectively.
The routine maintenance service costs ranged between USD 500 and USD 1500, the ex-
ecution time varied between 5 and 20 h, and the service quality scores ranged from 0.6
to 1.0.

Over multiple iterations, the adaptive weighting mechanism adjusted the importance
of cost, time, and quality based on real-time service performance feedback.

To illustrate the impact of the adaptive weighting mechanism in the token value
calculation process, the visualizations of how the weights for cost, time, and quality evolve
over multiple service iterations can be presented. This provides insight into how the model
dynamically rebalances the relative importance of these parameters based on real-time
service performance feedback.

Figure 12 demonstrates how the weights for cost, time, and quality are adjusted
iteratively as new data are incorporated.
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The initial weights were set at 30% for cost, 30% for time, and 40% for quality. Over
the iterations, the adaptive model modifies these weights to reflect real-time service perfor-
mance and customer feedback trends.

Figure 13 showcases how token values fluctuate over multiple service iterations in
response to real-time adjustments in cost, time, and quality weights.

The graph highlights periods of increased and decreased token valuations, indicating
how the self-learning mechanism ensures pricing fairness and efficiency based on evolving
service performance.

The simulation demonstrated that when service costs exceeded expected values, the
cost parameter weight increased to reflect its greater impact on token valuation. Conversely,
when quality improved significantly, its weight was dynamically reduced to balance
overall fairness.

The token values fluctuated accordingly, showing an increasing trend when cost and
time exceeded expected benchmarks and a stabilizing effect when quality met or exceeded
its expected threshold. This dynamic adaptation ensured that service valuation remained
responsive to actual performance, enhancing fairness and efficiency.
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The results also confirmed that reinforcement learning-based token adjustments suc-
cessfully optimized pricing, ensuring providers received appropriate compensation while
maintaining user satisfaction. The model’s ability to self-adjust and normalize over time
suggests its robustness in managing diverse aviation technical support services efficiently.

This use case illustrates the power of machine learning-enhanced token valuation in
ensuring dynamic, fair, and efficient service transactions, further strengthening the TBDCM
as a scalable and transparent framework for aviation technical support platforms.

3.1.13. Dynamic Token Value Optimization Algorithm

The advanced token value optimization algorithm provides a comprehensive frame-
work for dynamically adjusting token values based on multiple data sources and learning
mechanisms (Figure 14).
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The algorithm takes as input an initial token value, historical service data, real-time
performance metrics and user feedback data. Additional parameters include a learning
rate and performance thresholds for satisfaction and profitability, respectively.

The initialization phase establishes the foundational elements of the optimization
process. Initial weights are set for cost, time, and quality parameters. The algorithm
initializes both a machine learning model for prediction and a reinforcement learning
policy for optimization. A convergence flag and iteration counter are established to control
the optimization loop.

The main optimization process operates iteratively until either convergence criteria
are met or a maximum iteration limit is reached. Each iteration consists of the following
three major components working in concert: an adaptive weight mechanism, machine
learning optimization phase, and reinforcement learning component.

The adaptive weight mechanism begins by analyzing historical performance data,
extracting relevant metrics, x such as service completion times, quality scores, and cost
efficiency measures. Weight updates follow a gradient-based approach.

The machine learning optimization phase processes the collected data through feature
extraction, creating a structured representation from the historical, real-time, and feedback
data. The ML model is updated through training on this feature set and the current token
values. This model then generates token value predictions based on the current state of
the system.

The reinforcement learning component evaluates the system’s performance through
a reward function. This reward function guides policy updates, which in turn determine
adjustments to the predicted token values, resulting in an optimized value.

Convergence checking ensures the stability and effectiveness of the optimization pro-
cess. The algorithm considers convergence achieved when the change in token value falls
below a threshold and both user satisfaction and provider profitability meet or exceed their
respective thresholds. This multi-criteria convergence check ensures that the optimization
process achieves both stability and stakeholder satisfaction.

Upon successful convergence, the algorithm outputs the optimized token value and
the final weight coefficients. Post-processing steps include updating the Service Passport
with the new token value, logging optimization metrics for future reference, and initializing
monitoring systems to track the performance of the new token value in operation.

The algorithm’s design ensures robust handling of various service types through its
adaptive nature and multiple feedback mechanisms.

This advanced optimization approach significantly enhances the baseline token valua-
tion method by incorporating dynamic learning and adaptation capabilities.

4. Discussion
4.1. Comparison with Traditional Pricing Models

The service-token model represents a significant departure from traditional pricing
approaches in aviation technical support services. Understanding these differences and
their implications is crucial for evaluating the model’s potential impact and benefits. Tradi-
tional pricing models in aviation technical support typically fall into the following several
categories: fixed-price contracts, time-and-materials pricing, cost-plus arrangements, and
subscription-based services. Each of these approaches has distinct characteristics and
limitations that the TBDCM seeks to address.

Fixed-price contracts, commonly used for routine maintenance and standard repairs,
offer predictability but lack flexibility in accommodating service variations or quality
differences. These contracts often struggle to account for unexpected complications or
additional requirements, leading to potential disputes and cost overruns. In contrast, the
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TBDCM’s dynamic token valuation system can adjust to changing service requirements
while maintaining transparency in value calculation.

Time-and-materials pricing, prevalent in complex repair and consultation services,
provides flexibility but often lacks standardization and can lead to unpredictable costs.
This model may incentivize inefficiency, as service providers benefit from longer service
durations. The TBDCM addresses this limitation through its integrated approach to valuing
time, cost, and quality parameters, creating incentives for efficient service delivery while
maintaining quality standards.

Cost-plus arrangements, typically used for complex or uncertain projects, ensure
provider compensation but may lead to cost inflation and reduced efficiency incentives.
These arrangements often lack transparency and can create misaligned interests between
providers and clients. The TBDCM’s transparent calculation methodology and quality-
linked token values help align stakeholder interests and promote cost-effectiveness.

Table 7 provides a comparative analysis of these pricing models across key operational
parameters.

Table 7. Comparison of pricing models in aviation technical support.

Parameter Traditional Fixed-Price Time-and-Materials Cost-Plus Service-Token Model

Cost Predictability High Low Medium High
Flexibility Low High Medium High

Quality Integration Limited Indirect Limited Direct
Transparency Medium Low Low High

Efficiency Incentives Medium Low Low High
Standardization Low Low Low High

Scalability Limited Medium Limited High
Performance Tracking Limited Medium Medium Comprehensive

The TBDCM offers several distinctive advantages over traditional models, as follows:

• Unlike traditional models that often treat cost, time, and quality as separate consider-
ations, the TBDCM integrates these parameters into a unified valuation framework.
This integration enables more balanced and comprehensive service evaluation;

• Traditional pricing models typically require contract renegotiation or amendments to
accommodate changes in service requirements or quality levels. The TBDCM’s token-
based approach allows for dynamic value adjustments based on real-time performance
and feedback;

• While traditional models often struggle to standardize pricing across diverse services,
the TBDCM achieves standardization through its token framework while maintaining
flexibility through parameter weighting and quality adjustments;

• Traditional models often lack direct mechanisms for linking service quality to pricing.
The TBDCM explicitly incorporates quality metrics into token value calculations,
creating stronger incentives for high-quality service delivery;

• Traditional pricing models often face challenges in scaling across different service
types or operating contexts. The TBDCM’s standardized framework facilitates easier
integration of new services and adaptation to different operational environments;

• The TBDCM’s comprehensive feedback mechanism and quality metrics provide better
tools for tracking and improving service performance compared to traditional models,
which often lack systematic performance monitoring.

The comparative analysis demonstrates that while traditional pricing models have
served the aviation technical support industry, they increasingly struggle to meet the
demands of modern service delivery. The TBDCM addresses many limitations of traditional
approaches while introducing new capabilities for value assessment, quality integration,
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and performance management. However, successful implementation requires careful
consideration of the transition challenges and stakeholder needs.

4.2. Benefits of the Service-Token Model

The TBDCM represents a groundbreaking approach to service evaluation and payment
within the context of platforms like ATSaaS. By integrating cost, time, and quality into a
unified framework, the model provides a transparent, scalable, and adaptable mechanism
for assigning value to services. Its implementation brings a wide array of benefits to service
providers, users, and platform administrators, enhancing fairness, efficiency, and trust.

One of the primary benefits of the TBDCM is its transparency in assigning value to
services. By breaking down each service into measurable components and integrating them
using a weighted formula, the model ensures that the rationale behind token values is
clear to all stakeholders. This transparency builds trust among users and providers, as it
eliminates ambiguities and biases in service valuation. Users can see exactly how their
payments correspond to the resources and quality delivered, while providers are assured
that their efforts are compensated.

The aviation industry encompasses a broad range of services, from routine main-
tenance to complex inspections and consulting. The TBDCM provides a standardized
framework for evaluating these diverse offerings, allowing them to be compared on a
common scale. Through normalization, the model ensures that differences in scale, com-
plexity, and operational requirements are accounted for, making it possible to evaluate
heterogeneous services fairly. This standardization simplifies decision making for users
and supports providers in benchmarking their offerings against industry standards.

The TBDCM is highly adaptable to the evolving needs of the platform and its users.
By allowing the weights assigned to cost, time, and quality to be adjusted, the model
accommodates shifts in stakeholder priorities and market conditions. For example, a
platform can emphasize quality metrics for premium services while focusing on cost
efficiency for routine tasks. Additionally, the integration of real-time feedback mechanisms
enables dynamic adjustments to token values, ensuring that they remain aligned with
actual service performance. This adaptability makes the model suitable for a wide range of
industries and service types.

The model promotes active engagement between users, providers, and platform ad-
ministrators. Users are encouraged to provide feedback on service quality, knowing that
their input directly impacts token adjustments. This feedback loop not only ensures that
token values accurately reflect real-world performance but also fosters a sense of ownership
and trust in the platform. Providers, on the other hand, are incentivized to maintain high
standards, as consistent quality improvements lead to better token valuations. Administra-
tors benefit from a clear framework for managing services and resolving disputes, reducing
friction in platform operations.

As platforms like ATSaaS expand, they need a valuation model that can handle
increasing numbers of services and users without compromising accuracy or fairness.
The TBDCM is inherently scalable, thanks to its standardized approach and reliance on
normalized metrics. New services can be seamlessly integrated into the system by following
the same evaluation process, ensuring consistency across the platform. Additionally, the
model’s automated workflows for token calculation and feedback integration allow it to
scale efficiently with minimal administrative overhead.

The TBDCM generates a wealth of data about service performance, user preferences,
and market trends. These data can be analyzed to inform strategic decisions, such as
optimizing resource allocation, identifying service gaps, or tailoring offerings to meet user
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needs. For administrators, the model provides actionable insights into platform operations,
enabling them to refine policies, improve efficiency, and enhance user satisfaction.

As the model evolves to integrate advanced technologies and feedback mechanisms,
its benefits will only grow, solidifying its role as a cornerstone of modern service platforms.

4.3. Challenges and Limitations of the Service-Token Model

While the TBDCM offers numerous benefits its implementation is not without chal-
lenges and limitations. These hurdles arise from the complexity of evaluating diverse
services, integrating feedback, and maintaining fairness in token value assignments.

Quality is a key parameter in the TBDCM, encompassing customer satisfaction, relia-
bility, effectiveness, and complexity. However, many of these metrics are subjective and
reliant on user perceptions, which can vary widely. For instance, one user might rate a
service highly for speed, while another might prioritize thoroughness. These subjective
differences can introduce biases and inconsistencies in the model, making it difficult to
achieve a universally accepted quality score.

While user feedback is critical for refining token values, it also introduces several
challenges. Collecting sufficient and reliable feedback can be difficult, especially for services
with low user engagement or short lifecycles. Users may be unwilling to provide detailed
feedback, resulting in data gaps that undermine the accuracy of quality adjustments. Addi-
tionally, feedback can be influenced by individual biases, such as unrealistic expectations
or isolated negative experiences, which may skew the overall evaluation.

The model’s ability to dynamically adjust token values based on feedback is one of its
strengths, but it also presents risks of overcorrection. Frequent or excessive adjustments
can destabilize token valuations, creating uncertainty for both users and providers. For
example, if a single round of negative feedback disproportionately impacts the quality
parameter, it may unfairly devalue the service. Striking a balance between responsiveness
and stability is a critical yet challenging aspect of the model’s implementation.

Although the model is designed to handle a wide range of services, scaling it to
accommodate a rapidly growing platform presents challenges. As the number of services
and users increases, maintaining consistency and fairness in token value assignments
becomes more difficult.

Introducing a token-based valuation model may face resistance from stakeholders
who are accustomed to traditional pricing methods. Building trust and acceptance among
stakeholders requires extensive education, communication, and demonstration of the
model’s benefits, which can be time intensive.

For platforms that already operate under traditional pricing models, transitioning to
the TBDCM may involve significant integration challenges. Existing systems may need
to be restructured to accommodate token-based payments, requiring updates to software,
databases, and user interfaces. Ensuring a seamless transition without disrupting ongoing
operations is a complex and critical task.

With continuous improvement and thoughtful implementation, the TBDCM can
overcome its limitations and deliver long-term value to all stakeholders.

4.4. Future Directions of Research on the Service-Token Model

The TBDCM has emerged as a transformative framework for evaluating, pricing, and
managing services, particularly in platforms like ATSaaS. However, to ensure its continued
relevance and adaptability, future research must address evolving technological, market,
and stakeholder needs. By exploring areas such as automation, data integration, user-
centric customization, and expanded industry applications, the model can evolve into an
even more robust and versatile system.



Mathematics 2025, 13, 1297 32 of 35

One of the most promising directions for research is the integration of automation
and AI. Automating key processes such as data collection, token calculation, and feedback
analysis can significantly reduce manual effort and improve efficiency. AI-powered tools
can identify patterns in user feedback, predict quality adjustments, and dynamically
optimize parameter weights based on real-time conditions. These advancements would
allow the model to scale effortlessly, even on platforms handling a high volume of services
and users.

Blockchain technology is another area of innovation that can enhance the model’s
transparency and security. By using blockchain’s decentralized and immutable nature,
token calculations and service performance data can be recorded on a tamper-proof ledger.
Smart contracts could automate token value adjustments based on predefined rules, while
cross-platform interoperability can be enabled by allowing tokens to be exchanged across
multiple ecosystems. This integration would build trust among stakeholders and provide
verifiable transparency in service valuation.

Improving quality feedback mechanisms is also a critical area for research. Current
methods relying on surveys and ratings often suffer from subjectivity and inconsistency.
Future advancements could include the use of IoT devices to capture real-time service
performance data, natural language processing to analyze user comments, and standard-
ized industry-specific metrics to reduce variability. These innovations would result in
more objective and accurate quality evaluations, ensuring that token values reflect the true
performance of services.

Personalization and user-centric adaptations represent another vital research direction.
As platforms grow more diverse, users increasingly demand tailored experiences. Future
developments could include adaptive weight distributions that allow users to prioritize
cost, time, or quality based on their individual preferences. Personalized token adjustments
could also account for user history, loyalty, and behavior, creating a more engaging and sat-
isfying experience. Additionally, real-time interfaces could provide users with transparency
into how their preferences influence token values, fostering trust and empowerment.

The model’s potential for expansion to multi-service platforms offers exciting possi-
bilities. While the model has been successfully applied to focused domains like ATSaaS,
future research could explore its scalability across industries, such as healthcare, logistics,
and education. Adapting normalization methods to accommodate extreme variations in
service complexity and developing cross-industry benchmarks would enable the model to
evaluate and compare highly diverse services fairly. Token interoperability across domains
could further enhance the model’s utility, enabling unified value systems for multi-service
ecosystems.

Predictive analytics offers significant potential for proactive adjustments to token val-
ues. By using historical data and advanced analytics, the model could anticipate changes in
service performance or user feedback, enabling adjustments before issues arise. Predictive
models could forecast service demand, identify potential quality issues, and optimize
resource allocation, improving platform efficiency and user satisfaction.

To ensure the model’s long-term relevance, establishing continuous learning frame-
works is essential. These frameworks would allow the model to adapt iteratively to chang-
ing market dynamics and user expectations. Periodic recalibration of weights, integration
of real-time feedback loops, and machine learning systems that autonomously identify and
implement improvements are key areas of focus. Such frameworks would future-proof the
model, ensuring its applicability in dynamic and competitive environments.

The future of the TBDCM lies in its ability to evolve with technological advance-
ments, changing market demands, and stakeholder priorities. Research into automation,
blockchain integration, enhanced feedback mechanisms, sustainability metrics, and pre-
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dictive analytics will enhance the model’s adaptability, scalability, and transparency. Ad-
dressing ethical concerns, enabling personalization, and fostering collaboration will ensure
its long-term success. These directions not only strengthen the model’s utility but also
position it as a cornerstone of modern service platforms, capable of driving innovation,
fairness, and efficiency across industries.

5. Conclusions
This study introduced a comprehensive token-based digital currency model for an

Aviation Technical Support as a Service platform, addressing critical challenges in ser-
vice standardization, valuation, and quality assessment within the aviation maintenance
ecosystem. This research makes several key contributions.

The TBDCM establishes a structured methodology for service valuation through
three primary parameters—cost, time, and quality—integrated into a unified token-based
framework. This approach enables the following:

• Transparent and standardized evaluation of diverse aviation services;
• Fair comparison among heterogeneous services through normalization techniques;
• Dynamic adjustment of token values based on real-time feedback and service perfor-

mance;
• Enhanced operational efficiency through structured digital documentation via the

Service Passport.

The numerical case study demonstrated the model’s practical applicability across
various MRO-oriented services, confirming its ability to effectively balance cost-efficiency,
performance quality, and customer satisfaction. The results indicate that the token-based
approach outperforms traditional pricing models in terms of transparency, adaptability,
and stakeholder alignment.

The implementation of the TBDCM offers significant benefits for aviation stakeholders,
as follows:

• For small airlines—improved access to technical support services through transparent
pricing and quality assurance;

• For service providers—enhanced ability to standardize offerings while receiving fair
compensation based on service complexity and quality;

• For platform administrators—robust framework for service management, quality
monitoring, and continuous improvement.

The model’s flexibility makes it particularly valuable for ATSaaS platforms seeking
to support diverse service categories while maintaining operational efficiency and cus-
tomer trust.

Building on the foundation established in this study, several promising avenues for
future research emerge, as follows:

• Integration of advanced AI and machine learning techniques to automate token value
calculations and predict service performance;

• Exploration of blockchain technology to enhance transparency, security, and im-
mutability of service records and token transactions;

• Development of more sophisticated quality metrics and feedback mechanisms to
reduce subjectivity in service evaluation;

• Investigation of cross-platform token interoperability to create unified service
ecosystems;

• Application of the model to adjacent industries with similar standardization challenges.
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Future work should also address the identified limitations, particularly regarding the
subjectivity of quality metrics, potential feedback biases, and implementation challenges in
existing operational environments.

The proposed token-based digital currency model offers a transformative approach to
service valuation in ATSaaS platforms, contributing to greater transparency, operational
efficiency, and stakeholder trust in aviation technical support services.
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