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Abstract: In steel production, the blast furnace is a critical element. In this process, precisely
controlling the temperature of the molten iron is indispensable for attaining efficient
operations and high-grade products. This temperature is often indirectly reflected by the
silicon content in the hot metal. However, due to the dynamic nature and inherent delays
of the ironmaking process, real-time prediction of silicon content remains a significant
challenge, and traditional methods often suffer from insufficient prediction accuracy. This
study presents a novel Multi-Scale Fusion Convolutional Neural Network (MSF-CNN) to
accurately predict the silicon content during the blast furnace smelting process, addressing
the limitations of existing data-driven approaches. The proposed MSF-CNN model extracts
temporal features at two distinct scales. The first scale utilizes a Convolutional Block
Attention Module, which captures local temporal dependencies by focusing on the most
relevant features across adjacent time steps. The second scale employs a Multi-Head
Self-Attention mechanism to model long-term temporal dependencies, overcoming the
inherent delay issues in the blast furnace process. By combining these two scales, the
model effectively captures both short-term and long-term temporal dependencies, thereby
enhancing prediction accuracy and real-time applicability. Validation using real blast
furnace data demonstrates that MSF-CNN outperforms recurrent neural network models
such as Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU). Compared
with LSTM and the GRU, MSF-CNN reduces the Root Mean Square Error (RMSE) by
approximately 22% and 21%, respectively, and improves the Hit Rate (HR) by over 3.5% and
4%, highlighting its superiority in capturing complex temporal dependencies. These results
indicate that the MSF-CNN adapts better to the blast furnace’s dynamic variations and
inherent delays, achieving significant improvements in prediction precision and robustness
compared to state-of-the-art recurrent models.

Keywords: silicon content prediction; convolutional block attention module; self-attention
mechanism; temporal dependencies

MSC: 68T01

1. Introduction
Most global steel production relies on the blast furnace (BF) process, where this core

apparatus drives iron extraction from ore [1]. The BF’s core role is transforming iron
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oxides in ore into liquid hot metal through sustained smelting. As depicted in Figure 1, its
structure comprises five critical zones: throat, shaft, belly, bosh, and hearth [2].

Figure 1. Structure of a typical BF ironmaking process.

During operation, iron ore, coke, and flux are fed into the furnace top, while preheated,
oxygen-enriched air is injected from the bottom. Rising gases react with coke via complex
physicochemical reactions, generating reducing agents that convert ore-based iron oxides
into molten iron. These gases, after temperature and compositional adjustments, form BF
gas as a byproduct. Concurrently, descending raw materials undergo heating, reduction,
and melting, ultimately yielding liquid iron and slag through sequential transformations [3].

Precise thermal regulation of molten iron is vital for efficient smelting, directly im-
pacting iron quality, production efficiency, and process stability [4,5]. Optimal temperature
ensures complete reaction of raw materials and maintains iron fluidity, which are critical
for consistent smelting outcomes. However, direct measurement of (BF) internal thermal
states is challenged by sensor limitations [6].

Consequently, silicon content in hot metal serves as a key proxy for furnace temper-
ature, reflecting BF thermal dynamics [7]. Elevated silicon levels often signal excessive
coke usage, leading to increased fuel consumption and uneven reactions that degrade iron
quality. Conversely, low silicon indicates depleted energy reserves, raising the risk of cold
furnace conditions and potential equipment damage [8].

Given these complexities, developing accurate silicon content prediction models has
become a pivotal technical hurdle in ironmaking, bridging the gap between indirect thermal
monitoring and real-time process control.

The silicon content in hot metal can be precisely measured via sample collection and
offline analysis. Nevertheless, this approach is plagued by substantial latency, failing to
provide actionable insights for real-time control of BF operations during smelting [2]. Alter-
natively, first-principle models based on the fundamental principles of the BF ironmaking
process can deliver real-time silicon content, but they are computationally expensive and
the predictions lack sufficient accuracy [9]. The fast advancements in sensor technologies
and detection methods enable the collection of vast amounts of process data, which fa-
cilitates the implementation of predictive models [10–12]. The data-driven methods for
predicting silicon content have been widely studied [13–17], with artificial neural networks
and their variants being common modeling approaches. For instance, Saxen and Pettersson,
as well as Nurkkala et al., developed feedforward neural network models to predict hourly
hot metal silicon content, utilizing 15 and 16 BF variables, respectively [7,18]. Cardoso et al.
employed a Bayesian regularized artificial neural network to predict the silicon content of
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hot metal, achieving the best prediction results by adjusting the number of neurons in the
hidden layer [19]. In addition, Zhou et al. proposed the sliding-window Takagi–Sugeno
fuzzy neural network model, which enhances prediction accuracy by updating the training
data at specified intervals, demonstrating significant improvements in hit rate and mean
square error when compared to the traditional T-S FNN model [20]. Furthermore, Jiale
Song et al. developed a silicon content prediction model for hot metal in BF smelting
by optimizing a back-propagation neural network with the flower pollination algorithm
and principal component analysis, leading to enhanced prediction accuracy and overall
performance compared to non-optimized models [21].

Moreover, recent advancements in multi-objective evolutionary algorithms (MOEAs)
have driven the development of diverse multi-objective ensemble learning methodologies,
particularly in the construction of high-performance predictive models [2,22–24]. For
example, Zhang et al. proposed the CL-MOEEL algorithm for silicon content prediction,
improving prediction performance by enabling information exchange between the base
learner training and ensemble stages [25].

Building upon the identified challenges in the current data-driven prediction models
for silicon content, the following research gaps are specifically addressed:

1. Inadequate handling of long time delays in BF processes: Despite the success of
data-driven methods in silicon content prediction, the inherent long time delays in BF
operations—arising from its complex dynamic system and physical reactions with
significant lags [26]—have not been sufficiently addressed in many existing models.

2. Neglect of historical time-step dependencies: Most data-driven approaches rely on
instantaneous input variables for predictions, failing to capture the time delay effects
where current silicon content is influenced by inputs from previous time steps. This
limits their ability to reflect evolving system states over time [27].

3. Suboptimal prediction accuracy under dynamic conditions: Traditional short-term
models exhibit reduced effectiveness in rapidly changing process conditions, as they
cannot adequately account for time-lagged influences, thereby hindering real-time
adjustments for BF operations.

To better handle the above issues, we propose a Multi-Scale Fusion Convolutional
Neural Network (MSF-CNN) model for predicting silicon content in the BF ironmaking
process. This model aims to handle the limitations of existing methods in time delays
and long-term dependencies, by integrating information from different scales to enhance
prediction accuracy and real-time performance.

Specifically, our model extracts features from two different scales: Scale 1 converts
the features of each time step into two-dimensional vectors and applies the Convolutional
Block Attention Module (CBAM) to capture local information between adjacent time
steps by automatically weighting the importance of the features, thereby extracting more
critical temporal features. Scale 2 treats the features of each time step in the time series as
independent representations and uses a Multi-Head Self-Attention to capture the complex
dependencies between time steps, particularly modeling long-term dependencies. By
extracting features at these two scales and fusing them, we can comprehensively utilize
information at different levels to fully capture the temporal variations in the BF ironmaking
process. Finally, the effectiveness and superiority of the proposed method in silicon content
prediction are validated through tests on actual BF data. The main contributions can be
summarized as follows:

1. The Multi-scale Fusion Convolutional Neural Network Model is proposed: An inno-
vative model combining multi-scale feature extraction and deep learning is proposed
to tackle the problem of silicon content prediction in the BF ironmaking process. This
model effectively captures the complex dynamic characteristics in both long-term
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and short-term dependencies in the time-series data by fusing information from two
different scales;

2. The CBAM and Multi-Head Self-Attention Mechanism are introduced: During the
feature extraction process, the CBAM and Multi-Head Self-Attention Mechanism
are leveraged to enhance the model’s feature selection ability when processing BF
smelting data. The CBAM helps automatically weight the importance of features,
while the MSA further strengthens the model’s capability to capture the complex
relationships between time steps in the time series.

The structure of this article is as follows: Section 2 provides a brief overview of the
CBAM and MSA. Section 3 presents a detailed explanation of the proposed algorithm.
Section 4 discusses the experiments and results based on both benchmark and real-world
industrial data. Finally, Section 5 concludes the article.

2. Preliminaries
This section provides essential background and technical foundations for the subse-

quent research. It first outlines the challenges posed by BF data characteristics—such as time
delays and variable coupling—and the limitations of traditional modeling methods. Sub-
sequently, key techniques leveraged in this study, including the CBAM and self-attention
mechanism, are introduced to address these challenges, laying the groundwork for the
proposed approach.

2.1. Challenges of Blast Furnace Data and Traditional Methods

Industrial process data, such as those from BF, typically exhibit significant time-delay
characteristics, where the current state often depends on input data from a previous time
period. Additionally, such data are strongly coupled, with multiple variables being inter-
dependent, making it difficult to treat them in isolation. This presents several challenges
for models designed to process such data, particularly in capturing long-term temporal
dependencies and complex inter-variable relationships.

Traditional CNNs mainly extract local features from time series data through con-
volution operations. However, for time-delay data, CNNs have a limited receptive field
that cannot cover information over long time spans, restricting their ability to capture
temporal dependencies. Furthermore, CNNs often overlook the sequential dependencies
between time steps, which undermines their performance in modeling time series data.
To address these issues, recurrent neural networks (RNNs) and their variants [28], such
as LSTM networks and GRUs [29,30], are widely applied to time series forecasting tasks.
While they can handle temporal data and capture long-term dependencies, their inherent
structural characteristics make them vulnerable to gradient vanishing, especially for long
sequences. Moreover, LSTMs and GRUs struggle to fully capture the complex relationships
between variables, limiting their effectiveness in complex systems such as BFs.

For the above reasons, many methods based on multi-scale feature fusion have been
proposed to improve prediction accuracy, proving to be very effective [31–33]. For example,
Wang et al. proposed a multi-objective convolutional neural network ensemble learning
method with multiscale data fusion (MOCNNEL-MSDF) to improve product quality pre-
diction in iron and steel enterprises, addressing the limitations of existing methods by
incorporating both macroscopic and mesoscopic data [34].

2.2. Convolutional Block Attention Module

The CBAM integrates spatial and channel dimensions to prioritize critical features
while suppressing irrelevant information. Following feature map generation by a convo-
lutional neural network, the CBAM derives weight maps from both channel and spatial
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perspectives, which are then element-wise multiplied with the input feature map to enable
adaptive learning. As a lightweight and versatile component, it seamlessly integrates into
various convolutional neural networks for end-to-end training [35], with its architecture
visualized in Figure 2.

Taking the feature map F as input, the channel attention module (CAM) produces a
1D vector Mc, quantifying the importance of each channel through adaptive weighting.
Concurrently, the spatial attention module (SAM) generates a 3D map Ms, highlighting
region-specific relevance by encoding spatial dependencies. The sequential operations are
outlined as follows.

F′ = Mc(F)⊗ F (1)

F′′ = Ms
(

F′)⊗ F′ (2)

Figure 2. CBAM network structure diagram.

The CAM emphasizes the relevant content within the input data. The CBAM utilizes
two types of pooling operations: max-pooling and average-pooling. These pooling methods
help in extracting high-level features, and by using different pooling strategies, a more
diverse set of high-level features can be captured. Figure 3 illustrates the structure of
the CAM.

The channel attention vector is given by:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3)

Figure 3. Channel attention module.

The SAM, on the other hand, focuses on identifying the critical spatial locations,
supplementing the CAM. Figure 4 shows the SAM.

The spatial attention map is calculated as:

Ms(F) = σ(Conv([AvgPool(F); MaxPool(F)])) (4)
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Here, σ(·) represents the sigmoid function, MaxPool(·) refers to max-pooling,
AvgPool(·) refers to average-pooling, MLP(·) stands for a multi-layer perceptron, and
Conv(·) indicates a 3D convolutional layer.

Figure 4. Spatial attention module.

2.3. Self-Attention Mechanism

The MSA is a key component of the Transformer architecture, which enables the model
to process input data by mapping it into multiple subspaces [36]. In these subspaces, the
model computes feature representations and corresponding attention scores for each part
of the input data. This mechanism focuses the model on the most relevant information in
relation to the query vectors, improving its ability to handle sequential data. The structure
of the MSA is illustrated in Figure 5.

Let the input to the MSA be denoted as X ∈ RT×d, where T is the sequence length and
d is the input dimension. The input is first linearly transformed into queries Q ∈ RT×da ,
keys K ∈ RT×da , and values V ∈ RT×da using learned weight matrices:

Q = X · Wq (5)

K = X · Wk (6)

V = X · Wv (7)

Here, da represents the dimensionality of the queries, keys, and values. The MSA
mechanism divides the queries, keys, and values into h distinct heads, with each head
processing a different part of the input.

For each head, the cosine similarity Ai is computed between the query Qi and the key
Ki. This similarity is then normalized using the Softmax function:

Ai = So f tmax

(
Qi · KT

i√
da/h

)
, i = 1, 2, . . . , h (8)

The output for each head is obtained by multiplying the attention scores Ai with the
corresponding values Vi:

Oi = Ai · Vi, i = 1, 2, . . . , h (9)

Finally, the outputs from all h attention heads are concatenated and passed through a
non-linear activation function to produce the final output:

O = f ( Concat (O1, O2, . . . , Oh)) (10)
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where f (·) denotes the non-linear activation function that is applied to the concatenated outputs.

Figure 5. Structure of self-attention mechanism.

3. Methodology
3.1. Overall Framework of MSF-CNN

In this section, we outline the architectural design of MSF-CNN, engineered to model
temporal dependencies at both local and global scales within time-series data. The model
has two key scales: the CBAM-based Temporal Affinity Focusing Scale for local temporal
feature extraction and the self-attention-based Temporal Modeling Scale for capturing
global temporal dependencies. These two scales are then fused to enhance the predictive
performance of the model. The main structure of the model is illustrated in Figure 6, which
demonstrates the process and computation of two temporal modeling scales.

1. CBAM-based Temporal Affinity Focusing Scale: By introducing the CBAM, this scale
focuses on critical features within local temporal windows, capturing local temporal
dependencies. The CBAM module employs both the channel and SAM to selectively
focus on the most important features, thereby enhancing the modeling capability of
local time series data.

2. Self-Attention-based Temporal Modeling Scale: Building on this, the self-attention
mechanism is used to model global temporal dependencies. Unlike traditional
RNN/LSTM/GRU methods, self-attention allows the model to freely capture de-
pendencies across long time spans on a global scale. By calculating the relation-
ships between time steps, the self-attention mechanism effectively mitigates the
gradient vanishing problem and can comprehensively capture complex interactions
between variables.

These two temporal modeling scales work in tandem, modeling time series data at
both the local and global levels, which significantly improves its ability to process complex
temporal data.
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Figure 6. Framework of MSF-CNN.

3.2. CBAM-Based Temporal Affinity Focusing Scale
3.2.1. Temporal Feature Enhancement via Outer Product Operation

In this model, we enhance the attention to important features in time series data
by introducing the CBAM. First, to more effectively model the coupling relationships
between variables at each time step, we use the outer product operation to transform the
one-dimensional feature vector of each time step into a two-dimensional feature matrix.
This helps capture the interactions between different variables at each time step.

Assuming the feature of each time step is an Rn vector, we use the outer product
operation to map it into a Rn×n matrix, where each element represents the interaction
between two variables at that time step.

Xt = xt ⊗ xT
t (11)

By applying the outer product operation, the model can explicitly capture the non-
linear relationships between different variables within each time step, providing richer
feature information for the subsequent attention mechanism. Figure 7 illustrates this
operation visually.

Figure 7. Schematic diagram of the outer product operation.
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3.2.2. Attention Mechanism Optimization in Time Series Processing

Optimizing the attention mechanism in time series data processing, especially in
complex systems like BF, can effectively capture the dynamic relationships between time
steps and different variables. The goal of this optimization is to enhance the model’s
sensitivity to important information by adjusting the weights of features, thereby improving
prediction accuracy. After performing the outer product operation, we can generate tensors
and pass them through the CBAM, which integrates both CAM and SAM to collaboratively
enhance the model’s predictive ability.

The CAM aims to assign weights to different channels to reflect the importance of
each time step for the current prediction task. Each time step is treated as a feature channel,
and the CAM learns the weights for these feature channels to strengthen the model’s focus
on the important channels.

Let X ∈ Rm×n×n represent the input feature map, where m is the number of time steps,
n is the feature dimension.

The CAM focuses on adjusting the weights of each channel to enhance the model’s
attention to important channels.

The global average pooling and global max pooling are firstly applied to the input
feature map X:

Favg = AvgPool(X), Fmax = MaxPool(X) (12)

where Favg and Fmax have dimensions m × 1 × 1, representing global information for
each channel.

Next, we pass Favg and Fmax through shared fully connected layers (typically two FC
layers) and apply a nonlinear activation function such as ReLU to process the information,
ultimately obtaining the channel attention weights:

Mchannel = σ
(

FC
(

ReLU
(

FC
(

Favg + Fmax
))))

(13)

where Mchannel ∈ Rm×1×1 represents the attention weights for each channel, and σ is the
sigmoid activation function, outputting weights between 0 and 1.

Finally, the input feature map X is adjusted by multiplying it with the channel attention
weights Mchannel :

Xout = X · Mchannel (14)

This way, important time steps receive higher weights, better capturing the time-lag
characteristics of the BF system.

The CAM dynamically adjusts the input feature map based on the importance of each
time step, highlighting the time steps relevant to the current prediction task. For systems
like BF, which exhibit significant time-lag effects, different time steps have varying impacts
on the current prediction task. The CAM helps capture these impacts accurately.

The SAM assigns weights to the different features at each time step, identifying which
features are crucial for the current prediction task. It applies attention across the spatial
dimensions, highlighting features that significantly contribute to the prediction task.

As in the CAM, we first apply global average pooling and global max pooling to Xout,
extracting spatial information:

Favg_spatial = AvgPool(Xout), Fmax_spatial = MaxPool(Xout) (15)

The resulting Favg_spatial and Fmax_spatial have dimensions 1 × H × W, representing
spatial information for each time step.
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We combine the two pooled outcomes and feed them into a convolutional layer so as
to generate the SAM map Mspatial :

Mspatial = σ
(

Conv
(

Favg_spatial ⊕ Fmax_spatial

))
(16)

where the concatenation operation ⊕ produces a tensor that is passed through a convo-
lutional layer to learn the spatial attention weights. The output Mspatial has dimensions
1 × n × n, representing spatial attention for each time step.

Finally, the spatial attention weights Mspatial are applied to Xout:

X f inal = Xout · Mspatial (17)

This allows the model to identify which features at each time step are most important,
further enhancing focus on key features.

The SAM deeply explores which features at each time step contribute the most to the
final prediction, especially in systems like BF, where complex interactions occur between
variables. This mechanism helps the model capture which features have a significant
impact on the prediction of silicon content at a given moment.

The integrated approach of using both channel and SAM enhances the prediction accu-
racy for complex industrial systems like BF. The CAM captures local temporal relationships
by identifying the impact of each time step on the current prediction, as different time steps
contribute differently to the final outcome. Meanwhile, the SAM uncovers inter-variable
relationships by weighting the interactions between features, highlighting those that signif-
icantly affect the prediction. By combining these mechanisms, the model can flexibly adjust
feature weights, focusing on critical time steps and features, ultimately improving both the
robustness and accuracy of the prediction. This approach enables a more effective capture
of dynamic features, leading to better overall performance in predicting complex systems.

3.3. Self-Attention-Based Temporal Modeling Scale

In the prediction task of silicon content in the BF, time-series data are often deeply
influenced by historical states and exhibits strong time lag effects. Traditional models,
such as LSTM and other recurrent neural networks, can capture time dependencies but
still face challenges in modeling long-term dependencies. To address this issue, this study
introduces the MSF, which improves prediction accuracy by capturing global temporal
dependencies. The self-attention mechanism has excellent modeling capabilities, allowing
it to directly model correlations between different time points over long time steps without
relying on recursive transmission mechanisms. The introduction of this mechanism enables
a more effective capture of nonlinear relationships and global information in the silicon
content time-series data.

Assume that our dataset consists of operational features of the BF at multiple time
steps. The data at each time step represent real-time monitoring information during the BF
operation, including raw material composition, gas flow, furnace temperature, and so on.

The core idea of the self-attention mechanism is to calculate the correlations be-
tween each element in a sequence and use these correlations as weighting factors
to adjust the representation of each element. Specifically, given an input sequence
X = [x1, x2, . . . , xm] ∈ Rm×n, where m is the time step and n is the feature dimension,
the traditional attention mechanism first calculates the similarity between the query Q
and the key K to obtain a weighted matrix (attention matrix), and then uses this weighted
matrix to adjust the value V .

To input these time-step features into the self-attention mechanism, we first need
to perform linear transformations to generate the query, key, and value matrices. By
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multiplying with learned weight matrices, we convert the input matrix into Q, K and
V matrices:

Q = X · WQ, K = X · WK, V = X · WV (18)

Here, WQ, WK, and WV are learned weight matrices, each used to generate the queries,
keys, and values, respectively. The dimensions of these matrices are dk, which helps
capture the relationships between different time steps in the BF operation. Through this
transformation, we map the original BF operational features X into a new representation
space, allowing us to capture relationships between different time steps.

The essence of the self-attention mechanism is calculating the similarity between the
query and the key, which helps capture correlations between different time steps. For
example, the raw material ratio at certain time steps might have a greater impact on the
silicon content prediction at later time steps, while temperature changes at other time steps
may be less relevant. Therefore, by calculating the dot product between the query and key,
we apply the softmax function to obtain the attention weights between each time step:

α = so f tmax
(

QKT
√

dk

)
(19)

These attention weights α help us identify the importance of features at different time
steps in the BF operation for the current silicon content prediction.

Once the attention weights are calculated, we apply them to the value matrix V and
compute a weighted sum to obtain the final output, which incorporates the weighted
features from all time steps:

Output = αV (20)

This weighted sum process essentially combines the global dependencies of the fea-
tures at each time step, helping the model better understand and predict the temporal
changes in silicon content in the BF.

In the prediction task of silicon content in the BF, considering that there may be multi-
ple layers of dependencies between different time steps, we use the MSA. Through parallel
computation in multiple heads, different dimensions of temporal relationships can be cap-
tured in different subspaces. Each head independently computes its corresponding query,
key, and value, and the outputs of all heads are concatenated and linearly transformed to
achieve the final output:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO (21)

This approach allows us to consider the BF operational data from multiple perspectives,
thereby capturing more potential temporal dependencies.

In the BF silicon content prediction task, during the training process, Since the predic-
tion of silicon content is a regression problem, we use a loss function such as Mean Squared
Error to measure the prediction error of the model, and optimize the weight matrices
through backpropagation. The loss function is defined as:

L =
1
N

N

∑
i=1

(ŷi − yi)
2 (22)

where ŷi is the predicted silicon content obtained through the self-attention mechanism,
and yi is the actual silicon content. By minimizing this loss, the model automatically adjusts
the weight matrices for the queries, keys, and values, thereby capturing the relationships
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between each time step and the global context and generating the final attention matrix
M ∈ Rm×n×n.

By utilizing the self-attention mechanism, we can effectively capture the relationships
between BF operational features at different time steps, thus improving the accuracy of
silicon content prediction. The MSA further enhances the model’s ability to learn multi-
dimensional temporal dependencies across different time steps. During the training process,
the model continuously updates the weights via backpropagation, allowing the features at
each time step to better reflect in the final silicon content prediction.

3.4. Fusion of Local and Global Temporal Scales

In the MSF-CNN model, local temporal features and global temporal dependencies
are fused through concatenation to enhance the model’s predictive capability. Specifically,
the CBAM-based Temporal Affinity Focusing Scale extracts key features within local
temporal windows and leverages the outer product operation to capture interactions
between variables. The CBAM module is employed to optimize the importance of these
features. This scale primarily focuses on the dynamic changes between adjacent time steps
in the time series, ensuring the accurate capture of short-term details and local dependencies.
At the same time, the Self-Attention-based Temporal Modeling Scale effectively models
global temporal dependencies using the self-attention mechanism. This overcomes the
limitations of traditional methods in capturing long-range dependencies, enabling the
model to capture global dynamic changes across time steps.

The fusion of these two scales is not merely a simple concatenation but adopts an
adaptive weight fusion method suitable for different industrial scenarios, comprehensively
integrating local and global information to enhance the model’s temporal modeling capabil-
ity. After fusion, the model can simultaneously leverage local details and global trends, thus
exhibiting stronger adaptability and higher prediction accuracy when handling complex
time series data. The local scale provides fine-grained variations within short-term time
series data, while the global scale enhances the model’s understanding of long-term depen-
dencies. This fusion approach enables the MSF-CNN to achieve significant performance
improvements across a variety of complex applications.

Through this feature fusion, MSF-CNN can provide more accurate and stable time
series predictions in domains such as industrial process control and environmental moni-
toring. The concatenation of the two scales enables the model to handle both instantaneous
changes and long-term patterns, thereby offering a more comprehensive capability for time
series analysis.

4. Experimental Results and Discussion
In this part, we verified the efficacy of the suggested MSF-CNN approach for pre-

dicting the silicon content. The data utilized were sourced from a leading iron and steel
production enterprise in China. We employed real-world data gathered during the iron-
making procedure. The MSF-CNN model was then contrasted with other forecasting
models. Subsequently, we delved deeply into its performance and effectiveness. Moreover,
ablation tests were carried out to assess the contribution of every part of the model. This
step guarantees a thorough comprehension of the model’s advantages and drawbacks.

4.1. Experimental Settings

Owing to the intricacy of the ironmaking process, numerous process variables influ-
ence the fluctuations in the silicon content of the molten iron. Drawing on the ironmaking
mechanism, expert insights, and the references presented in Section 1, 46 process variables
were chosen for the prediction. These variables are detailed in Table 1. To prepare the
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data, we performed preprocessing operations as outlined in Equation (23), which included
normalization and imputation of missing values. For each sampling time of silicon content,
we collected time-series data of the selected process variables over a 6-h period using a
moving-window sampling method with a 60 min interval. The sliding window had a
length of 6, resulting in an input feature dimension of 276 for each sample. Each sample
was structured as a tensor with the shape (6, 46), which served as the initial input for
the model. The dataset was split into training and testing sets, with 80% of the samples
used for training and 20% reserved for testing. To minimize the impact of randomness
and ensure the stability of the results, all experiments were repeated 10 times, and the
final performance metrics were obtained by averaging the results across these runs.The
silicon-content time series, arranged by taping number, is shown in Figure 8.

Vnorn =
V − Vmin

Vmax − Vmin
(23)

In the experiments, the development environment consisted of Python 3.8.19, with
PyTorch version 2.3.1 and CUDA 11.8 for GPU acceleration. The platform was equipped
with an AMD Ryzen 7 5800H CPU (3.20 GHz) and an NVIDIA GeForce RTX 3060 GPU,
providing the necessary computational power for the tasks.

Table 1. Partial input features for silicon content prediction model.

Input Feature Unit

Furnace Waist Average Temperature ◦C
Furnace Waist Temperature Range ◦C

Top Furnace Pressure kPa
Top Furnace Temperature ◦C

Top Furnace Gas CO Content %
Top Furnace Gas H2 Content %

Sintered Ore %
Wind flow m3/min

Coal Injection Rate t/h
Actual Air Velocity m/s

Oxygen-Enriched Pressure kPa
Oxygen Enrichment Rate m3/min

Al2O3 %
CaO %
MgO %
SiO2 %

C %

Figure 8. Time series of silicon content.
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Additionally, five performance metrics were used, namely Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Hit Rate (HR), Coefficient of Determination (R2),
and Correlation Coefficient (ρcorr), which are defined as follows:

1. RMSE:

RMSE =

√√√√ 1
N

N

∑
i=1

(yti − ŷti )2 (24)

2. MAE:

MAE =
1
N

N

∑
i=1

∣∣yti − ŷti
∣∣ (25)

3. Prediction HR:

HR =
1
N

N

∑
i=1

Iei (26)

4. Coe f f icient o f Determination (R2):

R2 = 1 − ∑N
i=1
(
yti − ŷti

)2

∑N
i=1(yti − ȳti )2 (27)

5. Correlation Coe f f icient (ρcorr):

ρcorr =
1
N

∑N
i=1(y

ti − ȳti )
((

ŷti − ŷti
))

var(yti )var(ŷti )
(28)

4.2. Model Performance Optimization

To determine the optimal hyperparameters for the best model performance, we first
set the basic hyperparameters based on preliminary experimental results, including: learn-
ing rate (0.001, using Adam optimizer), batch size (32), number of training epochs (50),
regularization (dropout rate of 0.3), and L2 regularization coefficient (0.0005). These hyper-
parameters remained constant throughout the experiments to secure stable outcomes.

In the MSA, the number of attention heads is a crucial hyperparameter that influences
the model’s performance. The number of heads controls the number of parallel atten-
tion mechanisms, affecting both the model’s ability to express input information and the
computational cost. Therefore, tuning the number of heads is key to improving model
performance. We trained the model with different numbers of heads and evaluated its per-
formance on the validation and test sets to determine the optimal configuration. Specifically,
we compared five different head configurations: 2 heads, 4 heads, 8 heads, 16 heads, and
32 heads. For each configuration, other hyperparameters were kept constant to eliminate
potential interference, ensuring the comparability of the results. In each experiment, the
model was trained for 50 epochs, and loss values were computed on both the training and
validation sets, with performance ultimately evaluated on the test set. The results show
that as the number of attention heads increased, the training error, validation error, and
test error all gradually decreased, as illustrated in Figure 9. Among all configurations, the
model with 32 heads achieved the best performance, with MSE = 0.0625, MAE = 0.25, and
HR = 90.1%.
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Figure 9. Impact of attention heads on model performance.

4.3. Experimental Results
4.3.1. Comparison with Baseline Models

To evaluate the effectiveness and advantages of the proposed model, we compare
it against several baseline models commonly used for time-series prediction. These
include Support Vector Regression (SVR), LSTM, GRU, and Random Forest Regres-
sion (RF) [37]. Each of these models has distinct characteristics and strengths in handling
time-series data, and this comparison offers a comprehensive evaluation of the MSF-CNN
model’s performance.

The input data for all models are the same raw time-series data used in the MSF-CNN
model to ensure fairness in the comparison. Additionally, the parameter selection and
training settings for all comparison models are aligned with those of our proposed model
to ensure the comparability of results. Specifically, the SVR model uses an RBF kernel with
a penalty parameter C = 1.0 and an error tolerance ϵ = 0.01, with other parameters set to
their default values. The LSTM model consists of two LSTM layers, each with 64 hidden
units, and uses the Adam optimizer with a learning rate of 0.001, a batch size of 32, and
100 training epochs. A dropout rate of 0.2 is applied as a regularization technique to prevent
overfitting. The GRU model follows a similar structure to the LSTM, with two layers of
64 hidden units, and uses the same optimizer, learning rate, and dropout settings. The
Random Forest Regression model is configured with 100 trees, a maximum depth of 10,
and a minimum sample split of 2.The comparison of the true values and predicted values
for different models is shown in Figure 10.

As shown in Table 2 and Figure 11, the MSF-CNN model outperforms all other models
in the prediction of [SI], achieving optimal results in RMSE, HR, and other performance
metrics, demonstrating its superiority in handling complex process data. Specifically, the
MSF-CNN achieved the lowest RMSE of 5.08 × 10−2, which is 2.28 × 10−2, lower than
that of SVR (7.36 × 10−2), representing an improvement of approximately 31%. Similarly,
in terms of MAE, the MSF-CNN showed a value of 0.0522, which is a 25% reduction
compared to SVR (0.0699). Additionally, the MSF-CNN achieved an HR (accuracy) of
90.02%, outperforming SVR (84.74%) by 5.28% and RF (85.53%) by 4.49%. In terms of the
coefficient of determination, MSF-CNN exhibited a value of 0.8203, which is 16% higher
than SVR (0.7075) and 15% higher than RF (0.7132), indicating superior model fitting
ability. The GRU and LSTM also showed strong performance, with values of 0.7522 and
0.7543, respectively, although they were still slightly lower than MSF-CNN. Regarding the
correlation coefficient, MSF-CNN demonstrated the highest value of 8.30 × 10−1, which
is 24% higher than SVR (6.68 × 10−1) and 20% higher than RF (6.91 × 10−1), reflecting
stronger correlation between its predictions and the actual values. Overall, the MSF-CNN
demonstrated superior performance across all key metrics, showing substantial improve-
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ments compared to other models. In particular, the MSF-CNN achieved approximately
30% better performance in RMSE and MAE, and a 5% improvement in HR, highlighting its
robust predictive capability and higher accuracy. In contrast, SVR and RF showed relatively
weaker performance, especially in terms of prediction error and accuracy. The specific
training process is shown in Figure 12.

Figure 10. Comparison of predicted and true values across models.

Table 2. Performance metrics comparison for different models.

Model MSF-CNN SVR RF LSTM GRU

RMSE 5.08 × 10−2 7.36 × 10−2 6.75 × 10−2 6.33 × 10−2 6.01 × 10−2

MAE 0.0522 0.0699 0.0683 0.0622 0.0599
HR 90.02% 84.74% 85.53% 86.37% 86.71%
R2 8.30 × 10−1 6.68 × 10−1 6.91 × 10−1 7.11 × 10−1 7.07 × 10−1

ρcorr 0.8203 0.7075 0.7132 0.7543 0.7522
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Figure 11. Box plots of different silicon content prediction models.

Figure 12. Convergence curves of different models.

Next, we present a thorough analysis on the performance and weaknesses of each
model. SVR faces performance bottlenecks when handling large-scale, high-dimensional
data due to the need for selecting suitable kernel functions and parameters, causing a
sharp rise in computational costs as data size increases, making it difficult to model
complex data. Additionally, SVR struggles to capture temporal dependencies and dynamic
changes, leading to larger prediction errors, especially in multivariate cases. While RF
performs well at capturing nonlinear features, it is a tree-based model that cannot effectively
model dynamics or long-term dependencies in time series data due to its limited ability to
understand temporal correlations and sequential information. On the other hand, LSTM
and the GRU, as variants of recurrent neural networks (RNNs), excel at capturing temporal
dependencies through internal memory mechanisms, which makes them suitable for time-
series prediction. However, they are less efficient than convolutional neural networks
(CNNs) at extracting static features and complex nonlinear relationships, and are likely to
encounter gradient vanishing and exploding issues when handling long sequences.

The MSF-CNN model demonstrates superior performance in predicting the silicon
content in BF, particularly with respect to accuracy and generalization. The key innovation
of this model lies in its ability to capture the time-lag relationships inherent in the BF
process through a multi-scale approach, effectively leveraging attention mechanisms to
extract features from different time scales. By combining these two scales, the MSF-CNN
model can effectively capture both static and dynamic features from the data, providing
a richer representation of the time dependencies. This is particularly important for BF
systems, which inherently exhibit time-lagged behaviors.

The results clearly demonstrate that the MSF-CNN outperforms other models in terms
of predictive accuracy and robustness. Unlike traditional models such as SVR and RF,
which struggle to capture temporal dynamics and nonlinear relationships, the MSF-CNN
model leverages its multi-scale structure and attention mechanisms to extract both local
and global features, leading to superior performance.
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4.3.2. Ablation Study

To assess the effectiveness of the MSF-CNN model, a series of ablation experiments
were conducted to evaluate the contribution of each component to the overall prediction
accuracy. Specifically, we compared four distinct model configurations by progressively
removing or replacing key modules within the model. The first configuration, MSF-CNN,
represents the full model, which integrates two scales: Scale 1 (CBAM) and Scale 2 (MSA).
Scale 1 captures local temporal dependencies through the CBAM, while Scale 2 leverages the
MSA mechanism to model global temporal dependencies. This dual-scale approach enables
the model to capture both short-term and long-term temporal features, thus enhancing
predictive performance. To isolate the effect of each individual component, three additional
variants were tested. The second model, NoCBAM-CNN, removes the CBAM module
in Scale 1 and retains only the MSA module in Scale 2, allowing for an evaluation of the
role of CBAM in modeling local temporal dependencies. The third model, NoMSA-CNN,
eliminates the MSA module in Scale 2 and preserves only the CBAM module in Scale 1, thus
testing the contribution of the MSA mechanism in capturing global temporal dependencies.
Finally, the Baseline-CNN model serves as a simple control, which removes both Scale 1
and Scale 2 feature extraction mechanisms, relying solely on a traditional CNN for feature
extraction and prediction. This baseline model provides a point of comparison to evaluate
the impact of multi-scale and attention mechanisms on model performance.The specific
experimental results are shown in Table 3.

Table 3. Results of the ablation study.

Metric MSF-CNN NoCBAM-CNN NoMSA-CNN Baseline-CNN

RMSE 5.22 × 10−2 6.36 × 10−2 6.72 × 10−2 7.73 × 10−2

MAE 0.0568 0.0677 0.0696 0.0793
HR 90.1% 85.68% 82.15% 74.37%
R2 8.33 × 10−1 6.35 × 10−1 6.42 × 10−1 6.02 × 10−1

ρcorr 0.8347 0.7183 0.7241 0.7005

4.4. Discussion

The MSF-CNN proposed in this study effectively addresses the prediction challenges
posed by the dynamic time-varying and delayed characteristics in the BF smelting pro-
cess through a dual-scale temporal feature fusion strategy, demonstrating significant ad-
vantages in the real-time prediction accuracy of silicon content. Experimental results
show that the model achieves hierarchical modeling of complex temporal dependencies
through the combination of CBAM local attention and self-attention mechanisms, achieving
over 20% improvement in key performance indicators compared to traditional recurrent
neural networks and providing a more reliable intelligent prediction tool for industrial
process monitoring.

However, there are still directions to be explored for the model’s practical engineer-
ing applications. Although this study verifies the effectiveness of the multi-scale fusion
architecture, future research can further focus on optimizing the model’s computational
efficiency—such as enhancing real-time inference capabilities through lightweight design
or hardware adaptation—to better meet the low-latency and high-reliability deployment
requirements of industrial control systems. Additionally, while the built-in attention mech-
anism provides a potential interpretable path for the prediction process, systematic analysis
of feature importance and visual representation of decision logic still need to be deepened.
Constructing an interpretability framework combined with domain knowledge, such as
quantifying the impact of key time steps or visualizing multi-scale feature interactions,
will help enhance operators’ trust in model predictions and promote its practical applica-
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tion in high-value industrial scenarios. These research directions not only strengthen the
theoretical completeness of the model but also accelerate its transformation from experi-
mental validation to engineering implementation, providing more comprehensive technical
support for the digital upgrading of intelligent steel production.

5. Conclusions
In this study, we presented a novel Multi-Scale Fusion Convolutional Neural Net-

work (MSF-CNN) for predicting the silicon content in molten iron during the blast furnace
process. By addressing the limitations of traditional prediction models, the MSF-CNN
combines two distinct temporal scales: a Convolutional Block Attention Module for cap-
turing short-term temporal dependencies and a Multi-Head Self-Attention mechanism
for modeling long-term dependencies. This dual-scale approach enables the model to
effectively handle the dynamic nature and inherent delays of the blast furnace process,
resulting in improved prediction accuracy and stability. The validation of the MSF-CNN
model using real-world blast furnace data showed its superior performance compared
to conventional prediction techniques. Notably, the MSF-CNN outperformed traditional
methods in both accuracy and robustness, making it highly adaptable to the complex,
fluctuating conditions of the blast furnace.

The proposed model’s success in predicting silicon content underlines the potential
of deep learning-based approaches in industrial process monitoring. Future work could
explore further optimization of the MSF-CNN architecture, as well as its application to other
critical variables in the blast furnace. Ultimately, the MSF-CNN framework can contribute
to the development of smarter, more efficient steel production processes, aligning with the
growing trend of digitalization and automation in the steel industry.
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