
Academic Editor: Shih-Wei Lin

Received: 29 March 2025

Revised: 23 April 2025

Accepted: 25 April 2025

Published: 27 April 2025

Citation: Zeng, Y.; Lou, P.; Hu, J.; Fan,

C.; Liu, Q.; Hu, J. Dual-Resource

Scheduling with Improved Forensic-

Based Investigation Algorithm in

Smart Manufacturing. Mathematics

2025, 13, 1432. https://doi.org/

10.3390/math13091432

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Dual-Resource Scheduling with Improved Forensic-Based
Investigation Algorithm in Smart Manufacturing
Yuhang Zeng 1 , Ping Lou 1 , Jianmin Hu 2,3,* , Chuannian Fan 1 , Quan Liu 1 and Jiwei Hu 1

1 School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;
zengyuhang@whut.edu.cn (Y.Z.); louping@whut.edu.cn (P.L.); 305838@whut.edu.cn (C.F.);
quanliu@whut.edu.cn (Q.L.); hujiwei@whut.edu.cn (J.H.)

2 School of Information Engineering, Hubei University of Economics, Wuhan 430205, China
3 Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan 430205, China
* Correspondence: hujianmin@hbue.edu.cn

Abstract: With increasing labor costs and rapidly dynamic changes in the market demand,
as well as realizing the refined management of production, more and more attention is
being given to considering workers, not just machines, in the process of flexible job shop
scheduling. Hence, a new dual-resource flexible job shop scheduling problem (DRFJSP) is
put forward in this paper, considering workers with flexible working time arrangements
and machines with versatile functions in scheduling production, as well as a multi-objective
mathematical model for formalizing the DRFJSP and tackling the complexity of scheduling
in human-centric manufacturing environments. In addition, a two-stage approach based on
a forensic-based investigation (TSFBI) is proposed to solve the problem. In the first stage, an
improved multi-objective FBI algorithm is used to obtain the Pareto front solutions of this
model, in which a hybrid real and integer encoding–decoding method is used for exploring
the solution space and a fast non-dominated sorting method for improving efficiency. In
the second stage, a multi-criteria decision analysis method based on an analytic hierarchy
process (AHP) is used to select the optimal solution from the Pareto front solutions. Finally,
experiments validated the TSFBI algorithm, showing its potential for smart manufacturing.

Keywords: smart manufacturing; flexible job shop scheduling; workforce costs; forensic-
based investigation; multi-objective optimization

MSC: 90B06

1. Introduction
Industry 5.0 has revolutionized traditional manufacturing by incorporating advanced

information and communication technologies, including cyber–physical systems (CPSs),
big data analytics, machine learning, and the Internet of Things (IoT). This change has led
intelligent manufacturing into a new era dominated by digitalization and services. The
emergence of these technologies not only enables the manufacturing industry to better
meet the increasingly personalized demands of the market but also enhances its overall
competitiveness. In this dynamic context, research aimed at optimizing manufacturing
processes, especially in areas such as production scheduling, becomes crucial.

Efficient production scheduling is extremely important to optimize the cost-effectiveness
and productivity of manufacturing systems, especially in flexible job shops. Over the years,
the flexible job shop scheduling problem (FJSP) has been extensively studied [1]. However,
historically, FJSP research has focused on optimizing machine resources but neglected labor

Mathematics 2025, 13, 1432 https://doi.org/10.3390/math13091432

https://doi.org/10.3390/math13091432
https://doi.org/10.3390/math13091432
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8859-3570
https://orcid.org/0000-0003-4493-4668
https://orcid.org/0000-0003-1553-9132
https://orcid.org/0009-0009-6483-3355
https://orcid.org/0000-0001-6884-7935
https://doi.org/10.3390/math13091432
https://www.mdpi.com/article/10.3390/math13091432?type=check_update&version=1

Mathematics 2025, 13, 1432 2 of 30

resource management. In the modern manufacturing industry, labor resource management
has gradually become a key factor in determining the performance of the whole system.

With the development of Industry 5.0, the importance of human–machine integration
has become increasingly prominent [2]. This trend has mainly been driven by two factors:
escalating labor costs and the need for more adaptive and resilient production systems [3].
Dual-Resource Constraint (DRC) systems [4], which combine human and machine re-
sources, have received extensive attention in the field of flexible job shop scheduling. These
systems leverage multi-skilled workers and flexible work schedules to increase resource
utilization, improve worker satisfaction, and increase the overall productivity. Multiple
studies [5,6] have investigated the flexible job shop problem (FJSP) involving multi-skilled
workers and their impact on the processing time. Nevertheless, workers acquire their
multiple skills through training, which incurs substantial training costs [7]. Consequently,
shops tend to employ a higher proportion of single-skilled workers or a limited number of
skilled workers.

Moreover, numerous studies have demonstrated that flexible working time arrange-
ments play a pivotal role in promoting a work–life balance among employees and enhancing
the overall company’s productivity [8]. The production tasks change from batch to batch in
the shop, which usually leads to changes in the number of people responsible for produc-
tion. Nevertheless, a standard work system in workshops is to assign a fixed number of
workers to each batch of tasks, and they work for a continuous and fixed period, such as
from 9 a.m. to 5 p.m. [9]. Although this method can effectively use the available human
resources, redundancy can occur when the tasks are too few. For example, a job requires
only four people to complete production. Still, with a fixed arrangement of five people,
the work efficiency will be the same, and the personnel cost will significantly increase.
Moreover, in the case of there being too many tasks, measures such as extra overtime are
required due to insufficient staff. In such cases, flexible working time arrangements present
a potential solution to optimize labor deployment, reduce personnel costs, and enhance
operational efficiency.

Hence, a DRFJSP considering workers with flexible working time arrangements and
machines with versatile functions is presented. This approach aligns with the Industry
5.0 paradigm by emphasizing adaptability, resilience, and the integration of human and
machine resources. To address the computational complexity of dual-resource scheduling
in smart manufacturing, this study adopted the forensic-based investigation (FBI) algorithm
due to a strategic rationale: the interpopulation cooperation mechanism inherent in the FBI
algorithm uniquely mirrors the dynamic coupling of machines and workers in DRC systems.
Unlike traditional genetic algorithms that often struggle with premature convergence, an
FBI’s two-stage investigation-tracking mechanism systematically balances exploration
and exploitation at the multi-objective Pareto frontier. The remaining parts of this paper
are organized as follows. A literature review is presented in Section 2. In Section 3 the
scheduling problem and formal description are elaborated. In Section 4, the two-stage
FBI-based algorithm is introduced. The case study and analyses are described in Section 5.
Finally, the conclusions and future perspectives are stated in Section 6.

2. Literature Review
Industry 5.0 highlights a human-centric approach that prioritizes sustainable devel-

opment and production flexibility [10]. In manufacturing, production systems must both
serve and rely on human resources [11]. This paper investigates two areas: (1) the impact
of working hours on workers and (2) the influence of human-inspired decision-making
on algorithmic scheduling in production systems. In highly automated manufacturing
environments, human intervention remains essential for tasks that cannot or should not be

Mathematics 2025, 13, 1432 3 of 30

automated due to technical, socioeconomic, or ethical reasons. The goal of automation is not
to replace workers, but to de-skill tasks so that workers can use their expertise, intelligent
tools, and assistive systems to focus on decision-making and control. Therefore, human
resources are the core of the production process, and their management and utilization
require in-depth research [12].

Production scheduling plays an essential role in the implementation of production. It
can organically combine various elements (human resources, machines, materials, rules,
and the environment) of the production process [13]. Within this, dual-resource scheduling,
especially a dual-resource scheduling problem that considers both worker resources and
machine resources, has been widely studied by researchers. Further research has explored
various facets of the DRFJSP, often extending the problem scope or constraints. For in-
stance, Gong [14] introduced a double flexible job shop problem (DFJSP), optimizing the
processing time, green production, and human factors using a hybrid genetic algorithm.
Yu [15] studied distributed assembly hybrid flow shops with dual-resource constraints
(DAHFSSP-DRC), minimizing the total tardiness using a knowledge-based iterated greedy
algorithm. Mlekusch [16] considered a dual-resource-constrained re-entrant flexible flow
shop, common in screen printing, minimizing the makespan using constraint programming
and a hybrid genetic algorithm. Renna [17] applied game theory (Gale–Shapley model)
for worker assignment in DRC job shops, showing its benefits, especially with varying
worker efficiencies. Li [18] specifically focused on worker shift arrangements in the FJSP,
using a two-stage algorithm to minimize overdue days while managing shifts. Xiao [19]
tackled stochastic processing times in the DR-SJSSP using a robust scheduling approach
and a two-stage assignment strategy solved using MO-HEDA. Li [20] addressed sustain-
ability (makespan, energy, ergonomics) in the SFJSPCDR using a survival duration-guided
NSGA-III. Wei [21] proposed an inverse scheduling approach for the RCFJISP to handle
uncertainties by adjusting machine, worker, and process parameters using an improved
memetic algorithm. Berti [22] incorporated aging workforce effects and fatigue into DRC
job shop scheduling, evaluating the impact of rest allowances. Seifi [23] formulated MILP
models for simultaneous machine and worker assignment in shift-based potash mining
operations. Santos [24] integrated machine scheduling (batch job shop) and personnel
allocation in large-scale facilities using a rolling horizon framework. While these studies
have significantly advanced the understanding of the DRFJSP, exploring areas like double
flexibility [14], assembly [15], re-entrance [16], worker assignment strategies [17,19,20], shift
scheduling [18,23], sustainability [20], uncertainty/robustness [21], and worker characteris-
tics like fatigue/aging [22], relatively few have specifically examined the impact of flexible
working time arrangements, where workers operate within defined total hour limits rather
than in fixed shifts or on simple multi-skilling assignments, on the scheduling performance
and cost.

Flexible working time arrangements, which allow employees to manage their work
hours outside the traditional “9 to 5” framework, have been shown to enhance employee
motivation and productivity [25]. Baridula [26] highlighted their role in increasing em-
ployee retention in Nigerian manufacturing firms. Jarrahi [9] suggested that personal digital
infrastructure facilitates the implementation of flexible working time systems. Despite these
benefits, the impact of flexible working time arrangements on production scheduling re-
mains underexplored. Therefore, this study distinguished itself by explicitly modeling and
optimizing a DRFJSP variant that incorporates workers with flexible working time arrange-
ments alongside versatile machines. Unlike studies focusing on fixed shifts or multi-skilling
costs, our work investigated the potential cost and efficiency benefits derived from allowing
workers flexible start/end times within overall working hour constraints, addressing a gap
in optimizing adaptable human resource deployment in modern manufacturing.

Mathematics 2025, 13, 1432 4 of 30

In recent years, Delgoshaei [27] systematically reviewed the evolution of dual-resource
scheduling approaches, identifying a paradigm shift toward the hybrid metaheuristics
incorporating human factors that are a key foundation for our work. For the dual-resource-
constrained flexible job shop scheduling problem (DRFJSP), a variety of metaheuristic
methods have been widely used to cope with its NP-hard nature and obtain high-quality
solutions in finite time. Metaheuristics have become a research hotspot because of their
advantages regarding response time requirements in actual production systems [28]. How-
ever, as the well-known No Free Lunch (NFL) theorem [29] indicates, no metaheuristic is
the most suitable for all optimization problems. This has motivated researchers to modify
existing algorithms or develop new ones to solve various optimization problems [30], such
as the DRFJSP. Metaheuristics can be classified into evolution-based, population-based,
human-based, physics-based, systems-based, and biology-based approaches [31]. Tra-
ditional evolutionary algorithms such as genetic algorithms (GAs) and particle swarm
optimization (PSO) have been widely used, but they often suffer from parameter sensitivity.
For example, Mlekusch [16] demonstrated the effectiveness of constraint programming
combined with genetic algorithms for re-entrant flow shops, achieving a 12–18% better
makespan than pure GA implementations. However, their hybrid approach requires com-
plex parameter coordination between constraint propagation and evolutionary operators,
increasing the implementation complexity. Similarly, Lu [32] developed a memetic algo-
rithm hybridizing a local search with genetic operators for assembly sequence variations,
reducing the energy consumption by 17% compared to PSO-based approaches. The PSO
implementation by Zhang [33] also led to local convergence due to the improper setting of
the speed factor. Liu’s [34] improved biological migration algorithm demonstrated that
parameter reduction can reduce the number of iterations by 35%. Therefore, a heuristic al-
gorithm with low parameter tuning is especially useful for resource-constrained production
systems that require fast response times.

Recent work has also extended the objectives beyond makespan minimization. Ak-
bar [35] applied a variant of NSGA to balance tardiness and labor productivity, revealing
an inherent conflict between these objectives that informed our Pareto frontier analysis.
Yu [15] found that incorporating a knowledge-guided greedy search into the distributed
assembly problem reduced the computation time by 28% compared to the Chinese imple-
mentation while maintaining a similar solution quality, supporting our hybrid decoding
strategy. However, neither study addressed the critical integration problem concerning
flexible working time constraints. The FBI algorithm is an optimization algorithm based
on human behavior [36], and its algorithm performance is relatively excellent, especially
since it does not require any complex parameters that would seriously affect the algo-
rithm’s performance. It has been applied to and shown excellent results in the solution
of problems in various fields, such as solar cell model parameter optimization, pavement
pothole identification [37], and project scheduling [38]. Despite this, the application of the
FBI algorithm to solve flexible job shop scheduling problems such as the DRFJSP is still
limited. On the one hand, the original FBI algorithm is mainly designed for continuous
optimization problems, and on the other hand, its structure is only suitable for single-
objective optimization tasks, which restricts its application in multi-constrained, discrete,
and multi-objective environments.

To address combinatorial optimization problems, continuous optimization algorithms
often require modifications to their operators. For instance, crossover operations can replace
addition operations to better suit discrete problem spaces [39,40]. However, more efficient
approaches involve developing new discrete algorithms specifically tailored for combi-
natorial optimization, which increases the scaling cost and time. Some researchers [41]
have identified the efficacy of the encoding and decoding methodology in transforming the

Mathematics 2025, 13, 1432 5 of 30

design space into the problem space, and through the development of suitable coding and
decoding techniques, it has become feasible to effectively enhance current algorithm ver-
sions, providing them with the capability to address combinatorial optimization problems.
Hence, this paper presents a general hybrid coding and decoding method based on a techni-
cal characteristic of codecs so that the continuous optimization algorithm can quickly solve
the combined optimization problem and reduce the cost and time consumption of develop-
ing a discrete version. Furthermore, since the dual-resource flexible job shop scheduling
problem (DRFJSP) involves multiple objectives, the original forensic-based investigation
(FBI) algorithm, designed for single-objective optimization, needed to be extended to han-
dle multi-objective problems. Extensions of single-objective algorithms to multi-objective
algorithms typically fall into four categories: dominance-based, decomposition-based,
indicator-based, and hybrid selection mechanism-based approaches [42]. Among these,
the dominance-based approach [42,43], which relies on the concept of Pareto dominance,
is widely used and effective for finding a diverse set of trade-off solutions. Therefore, we
employed a Pareto-based dominance method, specifically the fast non-dominated sorting
approach, to extend the FBI algorithm for multi-objective optimization.

However, solving the DRFJSP using a multi-objective FBI algorithm yields a set of
Pareto-optimal solutions, presenting a challenge for decision-makers in selecting the most
satisfactory solution. To address this, multi-criteria decision-making (MCDM) methods
were employed. The analytical hierarchy process (AHP) is a well-established MCDM
method that effectively combines qualitative and quantitative analysis, making it suitable
for scenarios with a limited number of objectives [44]. The AHP has been widely applied to
multi-objective decision-making in combinatorial optimization problems [45,46], enabling
managers to make informed decisions based on the production status and objectives. Due
to its advantages of requiring less information and offering short decision times, this study
applied AHP to the decision-making process for multi-objective scheduling problems in
job shop environments.

3. Problem Description and Formulation
3.1. A Dual-Resource Flexible Job Shop Problem

The problem of the DRFJSP is described as follows. It contains a job set, J = {J1, J2, . . .,
Jn}, a machine set, M = {M1, M2, . . ., Mm}, and a worker set, W = {W1, W2, . . ., Ww}. Each
job, Ji, contains j process operations, and each operation must be completed in the proper
order. Oij represents the jth process of the ith job. This process can only be undertaken
using one machine within the selection of its optional machines, and only one worker can
be selected to operate it. Each worker’s working hours are flexible, i.e., they can leave
work once they have completed the standard working hours. These jobs are completed
within a task period, and the number of workers is limited by the size of the workshop. The
DRFJSP includes four sub-problems: machine allocation, the determination of the number
of workers, worker selection, and operation sequencing. To clarify the proposed problem,
we assume that the following rules limit the possible assignments of operations:

• All jobs, workers, and machines are available at S0;
• The accumulated working hours of workers cannot exceed the upper bound of their

working time;
• The accumulated working hours of workers cannot be lower than the lower bound of

their working time;
• Overtime pay is α times the general salary;
• Any operation within a job can only be undertaken after its preceding procedures have

been completed;

Mathematics 2025, 13, 1432 6 of 30

• The actual operating time of a worker is equivalent to the operating time of
the equipment;

• The standard completion time and standard cost of the procedure have been determined;
• There is no sequential restriction on processes that are part of different jobs;
• Each item of equipment can only complete one job at the same time;
• One worker can only complete one job at the same time;
• Once the process starts, it cannot be interrupted unless personnel change shifts and

the shift change time is ignored.

3.2. Problem Formulation

A series of mathematical programming models concerning the FJSP have been pre-
sented in the literature so far. Demir [47] compared five different MILP models for the
FJSP. They demonstrated that model M2 had the lowest computation time for almost all
the optimally solved test problems, and they suggested using precedence variable-based
models, especially model M2 for the FJSP. Although the proposed MILP model coped
with a dual-resource FJSP, due to the number of binary and continuous variables and the
structure of the model itself, it can be considered as having been partially derived from the
above-mentioned Model 2. The MILP for the problem under investigation is as follows,
and notations for the proposed DRFJSP are listed in Table 1.

A worker who works more than the standard hours is considered to be working
overtime and requires additional overtime pay. If the overtime period is exceeded, the
worker having had adequate rest cannot be guaranteed, and this situation is not allowed.
When the working hours of workers violate the above constraints, this is unreasonable.
Therefore, the total worker cost is the sum of the total cost of the standard working hours
E1, the total cost of overtime E2, and the total base wage of the worker E3.

E1 = ∑n
i=1 ∑ni

j=1 ∑k∈Mij
∑l∈Wk

(
Cijkl − Sijkl

)
×Uijkl (1)

E2 = max
{

0,
(

∑n
i=1 ∑ni

j=1 ∑k∈Mij
∑l∈Wk

(
Cijkl − Sijkl

)
− ST

)
×Uijkl × β

)}
(2)

E3 = ∑w
l=1 Bl (3)

Based on the above-mentioned parameters, two objectives are shown as Equation (4).
The first objective is to minimize the maximum completion time, which is one of the critical
performance criteria for productivity. The second objective is to minimize the total labor
costs. Equation (1) calculates the total labor cost incurred during standard working hours
across all operations. It sums the product of the actual processing time (Cijkl − Sijkl) and
the corresponding unit time cost Uijkl for each operation, Oij, assigned to machine k and
worker l, assuming the work is performed within the standard working hours limit.

Table 1. Notations for DRFJSP.

Notations Description

Indices:
i, i′ Job index
j, j′ Operation index
k, k′ Machine index
l, l′ Worker index

Mathematics 2025, 13, 1432 7 of 30

Table 1. Cont.

Notations Description

Parameters:
n Total number of jobs
ni Total number of operations for a job, i
m Total number of machines
w Total number of workers
J Set of jobs

M Set of machines
W Set of workers
a The minimum number of workers per class
b The maximum number of workers per class

Oij The jth operation of job i
Mij Set of candidate machines for Oij
Wk Set of candidate workers for machine k
M A large number
S0 The start time of the schedule
β Multiplier of general salary

ST Standard working hours of workers within a task period
LBT The lower bound of the working time for each worker within a task period
UBT The upper bound of the working time for each worker within a task period

Decision variables:
f1 Objective function 1, which represents makespan
f2 Objective function 2, which represents total labor cost

Cmax Makespan
Ci The completion time for job i
E1 The total cost for the standard working hours
E2 The total cost of overtime
E3 The total base wage of the worker

Cijkl The completion time for Oij performed on machine k by worker l
Ci′ j′kl′ The completion time for Oi′ j′ performed on machine k by worker l′

Cij−1kl The completion time for the operation prior to Oij performed on machine k by worker l
Sijkl The start time of process Oij performed on machine k by worker l

Si′ j′kl′ The start time of process Oi′ j′ performed on machine k by worker l′

Tijkl The processing time for Oij performed on machine k by worker l
Uijkl The unit time cost for worker l to perform Oij on machine k

Bl Basic salary of worker l
vijkl If the process Oij is performed on machine k and by worker l, the value is 1; otherwise, it is 0

zijkl,i′ j′kl′
If Oij is performed on machine k by worker l and this operation is before the operation Oi′ j′ ,
performed on the same machine by the worker l′, the value is 1; otherwise, it is 0

Objectives:
minf1 = Cmax

minf2 = E1 + E2 + E3
(4)

subject to the following:

Cmax ≥ Ci ∀i ∈ J (5)

Ci ≥∑k∈Mij
∑l∈Wk

Cijkl ∀i ∈ J; j = 1, . . . , ni (6)

Sijkl + Cijkl ≤ vijkl ×M ∀i ∈ J; ∀j = 1, . . . , ni; ∀k ∈ Mij; ∀l ∈Wk (7)

Cijkl ≥ Sijkl + Tijkl −
(

1− vijkl

)
×M ∀i ∈ J; ∀j = 1, . . . , ni; ∀k ∈ Mij; ∀l ∈Wk (8)

Sijkl ≥ Ci′ j′kl′ − zijkl,i′ j′kl′ ×M∀i, i′ ∈ J; ∀j, j′ = 1, . . . , ni; ∀k ∈ Mij; ∀l, l′ ∈Wk (9)

Mathematics 2025, 13, 1432 8 of 30

Si′ j′kl′ ≥ Cijkl − (1− z ijkl,i′ j′kl′

)
×M∀i, i′ ∈ J; ∀j, j′ = 1, . . . , ni; ∀k ∈ Mij; ∀l, l′ ∈Wk (10)

∑k∈Mij
∑l∈Wk

Sijkl ≥∑k∈Mij
∑l∈Wk

Cij−1kl∀i ∈ J; ∀j = 2, . . . , ni; (11)

∑n
i=1 ∑ni

j=1 ∑k∈Mij

(
Cijkl − Sijkl

)
≤ UBT ∀l ∈Wk (12)

∑n
i=1 ∑ni

j=1 ∑k∈Mij

(
Cijkl − Sijkl

)
≥ LBT ∀l ∈Wk (13)

∑k∈Mij
∑l∈Wk

vijkl = 1 ∀i ∈ J; j = 1, . . . , ni (14)

vijkl , zijkl,i′ j′kl′ ∈ {0; 1}; Wk ∈ [a, b] (15)

Cijkl , Ci, Sijkl , Si′ j′kl′ , Cijkl , Ci′ j′kl′ , Cmax ∈ R+ (16)

Constraint (5) ensures that the makespan corresponds to the maximum completion
time among all jobs. Constraint (6) mandates that the completion time of each job must
equal that of its last operation. Constraints (7) and (8) guarantee that the difference between
the starting and completion times will be at least equal to the processing time on machine
k. Constraints (9) and (10) establish that distinct jobs completed on the same machine
simultaneously must adhere to a specific completion order. Constraint (11) stipulates
that different process operations within the same job must follow a particular completion
sequence. Constraints (12) and (13) impose upper and lower boundaries on the cumulative
working time for each worker, while constraint (14) specifies that the same process operation
may only be performed by one worker on the same machine. Constraints (15) and (16)
define the decision variable range.

4. Two-Stage FBI-Based Algorithm
The proposed algorithm, called the TSFBI algorithm, for solving the DRFJSP consists

of a Pareto optimization phase and a multi-criteria decision-making phase. In the Pareto
optimization phase, a discrete multi-objective version of the FBI algorithm is used to
obtain the Pareto solutions of the DRFJSP. On the other hand, the multi-criteria decision-
making phase involves the selection of the best solution from the Pareto solutions. Figure 1
illustrates the main components of the TSFBI algorithm, which is executed according to the
following steps.

1. Random initialization involves the construction of the scheduling solution set, which
includes the population size (N), the number of objective functions (D), and the int
part (IP) of the solution and maps the operation selection sequence, machine selection
sequence, and worker selection sequence onto agent location vectors, X (the total
length is three times the length of the process selection sequence), using a hybrid
coding technique and records the mapping relationships. The detailed encoding
process is described in Section 4.1.1.

2. The investigation phase involves setting up a team of agents, analyzing the suspect’s
potential hiding places and determining the highest-probability suspicious locations,
dividing the search area based on the suspicious locations, and setting up a pursuit
team to enter the pursuit phase.

3. During the pursuit stage, the pursuit team follows the orders from the headquarters
and moves closer to the suspicious spot, reporting all information related to the
suspicious location; throughout the whole dispatch–discovery–approach process, the
investigation and pursuit teams work closely together. For details on steps 2 and 3,
see the original article [36] and Section 4.1.2.

4. After the completion of the pursuit, the existing solutions are sorted and selected to
obtain the Pareto solutions in the following ways. First, the solutions are decoded

Mathematics 2025, 13, 1432 9 of 30

to determine the scheduling goal; then, the solutions in the set are stratified by
using fast non-dominated sorting to determine the domination relationship based
on the scheduling goal; next, the quantitative fitness of the stratified solution set
is calculated; and finally, a greedy selection strategy is used to perform population
selection based on fitness in order to obtain the Pareto solutions. See Section 4.1.2 for
the detailed process.

5. If the termination condition is satisfied, the loop is ended and the procedure progresses
to step 6; if not, step 2 to step 4 are repeated.

6. The obtained Pareto solution set is decoded to obtain the Pareto solutions for schedul-
ing and determine the target.

7. The analytical hierarchy process is used to evaluate and calculate the Pareto solutions,
rank and select them based on the estimated values, and obtain the final schedul-
ing solution.

Mathematics 2025, 13, x FOR PEER REVIEW 9 of 30

calculated; and finally, a greedy selection strategy is used to perform population se-
lection based on fitness in order to obtain the Pareto solutions. See Section 4.1.2 for
the detailed process.

5. If the termination condition is satisfied, the loop is ended and the procedure pro-
gresses to step 6; if not, step 2 to step 4 are repeated.

6. The obtained Pareto solution set is decoded to obtain the Pareto solutions for sched-
uling and determine the target.

7. The analytical hierarchy process is used to evaluate and calculate the Pareto solu-
tions, rank and select them based on the estimated values, and obtain the final sched-
uling solution.

Figure 1. The flowchart of the TSFBI algorithm.

4.1. Pareto Optimization Phase

The FBI algorithm is a novel optimization method used to determine global solutions
for continuous linear functions with accuracy and low computational effort. It is inspired
by police personnel, who carry out the investigation, location, and conviction of criminals,
and it has two main phases, which are the investigation phase and the pursuit phase.
While the investigator’s team carries out the investigation phase, the police agents’ team
performs the pursuit phase. The original FBI algorithm is a single-objective optimization
algorithm and is mainly used to solve continuous optimization problems. However, the
proposed DRFJSP is a multi-objective combined optimization problem. Therefore, first, a
hybrid coding approach was proposed to provide the algorithm with the ability to solve
combinatorial optimization problems, and second, a multi-objective version of the FBI al-
gorithm was constructed to obtain Pareto solutions.

Figure 1. The flowchart of the TSFBI algorithm.

4.1. Pareto Optimization Phase

The FBI algorithm is a novel optimization method used to determine global solutions
for continuous linear functions with accuracy and low computational effort. It is inspired
by police personnel, who carry out the investigation, location, and conviction of criminals,
and it has two main phases, which are the investigation phase and the pursuit phase.
While the investigator’s team carries out the investigation phase, the police agents’ team
performs the pursuit phase. The original FBI algorithm is a single-objective optimization
algorithm and is mainly used to solve continuous optimization problems. However, the

Mathematics 2025, 13, 1432 10 of 30

proposed DRFJSP is a multi-objective combined optimization problem. Therefore, first, a
hybrid coding approach was proposed to provide the algorithm with the ability to solve
combinatorial optimization problems, and second, a multi-objective version of the FBI
algorithm was constructed to obtain Pareto solutions.

4.1.1. A Hybrid Encoding and Decoding Method

The optimization operation mechanism in the original FBI uses real number solutions,
and it is difficult to apply to combinatorial optimization problems such as the DRFJSP.
Therefore, a hybrid encoding approach was proposed to derive a complete scheduling
solution by constructing a mapping relationship between real number and integer solutions.
The int part (IP) (also known as the chromosome sequence) includes the operation sequence
(OS), machine sequence (MS), and worker sequence (WS), and the real part is the ordering
and selection basis for these sequences, and IP = {OS, MS, WS}.

OS = {Oc
i |c = 1, 2, . . . , N; i = 1, 2, . . . n}. Oc

i denotes the number of the ith job of
the cth individual, and its eth occurrence in the OS represents the eth operation of job i.
MS = {Mc

i |c = 1, 2, . . . , N; i = 1, 2, . . . n}. Mc
i represents the machine number of the ith job

completed by the cth individual. WS = {Wc
i |c = 1, 2, . . . , N; i = 1, 2, . . . n}Wc

i represents
the worker number assigned to the ith job of the cth individual. The real part is denoted by
X, and X = {X c

h|c = 1, 2, . . . N; h = 1, 2 . . . L}; f : IP→ X, and L is the length of the cth X.
Figure 2 is a representative case of a concrete population where the int part of the OS is [1,
1, 1, 2, 2, 2, 3, 3] and the real part of the OS is [0.7869, 2.3367, 0.9427, 2.1977, 1.6184, 2.1274,
1.0337, 2.7249].

Mathematics 2025, 13, x FOR PEER REVIEW 10 of 30

4.1.1. A Hybrid Encoding and Decoding Method

The optimization operation mechanism in the original FBI uses real number solu-
tions, and it is difficult to apply to combinatorial optimization problems such as the
DRFJSP. Therefore, a hybrid encoding approach was proposed to derive a complete
scheduling solution by constructing a mapping relationship between real number and in-
teger solutions. The int part (IP) (also known as the chromosome sequence) includes the
operation sequence (OS), machine sequence (MS), and worker sequence (WS), and the real
part is the ordering and selection basis for these sequences, and IP = {OS, MS, WS}. OS = {O|c = 1,2, … , N; i = 1,2, … n}. O denotes the number of the ith job of the cth
individual, and its eth occurrence in the OS represents the eth operation of job i. MS ={M|c = 1,2, … , N; i = 1,2, … n} . M represents the machine number of the ith job com-
pleted by the cth individual. WS = {W|c = 1,2, … , N; i = 1,2, … n} W represents the
worker number assigned to the ith job of the cth individual. The real part is denoted by 𝑋, and 𝑋 = {𝑋| c = 1,2, … N; ℎ = 1,2 … L}; 𝑓: IP → X, and L is the length of the cth 𝑋. Fig-
ure 2 is a representative case of a concrete population where the int part of the OS is [1, 1,
1, 2, 2, 2, 3, 3] and the real part of the OS is [0.7869, 2.3367, 0.9427, 2.1977, 1.6184, 2.1274,
1.0337, 2.7249].

Job1 Job2 Job3

Descending

OS

Job1 Job2 Job3

MS
M2 M1

0 1

Alternative:n

m=cut(v,ub,lb,n)
v=2.7995,n=2,
ub=3,lb=0
m=1

//:divide
cut(v,ub,lb,n):
v//[(ub-lb)/n]

M1

1

Job1 Job2 Job3

0 1

Alternative:n

w=cut(v,ub,lb,n)
v=1.052,n=3,
ub=3,lb=0
w=1

W2

12

WS

W1 W2 W3

1.052 1.5697 1.0141 0.5941 2.4555 2.385 1.5814 0.8535

2 2 2 1 3 3 1 1

1 2 3 1 3 2 2 3

2.7995 2.3305 2.8377 1.4901 2.5709 0.2345 2.0241 2.6966

3 1 2 2 2 3 1 1

2.7249 2.3367 2.1977 2.1274 1.6184 1.0337 0.9427 0.7869

0.7869 2.3367 0.9427 2.1977 1.6184 2.1274 1.0337 2.7249

1 1 1 2 2 2 3 3

Figure 2. Encoding of the OS, MS, and WS.

As the chromosome encoding sequence is a three-dimensional real number vector,
three mapping relations exist for the encoding parts. Each mapping relation consists of a
real part and an integer part, and each mapping relation has a real part and an integer
part with different meanings due to the difference in the meaning of the sequences. In the
OS, the real part represents the sorting rule, and the integer part represents the process
number, i.e., the size of the real value determines the ordering of the elements in the inte-
ger part (descending order is used here). In the MS and WS, the real part represents the
selection rule, and the integer part represents the number (we obtain the selected number
by segmenting the selectable set and mapping the real numbers onto the corresponding
interval segments, the algorithmic procedure for which is shown in Algorithm 1). The

Figure 2. Encoding of the OS, MS, and WS.

As the chromosome encoding sequence is a three-dimensional real number vector,
three mapping relations exist for the encoding parts. Each mapping relation consists of
a real part and an integer part, and each mapping relation has a real part and an integer
part with different meanings due to the difference in the meaning of the sequences. In the
OS, the real part represents the sorting rule, and the integer part represents the process
number, i.e., the size of the real value determines the ordering of the elements in the

Mathematics 2025, 13, 1432 11 of 30

integer part (descending order is used here). In the MS and WS, the real part represents the
selection rule, and the integer part represents the number (we obtain the selected number
by segmenting the selectable set and mapping the real numbers onto the corresponding
interval segments, the algorithmic procedure for which is shown in Algorithm 1). The
example shown in Figure 2 includes three jobs, the first and second with three operations
and the third with two operations.

In the MS and WS, the real part represents the selection rule, and the integer part
represents the selected machine or worker number, respectively. We obtain the selected
number by segmenting the range of possible real values based on the number of available
machines/workers for that operation and mapping the real number onto the corresponding
interval segment (see Algorithm 1 for the mapping logic). For example, as shown in
Figure 2 (which includes three jobs: Job 1 with three ops, Job 2 with three ops, Job 3
with two ops), the MS (machine sequence) row indicates the machine assigned to each
operation, ordered according to the jobs (Job 1 ops, then Job 2 ops, then Job 3 ops). The
green block [1, 3, 2] under ‘MS’ corresponds to the three operations of Job 2, meaning
they are assigned to Machine 1, Machine 3, and Machine 2, respectively. The WS (worker
sequence) row similarly indicates the worker assigned to each operation, following the
same job order. The yellow block [1, 2] under ‘WS’ corresponds to the two operations of
Job 3, signifying that Worker 1 operates the assigned machine (Machine 2, based on the
MS) for operation O31, and Worker 2 operates the assigned machine (Machine 3, based on
the MS) for operation O32.

Algorithm 1 Machine sequence relational mapping.

Input:
The suspicious location vector (machine part) V, the max number of
suspicious locations ub, the min number of suspicious locations lb, optional
number of machines M

Output: The machine selection sequence MS
1. MS← ∅, i← 0
2. for each v ∈ V
3. m← Mi

4. tem← (v− lbi)// (ubi−lbi)
m , “//” meas divide upward

5. MS← MS ∪m

The decoding process is referred to in Gong’s article [14], and the specific process is
shown in the example in Figure 3, which indicates that the DRFJSP’s genetic code includes
a three-layer genetic coding sequence for the OS, MS, and WS. The length of the process
sequencing sequence is the sum of all operation processes.

Mathematics 2025, 13, x FOR PEER REVIEW 12 of 30

assignments from the MS and WS, respecting job precedence constraints and the resource
availability, a complete schedule with start and completion times can be constructed.

OS

MS

WS

Job1 Job2 Job3

3 2 1 3 3 3 1 2

1 2 3 1 3 2 2 3

1 3 1 2 2 2 3 1

Figure 3. Three-substring decoding method.

4.1.2. Multi-Objective FBI

The investigation phase comprises two steps. In the first step (A1), each candidate
direction is calculated using Equation (17). 𝑋(A1) = 𝑋(A1) + ൫2 ∗ (𝑟𝑎𝑛𝑑 − 0.5)൯ ∗ (𝑋(A1) − (𝑋ᇲ (A1) + 𝑋ᇲᇲ (A1))/2) (17)

where 𝑋(A1) denotes the ℎth real value of the 𝑐th individual in phase A1, rand is a
random number in the range [0,1], and ℎ, ℎᇱ, and ℎᇱᇱ are three indices.

In actual production, optimization problems often involve two or more conflicting
objectives that need simultaneous consideration, such as minimizing the makespan and
minimizing the personnel cost, as considered in this paper. For such multi-objective prob-
lems, there usually is not a single solution that optimizes all objectives concurrently. In-
stead, we seek a set of Pareto-optimal solutions. A solution is Pareto-optimal if no other
feasible solution can improve one objective without degrading at least one other objective.
When comparing two solutions, solution A dominates solution B if A is better than or
equal to B regarding all objectives and strictly better regarding at least one objective. So-
lutions that are not dominated by any other solution in the feasible set are called non-
dominated solutions. The set formed by all non-dominated solutions constitutes the Pa-
reto-optimal set (or Pareto front in the objective space). The Pareto front visually repre-
sents the trade-offs inherent between the conflicting objectives; improving one objective
typically requires sacrificing performance regarding another along this front. In a multi-
objective FBI, the solutions are sorted based on the objective value of the solution using a
low-time-complexity fast non-dominated sorting method to determine the dominance re-
lationship of the solutions during each iteration so that the Pareto solutions can be found
after multiple iterations. The fast non-dominated sorting algorithm is derived from
NSGA-II [48]. In the NSGA-II algorithm, fast non-dominated sorting is used for popula-
tion hierarchical sorting, and local crowding distances are used to make quantitative com-
parisons of individuals in the same hierarchy. This hierarchical comparison, which de-
faults to the first and last individuals in the sequence, is mandatory, and this default op-
eration is also of a qualitative comparative nature. It is impossible to separate out the var-
iability of each solution, and there is a risk of losing better individuals. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑓ௗ ∑ 𝑓ௗேೝೌೖୀଵ൘ ൩ + (𝑟𝑎𝑛𝑘 − 1) × 2ௗୀଵ ，𝑖 = 1,2 … , 𝑛; 𝑗 = 1,2, … , 𝑁 (18)

This fitness calculation using the Sigma method [49] is designed to provide a quanti-
tative measure for each solution after non-dominated sorting. It combines two compo-
nents: (1) the non-domination rank (𝑟𝑎𝑛𝑘), where solutions with better ranks (lower 𝑟𝑎𝑛𝑘
value) receive significantly lower fitness values due to the (𝑟𝑎𝑛𝑘 − 1) × 2 term, prioritizing
convergence towards the Pareto front, and (2) a measure reflecting the solution’s normal-
ized performance across all objectives relative to other solutions with the same rank

Figure 3. Three-substring decoding method.

The OS string dictates the sequence in which operations are considered for scheduling.
Its length equals the total number of operations across all jobs. In Figure 3, the OS [1, 3, 1, 2,
2, 2, 3, 1] means that the first operation to be scheduled is the first operation of Job 1 (O11,

Mathematics 2025, 13, 1432 12 of 30

indicated by the first ‘1’), the second is the first of Job 3 (O31), the third is the second of Job
1 (O12), and so on. The second ‘3’ in the OS refers to the second operation of Job 3 (O32).

The MS string provides the machine assignment for each operation. It is ordered
job-wise, i.e., the first n1 elements correspond to Job 1’s operations, the next n1 to Job 2’s,
etc. In Figure 3, for Job 1 (ops O11, O12, and O13), the MS segment [1, 2, 3] assigns the
operations to Machines 1, 2, and 3, respectively. For Job 2 (ops O21, O22, and O23, green
block), the MS [1, 3, 2] assigns them to Machines 1, 3, and 2. For Job 3 (ops O31 and O32,
yellow block), the MS [2, 3] assigns them to Machines 2 and 3.

The WS string provides the worker assignments, also ordered job-wise, corresponding
to the machine assignments from the MS. For Job 1, the WS [3, 2, 1] assigns Workers 3, 2,
and 1 to operate Machines 1, 2, and 3, respectively, for O11, O12, and O13. For Job 2, the
WS [3, 3, 3] assigns Worker 3 to all its operations. For Job 3 (yellow block), the WS [1, 2]
assigns Worker 1 to operate Machine 2 for O31 and Worker 2 to operate Machine 3 for O32.
By combining the processing order from the OS with the machine and worker assignments
from the MS and WS, respecting job precedence constraints and the resource availability, a
complete schedule with start and completion times can be constructed.

4.1.2. Multi-Objective FBI

The investigation phase comprises two steps. In the first step (A1), each candidate
direction is calculated using Equation (17).

Xc
h(A1) = Xc

h(A1) + (2 ∗ (rand− 0.5)) ∗
(
Xc

h(A1)−
(
Xc

h′(A1) + Xc
h′′ (A1)

)
/2
)

(17)

where Xc
h(A1) denotes the hth real value of the cth individual in phase A1, rand is a random

number in the range [0,1], and h, h′, and h′′ are three indices.
In actual production, optimization problems often involve two or more conflicting

objectives that need simultaneous consideration, such as minimizing the makespan and
minimizing the personnel cost, as considered in this paper. For such multi-objective
problems, there usually is not a single solution that optimizes all objectives concurrently.
Instead, we seek a set of Pareto-optimal solutions. A solution is Pareto-optimal if no
other feasible solution can improve one objective without degrading at least one other
objective. When comparing two solutions, solution A dominates solution B if A is better
than or equal to B regarding all objectives and strictly better regarding at least one objective.
Solutions that are not dominated by any other solution in the feasible set are called non-
dominated solutions. The set formed by all non-dominated solutions constitutes the Pareto-
optimal set (or Pareto front in the objective space). The Pareto front visually represents the
trade-offs inherent between the conflicting objectives; improving one objective typically
requires sacrificing performance regarding another along this front. In a multi-objective
FBI, the solutions are sorted based on the objective value of the solution using a low-time-
complexity fast non-dominated sorting method to determine the dominance relationship of
the solutions during each iteration so that the Pareto solutions can be found after multiple
iterations. The fast non-dominated sorting algorithm is derived from NSGA-II [48]. In the
NSGA-II algorithm, fast non-dominated sorting is used for population hierarchical sorting,
and local crowding distances are used to make quantitative comparisons of individuals
in the same hierarchy. This hierarchical comparison, which defaults to the first and last
individuals in the sequence, is mandatory, and this default operation is also of a qualitative
comparative nature. It is impossible to separate out the variability of each solution, and
there is a risk of losing better individuals.

f itnessi = ∑D
d=1

[
f i
d

/
Nrank

∑
j=1

f j
d

]
+ (ranki − 1)× 2, i = 1, 2 . . . , n; j = 1, 2, . . . , Nrank (18)

Mathematics 2025, 13, 1432 13 of 30

This fitness calculation using the Sigma method [49] is designed to provide a quantita-
tive measure for each solution after non-dominated sorting. It combines two components:
(1) the non-domination rank (ranki), where solutions with better ranks (lower ranki value)
receive significantly lower fitness values due to the (ranki − 1) × 2 term, prioritizing con-
vergence towards the Pareto front, and (2) a measure reflecting the solution’s normalized
performance across all objectives relative to other solutions with the same rank (repre-
sented by the summation term as implemented in Algorithm 2). This second component
allows for finer differentiation among solutions of the same non-dominated rank, aiming
to quantitatively assess and preserve diversity better than methods relying solely on the
crowding distance for intra-rank comparison.

The calculation function for the Sigma value (the smaller the value, the better the
individual) is presented as Equation (18), where D is the total number of objectives, d
is the current objective index, Nrank is a number in the same ranki, ranki represents the
current non-dominated ranking hierarchy of population i with a value greater than 1, and
f i
d represents the dth objective function of population i. The implementation of the Sigma

method is shown in Algorithm 2.

Algorithm 2 Sigma method.

Input: The non-dominated set F, the rank set Nrank, the number of objective D
Output: the fitness of population: fitness
1. f itness← ∅ , β← ∅ , Nmax

rank ← max(Nrank)

2. for each f l ∈ F
3. SUMD ← ∅, DIVi

D ← ∅ ,
4. for each d ∈ D
5. for each f i ∈ f l
6. SUMd ← SUMd + f i

d
7. for each d ∈ D
8. for each f i ∈ f l

9. DIVi
d ← DIVi

d +
f i
d

SUMd

10. for each DIVi
d ∈ DIVi

D

11. f itnessi ← DIVi
d +

(
N f l

rank − 1
)
× 2

The second step (A2) involves the following modified probability calculation for mul-
tiple objective functions. The probability value of each individual is given by Equation (19).
f itnessd

worst and f itnessd
best are the worst and the best fitness values of the dth objective

function, respectively. f itnessd
Xc(A1) is the objective function of individual Xc(A1). The

Prob (Xc(A1)) determines the probability that the value of Xc(A1) is updated according to
Equation (17).

Prob (Xc(A1)) =

(
D

∑
d=1

(f itnessd
Xc(A1) − f itnessd

worst)/(f itnessd
best − f itnessd

worst)

)
/d (19)

The new suspected location of the suspect Xc
h(A2) is updated using Equation (20).

Xc
h(A2) = Xbest(A2) + Xc

h′(A2) + rand ∗
(
Xc

h′′ (A2) + Xc
h′′′(A2)

)
(20)

where Xbest(A2) is the best individual and is arbitrarily chosen to rank first in the current
population. h, h′, h′′ , and h′′′ are four indices, h, h′, h′′ , h′′′ ∈ {1, . . . , L}, and h′, h′′ , and
h′′′ are selected arbitrarily. To balance exploration and exploitation, MOFBI uses two
populations (current and advanced) for its selection strategy. If the new vector Xc(A2) has

Mathematics 2025, 13, 1432 14 of 30

a better objective function value than Xc, then the new vector will replace Xc and will be
added to the advanced population and will continue to the next selection; otherwise, the
new vector will be moved to the advanced population. This strategy improves the local
search and diversification of the population.

The pursuit phase includes two stages. In stage B1, each location is generated using
Equation (21), where Xbest(A2) is the best location that the investigation team has provided.

Xc
h(B1) = rand ∗ Xc

h(B1) + rand ∗ (Xbest(A2)− Xc
h(B1)) (21)

In stage B2, the process of creating each individual in the population depends on
the probabilities. If Prob(Xc(B2)) is smaller than Prob(Xc′(B2)), then the new location of
Xc(B2) is given by Equation (22); otherwise, it is calculated using Equation (23).

Xc
h(B2) = Xc′

h (B2) + rand ∗
(

Xc′
h (B2)− Xc

h(B2)
)
+ rand ∗

(
Xbest(B1)− Xc′

h (B2)
)

(22)

Xc
h(B2) = Xc

h(B2) + rand ∗
(

Xc
h(B2)− Xc′

h (B2)
)
+ rand ∗ (Xbest(B1)− Xc

h(B2)) (23)

where Xbest(B1) is the best individual in the current population and is arbitrarily chosen
to rank first, c and c′ are two indices, c, c′ ∈ {1, ..., N}, and c′ is set arbitrarily. The pursuit
phase applies the selection operation that was used in the investigation phase.

4.1.3. Investigation of Computational Complexity

The computational complexity of the TSFBI algorithm depends on several factors,
including the population size (N), the chromosome length (L), the maximum number of iter-
ations (T), and the complexity of the fitness function calculation (Cf). The TSFBI algorithm’s
complexity can be analyzed across several stages: the initialization phase, which involves
hybrid encoding generation, O(N × L), the initial fitness calculation, O(N × Cf), and non-
dominated sorting, O(N× log(N)), resulting in a total complexity of O(N(L + Cf + log(N)); the
investigation phase, O(N × L), focused on generating suspicious positions and probability-
weighted fitness calculation, O(D × N), with a total complexity of O(N(L + D)); the pursuit
phase, encompassing position updates, O(N × L), differential mutation, O(N × L), and
fitness re-evaluation, O(2N × Cf), leading to a total complexity of O(N × (2L + 2Cf));
and finally, the main iteration loop, where non-dominated sorting, O(N × log(N)), Sigma
method-based fitness calculation, O(D × N), and greedy selection, O(N × log(N)), are
performed, contributing a per-iteration complexity of O(T × N × (4L + 3Cf + 2D + 2log(N))).

4.2. Multi-Criteria Decision-Making Stage

The multi-level recursive structure of the analytical hierarchy process can generally
be divided into three levels, i.e., the general objective level, the sub-objective level, and
the solution level. Figure 4 shows the AHP recursive structure of the multi-objective FJSP
scheduling decision, which has three levels: (1) the general objective layer consists of
the problem-solving objective of the DRFJSP scheduling decision; (2) the sub-objective
layer consists of the sub-objectives considered when evaluating each solution against the
objective; (3) the solution layer consists of a set of Pareto solutions generated in the DRFJSP
scheduling optimization phase based on the multi-objective evolutionary algorithm.

A∗AHP = max
n

∑
i

f i
d

∑2
d=1 f i

d

× wd,
2

∑
d=1

wd = 1, i = 1, 2, . . . , n; d = 1, 2 (24)

Mathematics 2025, 13, 1432 15 of 30

Mathematics 2025, 13, x FOR PEER REVIEW 15 of 30

the selection of a single solution that best aligns with their priorities from among the non-
dominated alternatives. 𝑓ௗ represents the dth objective value of the ith solution, 𝑤ௗ rep-
resents the decision weight of the dth objective, and 𝑤ௗ is obtained by calculating the
importance judgment matrix. The calculation steps are as follows.

1. Use the numbers one to nine to indicate the importance of the sub-objective layers.
Administrators make determinations under the prevailing circumstances, which are
used to construct the judgment matrix 𝐴×.

2. Normalize each column of matrix A: 𝑤∗ = ೕ∑ ೕసభ , 𝑎 ∈ 𝐴; 𝑖 = 1,2, … 𝑛.

3. Sum the normalized 𝑤∗ for each row to obtain 𝑤∗ = ∑ 𝑤∗ୀଵ , 𝑗 = 1,2, … , 𝑚.

4. Normalize 𝑤∗ to obtain 𝑤ௗ = ௪∗∑ ௪∗సభ .

Multi-objective DRFJSP optimal scheduling decision

Minimizing maximum
completion time Minimizing worker costs

Scheduling
solution 1

General
objective layer

Sub-objective
layer

Solution
layer

Scheduling
solution 2

Scheduling
solution n...

Figure 4. AHP recursive structure for multi-objective DRFJSP scheduling decisions.

The determination of these weights, 𝑤, is crucial as it reflects the decision-maker’s
priorities. In practical scenarios, these weights can be derived from various sources, in-
cluding direct input from managers based on current business objectives, the strategic
priorities of the company, or using more structured methods like expert consultations,
surveys, or the Analytic Network Process (ANP). The judgment matrix A, constructed
using pairwise comparisons (as detailed in steps 1–4 below), provides a systematic way
to quantify these preferences. It is important to note that different weighting schemes will
lead to different final solution selections from the same Pareto set.

5. Case Study
Three experiments were conducted to verify the correctness of the proposed DRFJSP

model and the effectiveness of the TSFBI algorithm. The first experiment used the well-
known solver Gurobi to solve the problem in order to verify the correctness of the model.
The second experiment compared the performance of the TSFBI algorithm with that of the
NSGA-II algorithm using three common metrics, and the third experiment verified the
algorithm’s ability to obtain satisfactory solutions from the Pareto solutions through the
AHP decision process.

All tests were run on a 3.1 GHz E5-2603V4 processor and a 64 GB server using the
python3.7 programming language.

5.1. Instance Construction and Parameter Setting

Since there were no test cases for the DRFJSP, this study extended 51 test cases (el01–
el51) for the la01-la40 benchmark [50], BRData [51] Mk01-Mk10 cases, and a simple case
[52]. Among them, the first 50 instances were utilized in Experiment 1 and 2, whereas the
final sample was reserved for Experiment 3. The categorization of the test cases, as out-
lined by Liu et al. [53], involved three classifications: small-, medium-, and large-scale.
The instance construction was performed using the parameters outlined in Table 2.

Figure 4. AHP recursive structure for multi-objective DRFJSP scheduling decisions.

The AHP [38] value of each scheduling solution is calculated based on Equation (24),
and the AHP value is used as the evaluation criterion for the scheme, and a higher value
means a better solution. The AHP method provides a structured framework for the decision-
maker to navigate these trade-offs present in the Pareto-optimal set. By quantifying the
relative importance of each objective (through weight assignment, w), the AHP trans-
lates the decision-maker’s subjective preferences into a quantitative evaluation, enabling
the selection of a single solution that best aligns with their priorities from among the
non-dominated alternatives. f i

d represents the dth objective value of the ith solution, wd

represents the decision weight of the dth objective, and wd is obtained by calculating the
importance judgment matrix. The calculation steps are as follows.

1. Use the numbers one to nine to indicate the importance of the sub-objective layers.
Administrators make determinations under the prevailing circumstances, which are
used to construct the judgment matrix An×m.

2. Normalize each column of matrix A: w*
ij =

aij

∑n
i=1 aij

, aij ∈ A; i = 1, 2, . . . n.

3. Sum the normalized w*
ij for each row to obtain w*

i = ∑m
j=1 w*

ij, j = 1, 2, . . . , m.

4. Normalize w*
i to obtain wd =

w*
i

∑n
i=1 w*

i
.

The determination of these weights, w, is crucial as it reflects the decision-maker’s
priorities. In practical scenarios, these weights can be derived from various sources,
including direct input from managers based on current business objectives, the strategic
priorities of the company, or using more structured methods like expert consultations,
surveys, or the Analytic Network Process (ANP). The judgment matrix A, constructed
using pairwise comparisons (as detailed in steps 1–4 below), provides a systematic way to
quantify these preferences. It is important to note that different weighting schemes will
lead to different final solution selections from the same Pareto set.

5. Case Study
Three experiments were conducted to verify the correctness of the proposed DRFJSP

model and the effectiveness of the TSFBI algorithm. The first experiment used the well-
known solver Gurobi to solve the problem in order to verify the correctness of the model.
The second experiment compared the performance of the TSFBI algorithm with that of the
NSGA-II algorithm using three common metrics, and the third experiment verified the
algorithm’s ability to obtain satisfactory solutions from the Pareto solutions through the
AHP decision process.

All tests were run on a 3.1 GHz E5-2603V4 processor and a 64 GB server using the
python3.7 programming language.

Mathematics 2025, 13, 1432 16 of 30

5.1. Instance Construction and Parameter Setting

Since there were no test cases for the DRFJSP, this study extended 51 test cases
(el01–el51) for the la01–la40 benchmark [50], BRData [51] Mk01–Mk10 cases, and a simple
case [52]. Among them, the first 50 instances were utilized in Experiment 1 and 2, whereas
the final sample was reserved for Experiment 3. The categorization of the test cases, as
outlined by Liu et al. [53], involved three classifications: small-, medium-, and large-scale.
The instance construction was performed using the parameters outlined in Table 2.

Table 2. The parameters of the instances.

Parameter Name Value

Unit time cost U [20, 70]
Basic salary U [800, 1200]

Task period (TP) LBCT-SE
LBT 0.2 × TP
ST 0.5 × TP

UBT 0.7 × TP
β 2
a 1
b 2 ×m

Different machines are operated by workers with different skill levels, the operating
costs are equal for workers of each skill level, and the basic cost is equal. The unit time
cost of the workers operating each machine obeys a uniform distribution [20, 70]. The
standard time ST, the minimum working time LBT, and the maximum working time UBT
of each worker are set according to each task period (TP). The task period is determined by
the lower bound of the maximum completion time of the standard examples (LBCT-SE).
That is, the TP is twice the lower bound of the maximum completion time of the standard
example; the ST is 0.5 times the TP, the LBT is 0.2 times the TP, the UBT is 0.7 times the TP,
the minimum number of workers per category is one, and the largest number of workers in
each category is twice the total number of machines. The parameter settings of the TSFBI
are shown in Table 3.

Table 3. The parameters of the algorithms.

Parameter Name TSFBI

population size 30
maximum number of generations 300

The core variables of the job quantity and machine quantity, including the number of
jobs (n), the number of operations per job (ni), the total number of machines (m), and the
set of candidate machines for each operation (Mij), along with their standard processing
times, were directly inherited from the original FJSP benchmark instances. The range of
job quantities (n) and machine quantities (m) for instances el01–el40 is shown in Table 4.
These instances cover a spectrum of sizes, categorized as small- (e.g., 5 × 10), medium-
(e.g., 10 × 10, 5 × 20), and large-scale (e.g., 10 × 20, 15 × 15, 10 × 30), as defined by Liu
et al. [53].

Mathematics 2025, 13, 1432 17 of 30

Table 4. CPU runtime with different parameters.

Case
CPU Runtime (s)

N = 10 N = 20 N = 30 N = 40 N = 50

el01 402.35 452.78 462.91 605.42 802.67
el16 482.82 543.34 555.49 726.50 963.20
el26 563.29 633.89 647.07 847.59 1123.74

For the dual-resource aspect, we introduced a set of workers, W. The total number of
workers (w) for each instance was set as equal to the number of machines (w = 2 m). To
model basic worker qualifications and assignments, we assumed the following.

Option A (if all workers can operate all machines): All workers in the set W were
considered capable of operating any machine, k (Wk).

Option B (if workers were assigned to machines/had differing skill levels): Workers
were conceptually divided into groups of different skill levels or pools. For simplicity, in
this study, we assumed each worker was capable of operating a randomly assigned subset
of machines, ensuring each machine had at least ‘a’ candidate workers, or workers were
grouped, and each group was assigned to specific machines, reflecting basic specialization.
While the model allowed for the consideration of worker–machine-specific processing times
(Tijkl), for these extended instances, we assumed that the processing time Tijkl primarily
depended on the job, operation, and machine (inherited from the base benchmark) and
was uniform across all qualified workers for that machine.

Worker-related costs and time constraints were generated based on the parameters
defined in Table 2. Specifically, the unit time cost for worker l completing operation Oij on
machine k (Uijkl) was randomly generated for each worker–machine assignment within
the uniform distribution [20, 70], reflecting potential minor variations in the operating cost
even if workers’ skills were assumed to be comparable. The basic salary for each worker
(Bl) was drawn from the uniform distribution [800, 1200].

Flexible working time constraints (LBT, ST, UBT) for each worker were determined
relative to the instance’s task period (TP), which was derived from the lower-bound
makespan of the original benchmark instance, as detailed in Table 2. The minimum (a) and
maximum (b) number of workers allowed per class/task were set as defined in Table 2.

This extension process aimed to create a diverse set of DRFJSP instances grounded in
established FJSP structures, allowing for the evaluation of the performance of the proposed
model and TSFBI algorithm in handling the added complexity of worker resource allocation
and flexible working time constraints.

The parameter settings for the TSFBI, such as the population size (N = 30) and max-
imum number of generations (T = 300), were chosen based on common practices in the
related literature and preliminary computational tests to ensure a balance between the
solution quality and computational time. It is acknowledged that these parameters can
influence algorithm performance. While the FBI algorithm itself does not rely on traditional
crossover and mutation operators, the parameters governing its investigation and pursuit
phases (embedded within Equations (17)–(23)) and the overall population size/generation
count are important. The results of a preliminary sensitivity analysis are shown in Figure 5
and Table 4 to demonstrate the impact of key parameters.

To investigate the influence of key parameters on the performance of the TSFBI algo-
rithm, a preliminary sensitivity analysis was conducted. We focused on the population
size (N) and the maximum number of generations (T), as these often significantly impact
metaheuristic performance. Several representative instances (e.g., el01, el16, and el26,
representing small, medium, and large scales) were selected.

Mathematics 2025, 13, 1432 18 of 30

Mathematics 2025, 13, x FOR PEER REVIEW 17 of 30

Flexible working time constraints (LBT, ST, UBT) for each worker were determined
relative to the instance’s task period (TP), which was derived from the lower-bound
makespan of the original benchmark instance, as detailed in Table 2. The minimum (a)
and maximum (b) number of workers allowed per class/task were set as defined in Table
2.

This extension process aimed to create a diverse set of DRFJSP instances grounded
in established FJSP structures, allowing for the evaluation of the performance of the pro-
posed model and TSFBI algorithm in handling the added complexity of worker resource
allocation and flexible working time constraints.

The parameter settings for the TSFBI, such as the population size (N = 30) and maxi-
mum number of generations (T = 300), were chosen based on common practices in the
related literature and preliminary computational tests to ensure a balance between the
solution quality and computational time. It is acknowledged that these parameters can
influence algorithm performance. While the FBI algorithm itself does not rely on tradi-
tional crossover and mutation operators, the parameters governing its investigation and
pursuit phases (embedded within Equations (17)–(23)) and the overall population
size/generation count are important. The results of a preliminary sensitivity analysis are
shown in Figure 5 and Table 4 to demonstrate the impact of key parameters.

Table 3. The parameters of the algorithms.

Parameter Name TSFBI
population size 30
maximum number of generations 300

To investigate the influence of key parameters on the performance of the TSFBI algo-
rithm, a preliminary sensitivity analysis was conducted. We focused on the population
size (N) and the maximum number of generations (T), as these often significantly impact
metaheuristic performance. Several representative instances (e.g., el01, el16, and el26, rep-
resenting small, medium, and large scales) were selected.

Figure 5. Parameter sensitivity analysis of the TSFBI algorithm.

Table 4. CPU runtime with different parameters.

Case CPU Runtime (s) 𝑵 = 𝟏𝟎 𝑵 = 𝟐𝟎 𝑵 = 𝟑𝟎 𝑵 = 𝟒𝟎 𝑵 = 𝟓𝟎
el01 402.35 452.78 462.91 605.42 802.67
el16 482.82 543.34 555.49 726.50 963.20
el26 563.29 633.89 647.07 847.59 1123.74

Figure 5. Parameter sensitivity analysis of the TSFBI algorithm.

The results indicate that increasing the population size beyond 30 offered marginal
improvements in the makespan at the cost of a significantly increased computation time.
Similarly, running the algorithm for more than 300 generations yielded diminishing returns
for these instances. While the chosen parameters (N = 30, T = 300) appeared to provide a
reasonable trade-off for the benchmark instances used, the optimal parameter settings might
vary depending on the problem size and complexity. Further comprehensive parameter
tuning could be beneficial for specific industrial applications.

5.2. Performance Metrics

To evaluate the effectiveness of the proposed TSFBI algorithm, the following three
common evaluation criteria were used [38,54]. These metrics reflect the quality of non-
dominated solutions obtained based on the dominance, distribution, convergence, and
diversity of Pareto solutions.

The C-metric (C) represents the degree of dominance of two non-dominated sets. The
metric maps an ordered pair (A, B) to a range from zero to one, where A and B are two
dominated solution sets, to determine the relative convergence, as shown in Equation (25).
If C (A, B) = 1, then all solutions of A dominate the solutions of B, and if C (A, B) = 0, then
all solutions of B dominate the solutions of A.

C(A, B) =
|(b ∈ B; ∃a ∈ A : a ≤ b)|

|B| (25)

Spacing metric (SM): this indicator shows the inhomogeneity of the distribution of
solutions obtained along the Pareto front (PF). It is expressed as

SM =
∑N

i=1|di − d∗|
(N − 1)d∗

(26)

where di denotes the Euclidean distance between consecutive solutions and d∗ repre-
sents the average of all values of di and a lower value of the SM represents better
algorithm performance.

Hyper-volume ratio (HVR): the hyper-volume (HV) indicates the volume of all the
solutions in the PF. The HV of a PF is expressed as

HV = volume

(
PF⋃
i=1

vi

)
(27)

where vi is the hypercube formed between a solution in the obtained PF and the reference
point. In the case of a minimization criterion, the reference point in the solution space

Mathematics 2025, 13, 1432 19 of 30

is obtained by considering the maximum values of each normalized objective from the
combined PF, i.e., (1,1,1). The HV is normalized to obtain the HVR by dividing the HV of
an obtained PF by the HV of a PF*. A higher value of the HVR represents wider coverage
and better convergence for the PF.

HVR =
volume

(⋃PF
i=1 vi

)
volume

(⋃PF∗
i=1 vi

) (28)

5.3. Experiment I: Testing the Validity of the DRFJSP Model

To verify the validity of the mixed-integer programming model established in this
paper, we used Gurobi 9.5.0 [55] to solve the model. At the same time, in order to verify the
effectiveness of the TSFBI designed in this paper, the resulting TSFBI solution and Gurobi
solution were compared and analyzed for the same example. The maximum running time
for Gurobi was set to 3600 s. The results are shown in the table, where ‘/’ means that
Gurobi could not obtain a better solution within 3600 s. “Di f f ” denotes the discrepancy in
the performance results between the TSFBI algorithm and Gurobi.

Di f f i =
fi(TSFBI)− fi(Gurobi)

fi(Gurobi)
; i = 1, 2. (29)

In Table 5, where the best value is in bold, the first column presents data from 40
instances, while the second and third columns indicate the sizes of these instances. The
fourth and fifth columns show the objective values obtained using the Gurobi and TSFBI
algorithms for each instance, along with the differences between the two. From an analysis
of the results in Table 5, it can be observed that for smaller instances and certain medium-
sized instances (such as el16–el20), Gurobi was able to achieve optimal solutions within the
specified runtime. However, for larger instances, Gurobi failed to produce a solution within
the allotted time. Additionally, the results obtained using the TSFBI were closely aligned
with those of Gurobi, which suggests the effectiveness of the TSFBI algorithm to a certain
extent. Moreover, for large-scale instances, the TSFBI was able to provide approximate
solutions, indicating that the TSFBI algorithm studied may be more suitable for practical
large-scale production scheduling optimization.

Table 5. A comparison of Gurobi and the TSFBI.

Instance Size (m, n) Scale
Makespan, f1 Worker Costs, f2

Gurobi TSFBI Diff (%) Gurobi TSFBI Diff (%)

el01

5 × 10

small

590 590 0 1.479 × 105 1.479 × 105 0
el02 650 650 0 1.837 × 105 1.837 × 105 0
el03 498 498 0 1.294 × 105 1.294 × 105 0
el04 517 517 0 1.399 × 105 1.399 × 105 0
el05 486 486 0 1.306 × 105 1.306 × 105 0

el06

5 × 15

- 850 - - 2.100 × 105 -
el07 774 774 0 2.640 × 105 2.640 × 105 0
el08 774 774 0 2.198 × 105 2.198 × 105 0
el09 - 860 - - 1.799 × 105 -
el10 486 486 0 1.099 × 105 1.099 × 105 0

Mathematics 2025, 13, 1432 20 of 30

Table 5. Cont.

Instance Size (m, n) Scale
Makespan, f1 Worker Costs, f2

Gurobi TSFBI Diff (%) Gurobi TSFBI Diff (%)

el11

5 × 20

medium

- 1080 - - 3.284 × 105 -
el12 - 960 - - 2.283 × 105 -
el13 - 1060 - - 2.632 × 105 -
el14 - 1099 - - 2.794 × 105 -
el15 - 1100 - - 3.039 × 105 -

el16

10 × 10

717 753 5.02 4.191 × 105 4.508 × 105 7.56
el17 646 680 5.26 3.571 × 105 3.672 × 105 2.83
el18 663 690 4.07 3.760 × 105 4.245 × 105 12.89
el19 617 643 4.21 3.459 × 105 3.622 × 105 4.71
el20 756 791 4.63 3.999 × 105 4.222 × 105 5.57

el21

10 × 15

- 853 - - 4.720 × 105 -
el22 757 793 4.76 5.227 × 105 5.254 × 105 0.52
el23 - 848 - - 5.102 × 105 -
el24 - 825 - - 4.553 × 105 -
el25 - 816 - - 3.781 × 105 -

el26

10 × 20

large

- 1089 - - 6.125 × 105 -
el27 - 1124 - - 6.533 × 105 -
el28 - 1127 - - 6.685 × 105 -
el29 - 1034 - - 6.280 × 105 -
el30 - 1085 - - 6.440 × 105 -

el31

10 × 30

- 1550 - - 8.427 × 105 -
el32 - 1671 - - 9.702 × 105 -
el33 - 1525 - - 7.986 × 105 -
el34 - 1568 - - 8.781 × 105 -
el35 - 1594 - - 9.093 × 105 -

el36

15 × 15

- 964 - - 7.000 × 105 -
el37 - 1007 - - 7.991 × 105 -
el38 - 957 - - 7.559 × 105 -
el39 - 971 - - 7.725 × 105 -
el40 - 968 - - 8.709 × 105 -

5.4. Experiment II: Testing the Performance of the TSFBI

The performance of the TSFBI was assessed in two ways. First, a comparison test was
conducted to evaluate the proposed encoding methods. Second, a multi-objective Pareto
performance test was carried out to assess the TSFBI using three criteria.

The initial test utilized el41–el50 for the verification of the compared encoding meth-
ods [56], including the TSFBI-S, where the TSFBI-S represented our proposed TSFBI frame-
work but utilized an alternative encoding method adopted from Shi et al. [57] for compari-
son purposes. This comparison aimed to validate the effectiveness of the hybrid encoding
technique proposed in this paper. To further illustrate the potential of the proposed codec
technique in solving flexible job shop scheduling problems, newer metaheuristic algo-
rithms were selected separately according to the classification of optimization algorithms
presented in article [57]. These included the JA [58] and SSA [59] algorithms based on
animal social behavior, the ArchOA [60] algorithm based on physical processes, and the
WHO [61] algorithm inspired by biology.

The experimental results are shown in Figures 6–8, where the x-axis of each figure
represents the number of iterations completed by the algorithm, the y-axis represents the
maximum completion time, and the captions refer to the different examples.

Mathematics 2025, 13, 1432 21 of 30

Mathematics 2025, 13, x FOR PEER REVIEW 20 of 30

el36

15 × 15

- 964 - - 7.000 × 105 -
el37 - 1007 - - 7.991 × 105 -
el38 - 957 - - 7.559 × 105 -
el39 - 971 - - 7.725 × 105 -
el40 - 968 - - 8.709 × 105 -

5.4. Experiment II: Testing the Performance of the TSFBI

The performance of the TSFBI was assessed in two ways. First, a comparison test was
conducted to evaluate the proposed encoding methods. Second, a multi-objective Pareto
performance test was carried out to assess the TSFBI using three criteria.

The initial test utilized el41–el50 for the verification of the compared encoding meth-
ods [56], including the TSFBI-S, where the TSFBI-S represented our proposed TSFBI
framework but utilized an alternative encoding method adopted from Shi et al. [57] for
comparison purposes. This comparison aimed to validate the effectiveness of the hybrid
encoding technique proposed in this paper. To further illustrate the potential of the pro-
posed codec technique in solving flexible job shop scheduling problems, newer metaheu-
ristic algorithms were selected separately according to the classification of optimization
algorithms presented in article [57]. These included the JA [58] and SSA [59] algorithms
based on animal social behavior, the ArchOA [60] algorithm based on physical processes,
and the WHO [61] algorithm inspired by biology.

The experimental results are shown in Figures 6–8, where the x-axis of each figure
represents the number of iterations completed by the algorithm, the y-axis represents the
maximum completion time, and the captions refer to the different examples.

Figure 6. Algorithm performance comparison for el41–el44. Figure 6. Algorithm performance comparison for el41–el44.

Mathematics 2025, 13, x FOR PEER REVIEW 21 of 30

We know from the experimental results that the proposed codec method facilitates
the rapid application of new continuous optimization algorithms in combinatorial opti-
mization problems such as the DRFJSP, and the FBI algorithm always obtained better so-
lutions when solving the FJSP than the other algorithms.

Figure 7. Algorithm performance comparison for el45–el48.

Figure 8. Algorithm performance comparison for el49–el50.

The results presented in Figures 6–8 demonstrate the effectiveness of the proposed
hybrid encoding method, enabling the application of continuous optimization algorithms
like the FBI to the discrete DRFJSP. Notably, the FBI algorithm consistently converged to
better solutions (lower makespan) than those of JA, SSA, ArchOA, and WHO within the

Figure 7. Algorithm performance comparison for el45–el48.

Mathematics 2025, 13, 1432 22 of 30

Mathematics 2025, 13, x FOR PEER REVIEW 21 of 30

We know from the experimental results that the proposed codec method facilitates
the rapid application of new continuous optimization algorithms in combinatorial opti-
mization problems such as the DRFJSP, and the FBI algorithm always obtained better so-
lutions when solving the FJSP than the other algorithms.

Figure 7. Algorithm performance comparison for el45–el48.

Figure 8. Algorithm performance comparison for el49–el50.

The results presented in Figures 6–8 demonstrate the effectiveness of the proposed
hybrid encoding method, enabling the application of continuous optimization algorithms
like the FBI to the discrete DRFJSP. Notably, the FBI algorithm consistently converged to
better solutions (lower makespan) than those of JA, SSA, ArchOA, and WHO within the

Figure 8. Algorithm performance comparison for el49–el50.

We know from the experimental results that the proposed codec method facilitates the
rapid application of new continuous optimization algorithms in combinatorial optimization
problems such as the DRFJSP, and the FBI algorithm always obtained better solutions when
solving the FJSP than the other algorithms.

The results presented in Figures 6–8 demonstrate the effectiveness of the proposed
hybrid encoding method, enabling the application of continuous optimization algorithms
like the FBI to the discrete DRFJSP. Notably, the FBI algorithm consistently converged to
better solutions (lower makespan) than those of JA, SSA, ArchOA, and WHO within the
same number of iterations across most Mk benchmark instances, highlighting its potential
for solving complex scheduling problems efficiently.

The extended instances (el01–el40) were optimized using the TSFBI and the NSGA-II,
and three metrics, the C-metric, SM, and HVR, were statistically calculated. The statistics
for the C-metrics are shown in Figure 9. To visually demonstrate the variances in the
distribution of the solutions produced by the TSFBI and NSGA-II, we utilized box plots.
Each plot compares five instances, with a total of eight plots encompassing instances el01–
el40. The x-axis of each plot depicts the TSFBI and NSGA-II categories, while the y-axis
represents the C-metrics.

Figure 9 illustrates the C-metric comparison between the TSFBI and NSGA-II. Recalling
that C(A, B) represents the fraction of solutions in B dominated by solutions in A, the gener-
ally high values observed for C(TSFBI, NSGA-II) indicate that a large proportion of NSGA-II
solutions were dominated by TSFBI solutions. Conversely, the generally low values for
C(NSGA-II, TSFBI) indicate that only a small proportion of TSFBI solutions were dominated
by NSGA-II solutions. This demonstrates that the TSFBI algorithm achieved superior
dominance performance in acquiring Pareto sets compared to the NSGA-II algorithm.

As shown in Table 6, where the best value is in bold, the solutions obtained by
the TSFBI were better than those obtained by NSGA-II in terms of their distribution,
convergence, and diversity.

As shown in Figure 9 and Table 6, the TSFBI algorithm significantly outperformed
the well-established NSGA-II algorithm across the tested instances (el01–el40). Specifically,
the superior C-metric values indicate that the TSFBI generates Pareto sets with better
dominance characteristics. Furthermore, the lower SM values suggest a more uniform
distribution of solutions along the Pareto front, while the higher HVR values demonstrate
better convergence and the wider coverage of the objective space. These combined results
strongly suggest that the TSFBI is more effective than NSGA-II in finding a diverse and
high-quality set of trade-off solutions for the DRFJSP, thus offering better support for
decision-making regarding the scheduling efficiency and cost.

Mathematics 2025, 13, 1432 23 of 30

Mathematics 2025, 13, x FOR PEER REVIEW 22 of 30

same number of iterations across most Mk benchmark instances, highlighting its potential
for solving complex scheduling problems efficiently.

The extended instances (el01–el40) were optimized using the TSFBI and the NSGA-
II, and three metrics, the C-metric, SM, and HVR, were statistically calculated. The statis-
tics for the C-metrics are shown in Figure 9. To visually demonstrate the variances in the
distribution of the solutions produced by the TSFBI and NSGA-II, we utilized box plots.
Each plot compares five instances, with a total of eight plots encompassing instances el01–
el40. The x-axis of each plot depicts the TSFBI and NSGA-II categories, while the y-axis
represents the C-metrics.

Figure 9. Cont.

Mathematics 2025, 13, 1432 24 of 30
Mathematics 2025, 13, x FOR PEER REVIEW 23 of 30

Figure 9. Experimental C-metric results for cases el41 to el50 using TSFBI and NSGA-II algorithms.

Figure 9 illustrates the C-metric comparison between the TSFBI and NSGA-II. Re-
calling that C(A, B) represents the fraction of solutions in B dominated by solutions in A,
the generally high values observed for C(TSFBI, NSGA-II) indicate that a large proportion
of NSGA-II solutions were dominated by TSFBI solutions. Conversely, the generally low
values for C(NSGA-II, TSFBI) indicate that only a small proportion of TSFBI solutions
were dominated by NSGA-II solutions. This demonstrates that the TSFBI algorithm
achieved superior dominance performance in acquiring Pareto sets compared to the
NSGA-II algorithm.

As shown in Table 6, where the best value is in bold, the solutions obtained by the
TSFBI were better than those obtained by NSGA-II in terms of their distribution, conver-
gence, and diversity.

Table 6. SM and HVR metric comparisons of the TSFBI and NSGA-II algorithms.

Instances
TSFBI NSGA-II

SM HVR SM HVR
el01 0.47 1.00 0.61 0.70
el02 0.32 0.91 0.43 0.71
el03 0.53 0.89 0.61 0.56
el04 0.42 0.90 0.63 0.55
el05 0.41 0.81 0.71 0.48
el06 0.52 0.90 0.67 0.61
el07 0.54 0.92 0.76 0.57
el08 0.59 0.82 0.80 0.50
el09 0.43 0.96 0.88 0.62
el10 0.40 0.97 0.86 0.60
el11 0.42 0.98 0.75 0.67
el12 0.35 0.93 0.70 0.73
el13 0.45 0.96 0.76 0.66
el14 0.51 0.94 0.67 0.68
el15 0.47 0.96 0.73 0.71
el16 0.65 0.98 0.81 0.89
el17 0.57 0.99 0.83 0.81
el18 0.61 0.98 0.67 0.66
el19 0.63 0.99 0.73 0.57
el20 0.43 0.86 0.77 0.84

Figure 9. Experimental C-metric results for cases el41 to el50 using TSFBI and NSGA-II algorithms.

Table 6. SM and HVR metric comparisons of the TSFBI and NSGA-II algorithms.

Instances
TSFBI NSGA-II

SM HVR SM HVR

el01 0.47 1.00 0.61 0.70
el02 0.32 0.91 0.43 0.71
el03 0.53 0.89 0.61 0.56
el04 0.42 0.90 0.63 0.55
el05 0.41 0.81 0.71 0.48
el06 0.52 0.90 0.67 0.61
el07 0.54 0.92 0.76 0.57
el08 0.59 0.82 0.80 0.50
el09 0.43 0.96 0.88 0.62
el10 0.40 0.97 0.86 0.60
el11 0.42 0.98 0.75 0.67
el12 0.35 0.93 0.70 0.73
el13 0.45 0.96 0.76 0.66
el14 0.51 0.94 0.67 0.68
el15 0.47 0.96 0.73 0.71
el16 0.65 0.98 0.81 0.89
el17 0.57 0.99 0.83 0.81
el18 0.61 0.98 0.67 0.66
el19 0.63 0.99 0.73 0.57
el20 0.43 0.86 0.77 0.84
el21 0.55 0.91 0.64 0.53
el22 0.51 0.93 0.53 0.81
el23 0.56 0.92 0.65 0.71
el24 0.54 0.94 0.78 0.65
el25 0.61 0.98 0.83 0.35
el26 0.54 0.95 0.67 0.56
el27 0.58 0.97 0.78 0.61
el28 0.53 0.99 0.69 0.31
el29 0.61 0.89 0.71 0.72
el30 0.63 0.90 0.78 0.81
el31 0.57 0.92 0.67 0.73
el32 0.58 0.94 0.64 0.76

Mathematics 2025, 13, 1432 25 of 30

Table 6. Cont.

Instances
TSFBI NSGA-II

SM HVR SM HVR

el33 0.60 0.95 0.70 0.81
el34 0.43 0.91 0.54 0.79
el35 0.47 0.97 0.57 0.24
el36 0.52 0.98 0.68 0.32
el37 0.53 0.99 0.65 0.21
el38 0.56 0.94 0.77 0.35
el39 0.51 0.92 0.75 0.44
el40 0.55 0.98 0.81 0.27

5.5. Experiment III on AHP Decision-Making Process

The Pareto solutions obtained using the TSFBI for the optimization calculation for
the simple case are shown in Figure 10. This study focused on two objectives, namely
the completion time and worker cost, with a particular emphasis on the worker cost.
The importance of these objectives was determined by assigning them ratings from 1
to 9 to construct the judgment matrix A. Therefore, the decision-maker’s preference for
minimizing the worker cost was set at 8, while a rating of 1 is assigned to the minimization
of the makespan. Using the weight calculation steps in Section 4.2, the weight vector
was calculated:

w =

(
1
9

,
8
9

)
(30)

Mathematics 2025, 13, x FOR PEER REVIEW 25 of 30

99234093) in the 𝐴ு vector. Based on the AHP analysis aiming to maximize this score,
it was identified as the preferred solution in this context.

𝐴 = ൝− f1 f2f1 1 1/8f2 8 1 ൡ (31)

𝐴ு = {0.86110818, 0.92017231, 0.78182572, 0.97808061, 0.99234093, 0.97210737, 0.88652432, 0.85569519,
0.83617673, 0.89648891, 0.22739165, 0.86686443, 0.87721493, 0.8823313, 0.14896923, 0.88075093, 0.76343755,
0, 0.1321474, 0.88562199, 0.81801527, 0.94954383, 0.88776956, 0.48362909, 0.90787544, 0.44769671,
0.67799616, 0.55448318, 0.46445823, 0.9345759}.

(32)

In this illustrative example, the preference for minimizing the worker cost (rating of
8) over the makespan (rating of 1) was assumed based on a hypothetical scenario where
cost control was a primary concern for the decision-maker. In a real-world application,
this judgment matrix would be established based on the actual preferences and strategic
goals of the factory management. Different managers or changing priorities might lead to
a different matrix A and consequently a different final solution selection. Future studies
could explore the impact of varying weight assignments on the final scheduling decision
through sensitivity analysis to assess the robustness of the chosen solution under different
preference scenarios.

Figure 10. The Pareto solutions for the simple case.

Figure 10 illustrates the Pareto front obtained for the simple case, clearly showing the
trade-off between minimizing the makespan (f1) and minimizing worker costs (f2). For
instance, solutions in the lower-left part of the front offered a shorter makespan but in-
curred higher worker costs, while solutions in the upper-right part achieved lower worker
costs at the expense of a longer makespan. Solution 4, selected through the AHP with a
strong preference towards minimizing worker costs (weight of 8/9 for f2), represented the
most satisfactory compromise according to this specific preference structure, even though
it did not have the absolute lowest makespan or the absolute lowest cost among all the
Pareto solutions.

6. Conclusions

Figure 10. The Pareto solutions for the simple case.

To clarify the calculation process, for each Pareto solution, i (visualized in Figure 10),
the objective values (f i

1 for the makespan, f i
2 for the worker cost) were determined. These

objective values were then normalized (using a specific normalization method, e.g., using
the sum in Equation (24)). The normalized values for solution i were plugged into Equation
(24), along with the decision-maker’s weight vector w = (1/9, 8/9) (Equation (30)) derived
from the judgment matrix A (Equation (31)). This calculation yielded the AAHP score for
solution i, as is present in the vector in Equation (32), and based on Equation (32), the
satisfaction vector was calculated, and the best value was achieved by solution 5. Solution
5 refers to the specific Pareto-optimal solution corresponding to the fifth score (0. 99234093)

Mathematics 2025, 13, 1432 26 of 30

in the AAHP vector. Based on the AHP analysis aiming to maximize this score, it was
identified as the preferred solution in this context.

A =

− f1 f2
f1 1 1/8
f2 8 1

 (31)

AAHP = {0.86110818, 0.92017231, 0.78182572, 0.97808061, 0.99234093, 0.97210737, 0.88652432, 0.85569519,
0.83617673, 0.89648891, 0.22739165, 0.86686443, 0.87721493, 0.8823313, 0.14896923, 0.88075093, 0.76343755,
0, 0.1321474, 0.88562199, 0.81801527, 0.94954383, 0.88776956, 0.48362909, 0.90787544, 0.44769671,
0.67799616, 0.55448318, 0.46445823, 0.9345759}.

(32)

In this illustrative example, the preference for minimizing the worker cost (rating of
8) over the makespan (rating of 1) was assumed based on a hypothetical scenario where
cost control was a primary concern for the decision-maker. In a real-world application,
this judgment matrix would be established based on the actual preferences and strategic
goals of the factory management. Different managers or changing priorities might lead to
a different matrix A and consequently a different final solution selection. Future studies
could explore the impact of varying weight assignments on the final scheduling decision
through sensitivity analysis to assess the robustness of the chosen solution under different
preference scenarios.

Figure 10 illustrates the Pareto front obtained for the simple case, clearly showing
the trade-off between minimizing the makespan (f1) and minimizing worker costs (f2).
For instance, solutions in the lower-left part of the front offered a shorter makespan but
incurred higher worker costs, while solutions in the upper-right part achieved lower worker
costs at the expense of a longer makespan. Solution 4, selected through the AHP with a
strong preference towards minimizing worker costs (weight of 8/9 for f2), represented the
most satisfactory compromise according to this specific preference structure, even though
it did not have the absolute lowest makespan or the absolute lowest cost among all the
Pareto solutions.

6. Conclusions
With increasing labor costs and the need for fine-grained production management,

the consideration of human and machine resources in the scheduling process is receiving
increasing attention. This article presents a human-centered approach to addressing the
dual-resource flexible job shop scheduling problem and its solution. It explores the uti-
lization of and dependence on human resources from two perspectives. First, the article
discusses the incorporation of employees’ flexible working hours, constrained by mini-
mum and maximum limits and often linked to work–life balance considerations, into the
scheduling model. Second, it proposes a two-stage algorithm, drawing on the forensic-
based investigation algorithm of human problem-solving behavior, to effectively solve the
dual-resource flexible job shop scheduling problem (DRFJSP). By delegating scheduling
decisions to managers, the method enables the creation of more flexible and dependable
scheduling plans. By effectively optimizing both the makespan and worker costs, the
proposed TSFBI algorithm provides manufacturers with valuable tools to improve the
scheduling efficiency (reducing production lead times) and enhance cost-effectiveness
(controlling labor expenditures) in complex dual-resource-constrained environments. The
generation of a Pareto front allows for informed decision-making based on the desired
balance between these critical objectives. The main findings of the paper are as follows:

Mathematics 2025, 13, 1432 27 of 30

• In this paper, we discuss the impact of flexible working time arrangements on worker
costs and production efficiency and formally describe the problem in a multi-objective
mixed-integer linear programming model.

• A two-stage approach based on the forensic-based investigation (TSFBI) is proposed to
solve the model. First, the mapping relationship between the scheduling solution and
the suspect vector of the DRFJSP is constructed using a hybrid codec approach, which
ensures that the suspect vector is equivalent to a feasible scheduling solution. Second,
the dominance relation of the solution is determined through fast non-dominated
sorting, and a quantitative comparison operator is used to ensure the population’s
diversity while not increasing the time complexity. Finally, the Pareto solutions are
examined analytically through the AHP to obtain a satisfactory scheduling solution.

• Three experiments were designed to verify the performance of the proposed TSFBI
algorithm. The first experiment demonstrated the accuracy of the mixed-integer
programming model established. The second experiment verified the effectiveness
and efficiency of the proposed TSFBI algorithm. Comparing its results against those of
the widely used NSGA-II algorithm demonstrated the TSFBI’s superiority in handling
the DRFJSP, particularly in terms of the dominance, distribution, convergence, and
diversity of the obtained Pareto solutions (as indicated by the C-metric, SM, and HVR,
respectively). Furthermore, comparisons with several other recent metaheuristics
(JA, SSA, ArchOA, WHO) using the proposed encoding method indicated the strong
performance of the underlying FBI optimization engine for this type of problem. The
third experiment examined the use of the AHP to obtain the optimal solution and
proved the ability of the TSFBI to obtain the most suitable scheduling solution.

Despite the promising results, this study has several limitations that warrant acknowl-
edgment. Firstly, the DRFJSP model operates under deterministic assumptions, neglecting
stochastic events common in real manufacturing, such as machine breakdowns, processing
time variability, or unexpected worker unavailability. Secondly, the validation primarily
relied on benchmark instances; further testing with real-world industrial data is needed
to confirm the practical applicability and robustness of the model and algorithm. Thirdly,
certain operational details, such as worker skill levels, learning effects, or shift changeover
times, were simplified or omitted. Furthermore, future research could broaden the compara-
tive analysis by including the consideration of other established multi-objective algorithms,
such as MOEA/D and SPEA2, to provide a more comprehensive benchmark of the TSFBI
algorithm’s performance. Finally, while a preliminary sensitivity analysis was performed,
a more comprehensive investigation into parameter tuning for the TSFBI algorithm could
potentially further enhance its performance. To conclude, our work here has practical
significance regarding the proposed model and research implications. Future research will
focus on addressing these limitations by incorporating stochastic elements into the model
(e.g., using simulation-based optimization or robust optimization techniques), validating
the approach using industrial case studies, considering more detailed human factors (like
skills and fatigue), and conducting extensive parameter optimization.

Author Contributions: All authors contributed to the study’s conception and design. Conceptualiza-
tion, Y.Z. and P.L.; data curation, Y.Z. and C.F.; funding acquisition, P.L., J.H. (Jianmin Hu), and Q.L.;
investigation, P.L. and J.H. (Jianmin Hu); methodology, Y.Z., P.L., Q.L. and J.H. (Jiwei Hu); super-
vision, J.H. (Jianmin Hu) and Q.L.; validation, C.F.; writing—original draft, Y.Z.; writing—review
and editing, Y.Z., P.L., J.H. (Jianmin Hu) and J.H. (Jiwei Hu). All authors have read and agreed to the
published version of the manuscript.

Mathematics 2025, 13, 1432 28 of 30

Funding: This research was funded by the Natural Science Foundation of Hubei Province of China
under Grant 2025AFA055 and the National Key Research and Development Program of China under
Grant 2020YFB1710804.

Data Availability Statement: The data supporting the results of this study are described in the first
paragraph of Section 5.1.

Conflicts of Interest: The authors confirm that there are no conflicts of interest.

References
1. Escamilla-Serna, N.J.; Seck-Tuoh-Mora, J.C.; Medina-Marin, J.; Barragan-Vite, I.; Corona-Armenta, J.R. A Hybrid Search Using

Genetic Algorithms and Random-Restart Hill-Climbing for Flexible Job Shop Scheduling Instances with High Flexibility. Appl.
Sci. 2022, 12, 8050. [CrossRef]

2. Mourtzis, D. Simulation in the Design and Operation of Manufacturing Systems: State of the Art and New Trends. Int. J. Prod.
Res. 2020, 58, 1927–1949. [CrossRef]

3. Gong, G.; Chiong, R.; Deng, Q.; Han, W.; Zhang, L.; Lin, W.; Li, K. Energy-Efficient Flexible Flow Shop Scheduling with Worker
Flexibility. Expert Syst. Appl. 2020, 141, 112902. [CrossRef]

4. Li, Z.; Pei, J.; Yan, P.; Zhou, Y.; Pardalos, P.M. Dynamic Resource Allocation and Collaborative Scheduling in R&D and
Manufacturing Processes of High-End Equipment with Budget Constraint. Optim. Lett. 2023, 17, 955–980. [CrossRef]

5. Andrade-Pineda, J.L.; Canca, D.; Gonzalez-R, P.L.; Calle, M. Scheduling a Dual-Resource Flexible Job Shop with Makespan and
Due Date-Related Criteria. Ann. Oper. Res. 2020, 291, 5–35. [CrossRef]

6. Zhang, S.; Du, H.; Borucki, S.; Jin, S.; Hou, T.; Li, Z. Dual Resource Constrained Flexible Job Shop Scheduling Based on Improved
Quantum Genetic Algorithm. Machines 2021, 9, 108. [CrossRef]

7. Wang, H.; Alidaee, B.; Ortiz, J.; Wang, W. The Multi-Skilled Multi-Period Workforce Assignment Problem. Int. J. Prod. Res. 2021,
59, 5477–5494. [CrossRef]

8. Lott, Y. Does Flexibility Help Employees Switch Off from Work? Flexible Working-Time Arrangements and Cognitive Work-to-
Home Spillover for Women and Men in Germany. Soc. Indic. Res. 2020, 151, 471–494. [CrossRef]

9. Jarrahi, M.H.; Newlands, G.; Butler, B.; Savage, S.; Lutz, C.; Dunn, M.; Sawyer, S. Flexible Work and Personal Digital Infrastructures.
Commun. ACM 2021, 64, 72–79. [CrossRef]

10. Destouet, C.; Tlahig, H.; Bettayeb, B.; Mazari, B. Flexible Job Shop Scheduling Problem under Industry 5.0: A Survey on Human
Reintegration, Environmental Consideration and Resilience Improvement. J. Manuf. Syst. 2023, 67, 155–173. [CrossRef]

11. Wang, B.; Zheng, P.; Yin, Y.; Shih, A.; Wang, L. Toward Human-Centric Smart Manufacturing: A Human-Cyber-Physical Systems
(HCPS) Perspective. J. Manuf. Syst. 2022, 63, 471–490. [CrossRef]

12. Sakai, H. New Human-Centered Production System-Building an Integrated Human Management System. Int. J. Appl. Math.
Comput. Sci. Syst. Eng. 2021, 3, 116–123. [CrossRef]

13. Liaqait, R.A.; Hamid, S.; Warsi, S.S.; Khalid, A. A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0. Sustainability
2021, 13, 7684. [CrossRef]

14. Gong, G.; Deng, Q.; Gong, X.; Liu, W.; Ren, Q. A New Double Flexible Job-Shop Scheduling Problem Integrating Processing Time,
Green Production, and Human Factor Indicators. J. Clean. Prod. 2018, 174, 560–576. [CrossRef]

15. Yu, F.; Lu, C.; Zhou, J.; Yin, L. Mathematical Model and Knowledge-Based Iterated Greedy Algorithm for Distributed Assembly
Hybrid Flow Shop Scheduling Problem with Dual-Resource Constraints. Expert Syst. Appl. 2024, 239, 122434. [CrossRef]

16. Mlekusch, J.; Hartl, R.F. The Dual-Resource-Constrained Re-Entrant Flexible Flow Shop a Constraint Programming Approach
and a Hybrid Genetic Algorithm. Int. J. Prod. Res. 2025, 63, 1803–1824. [CrossRef]

17. Renna, P.; Thürer, M.; Stevenson, M. A Game Theory Model Based on Gale-Shapley for Dual-Resource Constrained (DRC)
Flexible Job Shop Scheduling. Int. J. Ind. Eng. Comput. 2020, 11, 173–184. [CrossRef]

18. Li, H.; Peng, J.; Wang, X. An Efficient Two-Stage Optimization Algorithm for a Flexible Job Shop Scheduling Problem with Worker
Shift Arrangement. Comput. Oper. Res. 2024, 171, 106785. [CrossRef]

19. Xiao, S.; Wu, Z.; Yu, S. A Two-Stage Assignment Strategy for the Robust Scheduling of Dual-Resource Constrained Stochastic Job
Shop Scheduling Problems. IFAC-PapersOnLine 2019, 52, 421–426. [CrossRef]

20. Li, H.; Wu, X. A Survival Duration-Guided NSGA-III for Sustainable Flexible Job Shop Scheduling Problem Considering Dual
Resources. IET Collab. Intell. Manuf. 2021, 3, 119–130. [CrossRef]

21. Wei, S.; Tang, H.; Li, X.; Lei, D.; Wang, X.V. An Improved Memetic Algorithm for Multi-Objective Resource-Constrained Flexible
Job Shop Inverse Scheduling Problem: An Application for Machining Workshop. J. Manuf. Syst. 2024, 74, 264–290. [CrossRef]

22. Berti, N.; Finco, S.; Battaïa, O.; Delorme, X. Ageing Workforce Effects in Dual-Resource Constrained Job-Shop Scheduling. Int. J.
Prod. Econ. 2021, 237, 108151. [CrossRef]

https://doi.org/10.3390/app12168050
https://doi.org/10.1080/00207543.2019.1636321
https://doi.org/10.1016/j.eswa.2019.112902
https://doi.org/10.1007/s11590-022-01886-6
https://doi.org/10.1007/s10479-019-03196-0
https://doi.org/10.3390/machines9060108
https://doi.org/10.1080/00207543.2020.1783009
https://doi.org/10.1007/s11205-018-2031-z
https://doi.org/10.1145/3419405
https://doi.org/10.1016/j.jmsy.2023.01.004
https://doi.org/10.1016/j.jmsy.2022.05.005
https://doi.org/10.37394/23202.2023.22.43
https://doi.org/10.3390/su13147684
https://doi.org/10.1016/j.jclepro.2017.10.188
https://doi.org/10.1016/j.eswa.2023.122434
https://doi.org/10.1080/00207543.2024.2392198
https://doi.org/10.5267/j.ijiec.2019.11.001
https://doi.org/10.1016/j.cor.2024.106785
https://doi.org/10.1016/j.ifacol.2019.11.092
https://doi.org/10.1049/cim2.12003
https://doi.org/10.1016/j.jmsy.2024.03.005
https://doi.org/10.1016/j.ijpe.2021.108151

Mathematics 2025, 13, 1432 29 of 30

23. Seifi, C.; Schulze, M.; Zimmermann, J. A New Mathematical Formulation for a Potash-Mine Shift Scheduling Problem with a
Simultaneous Assignment of Machines and Workers. Eur. J. Oper. Res. 2021, 292, 27–42. [CrossRef]

24. Santos, F.; Fukasawa, R.; Ricardez-Sandoval, L. An Integrated Machine Scheduling and Personnel Allocation Problem for
Large-Scale Industrial Facilities Using a Rolling Horizon Framework. Optim. Eng. 2020, 22, 2603–2626. [CrossRef]

25. Chung, H.; van der Lippe, T. Flexible Working, Work–Life Balance, and Gender Equality: Introduction. Soc. Indic. Res. 2020, 151,
365–381. [CrossRef]

26. Baridula, V.; Adanma, M.-N. Flexible work practices and employee retention in manufacturing companies in Nigeria. Int. J. Adv.
Acad. Res. 2021, 7, 13–33. [CrossRef]

27. Delgoshaei, A.; Ariffin, M.K.A.M.; Maleki, S.; Leman, Z. Review Evolution of Dual-Resource-Constrained Scheduling Problems
in Manufacturing Systems: Modeling and Scheduling Methods’ Trends. Soft Comput. Fusion Found. Methodol. Appl. 2023, 27,
18489–18528. [CrossRef]

28. Abderrahim, M.; Bekrar, A.; Trentesaux, D.; Aissani, N.; Bouamrane, K. Bi-Local Search Based Variable Neighborhood Search for
Job-Shop Scheduling Problem with Transport Constraints. Optim. Lett. 2022, 16, 255–280. [CrossRef]

29. Zhang, X.; Pang, Y.; Kang, Y.; Chen, W.; Fan, L.; Jin, H.; Yang, Q. No Free Lunch Theorem for Privacy-Preserving LLM Inference.
Artif. Intell. 2025, 341, 104293. [CrossRef]

30. Jiang, T.; Zhu, H.; Gu, J.; Liu, L.; Song, H. A Discrete Animal Migration Algorithm for Dual-Resource Constrained Energy-Saving
Flexible Job Shop Scheduling Problem. J. Intell. Fuzzy Syst. 2022, 42, 3431–3444. [CrossRef]

31. Nguyen, T.; Nguyen, G.; Nguyen, B.M. EO-CNN: An Enhanced CNN Model Trained by Equilibrium Optimization for Traffic
Transportation Prediction. Procedia Comput. Sci. 2020, 176, 800–809. [CrossRef]

32. Lu, X.; Lu, C. Mixed-Production Flexible Assembly Job Shop Scheduling Considering Parallel Assembly Sequence Variations
under Dual-Resource Constraints Using Multi-Objective Hybrid Memetic Algorithm. Comput. Oper. Res. 2025, 176, 106932.
[CrossRef]

33. Zhang, Z.; Li, X.; Gao, L.; Liu, Q.; Huang, J. Tackling Dual-Resource Flexible Job Shop Scheduling Problem in the Production Line
Reconfiguration Scenario: An Efficient Meta-Heuristic with Critical Path-Based Neighborhood Search. Adv. Eng. Inform. 2025,
65, 103282. [CrossRef]

34. Liu, L.; Song, H.; Jiang, T.; Deng, G.; Gong, Q. Modified Biology Migration Algorithm for Dual-Resource Energy-Saving Flexible
Job Shop Scheduling Problem. Jisuanji Jicheng Zhizao Xitong Comput. Integr. Manuf. Syst. CIMS 2024, 30, 3125–3141.

35. Akbar, M.; Irohara, T. NSGA Families for Solving a Dual Resource-Constrained Problem to Optimize the Total Tardiness and
Labor Productivity in the Spirit of Sustainability. Comput. Ind. Eng. 2024, 188, 109883. [CrossRef]

36. Chou, J.-S.; Nguyen, N.-M. FBI Inspired Meta-Optimization. Appl. Soft Comput. 2020, 93, 106339. [CrossRef]
37. Hoang, N.-D.; Huynh, T.-C.; Tran, V.-D. Computer Vision-Based Patched and Unpatched Pothole Classification Using Machine

Learning Approach Optimized by Forensic-Based Investigation Metaheuristic. Complexity 2021, 2021, e3511375. [CrossRef]
38. Nguyen, D.-T.; Chou, J.-S.; Tran, D.-H. Integrating a Novel Multiple-Objective FBI with BIM to Determine Tradeoff among

Resources in Project Scheduling. Knowl.-Based Syst. 2022, 235, 107640. [CrossRef]
39. Fan, J.; Shen, W.; Gao, L.; Zhang, C.; Zhang, Z. A Hybrid Jaya Algorithm for Solving Flexible Job Shop Scheduling Problem

Considering Multiple Critical Paths. J. Manuf. Syst. 2021, 60, 298–311. [CrossRef]
40. Liu, Q.; Li, X.; Liu, H.; Guo, Z. Multi-Objective Metaheuristics for Discrete Optimization Problems: A Review of the State-of-the-

Art. Appl. Soft Comput. 2020, 93, 106382. [CrossRef]
41. Dauzère-Pérès, S.; Ding, J.; Shen, L.; Tamssaouet, K. The Flexible Job Shop Scheduling Problem: A Review. Eur. J. Oper. Res. 2024,

314, 409–432. [CrossRef]
42. Mar-Ortiz, J.; Ruiz Torres, A.J.; Adenso-Díaz, B. Scheduling in Parallel Machines with Two Objectives: Analysis of Factors That

Influence the Pareto Frontier. Oper. Res. 2022, 22, 4585–4605. [CrossRef]
43. Marques, E.L.; Coelho, V.N.; Coelho, I.M.; Satoru Ochi, L.; Maculan, N.; Mladenović, N.; Coelho, B.N. A Two-Phase Multi-

Objective Metaheuristic for a Green UAV Grid Routing Problem. Optim. Lett. 2023, 17, 2233–2256. [CrossRef]
44. Moslem, S. A Novel Parsimonious Spherical Fuzzy Analytic Hierarchy Process for Sustainable Urban Transport Solutions. Eng.

Appl. Artif. Intell. 2024, 128, 107447. [CrossRef]
45. Zhang, C.; Zhang, C.; Zhuang, J.; Han, H.; Yuan, B.; Liu, J.; Yang, K.; Zhuang, S.; Li, R. Evaluation of Cloud 3D Printing Order

Task Execution Based on the AHP-TOPSIS Optimal Set Algorithm and the Baldwin Effect. Micromachines 2021, 12, 801. [CrossRef]
46. Yuan, M.; Li, Y.; Zhang, L.; Pei, F. Research on Intelligent Workshop Resource Scheduling Method Based on Improved NSGA-II

Algorithm. Robot. Comput.-Integr. Manuf. 2021, 71, 102141. [CrossRef]
47. Demir, Y.; Kürşat İşleyen, S. Evaluation of Mathematical Models for Flexible Job-Shop Scheduling Problems. Appl. Math. Model.

2013, 37, 977–988. [CrossRef]
48. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]

https://doi.org/10.1016/j.ejor.2020.10.007
https://doi.org/10.1007/s11081-020-09542-7
https://doi.org/10.1007/s11205-018-2025-x
https://doi.org/10.46654/ij.24889849.s7457
https://doi.org/10.1007/s00500-023-09304-4
https://doi.org/10.1007/s11590-020-01674-0
https://doi.org/10.1016/j.artint.2025.104293
https://doi.org/10.3233/JIFS-211399
https://doi.org/10.1016/j.procs.2020.09.075
https://doi.org/10.1016/j.cor.2024.106932
https://doi.org/10.1016/j.aei.2025.103282
https://doi.org/10.1016/j.cie.2024.109883
https://doi.org/10.1016/j.asoc.2020.106339
https://doi.org/10.1155/2021/3511375
https://doi.org/10.1016/j.knosys.2021.107640
https://doi.org/10.1016/j.jmsy.2021.05.018
https://doi.org/10.1016/j.asoc.2020.106382
https://doi.org/10.1016/j.ejor.2023.05.017
https://doi.org/10.1007/s12351-021-00684-9
https://doi.org/10.1007/s11590-023-02013-9
https://doi.org/10.1016/j.engappai.2023.107447
https://doi.org/10.3390/mi12070801
https://doi.org/10.1016/j.rcim.2021.102141
https://doi.org/10.1016/j.apm.2012.03.020
https://doi.org/10.1109/4235.996017

Mathematics 2025, 13, 1432 30 of 30

49. Li, D.; Zhang, C.; Shao, X.; Lin, W. A Multi-Objective TLBO Algorithm for Balancing Two-Sided Assembly Line with Multiple
Constraints. J. Intell. Manuf. 2016, 27, 725–739. [CrossRef]

50. Hurink, J.; Jurisch, B.; Thole, M. Tabu Search for the Job-Shop Scheduling Problem with Multi-Purpose Machines. OR Spektrum
1994, 15, 205–215. [CrossRef]

51. Brandimarte, P. Routing and Scheduling in a Flexible Job Shop by Tabu Search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
52. Pezzella, F.; Morganti, G.; Ciaschetti, G. A Genetic Algorithm for the Flexible Job-Shop Scheduling Problem. Comput. Oper. Res.

2008, 35, 3202–3212. [CrossRef]
53. Liu, M.; Lv, J.; Du, S.; Deng, Y.; Shen, X.; Zhou, Y. Multi-Resource Constrained Flexible Job Shop Scheduling Problem with

Fixture-Pallet Combinatorial Optimisation. Comput. Ind. Eng. 2024, 188, 109903. [CrossRef]
54. Caldeira, R.H.; Gnanavelbabu, A. A Pareto Based Discrete Jaya Algorithm for Multi-Objective Flexible Job Shop Scheduling

Problem. Expert Syst. Appl. 2021, 170, 114567. [CrossRef]
55. Achterberg, T. What’s New in Gurobi 9.0. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=

j&opi=89978449&url=https://cdn.gurobi.com/wp-content/uploads/Gurobi-9.0-Overview-Webinar-Slides-1.pdf&ved=
2ahUKEwjgmtfT_faMAxViaPUHHUX-Bl8QFnoECBgQAQ&usg=AOvVaw0hD8tKEukvGHPKlGz6NHpI (accessed on
28 March 2025).

56. Shi, J.; Chen, M.; Ma, Y.; Qiao, F. A New Boredom-Aware Dual-Resource Constrained Flexible Job Shop Scheduling Problem
Using a Two-Stage Multi-Objective Particle Swarm Optimization Algorithm. Inf. Sci. 2023, 643, 119141. [CrossRef]

57. Cui, Y.; Geng, Z.; Zhu, Q.; Han, Y. Review: Multi-Objective Optimization Methods and Application in Energy Saving. Energy
2017, 125, 681–704. [CrossRef]

58. Rao, R. Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems.
Int. J. Ind. Eng. Comput. 2016, 7, 19–34.

59. Xue, J.; Shen, B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Syst. Sci. Control Eng. 2020, 8,
22–34. [CrossRef]

60. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes Optimization Algorithm: A New
Metaheuristic Algorithm for Solving Optimization Problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]

61. Amali, D.G.B.; Dinakaran, M. Wildebeest Herd Optimization: A New Global Optimization Algorithm Inspired by Wildebeest
Herding Behaviour. J. Intell. Fuzzy Syst. 2019, 37, 8063–8076. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10845-014-0919-2
https://doi.org/10.1007/BF01719451
https://doi.org/10.1007/BF02023073
https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1016/j.cie.2024.109903
https://doi.org/10.1016/j.eswa.2021.114567
https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdn.gurobi.com/wp-content/uploads/Gurobi-9.0-Overview-Webinar-Slides-1.pdf&ved=2ahUKEwjgmtfT_faMAxViaPUHHUX-Bl8QFnoECBgQAQ&usg=AOvVaw0hD8tKEukvGHPKlGz6NHpI
https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdn.gurobi.com/wp-content/uploads/Gurobi-9.0-Overview-Webinar-Slides-1.pdf&ved=2ahUKEwjgmtfT_faMAxViaPUHHUX-Bl8QFnoECBgQAQ&usg=AOvVaw0hD8tKEukvGHPKlGz6NHpI
https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdn.gurobi.com/wp-content/uploads/Gurobi-9.0-Overview-Webinar-Slides-1.pdf&ved=2ahUKEwjgmtfT_faMAxViaPUHHUX-Bl8QFnoECBgQAQ&usg=AOvVaw0hD8tKEukvGHPKlGz6NHpI
https://doi.org/10.1016/j.ins.2023.119141
https://doi.org/10.1016/j.energy.2017.02.174
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1007/s10489-020-01893-z
https://doi.org/10.3233/JIFS-190495

	Introduction
	Literature Review
	Problem Description and Formulation
	A Dual-Resource Flexible Job Shop Problem
	Problem Formulation

	Two-Stage FBI-Based Algorithm
	Pareto Optimization Phase
	A Hybrid Encoding and Decoding Method
	Multi-Objective FBI
	Investigation of Computational Complexity

	Multi-Criteria Decision-Making Stage

	Case Study
	Instance Construction and Parameter Setting
	Performance Metrics
	Experiment I: Testing the Validity of the DRFJSP Model
	Experiment II: Testing the Performance of the TSFBI
	Experiment III on AHP Decision-Making Process

	Conclusions
	References

