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Abstract - In this work, the gas flow in the straight-through labyrinth seal is studied.
Leakage flowrate and pressure distributions are calculated by using Neumann Modifed
Method and circumferential velocity distributions are calculated by using Moody’s
Friction-Factor Model. Results are compared to the other papers.
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1. INTRODUCTION

Labyrinth seals are commonly found in turbines and compressors. They separate
high pressure region from the low ones and minimize the leakage of the high pressure
gas. This leakage, which depends on a great variety of parameters such as geometry of
the teeth, number of cavities, pressure differences, temperature and type of gas, etc., is
inevitably present even in the case of abradable seals. There are a few types of labyrinth
seals which arc being uscd. The most common one is the straight through labyrinth
seals which were studied by [1], [2], [5], [6] etc. The correct prediction and control of
this leakage is crucial for efficient and economic operation of turbomachinery.

The gas flow through a labyrinth seal may be briefly described as follows.
Swirling gas at the high pressure enters through the clearance between the first tooth of
the labyrinth seal and wall opposite to it to first cavity of labyrinth seal, expanding
somewhat and altering its rotational momentum by the first friction of cavity walls
which may rotate at speeds quite different from the inlet swirl. This rotation is in
general non-axisymmetric and time dependent due to small but nevertheless important
vibration of the rotor. Once the gas crosses several such cavities it emerges at the other
end of the labyrinth seal at significantly reduced pressure. A significant assumption
which facilities the semi analytic treatment of this very complex three dimensional
unsteady flow is that the gas pressure in each labyrinth cavity as well as the
circumferential velocity in each cavity are independent of the radial and axial
coordinates within the cavity. Of course, appropriate boundary layers are utilized in
estimating the circumferential momentum transfer from the walls to the gas. In addition,
when the zeroth order approximation to this flow is considered, i.e. the one for a
perfectly centric rotor rotation, the flow can be taken to be axisymmetric and of steady
state.
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2. LABYRINTH SEAL GEOMETRIES AND NOTATIONS

Labyrinth seal geometries used in this paper are given in Figure 1. Here, NT is
the tooth number which varies from 5 to 18, Rsis the shaft radius, Cris the clearance
between teeth and rotor surface. The labyrinth seal pitch L,is taken equal of labyrinth
seal height B;.

In this work, we assume that the seal geometry is axially symmetric when there

is no motion of the rotor axis. The pressure and the circumferential velocity in each
cavity are assumed to be uniform and are indicated by P, and V,. In front of the first

tooth the inlet pressure P, of the fluid is indicated by F, and the outlet pressure P,
of the fluid beyond the NT ’th tooth is indicated by P, . Similarly, V,, denotes the inlet
swirl vclocity. The lcakage at cach tooth i is indicated by r7; and rcpresents the mass

flowrate over the entire circumference of the gap created by the clearance. This gap is
denoted by ANAR,; when the teeth are on the rotor and by ANAR,; when they are on
the stator.

These annular flow areas are defined by
ANAR; = 7:(2Rsf +Cr, )Crf ; teeth on stator

ANAR,; = nt(2Rs; + 2B, + Cr, )Cr; ,  teeth on rotor.

The gas flow results in viscous shear stresses T; at the stator wall surfaces and
T,; on the rotor surface. Therefore, we need to define the stress area o each labyrinth

cavity. The rotor shear are is defined by
RSA =2nRs;L,a,
and the stator shear area is defined by
SSA =2nRs;L;a,; .
Here the dimensionless rotor shear area is
B {(23,. +L;)/L; , for teeth on the rotor
i

1 , for teeth on the stator
and the dimensionless staror shear area is
B {(ZB,- +L;)/L; , for teeth on the stator

o 1 , for teeth on the rotor.

These quantities are given Figure 2.

3. LEAKAGE FLOWRATE CALCULATIONS AND PRESSURE
DISTRIBUTIONS

When the rotor rotates with a constant speed, with no eccentricity present, the
flow is time independent. In this steady state situation the continuity equation implies
that

ml =m2 ="‘mNT =m.
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The flowrate 1 depends on the geometry of the seals, the pressure difference
P,y — Pyyr , and the inlet temperature Ty . In this work we assume that the gas in each
cavity obeys the perfect gas law
P, =pRT,
where P, is the pressure, p is the density, T; is the temperature in the cavity i, R is the

gas constant. The flow is taken to be isothermal with T; =T}y for, i =1,...,NT . In this

work, the leakage flowrate and the related pressure distribution were computed using
Modified Neumann Method. In this method, i is given as

2
1,.(&]
. P_ P
; = 1, ANAR, \ﬁetrl 7 'm ,
IN T

Here, a is the Vermes’ residual kinetic energy carry-over factor which is given

by
8.52
*=T,—TIPLEN __°
- +7.23
Cr;
Wy; is the discharge flow coefficient and defined as
:{:‘E
i3 Py
i = 5 = | T
n+2-58S; +2§; F,

This flow coefficient p,; is same as in [2].
Here, pressure ratio is defined as

Ui
P =1 22
=l 1+Y 1 U: ¥
P 2y RTy

I
where U, is the axial gas velocity at the tooth i and vy is the specific heat ratio.

The formulas given above are valid for subsonic flow assuming that choking
does not occur at a particular restriction. Since, the possibility of critical flow at the last
tooth of the seals is always present, we must check for critical conditions at the output
before proceeding with the pressure distribution calculation.

Choked flow of the gas in the last restriction will occur if
Y

Pur s( 2 ]H, (=0.528 forair),
Pyr4 y+1

When a particular restriction is choked, leakage flowrate equation at last tooth must be
replaced with

P
Hiyr =W yp ANAR yp —22

JRT,,  l-o
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4. CIRCUMFERENTIAL VELOCITY DISTRIBUTIONS

The bulk circumferential velocity V; in the i-th labyrinth cavity results in

viscous shear stress T; and 7,; at the stator and rotor surfaces. These stresses influence

the momentum balance.

The circumferential momentum of the gas is equal to-the mass of the gas times
circumferential velocity in the same cavity. The rate of change of circumferential
momentum entering the control volume minus the circumferential momentum exiting
the control volume is equal to the sum of the forces acting on the control volume.

The steady state circumferential momentum equation is

m;V, —m, V. ; = RSF — SSF .

Here RSF is the rotor shear force and defined as

RSF =1 ,,(2nRs;a,L,)
and SSF is the stator shear force and defined as
SSF =1,,(2nRs,a,L,).

175t
Using these in the circumferential momentum equation we obtain
m(V; =Viy)=2nRs; L, (v ,a, — T a,).
Using this formula, we calculate the circumferential velocities in the labyrinth
cavities, once the shearing stress have been calculated.

Moody has produced the following approximate representation for pipe-friction

f=a ‘1+ ﬁi-i-b—z " R‘e—Q}E
‘ Dh Re ’ m

factor

where
a, =1.375x107%, b, =2x10*, b, =10°
and e/ Dh is the relative roughness. This formula gives values which are within %5 of

the Moody diagram for 4000<Re <10’ and e¢/Dh<0.01. For e/Dh>0.01, it
significantly underestimates f , [3].

Blasius determined that the shearing stress for turbulent flow in a smooth pipe
can be written as

t=0.5/pV>.
T,; and 7,; for smooth stator and rotor surface can be defined using the Moody’s wall

friction-factor model.
173
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T, 1s given by
Relative to the rotating rotor surface, the bulk circumferential flow is moving
with velocity ]Rs,.w—V,-|. Therefore, the shear stress of the rotor surface of the i-th

|
Tsi ='2_

cavity is
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Here Reis Reynolds number and defined by

V.| Dhp teeth on stator
Re =
w
|Rs;w—V;|Dhp teeth on rotor.
Re =
WU

Since the kinematic viscosity v = p/p, we can write the Reynolds numbcr as
|V.] Dh teeth on stator
Re=+"—
Y
|Rs;w—V,|Dh teeth on rotor.
Re=2—

Vv
Here Dh; is the hydraulic diameter and defined by

Cross Sectional Flow Area
Wetted Perimeter

Dh=4

= Z(Cri+B:‘)Lf
Cr,+B; + L '

5. RESULTS AND CONCLUSIONS

The geometry and the operating conditions used here are given in Table 1. The
number of teeth, the pitch of the teeth, the radial clearance, the step height and
radius are kept constant in all cases. The operating conditions are also kept costant
for all cases. These geometry and conditions are taken from [1], [4] and [7]. We use
two different seal types here. These seal types are given Figure 1. The labyrinth seal
types we have here are as follows.

LSTYPE 1= Straight-through teeth on stator
LSTYPE 2= Straight-through teeth on rotor.

We compare our results to the results of [4] and [7]. In Figure 1 we compared
our leakage flowrate results to the results of [4]. This comparison shows that our
leakage is lower then his leakage. Our circumferential velocity results are compared
to results of [7] in Figure 3. Our results are in between his results, and it is
satisfactory.

Stator Stator
Rotor Rotor
LSTYPE 1 LSTYPE 2

Figure 1. Labyrinth seal types.
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Figure 2. The dimensionless shear areas.

Table 1. Seal geometries and operating conditions.

NT=5,10,1516 P, =7.00E+5,3.08E +5N/m’

V(0) =60m/s Piyr = 1.01E +5N/m?
Rs=0.0756m WRPM = 16000,20000rpm
B=0.003175m L =0.002175,0.003175m
Cr=10.000127,

T =300.°K

0.00033m

TIPLEN=.2E-4m R =287.06Nm/kg’K

Fluid : Air

LSTYPE 1: straight-through labyrinth seal teeth on stator
LSTYPE 2: straight-through labyrinth seal teeth on rotor

m (kg/s) m (kg /s)
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Figure 3. Comparison of leakage flowrate to the results of [4].
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Figure 4. Pressure distribution. Figure 5. Comparison of circumferential
velocity to the results of [7].
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