
Mathematical

and Computational

Applications

Article

A Peptides Prediction Methodology for Tertiary Structure Based
on Simulated Annealing

Juan P. Sánchez-Hernández 1,† , Juan Frausto-Solís 2,*,† , Juan J. González-Barbosa 2 ,
Diego A. Soto-Monterrubio 2, Fanny G. Maldonado-Nava 2 and Guadalupe Castilla-Valdez 2

����������
�������

Citation: Sánchez-Hernández, J.P.;

Frausto-Solís, J.; González-Barbosa,

J.J.; Soto-Monterrubio, D.A.;

Maldonado-Nava, F.G.;

Castilla-Valdez, G. A Peptides

Prediction Methodology for Tertiary

Structure Based on Simulated

Annealing. Math. Comput. Appl. 2021,

26, 39. https://doi.org/10.3390/

mca26020039

Academic Editor: Leonardo Trujillo

Received: 23 February 2021

Accepted: 27 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dirección de Informática, Electrónica y Telecomunicaciones, Universidad Politécnica del Estado de Morelos,
Boulevard Cuauhnáhuac 566, Jiutepec 62574, Mexico; juan.paulosh@upemor.edu.mx

2 Graduate Program Division, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero,
Cd. Madero 89440, Mexico; jjgonzalezbarbosa@hotmail.com (J.J.G.-B.);
diego_060787@hotmail.com (D.A.S.-M.); fanny_mn@hotmail.com (F.G.M.-N.);
gpe_cas@yahoo.com.mx (G.C.-V.)

* Correspondence: juan.frausto@gmail.com
† These authors contributed equally to the development of this paper.

Abstract: The Protein Folding Problem (PFP) is a big challenge that has remained unsolved for more
than fifty years. This problem consists of obtaining the tertiary structure or Native Structure (NS) of a
protein knowing its amino acid sequence. The computational methodologies applied to this problem
are classified into two groups, known as Template-Based Modeling (TBM) and ab initio models. In
the latter methodology, only information from the primary structure of the target protein is used. In
the literature, Hybrid Simulated Annealing (HSA) algorithms are among the best ab initio algorithms
for PFP; Golden Ratio Simulated Annealing (GRSA) is a PFP family of these algorithms designed
for peptides. Moreover, for the algorithms designed with TBM, they use information from a target
protein’s primary structure and information from similar or analog proteins. This paper presents
GRSA-SSP methodology that implements a secondary structure prediction to build an initial model
and refine it with HSA algorithms. Additionally, we compare the performance of the GRSAX-SSP
algorithms versus its corresponding GRSAX. Finally, our best algorithm GRSAX-SSP is compared
with PEP-FOLD3, I-TASSER, QUARK, and Rosetta, showing that it competes in small peptides except
when predicting the largest peptides.

Keywords: protein structure prediction; Hybrid Simulated Annealing; Template-Based Modeling;
structural biology; Metropolis

1. Introduction

Proteins or polypeptides are macromolecules built from amino acids (aa) and are
mainly responsible for living beings’ functionality. Proteins are essentials elements be-
cause every protein has a specific function related to its unique three-dimensional structure
named Native Structure (NS). All the proteins consist of a polymer chain of aa; the junctions
with a small number of them are named peptides. The peptides have significant importance
in the science community because of their multiple applications, for instance, in pharma-
ceutical research [1–4], drug design [5–7], diagnosis [8–10], and therapy [11,12]. To obtain
the NS of proteins from an amino acid sequence could bring benefits to human beings.

The PFP has been identified as an important problem since Kendrew and Perutz’s
research teams obtained the myoglobin and hemoglobin molecules’ tertiary structure,
respectively [13,14]. These studies established the relation between function and structure.
PFP consists of obtaining the three-dimensional structure of a protein with the lowest Gibbs
free energy, thermodynamically stable three-dimensional conformation [15].

The PFP is considered an NP-hard problem [16]. Thus, presumably, none of the known
exact algorithms can solve it in polynomial time. In other words, the execution time grows

Math. Comput. Appl. 2021, 26, 39. https://doi.org/10.3390/mca26020039 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-9448-1946
https://orcid.org/0000-0001-9307-0734
https://orcid.org/0000-0002-3699-4436
https://doi.org/10.3390/mca26020039
https://doi.org/10.3390/mca26020039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26020039
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca26020039?type=check_update&version=1

Math. Comput. Appl. 2021, 26, 39 2 of 21

exponentially when using them. In contrast, any protein passes from the aa sequence to
its NS three-dimensional structure very rapidly in nature. The latter issue is known as the
Levinthal Paradox [17].

Several algorithms have been applied to solve the PFP successfully, and one of the
most effective algorithms has been the Simulated Annealing algorithm (SA). The SA is
commonly hybridized with other methods; the combination algorithms are called Hybrid
Simulated Annealing algorithms (HSA). These algorithms successfully applied to peptides
are the following:

(a) The classical Monte Carlo Method, or SA, was applied to the PFP [18,19]. Additionally,
an analytical tuning method to SA was proposed [20].

(b) Golden Ratio Simulated Annealing (GRSA) family: Original GRSA proposing a
cooling strategy [21], Evolutionary Golden Ratio SA (EGRSA) using genetic opera-
tors [22], and GRSA2, which is hybridization with the GRSA and Chemical Reaction
Optimization algorithm (CRO) [23].

(c) Metropolis and multiobjective optimization methods were applied in the previous
CASP competitions. The approaches that traditionally have obtained the best results
were Rossetta [24], QUARK [25], and I-TASSER [26]. However, deep learning applied
by the Alphafold algorithm [27] achieved the best score in the CASP13 and CASP14.

(d) PEP-FOLD3 algorithm, which uses secondary structure information and a Monte
Carlo method, and is very successful for small peptides (5 to 50 aa) [28].

The HSA algorithms previously mentioned obtained excellent results for small pro-
teins or peptides. However, when the number of aa increases, the variables (torsional
angle of aa) are also increased, the computational time for exploring the solution space is
considerable. As a result, the PFP area needs new approaches to obtaining better solutions
for large peptides or proteins.

This paper proposes the methodology GRSA-SSP that combines GRSA algorithms
with the Secondary Structure Prediction (SSP). For a given chain of aa representing a
peptide or a protein, the GRSA-SSP performs two processes:

(a) To obtain the first protein prediction from the secondary structure of the amino-
acids sequence.

(b) To refine the previous protein prediction by using GRSA family algorithms.

These two processes are performed in several steps described in this paper. The algo-
rithms used in the second phase of GRSA-SSP can be one of the GRSA family algorithms.
This paper named these hybrid algorithms GRSAX-SSP, where X is used to distinguish the
GRSA algorithm. We evaluate our methodology using RMSD and TM-score metrics [29].
Additionally, experimentation is performed with a set of forty-five instances of peptides
and a set of six mini proteins, which are compared with the most popular algorithms in the
literature, such as PEP-FOLD3 [28], I-TASSER [30,31], Rosetta [24,32], and QUARK [25,33].

The paper’s organization is as follows: first, we present the introduction to PFP
and HSA algorithms. Then, in the Background section, we review the Protein Folding
Problem definition and some relevant research in the literature, and we explain the GRSA
family of algorithms. In the next section, we describe the GRSA-SSP methodology. In the
Results section, we present experimentation comparing the GRSA algorithms with those
of the literature; also, we analyze the presented methodology’s performance. Finally, the
conclusions of this research are presented.

2. Background

The PFP is a significant multidisciplinary problem that has been investigated for over
half a century [34]. Different scientific areas have been studied, for example, computer sci-
ence, bioinformatics, and molecular biology, concerning this problem, and three questions
in particular need to be answered [34].

• Which is the physical code in which an amino-acids sequence dictates an NS?
• Why in nature do proteins fold very quickly while in silicon they fold relatively slower?

Math. Comput. Appl. 2021, 26, 39 3 of 21

• Is there an algorithm that predicts the protein structure from the amino-acids se-
quence?

This paper is related to the last question. We propose different strategies to obtain the
NS tertiary structure using GRSA family algorithms and secondary structure prediction.
As we mentioned before, finding new algorithms for PFP is significant not only because
of its potential applications but also because it is an NP-hard problem [16], and the num-
ber of combinations that determine which algorithms must be explored in a very large
solution space.

2.1. Definition of Ab-Initio and Force Fields

The ab initio modeling can be defined as an optimization problem where the Gibbs
free energy is the objective function f(n), and this has to be minimized. Thus, this problem
is defined as follows: let there be a sequence of amino acids: n = a1, a2, . . . , an; every
amino acid has associated with it a set of angles σ1, σ2, . . . , σm where m represents
a particular dihedral angle; then, minimizing the energy function f(σ|1, σ2, . . . , σm)
provides the best tertiary structure or NS. The energy functions (force fields) are used
for determining the energy of a protein structure [35], and some examples of these are
AMBER [36], CHARMM [37], ECEPP/2, and ECEPP/3 [38]. The potential energy of
ECEPP/2 is given by Equation (1), which is calculated in vacuo for only intramolecular
energies, and this is the energy function to be minimized [39].

Etotal = ∑
j>i

(
Aij

r12
ij

−
Bij

rij
6

)
+ 332 ∑

j>i

qiqj

εrij
+ ∑

j>i

(
Cij

r12
ij

−
Dij

rij
10

)
+ ∑

n
Un(1 ± cos(kn ϕn)) (1)

where: rij is the distance in Å (angstroms) between the atoms i and j; Aij, Bij, Cij, and Dij are
the parameters of the empirical potentials; qi and qj are the partial charges in the atoms i
and j, respectively; ε is the dielectric constant; Un is the energetic torsion barrier of rotation
about the bond n; kn is the multiplicity of the torsion angle ϕn.

In this paper, we use the potential energy of ECEPP/2 as an objective function because
we explore the conformational space, and when the energy of the protein structure is
minimized, then the protein structure is accepted.

2.2. Computational Approaches for PFP

The CASP organization has classified PFP models into two main groups:
Group 1: Template-based modeling (TBM). In this group, we find algorithms that use

biological information obtained from the secondary structure of the target protein, homol-
ogy, and fragments of other proteins. These algorithms have achieved good results for
predicting protein structures in the CASP [32,40,41]. TBM involves several strategies; some
of the most common are homology [42,43], threading [44], and fragment assembly [30,45].

Group 2: Ab initio. This prediction approach classically refers to the determination
of the NS using only the aa sequence information. Unfortunately, ab initio algorithms
have achieved good PFP results but only for small proteins with less than 120 residues [46].
The Ab initio modeling is the most challenging approach because it uses the amino acids’
sequence as unique information. Finding an optimal solution with ab initio is very difficult
for big proteins because the solution space is enormous.

These two groups can be applied to small proteins or peptides (between 5 to 50 aa) [28,47].
There are successful studies applied to protein prediction using SA [48–50] or Monte Carlo
algorithms with Metropolis-Hasting [26,27]. The Monte Carlo algorithms are also applied
to the inverse protein folding problem, which objective function is to find a sequence given
a structure [51,52]. This paper focuses on the classical PFP that consists of finding the
functional structure given a sequence aa.

The Rosetta is a protein structure prediction or de novo approach that performs
models for the tertiary structure using the primary and secondary structure predictions.
The algorithm generates a local sequence to produce local structures (fragments) that form

Math. Comput. Appl. 2021, 26, 39 4 of 21

a target protein template. Additionally, the fragments are then assembled by randomly
using a Monte Carlo simulated annealing algorithm. Finally, the fitness of individual
conformation interactions is evaluated based on a scoring function derived from known
protein structures. However, only peptides longer than 27 aa can be provided as input [32].

Another PFP approach is I-TASSER (Iterative Threading ASSEmbly Refinement). It
has four principal parts: generating a template using a multi-threading method, fragments’
assembly method, refinement process, final model selection, and annotation tools. The
I-TASSER applies an alignment of the target sequence and divides it into aligned using
LOMETS [53,54] and nonaligned regions using the Monte Carlo algorithm. In the last step,
annotation of functions is performed based on the structural models obtained using the
BioLIP [55] database of ligand-protein interactions. Finally, the I-TASSER predicts protein
structures from 10 to 1500 amino acids [31].

PEP-FOLD3 has a framework to predict the tertiary structure of peptides using de
novo structure modeling. The process of predicting structure consists of three stages.
Firstly, for a peptide amino acid sequence, a support vector machine is applied to predict
the structural alphabet of fragments. Secondly, several models are generated using series
of states and refined by a Monte Carlo algorithm. Finally, the five best conformations are
selected [28].

Another approach is QUARK [33], in which an ab initio strategy is used to predict
protein structures in ranges of 20 to 200 aa. Additionally, an assembly process of fragments
with small structures is carefully selected and applied in the target sequence using a Monte
Carlo algorithm.

SAINT2 is a fragment-based de novo structure prediction approach that has been
successfully compared with the CASP12 approaches [56], which consists of a sequence-
to-structure pipeline divided into four principal sections: (a) the secondary structure
prediction where PSI-PRED [57] is applied, (b) the torsion angles prediction using SPINE-
X [58], (c) a fragment library with the Flib package, and (d) the residue-residue contact
prediction applying metaPSICOV [59]. Finally, the highest-scoring model is selected. In
our methodology, sections (a) and (b) are applied, and they are shown in Figure 1.

The GRSA Family Algorithms

The SA algorithm is inspired by the physical annealing process of metals [60,61]. The
algorithm has been applied with success in many NP-hard problems [20], including the PFP.
SA employs the Metropolis algorithm to efficiently explore the solution space and obtain a
good solution to optimization problems. We show the pseudocode of SA in Algorithm 1. Ti
and Tf parameters define the initial and final temperatures, respectively; the α parameter
represents the cooling factor. In the Metropolis cycle, new solutions are generated by a
perturbation function. Finally, to accept or reject a new solution, an acceptance criterion
based on Boltzmann distribution is applied (lines 11–14). The SA algorithm is executed
until the final temperature, Tf, is reached. The SA algorithm source code is available at https:
//github.com/DrJuanFraustoSolis/SimulatedAnnealing.git (accessed on 28 April 2021).

https://github.com/DrJuanFraustoSolis/SimulatedAnnealing.git
https://github.com/DrJuanFraustoSolis/SimulatedAnnealing.git

Math. Comput. Appl. 2021, 26, 39 5 of 21

Algorithm 1. SA algorithm Procedure.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 5 of 21

Algorithm 1. SA algorithm Procedure.

However, when the solution space is very large, the algorithm’s exploration takes a

long time to obtain optimal solutions. Thus, new algorithms are necessary. The GRSA al-

gorithm was proposed, which has been successfully applied in different NP problems

[62,63], including the PFP [18]. The main characteristics of GRSA are the cooling scheme

that decreases according to Tfp temperature cuts calculated by the golden number (ɸ) and

then a stop criterion that reduces the cost of exploration (Algorithm 2). GRSA has a similar

structure to the SA algorithm (lines 4 to 16). The difference with SA is that the GRSA cal-

culates Tfp temperature cuts (five cuts are recommended), and in each cut, an α parameter

in the range [0.7, 1] is associated (the common higher value is 0.95); the intermediate α

values in this range are determined with an increment δ which represent the α increment

since the lowest until the highest α value (in this case, δ = 0.05). These alpha values are

associated with each temperature cut (line 17). The algorithm reduces the temperature

cooling speed; thus, the execution time, corresponding to lines 18 to 23, decreases. Finally,

to reduce wasting time in low temperatures, where the quality of the result is not im-

proved, a stop criterion was implemented using the least-squares method (lines 24 to 29).

This stop criterion detects the stochastic equilibrium for some 𝑖 Metropolis cycles. We

measure the slope (m is a global variable) of the linear regression of the energy of these

cycles. In this regression, we used the coordinates (𝐸𝑖 , 𝑖); where 𝑖 is in the range [2, 𝜅𝑚𝑎𝑥].

In our case, we used 𝜅𝑚𝑎𝑥 = 5. The equilibrium is found when m is close to zero, calculated

by (2).

𝑚 =
𝜅∑ 𝑖𝐸𝑖−(∑ 𝑖𝜅

𝑖=2)(∑ 𝐸𝑖
𝜅
𝑖=2)𝜅

𝑖=2

𝜅∑ 𝑖2𝜅
𝑖=2 −(∑ 𝑖𝜅

𝑖=2)
2 (2)

The Equation (2) can be written as follows (3):

𝑚 =
12∑ 𝑖𝐸𝑖 − 6(𝜅 − 1)(∑ 𝐸𝑖

𝜅
𝑖=1)𝜅

𝑖=2

𝜅3 − 𝜅
 (3)

where: 𝜅 is the number of metropolis cycles for measuring the slope, i is the iteration of

every metropolis cycle, and Ei the energy in each iteration.

The evaluation of m in Equation (2) does not imply a significative execution time; the

summations on Equation (3) are only cumulative operations in Algorithm 3. This algo-

rithm determines the equilibrium with this Equation (3). The GRSA algorithm source code

is available at https://github.com/DrJuanFraustoSolis/GRSA.git (accessed on 28 April

2021).

Algorithm 1 SA algorithm Procedure

1: Data: T
i
, T

f
, α

2: T
k
 = T

i
; α = 0.95

3: S
i
 = generateSolution()

4: while T
k
 ≥ T

f
do //Temperature cycle

5: while Metropolis length do //Metropolis cycle

6: S
j
=perturbation(S

i
)

7: ΔE=Energy(S
j
) – Energy(S

i
)

8: if ΔE ≤ 0 then

9: S
i
=S

j

10:

E = Energy(S
i
)

11: else if e-ΔE/Ti < random [0-1] then

12: S
i
=S

j

13:

E = Energy(S
i
)

14: end if

15: end while //End Metropolis cycle

16: T
k
= T

k
*α

17: end while //End Temperature cycle

18: end Procedure

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 9 of 21

(2) Torsion angles prediction. The secondary structure’s prediction is essential for this
stage, where SPINE-X is used to obtain the torsion angles (ɸ,Ψ, and ω) of each amino
acid. This process is realized through the Position-Specific Score Matrix and Physical
Parameters [58]. SPINE-X applies artificial neural networks to obtain the best predic-
tions of the target’s proteins.

(3) Model construction. In this stage, the torsion angles or variables are used to construct
a template as initial solution Si = [�1, Ψ1, Χ1, ω1, �2, Ψ2, Χ2, ω2, …, �n, Ψn, Χn, ωn] that is
represented by amino acids subscript 1 to n and the same form by the following
amino acids up to n; n is dependent on the size of an amino acid sequence of the
target protein. The torsion angles represent the base column of the peptide on which
the refinement will be performed.

(4) Refinement by GRSAX. When the previous stages construct the peptide template, we
can apply a GRSAX algorithm such as GRSA (renamed GRSA1), EGRSA (renamed
GRSAE), and GRSA2, as well as the classical SA (GRSA0). The GRSAX algorithms
are tested individually for comparison, which obtains a better tertiary structure of
the target peptide. Moreover, once the energy and three-dimensional structure is ob-
tained, the structure is evaluated with the RMSD and TM-score [29] metrics.

Output. The GRSAX-SSP algorithm obtains the tertiary structure prediction.

Figure 1. Methodology GRSA-SSP for peptide prediction. Figure 1. Methodology GRSA-SSP for peptide prediction.

However, when the solution space is very large, the algorithm’s exploration takes a
long time to obtain optimal solutions. Thus, new algorithms are necessary. The GRSA algo-
rithm was proposed, which has been successfully applied in different NP problems [62,63],
including the PFP [18]. The main characteristics of GRSA are the cooling scheme that
decreases according to Tfp temperature cuts calculated by the golden number (F) and then

Math. Comput. Appl. 2021, 26, 39 6 of 21

a stop criterion that reduces the cost of exploration (Algorithm 2). GRSA has a similar
structure to the SA algorithm (lines 4 to 16). The difference with SA is that the GRSA calcu-
lates Tfp temperature cuts (five cuts are recommended), and in each cut, an α parameter
in the range [0.7, 1] is associated (the common higher value is 0.95); the intermediate α
values in this range are determined with an increment δwhich represent the α increment
since the lowest until the highest α value (in this case, δ = 0.05). These alpha values are
associated with each temperature cut (line 17). The algorithm reduces the temperature
cooling speed; thus, the execution time, corresponding to lines 18 to 23, decreases. Finally,
to reduce wasting time in low temperatures, where the quality of the result is not improved,
a stop criterion was implemented using the least-squares method (lines 24 to 29). This stop
criterion detects the stochastic equilibrium for some i Metropolis cycles. We measure the
slope (m is a global variable) of the linear regression of the energy of these cycles. In this
regression, we used the coordinates (Ei, i); where i is in the range [2, κmax]. In our case, we
used κmax = 5. The equilibrium is found when m is close to zero, calculated by (2).

m =
κ ∑κ

i=2 iEi − (∑κ
i=2 i)(∑κ

i=2 Ei)

κ ∑κ
i=2 i2 − (∑κ

i=2 i)2 (2)

The Equation (2) can be written as follows (3):

m =
12 ∑κ

i=2 iEi − 6(κ − 1)(∑κ
i=1 Ei)

κ3 − κ
(3)

where: κ is the number of metropolis cycles for measuring the slope, i is the iteration of
every metropolis cycle, and Ei the energy in each iteration.

The evaluation of m in Equation (2) does not imply a significative execution time;
the summations on Equation (3) are only cumulative operations in Algorithm 3. This
algorithm determines the equilibrium with this Equation (3). The GRSA algorithm source
code is available at https://github.com/DrJuanFraustoSolis/GRSA.git (accessed on 28
April 2021).

Algorithm 2. GRSA algorithm Procedure.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 6 of 21

Algorithm 2. GRSA algorithm Procedure.

Algorithm 3. Equilibrium Function.

The EGRSA (Algorithm 4) is an algorithm integrated by the hybridization of GRSA

with evolutionary techniques. This algorithm has an evolutionary perturbation (EGRSA-

pert) in the GRSA phase (line 7), where a genetic algorithm is used. The EGRSA algorithm

starts with a set of individuals generated for determining the initial solution designed as

Si. Then in the Metropolis Cycle, the Si is perturbated by EGRSApert to generate new so-

lutions. Next, the best individual generated Sj solution is selected of the population (lines

9 and 10). EGRSA is similar to GRSA, and both applied a stop criterion (see Algorithm

2.1) by the least-squares method [64,65] (lines 24–29). Algorithm 5 presents EGRSApert

function, where one individual is a set of dihedral angles [ɸ1, Ψ1, Χ1, ω1, ɸ2, Ψ2, Χ2, ω2, …,

ɸn, Ψn, Χn, ωn] and a population is a set of individuals. Then crossover and mutation op-

erators are applied to generate new solutions by the perturbation function. Finally, when

the number of generations is reached, the best individual of the population is selected.

The EGRSA algorithm source code is available at https://github.com/DrJuanFrausto-

Solis/EGRSA.git (accessed on 28 April 2021).

Algorithm 2 GRSA algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, E, S, α, ϕ, δ

2: α=0.70; ϕ=0.618; δ = 0.05

3: T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
 do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: S
j
=perturbation(S

i
)

8: ΔE=Energy(S
j
) – Energy(S

i
)

9: if ΔE ≤ 0 then

10: S
i
=S

j

11:

E = Energy(S
i
)

12: else if e-ΔE/Ti < random [0-1] then

13: S
i
=S

j

14: E = Energy(S
i
)

15 end if

16: end while //End Metropolis cycle

17: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

18: if T
k
 ≤ T

fp
 then

19: α
new

=α + δ

20: T
k
= α

new
* T

k

21: else

22: T
k
= T

k
*α

23: end if

24: if T
k
 ≤ T

fpn
then

25: m= Equilibrium(E)

26: if m ≈ ε then

27: T
K
 = T

f

28: end if

29: end if

30: end while //End Temperature cycle

31: end Procedure

Update cooling speed

Stop criterion

Algorithm 2.1 Equilibrium Function

1: Equilibrium(E)

2: i = 1; CE=i*E; Kmax=5; SumE=E; m=0

3: if i < Kmax then

4: CE=CE+i*E

5: SumE=SumE+E

6: i = i+1

7: end if

8: if i==Kmax then

9: m = (((12 * CE)-(6*(i-1)*SumE))/(i3 - i))

10: end if

11: return m

12: end Function

Algorithm 2 GRSA algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, E, S, α, ϕ, δ

2: α=0.70; ϕ=0.618; δ = 0.05

3: T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
 do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: S
j
=perturbation(S

i
)

8: ΔE=Energy(S
j
) – Energy(S

i
)

9: if ΔE ≤ 0 then

10: S
i
=S

j

11:

E = Energy(S
i
)

12: else if e-ΔE/Ti < random [0-1] then

13: S
i
=S

j

14: E = Energy(S
i
)

15 end if

16: end while //End Metropolis cycle

17: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

18: if T
k
 ≤ T

fp
 then

19: α
new

=α + δ

20: T
k
= α

new
* T

k

21: else

22: T
k
= T

k
*α

23: end if

24: if T
k
 ≤ T

fpn
then

25: m= Equilibrium(E)

26: if m ≈ ε then

27: T
K
 = T

f

28: end if

29: end if

30: end while //End Temperature cycle

31: end Procedure

Update cooling speed

Stop criterion

Algorithm 2.1 Equilibrium Function

1: Equilibrium(E)

2: i = 1; CE=i*E; Kmax=5; SumE=E; m=0

3: if i < Kmax then

4: CE=CE+i*E

5: SumE=SumE+E

6: i = i+1

7: end if

8: if i==Kmax then

9: m = (((12 * CE)-(6*(i-1)*SumE))/(i3 - i))

10: end if

11: return m

12: end Function

https://github.com/DrJuanFraustoSolis/GRSA.git

Math. Comput. Appl. 2021, 26, 39 7 of 21

Algorithm 3. Equilibrium Function.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 6 of 21

Algorithm 2. GRSA algorithm Procedure.

Algorithm 3. Equilibrium Function.

The EGRSA (Algorithm 4) is an algorithm integrated by the hybridization of GRSA

with evolutionary techniques. This algorithm has an evolutionary perturbation (EGRSA-

pert) in the GRSA phase (line 7), where a genetic algorithm is used. The EGRSA algorithm

starts with a set of individuals generated for determining the initial solution designed as

Si. Then in the Metropolis Cycle, the Si is perturbated by EGRSApert to generate new so-

lutions. Next, the best individual generated Sj solution is selected of the population (lines

9 and 10). EGRSA is similar to GRSA, and both applied a stop criterion (see Algorithm

2.1) by the least-squares method [64,65] (lines 24–29). Algorithm 5 presents EGRSApert

function, where one individual is a set of dihedral angles [ɸ1, Ψ1, Χ1, ω1, ɸ2, Ψ2, Χ2, ω2, …,

ɸn, Ψn, Χn, ωn] and a population is a set of individuals. Then crossover and mutation op-

erators are applied to generate new solutions by the perturbation function. Finally, when

the number of generations is reached, the best individual of the population is selected.

The EGRSA algorithm source code is available at https://github.com/DrJuanFrausto-

Solis/EGRSA.git (accessed on 28 April 2021).

Algorithm 2 GRSA algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, E, S, α, ϕ, δ

2: α=0.70; ϕ=0.618; δ = 0.05

3: T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
 do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: S
j
=perturbation(S

i
)

8: ΔE=Energy(S
j
) – Energy(S

i
)

9: if ΔE ≤ 0 then

10: S
i
=S

j

11:

E = Energy(S
i
)

12: else if e-ΔE/Ti < random [0-1] then

13: S
i
=S

j

14: E = Energy(S
i
)

15 end if

16: end while //End Metropolis cycle

17: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

18: if T
k
 ≤ T

fp
 then

19: α
new

=α + δ

20: T
k
= α

new
* T

k

21: else

22: T
k
= T

k
*α

23: end if

24: if T
k
 ≤ T

fpn
then

25: m= Equilibrium(E)

26: if m ≈ ε then

27: T
K
 = T

f

28: end if

29: end if

30: end while //End Temperature cycle

31: end Procedure

Update cooling speed

Stop criterion

Algorithm 2.1 Equilibrium Function

1: Equilibrium(E)

2: i = 1; CE=i*E; Kmax=5; SumE=E; m=0

3: if i < Kmax then

4: CE=CE+i*E

5: SumE=SumE+E

6: i = i+1

7: end if

8: if i==Kmax then

9: m = (((12 * CE)-(6*(i-1)*SumE))/(i3 - i))

10: end if

11: return m

12: end Function

Algorithm 2 GRSA algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, E, S, α, ϕ, δ

2: α=0.70; ϕ=0.618; δ = 0.05

3: T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
 do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: S
j
=perturbation(S

i
)

8: ΔE=Energy(S
j
) – Energy(S

i
)

9: if ΔE ≤ 0 then

10: S
i
=S

j

11:

E = Energy(S
i
)

12: else if e-ΔE/Ti < random [0-1] then

13: S
i
=S

j

14: E = Energy(S
i
)

15 end if

16: end while //End Metropolis cycle

17: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

18: if T
k
 ≤ T

fp
 then

19: α
new

=α + δ

20: T
k
= α

new
* T

k

21: else

22: T
k
= T

k
*α

23: end if

24: if T
k
 ≤ T

fpn
then

25: m= Equilibrium(E)

26: if m ≈ ε then

27: T
K
 = T

f

28: end if

29: end if

30: end while //End Temperature cycle

31: end Procedure

Update cooling speed

Stop criterion

Algorithm 2.1 Equilibrium Function

1: Equilibrium(E)

2: i = 1; CE=i*E; Kmax=5; SumE=E; m=0

3: if i < Kmax then

4: CE=CE+i*E

5: SumE=SumE+E

6: i = i+1

7: end if

8: if i==Kmax then

9: m = (((12 * CE)-(6*(i-1)*SumE))/(i3 - i))

10: end if

11: return m

12: end Function

The EGRSA (Algorithm 4) is an algorithm integrated by the hybridization of GRSA
with evolutionary techniques. This algorithm has an evolutionary perturbation (EGR-
SApert) in the GRSA phase (line 7), where a genetic algorithm is used. The EGRSA algo-
rithm starts with a set of individuals generated for determining the initial solution designed
as Si. Then in the Metropolis Cycle, the Si is perturbated by EGRSApert to generate new so-
lutions. Next, the best individual generated Sj solution is selected of the population (lines 9
and 10). EGRSA is similar to GRSA, and both applied a stop criterion (see Algorithm 2.1) by
the least-squares method [64,65] (lines 24–29). Algorithm 5 presents EGRSApert function,
where one individual is a set of dihedral angles [F1, Ψ1, X1,ω1, F2, Ψ2, X2,ω2, . . . , Fn, Ψn,
Xn,ωn] and a population is a set of individuals. Then crossover and mutation operators are
applied to generate new solutions by the perturbation function. Finally, when the number
of generations is reached, the best individual of the population is selected. The EGRSA
algorithm source code is available at https://github.com/DrJuanFraustoSolis/EGRSA.git
(accessed on 28 April 2021).

Algorithm 4. EGRSA algorithm Procedure.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 7 of 21

Algorithm 4. EGRSA algorithm Procedure.

Algorithm 5. EGRSApert Function.

The GRSA2 algorithm [23] is a hybridization of GRSA with the CRO algorithm [66].

GRSA2 (Algorithm 6) is an enhancement of GRSA. It has the same structure as the previ-

ous algorithms revised in this paper. Specifically, GRSA2 has two principal differences in

the perturbation phase, applying decomposition and soft collision (line 8) and the ac-

ceptance criterion (lines 10 to 14). In Algorithm 7, we show the perturbation process im-

plemented in the GRSA2pert function. In GRSA2, two soft collisions are used (unimolec-

ular, Intermolecular). This algorithm has been applied only in the PFP with a set of 19

peptides and compared with I-TASSER and PEP-FOLD3 approaches obtaining outstand-

ing results in the case of peptides [23]. The GRSA2 algorithm source code is available at

https://github.com/DrJuanFraustoSolis/GRSA2.git (accessed on 28 April 2021).

Algorithm 3 EGRSA algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, E, S, α, ϕ

2: α=0.70; ϕ=0.618; δ = 0.05

3: T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: S
j
= EGRSApert(S

i
)

8: ΔE = Energy(S
j
) – Energy(S

i
)

9: if ΔE ≤ 0 then

10: S
i
= S

j

11: E =Energy(S
i
)

12: else if e-ΔE/Ti < random [0-1] then

13: S
i
= S

j

14: E =Energy(S
i
)

15: end if

16: end while //End Metropolis cycle

17: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

18: if T
k
 ≤ T

fp
 then

19: α
new

=α + δ

20: T
k
= α

new
* T

k

21: else

22: T
k
= T

k
*α

23: end if

24: if T
k
 ≤ T

fpn
then

25: m= Equilibrium(E)

26: if m ≈ ε then

27: T
K
 = T

f

28: end if

29: end if

30: end while //End Temperature cycle

31: end Procedure

Algorithm 3.1 EGRSApert Function

1:EGRSApert(S
i
)

2: n= numGen, bestSol[], bestEnergy

3: pob=initialPob()

4: while gen ≤ n

do

5: population = tournament()

6: population = crossPopulation()

7: population = mutatePopulation()

8: end while

9: pop* = bestIndividual()

10: return(bestSol[], bestEnergy)

11: end Function

Update cooling speed

Stop criterion

Algorithm 3 EGRSA algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, E, S, α, ϕ

2: α=0.70; ϕ=0.618; δ = 0.05

3: T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: S
j
= EGRSApert(S

i
)

8: ΔE = Energy(S
j
) – Energy(S

i
)

9: if ΔE ≤ 0 then

10: S
i
= S

j

11: E =Energy(S
i
)

12: else if e-ΔE/Ti < random [0-1] then

13: S
i
= S

j

14: E =Energy(S
i
)

15: end if

16: end while //End Metropolis cycle

17: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

18: if T
k
 ≤ T

fp
 then

19: α
new

=α + δ

20: T
k
= α

new
* T

k

21: else

22: T
k
= T

k
*α

23: end if

24: if T
k
 ≤ T

fpn
then

25: m= Equilibrium(E)

26: if m ≈ ε then

27: T
K
 = T

f

28: end if

29: end if

30: end while //End Temperature cycle

31: end Procedure

Algorithm 3.1 EGRSApert Function

1:EGRSApert(S
i
)

2: n= numGen, bestSol[], bestEnergy

3: pob=initialPob()

4: while gen ≤ n

do

5: population = tournament()

6: population = crossPopulation()

7: population = mutatePopulation()

8: end while

9: pop* = bestIndividual()

10: return(bestSol[], bestEnergy)

11: end Function

Update cooling speed

Stop criterion

https://github.com/DrJuanFraustoSolis/EGRSA.git

Math. Comput. Appl. 2021, 26, 39 8 of 21

Algorithm 5. EGRSApert Function.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 7 of 21

Algorithm 4. EGRSA algorithm Procedure.

Algorithm 5. EGRSApert Function.

The GRSA2 algorithm [23] is a hybridization of GRSA with the CRO algorithm [66].

GRSA2 (Algorithm 6) is an enhancement of GRSA. It has the same structure as the previ-

ous algorithms revised in this paper. Specifically, GRSA2 has two principal differences in

the perturbation phase, applying decomposition and soft collision (line 8) and the ac-

ceptance criterion (lines 10 to 14). In Algorithm 7, we show the perturbation process im-

plemented in the GRSA2pert function. In GRSA2, two soft collisions are used (unimolec-

ular, Intermolecular). This algorithm has been applied only in the PFP with a set of 19

peptides and compared with I-TASSER and PEP-FOLD3 approaches obtaining outstand-

ing results in the case of peptides [23]. The GRSA2 algorithm source code is available at

https://github.com/DrJuanFraustoSolis/GRSA2.git (accessed on 28 April 2021).

Algorithm 3 EGRSA algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, E, S, α, ϕ

2: α=0.70; ϕ=0.618; δ = 0.05

3: T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: S
j
= EGRSApert(S

i
)

8: ΔE = Energy(S
j
) – Energy(S

i
)

9: if ΔE ≤ 0 then

10: S
i
= S

j

11: E =Energy(S
i
)

12: else if e-ΔE/Ti < random [0-1] then

13: S
i
= S

j

14: E =Energy(S
i
)

15: end if

16: end while //End Metropolis cycle

17: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

18: if T
k
 ≤ T

fp
 then

19: α
new

=α + δ

20: T
k
= α

new
* T

k

21: else

22: T
k
= T

k
*α

23: end if

24: if T
k
 ≤ T

fpn
then

25: m= Equilibrium(E)

26: if m ≈ ε then

27: T
K
 = T

f

28: end if

29: end if

30: end while //End Temperature cycle

31: end Procedure

Algorithm 3.1 EGRSApert Function

1:EGRSApert(S
i
)

2: n= numGen, bestSol[], bestEnergy

3: pob=initialPob()

4: while gen ≤ n

do

5: population = tournament()

6: population = crossPopulation()

7: population = mutatePopulation()

8: end while

9: pop* = bestIndividual()

10: return(bestSol[], bestEnergy)

11: end Function

Update cooling speed

Stop criterion

Algorithm 3 EGRSA algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, E, S, α, ϕ

2: α=0.70; ϕ=0.618; δ = 0.05

3: T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: S
j
= EGRSApert(S

i
)

8: ΔE = Energy(S
j
) – Energy(S

i
)

9: if ΔE ≤ 0 then

10: S
i
= S

j

11: E =Energy(S
i
)

12: else if e-ΔE/Ti < random [0-1] then

13: S
i
= S

j

14: E =Energy(S
i
)

15: end if

16: end while //End Metropolis cycle

17: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

18: if T
k
 ≤ T

fp
 then

19: α
new

=α + δ

20: T
k
= α

new
* T

k

21: else

22: T
k
= T

k
*α

23: end if

24: if T
k
 ≤ T

fpn
then

25: m= Equilibrium(E)

26: if m ≈ ε then

27: T
K
 = T

f

28: end if

29: end if

30: end while //End Temperature cycle

31: end Procedure

Algorithm 3.1 EGRSApert Function

1:EGRSApert(S
i
)

2: n= numGen, bestSol[], bestEnergy

3: pob=initialPob()

4: while gen ≤ n

do

5: population = tournament()

6: population = crossPopulation()

7: population = mutatePopulation()

8: end while

9: pop* = bestIndividual()

10: return(bestSol[], bestEnergy)

11: end Function

Update cooling speed

Stop criterion

The GRSA2 algorithm [23] is a hybridization of GRSA with the CRO algorithm [66].
GRSA2 (Algorithm 6) is an enhancement of GRSA. It has the same structure as the pre-
vious algorithms revised in this paper. Specifically, GRSA2 has two principal differences
in the perturbation phase, applying decomposition and soft collision (line 8) and the
acceptance criterion (lines 10 to 14). In Algorithm 7, we show the perturbation process
implemented in the GRSA2pert function. In GRSA2, two soft collisions are used (uni-
molecular, Intermolecular). This algorithm has been applied only in the PFP with a set of
19 peptides and compared with I-TASSER and PEP-FOLD3 approaches obtaining outstand-
ing results in the case of peptides [23]. The GRSA2 algorithm source code is available at
https://github.com/DrJuanFraustoSolis/GRSA2.git (accessed on 28 April 2021).

Algorithm 6. GRSA2 algorithm Procedure.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 8 of 21

Algorithm 6. GRSA2 algorithm Procedure.

Algorithm 7. GRSA2pert Function.

3. GRSA-SSP Methodology

In this section, we present the GRSA-SSP methodology (Figure 1). This methodology

has two main processes:

(a) The prediction of the torsion angles (initial solution) from the secondary structure;

that corresponds to stages 1 to 4 in Figure 1.

(b) The refinement of the solution obtained from the secondary structure. This is per-

formed with GRSA algorithms showed in stage four (Figure 1).

The GRSA-SSP methodology has an input (amino acid sequence), an output (tertiary

structure prediction), and four stages: (1) secondary structure prediction, (2) torsion an-

gles prediction, (3) template construction, and (4) refinement by GRSAX algorithms. Next,

we explain each of these stages:

Input (Amino acid sequence). The amino acid sequences are taken as input.

(1) Secondary structure prediction. This secondary structure, which corresponds to the

amino acid sequence and is predicted using PSI-PRED [57]. This algorithm generates

a sequence profile with PSI-BLAST [67] and performs the prediction of the stage, such

Algorithm 4.1 GRSA2pert Function

1: GRSA2pert(S
i
)

2: moleColl, b

3: if b > moleColl then

4: Randomly select one particle Mω

5: if Decompositioncriterionmet

6: S
j
= Decomposition(S

i
)

7: else if

8: S
j
= SoftCollition(S

i
)

9: end if

10: end if

11: return S
j

12: end Function

Algorithm 4 GRSA2 algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, KE, E, S, α, ϕ

2: α=0.70; ϕ=0.618; δ = 0.05

3: KE=0;T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: Eold=Energy(S
i
)

8: S
j
= GRSA2pert(S

i
)

9: EP = Energy(S
j
)

10: if (EP ≤ Eold + KE) then

11: S
i
= S

j

12: E=Energy(S
i
)

13: KE = ((Eold+KE)-EP)*random[0,1]

14: end if

15: end while //End Metropolis cycle

16: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

17: if T
k
 ≤ T

fp
 then

18: α
new

=α + δ

19: T
k
= α

new
* T

k

20: else

21: T
k
= T

k
*α

22: end if

23: if T
k
 ≤ T

fpn
then

24: m= Equilibrium(E)

25: if m ≈ ε then

26: T
K
 = T

f

27: end if

28: end if

29: end while //End Temperature cycle

30: end Procedure

Update cooling speed

Stop criterion

Algorithm 4.1 GRSA2pert Function

1: GRSA2pert(S
i
)

2: moleColl, b

3: if b > moleColl then

4: Randomly select one particle Mω

5: if Decompositioncriterionmet

6: S
j
= Decomposition(S

i
)

7: else if

8: S
j
= SoftCollition(S

i
)

9: end if

10: end if

11: return S
j

12: end Function

Algorithm 4 GRSA2 algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, KE, E, S, α, ϕ

2: α=0.70; ϕ=0.618; δ = 0.05

3: KE=0;T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: Eold=Energy(S
i
)

8: S
j
= GRSA2pert(S

i
)

9: EP = Energy(S
j
)

10: if (EP ≤ Eold + KE) then

11: S
i
= S

j

12: E=Energy(S
i
)

13: KE = ((Eold+KE)-EP)*random[0,1]

14: end if

15: end while //End Metropolis cycle

16: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

17: if T
k
 ≤ T

fp
 then

18: α
new

=α + δ

19: T
k
= α

new
* T

k

20: else

21: T
k
= T

k
*α

22: end if

23: if T
k
 ≤ T

fpn
then

24: m= Equilibrium(E)

25: if m ≈ ε then

26: T
K
 = T

f

27: end if

28: end if

29: end while //End Temperature cycle

30: end Procedure

Update cooling speed

Stop criterion

https://github.com/DrJuanFraustoSolis/GRSA2.git
https://github.com/DrJuanFraustoSolis/GRSA2.git

Math. Comput. Appl. 2021, 26, 39 9 of 21

Algorithm 7. GRSA2pert Function.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 8 of 21

Algorithm 6. GRSA2 algorithm Procedure.

Algorithm 7. GRSA2pert Function.

3. GRSA-SSP Methodology

In this section, we present the GRSA-SSP methodology (Figure 1). This methodology

has two main processes:

(a) The prediction of the torsion angles (initial solution) from the secondary structure;

that corresponds to stages 1 to 4 in Figure 1.

(b) The refinement of the solution obtained from the secondary structure. This is per-

formed with GRSA algorithms showed in stage four (Figure 1).

The GRSA-SSP methodology has an input (amino acid sequence), an output (tertiary

structure prediction), and four stages: (1) secondary structure prediction, (2) torsion an-

gles prediction, (3) template construction, and (4) refinement by GRSAX algorithms. Next,

we explain each of these stages:

Input (Amino acid sequence). The amino acid sequences are taken as input.

(1) Secondary structure prediction. This secondary structure, which corresponds to the

amino acid sequence and is predicted using PSI-PRED [57]. This algorithm generates

a sequence profile with PSI-BLAST [67] and performs the prediction of the stage, such

Algorithm 4.1 GRSA2pert Function

1: GRSA2pert(S
i
)

2: moleColl, b

3: if b > moleColl then

4: Randomly select one particle Mω

5: if Decompositioncriterionmet

6: S
j
= Decomposition(S

i
)

7: else if

8: S
j
= SoftCollition(S

i
)

9: end if

10: end if

11: return S
j

12: end Function

Algorithm 4 GRSA2 algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, KE, E, S, α, ϕ

2: α=0.70; ϕ=0.618; δ = 0.05

3: KE=0;T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: Eold=Energy(S
i
)

8: S
j
= GRSA2pert(S

i
)

9: EP = Energy(S
j
)

10: if (EP ≤ Eold + KE) then

11: S
i
= S

j

12: E=Energy(S
i
)

13: KE = ((Eold+KE)-EP)*random[0,1]

14: end if

15: end while //End Metropolis cycle

16: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

17: if T
k
 ≤ T

fp
 then

18: α
new

=α + δ

19: T
k
= α

new
* T

k

20: else

21: T
k
= T

k
*α

22: end if

23: if T
k
 ≤ T

fpn
then

24: m= Equilibrium(E)

25: if m ≈ ε then

26: T
K
 = T

f

27: end if

28: end if

29: end while //End Temperature cycle

30: end Procedure

Update cooling speed

Stop criterion

Algorithm 4.1 GRSA2pert Function

1: GRSA2pert(S
i
)

2: moleColl, b

3: if b > moleColl then

4: Randomly select one particle Mω

5: if Decompositioncriterionmet

6: S
j
= Decomposition(S

i
)

7: else if

8: S
j
= SoftCollition(S

i
)

9: end if

10: end if

11: return S
j

12: end Function

Algorithm 4 GRSA2 algorithm Procedure

1: Data: T
i
, T

fp
, T

f
, KE, E, S, α, ϕ

2: α=0.70; ϕ=0.618; δ = 0.05

3: KE=0;T
fp
 = T

i
; T

k
 = T

i
; E = 0

4: S
i
=generateSolution()

5: while T
k
 ≥ T

f
do //Temperature cycle

6: while Metropolis length do //Metropolis cycle

7: Eold=Energy(S
i
)

8: S
j
= GRSA2pert(S

i
)

9: EP = Energy(S
j
)

10: if (EP ≤ Eold + KE) then

11: S
i
= S

j

12: E=Energy(S
i
)

13: KE = ((Eold+KE)-EP)*random[0,1]

14: end if

15: end while //End Metropolis cycle

16: T
fp
 = T

fp
*ϕ //Golden ratio section (five cuts recommended)

17: if T
k
 ≤ T

fp
 then

18: α
new

=α + δ

19: T
k
= α

new
* T

k

20: else

21: T
k
= T

k
*α

22: end if

23: if T
k
 ≤ T

fpn
then

24: m= Equilibrium(E)

25: if m ≈ ε then

26: T
K
 = T

f

27: end if

28: end if

29: end while //End Temperature cycle

30: end Procedure

Update cooling speed

Stop criterion

3. GRSA-SSP Methodology

In this section, we present the GRSA-SSP methodology (Figure 1). This methodology
has two main processes:

(a) The prediction of the torsion angles (initial solution) from the secondary structure;
that corresponds to stages 1 to 4 in Figure 1.

(b) The refinement of the solution obtained from the secondary structure. This is per-
formed with GRSA algorithms showed in stage four (Figure 1).

The GRSA-SSP methodology has an input (amino acid sequence), an output (tertiary
structure prediction), and four stages: (1) secondary structure prediction, (2) torsion angles
prediction, (3) template construction, and (4) refinement by GRSAX algorithms. Next, we
explain each of these stages:

Input (Amino acid sequence). The amino acid sequences are taken as input.

(1) Secondary structure prediction. This secondary structure, which corresponds to the
amino acid sequence and is predicted using PSI-PRED [57]. This algorithm generates
a sequence profile with PSI-BLAST [67] and performs the prediction of the stage, such
as the helix (H), strand (E), and coil (C). PSI-PRED calculates the probability of each
possible state and defines the most likely structure.

(2) Torsion angles prediction. The secondary structure’s prediction is essential for this
stage, where SPINE-X is used to obtain the torsion angles (F, Ψ, and ω) of each
amino acid. This process is realized through the Position-Specific Score Matrix and
Physical Parameters [58]. SPINE-X applies artificial neural networks to obtain the
best predictions of the target’s proteins.

(3) Model construction. In this stage, the torsion angles or variables are used to construct
a template as initial solution Si = [F1, Ψ1, X1,ω1, F2, Ψ2, X2,ω2, . . . , Fn, Ψn, Xn,ωn]
that is represented by amino acids subscript 1 to n and the same form by the following
amino acids up to n; n is dependent on the size of an amino acid sequence of the
target protein. The torsion angles represent the base column of the peptide on which
the refinement will be performed.

(4) Refinement by GRSAX. When the previous stages construct the peptide template, we
can apply a GRSAX algorithm such as GRSA (renamed GRSA1), EGRSA (renamed
GRSAE), and GRSA2, as well as the classical SA (GRSA0). The GRSAX algorithms
are tested individually for comparison, which obtains a better tertiary structure of
the target peptide. Moreover, once the energy and three-dimensional structure is
obtained, the structure is evaluated with the RMSD and TM-score [29] metrics.

Output. The GRSAX-SSP algorithm obtains the tertiary structure prediction.

4. Results

We performed the next GRSAX-SSP algorithms with the proposed methodology:
(a) GRSA0-SSP using classical SA [19], (b) GRSA1-SSP using original GRSA [21], (c) GRSAE-
SSP using EGRSA [22], and (d) GRSA2-SSP using GRSA2 [23]. For all of them, we used
the methodology presented in Figure 1. The peptides in this experimentation have 9 to
49 amino acids. The number of variables (torsion angles) for each peptide in this data set is

Math. Comput. Appl. 2021, 26, 39 10 of 21

in the range [49, 304]. We chose this set because these instances (peptides) were used before
in the literature. This set was also useful for comparing the GRSA2-SSP algorithm with
the top-performing approaches of the CASP, which can be used for small peptides. We
compared the last algorithm with I-TASSER, PEP-FOLD3, QUARK, and Rosetta, which are
among the best algorithms in the CASP competition. We noted a difference between the
GRSAX-SSP algorithms and the one that only applies ab initio by naming it GRSAX. Table 1
presents the set of 45 instances sorted by the number of variables taken from [23,28,68,69]
and a PDB code represents each peptide.

Table 1. Set of instances (peptides).

N◦ PDB-Code aa Number of Variables
(Torsion Angles) N◦ PDB-Code aa Number of Variables

(Torsion Angles)

1 1uao 10 47 24 1wz4 23 123

2 1egs 9 49 25 1rpv 17 124

3 1eg4 13 61 26 1pef 18 124

4 1l3q 12 62 27 1du1 20 134

5 2evq 12 66 28 1pei 22 143

6 1le1 12 69 29 1yyb 27 160

7 1in3 12 74 30 1t0c 31 163

8 3bu3 14 74 31 1by0 27 193

9 1gjf 14 79 32 2bn6 33 200

10 1rnu 13 81 33 1wr4 36 206

11 1lcx 13 81 34 1yiu 37 206

12 1k43 14 84 35 2ysh 40 213

13 1a13 14 85 36 1bhi 38 216

14 1nkf 16 86 37 1i6c 39 218

15 1le3 16 91 38 1wr7 41 222

16 1pgbF 16 93 39 2dmv 43 229

17 1dep 15 94 40 1bwx 39 242

18 1niz 16 97 41 1f4i 45 276

19 2bta 15 100 42 1dv0 47 279

20 1l2y 20 100 43 1ify 49 290

21 1e0q 17 109 44 2p81 44 295

22 1b03 18 109 45 1pgy 47 304

23 1wbr 17 120 - - - -

In the experimentation, the GRSAX-SSP algorithms were executed 30 times to validate
the results. The energy function ECEPP/2 is determined with SMMP framework [38]; it
is the objective function of our optimization algorithms. An analytical tuning [20] was
performed to obtain the initial and final temperature for each instance. In GRSA0-SSP
the α value is 0.95, and the temperature range has zero golden sections. For GRSA1-SSP,
GRSAE-SSP, and GRSA2-SSP algorithms, the same cooling scheme was used, using the
α parameter with values from 0.75 to 0.95 with five golden ratio sections, which was
determined by experimentation [21–23]. The GRSAX-SSP algorithms were executed in
one of the terminals of the Ehecatl cluster in TecNM/IT Ciudad Madero, and it has the
following characteristics: Intel® Xeon® processor at 2.30 GHz, Memory: 64 GB (4 × 16 GB)
ddr4-2133, Linux CentOS operating system, and Fortran language.

Math. Comput. Appl. 2021, 26, 39 11 of 21

We used the minimum energy quality values, the RMSD, and TM-score to evaluate
the results, which are two metrics of the structural quality used for PFP algorithms. The
RMSD is a structural measure between the native structure and the one predicted by the
GRSAX-SSP and classical SA named here as GRSA0:

(a) If the RMSD has a value close to zero, the quality of the structure is considered
excellent. On the contrary, the quality is worse.

(b) The TM-score is also used to measure the similarity between two structures. When
the TM-score is greater than 0.5, it indicates that there is a good similarity between
the two structures, and the tested one has the same fold. Otherwise, as the TM-score
is lower than 0.5, the target peptide has a different fold [29].

The TM-score metrics can be calculated using the TM-align [70] (an algorithm to
obtain the best structural alignment between two proteins) or in a classical formulation [29].
In this paper, we use the classical formulation of TM-score.

GRSAX-SSP algorithms use a model determined by the secondary structure, and then
it is refined for obtaining a better prediction. The results are compared with the GRSAX
based on ab initio that only uses the amino acid sequence as information. Figures 2–5 show
average results related to energy (kcal/mol), RMSD, and TM-score for each peptide. The
numbers in the x-axis, represent the instances or peptides of Table 1, and each instance is a
set of torsional angles X = [F1, Ψ1, X1,ω1, F2, Ψ2, X2,ω2, . . . , Fn, Ψn, Xn,ωn] associated to
each amino acid. We averaged the results of 30 executions for comparison.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 11 of 21

characteristics: Intel® Xeon® processor at 2.30 GHz, Memory: 64 GB (4 × 16 GB) ddr4-2133,
Linux CentOS operating system, and Fortran language.

We used the minimum energy quality values, the RMSD, and TM-score to evaluate
the results, which are two metrics of the structural quality used for PFP algorithms. The
RMSD is a structural measure between the native structure and the one predicted by the
GRSAX-SSP and classical SA named here as GRSA0:

(a) If the RMSD has a value close to zero, the quality of the structure is considered excel-
lent. On the contrary, the quality is worse.

(b) The TM-score is also used to measure the similarity between two structures. When
the TM-score is greater than 0.5, it indicates that there is a good similarity between
the two structures, and the tested one has the same fold. Otherwise, as the TM-score
is lower than 0.5, the target peptide has a different fold [29].

The TM-score metrics can be calculated using the TM-align [70] (an algorithm to ob-
tain the best structural alignment between two proteins) or in a classical formulation [29].
In this paper, we use the classical formulation of TM-score.

GRSAX-SSP algorithms use a model determined by the secondary structure, and then
it is refined for obtaining a better prediction. The results are compared with the GRSAX
based on ab initio that only uses the amino acid sequence as information. Figures 2–5 show
average results related to energy (kcal/mol), RMSD, and TM-score for each peptide. The
numbers in the x-axis, represent the instances or peptides of Table 1, and each instance is
a set of torsional angles X = [�1, Ψ1, Χ1, ω1, �2, Ψ2, Χ2, ω2, …, �n, Ψn, Χn, ωn] associated to
each amino acid. We averaged the results of 30 executions for comparison.

Figure 2. Comparison of GRSA0 versus GRSA0-SSP.

Figure 2 shows that GRSA0-SSP has better behavior than GRSA0 or classical SA. Note
that in all the peptides, GRSA0-SSP obtained the lowest energy. In other cases, the RMSD
is more stable with small instances (1–16), and in the next instances, the behavior is equal.
Additionally, when we compared with TM-score, the behavior, in general, is similar. In
conclusion, by implementing this methodology in GRSA0-SSP with these instances, we
obtained slightly improved results.

Figure 3 presents the comparison of the GRSA1-SSP versus GRSA1 with the same
metrics; we observed the behavior with the 45 instances evaluated. In terms of energy,
RMSD, and TM-score, the performance of GRSA1-SSP is equivalent to GRSA1.

Figure 2. Comparison of GRSA0 versus GRSA0-SSP.

Figure 2 shows that GRSA0-SSP has better behavior than GRSA0 or classical SA. Note
that in all the peptides, GRSA0-SSP obtained the lowest energy. In other cases, the RMSD
is more stable with small instances (1–16), and in the next instances, the behavior is equal.
Additionally, when we compared with TM-score, the behavior, in general, is similar. In
conclusion, by implementing this methodology in GRSA0-SSP with these instances, we
obtained slightly improved results.

Figure 3 presents the comparison of the GRSA1-SSP versus GRSA1 with the same
metrics; we observed the behavior with the 45 instances evaluated. In terms of energy,
RMSD, and TM-score, the performance of GRSA1-SSP is equivalent to GRSA1.

Math. Comput. Appl. 2021, 26, 39 12 of 21
Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 12 of 21

Figure 3. Comparison of GRSA1 versus GRSA1-SSP.

Figure 4 shows the behavior of GRSAE-SSP, and we compared it with the original
GRSAE algorithm. In this figure, we can appreciate that the results are equivalent in all
cases when energy, RMSD, and TM-score are used for comparison.

Figure 4. Comparison of GRSAE versus GRSAE-SSP.

In Figure 5, we present the comparison of GRSA2 versus GRSA2-SSP. Note that the
results obtained in every instance are very remarkable, and the superiority of GRSA2-SSP
uses the metrics of energy, RMSD, and TM-Score. In this case, we applied the methodol-
ogy GRSA-SSP to improve the behavior of the classical GRSA2 algorithm.

Figure 3. Comparison of GRSA1 versus GRSA1-SSP.

Figure 4 shows the behavior of GRSAE-SSP, and we compared it with the original
GRSAE algorithm. In this figure, we can appreciate that the results are equivalent in all
cases when energy, RMSD, and TM-score are used for comparison.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 12 of 21

Figure 3. Comparison of GRSA1 versus GRSA1-SSP.

Figure 4 shows the behavior of GRSAE-SSP, and we compared it with the original
GRSAE algorithm. In this figure, we can appreciate that the results are equivalent in all
cases when energy, RMSD, and TM-score are used for comparison.

Figure 4. Comparison of GRSAE versus GRSAE-SSP.

In Figure 5, we present the comparison of GRSA2 versus GRSA2-SSP. Note that the
results obtained in every instance are very remarkable, and the superiority of GRSA2-SSP
uses the metrics of energy, RMSD, and TM-Score. In this case, we applied the methodol-
ogy GRSA-SSP to improve the behavior of the classical GRSA2 algorithm.

Figure 4. Comparison of GRSAE versus GRSAE-SSP.

In Figure 5, we present the comparison of GRSA2 versus GRSA2-SSP. Note that the
results obtained in every instance are very remarkable, and the superiority of GRSA2-SSP
uses the metrics of energy, RMSD, and TM-Score. In this case, we applied the methodology
GRSA-SSP to improve the behavior of the classical GRSA2 algorithm.

Finally, in Figure 6, we present the comparison of the GRSAX-SSP family algorithms.
We observe that GRSA2-SSP has the best values in several instances against the other
algorithms, being higher than the others. Therefore, the best behavior of the algorithms
with secondary structure prediction is GRSA2-SSP.

Furthermore, Figure 7 presents the computational time of the GRSAX-SSP family
algorithms. The GRSA2-SSP has the best behavior in time with low values in most of the
instances compared to the other algorithms.

Math. Comput. Appl. 2021, 26, 39 13 of 21

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 12 of 21

Figure 3. Comparison of GRSA1 versus GRSA1-SSP.

Figure 4 shows the behavior of GRSAE-SSP, and we compared it with the original
GRSAE algorithm. In this figure, we can appreciate that the results are equivalent in all
cases when energy, RMSD, and TM-score are used for comparison.

Figure 4. Comparison of GRSAE versus GRSAE-SSP.

In Figure 5, we present the comparison of GRSA2 versus GRSA2-SSP. Note that the
results obtained in every instance are very remarkable, and the superiority of GRSA2-SSP
uses the metrics of energy, RMSD, and TM-Score. In this case, we applied the methodol-
ogy GRSA-SSP to improve the behavior of the classical GRSA2 algorithm.

Figure 5. Comparison of GRSA2 versus GRSA2-SSP.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 13 of 21

Figure 5. Comparison of GRSA2 versus GRSA2-SSP.

Finally, in Figure 6, we present the comparison of the GRSAX-SSP family algorithms.
We observe that GRSA2-SSP has the best values in several instances against the other al-
gorithms, being higher than the others. Therefore, the best behavior of the algorithms with
secondary structure prediction is GRSA2-SSP.

Figure 6. Comparison of GRSAX-SSP algorithms.

Furthermore, Figure 7 presents the computational time of the GRSAX-SSP family al-
gorithms. The GRSA2-SSP has the best behavior in time with low values in most of the
instances compared to the other algorithms.

Figure 7. Comparison of the average time of the 30 execution of GRSAX-SSP algorithms.

Table 2 presents the results obtained by GRSA2-SSP. For each instance, we show the
best TM-score and their RMSD. Additionally, we calculated the average of the RMSD and
TM-score for the five best predictions. Complementing the results, we determined the
standard deviation (std) of the RMSD and TM-score for the five best predictions and in-
cluded the best type of secondary structure: A (mainly alpha), B (mainly beta), and N
(mainly none). This classification as A, B, and N is based on the secondary structure pre-
dominating in each peptide [27,68,69,71,72]. We sort Table 2 by the number of amino acids
for comparing the best results obtained by GRSA2-SSP with the best algorithms of the
literature. This comparison is presented in Figures 9–11.

Figure 6. Comparison of GRSAX-SSP algorithms.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 13 of 21

Figure 5. Comparison of GRSA2 versus GRSA2-SSP.

Finally, in Figure 6, we present the comparison of the GRSAX-SSP family algorithms.
We observe that GRSA2-SSP has the best values in several instances against the other al-
gorithms, being higher than the others. Therefore, the best behavior of the algorithms with
secondary structure prediction is GRSA2-SSP.

Figure 6. Comparison of GRSAX-SSP algorithms.

Furthermore, Figure 7 presents the computational time of the GRSAX-SSP family al-
gorithms. The GRSA2-SSP has the best behavior in time with low values in most of the
instances compared to the other algorithms.

Figure 7. Comparison of the average time of the 30 execution of GRSAX-SSP algorithms.

Table 2 presents the results obtained by GRSA2-SSP. For each instance, we show the
best TM-score and their RMSD. Additionally, we calculated the average of the RMSD and
TM-score for the five best predictions. Complementing the results, we determined the
standard deviation (std) of the RMSD and TM-score for the five best predictions and in-
cluded the best type of secondary structure: A (mainly alpha), B (mainly beta), and N
(mainly none). This classification as A, B, and N is based on the secondary structure pre-
dominating in each peptide [27,68,69,71,72]. We sort Table 2 by the number of amino acids
for comparing the best results obtained by GRSA2-SSP with the best algorithms of the
literature. This comparison is presented in Figures 9–11.

Figure 7. Comparison of the average time of the 30 execution of GRSAX-SSP algorithms.

Table 2 presents the results obtained by GRSA2-SSP. For each instance, we show the
best TM-score and their RMSD. Additionally, we calculated the average of the RMSD
and TM-score for the five best predictions. Complementing the results, we determined
the standard deviation (std) of the RMSD and TM-score for the five best predictions and
included the best type of secondary structure: A (mainly alpha), B (mainly beta), and
N (mainly none). This classification as A, B, and N is based on the secondary structure

Math. Comput. Appl. 2021, 26, 39 14 of 21

predominating in each peptide [27,68,69,71,72]. We sort Table 2 by the number of amino
acids for comparing the best results obtained by GRSA2-SSP with the best algorithms of
the literature. This comparison is presented in Figures 9–11.

Table 2. Results obtained by GRSA2-SSP.

N◦ PDB
Code aa SS RMSD RMSD

Ave
RMSD

std
TM1

Best
TM1

Ave
TM1

std N◦ PDB
Code aa SS RMSD RMSD

Ave
RMSD

std
TM1

Best
TM1

Ave
TM1

std

1 1egs 9 N 1.47 0.728 0.737 0.411 0.3630 0.043 24 1pef 18 A 1.5 0.706 0.468 0.686 0.661 0.014

2 1uao 10 B 0.71 1.214 0.828 0.401 0.375 0.022 25 1l2y 20 A 0.77 2.268 0.914 0.258 0.243 0.008

3 1l3q 12 N 1.55 1.486 0.727 0.271 0.252 0.025 26 1du1 20 A 1.13 1.62 0.463 0.266 0.266 0.001

4 2evq 12 B 2.43 1.274 1.020 0.382 0.318 0.031 27 1pei 22 A 2.02 1.43 0.366 0.379 0.364 0.010

5 1le1 12 B 0.38 1.356 1.208 0.316 0.301 0.011 28 1wz4 23 A 2.66 2.66 0.424 0.272 0.265 0.015

6 1in3 12 A 1.07 1.054 0.341 0.395 0.387 0.007 29 1yyb 27 A 1.47 1.75 0.306 0.397 0.395 0.002

7 1eg4 13 N 1.59 1.632 0.397 0.339 0.330 0.006 30 1by0 27 A 1.16 1.44 0.217 0.413 0.408 0.003

8 1rnu 13 A 0.26 0.288 0.033 0.628 0.616 0.010 31 1t0c 31 N 2.73 3.04 0.344 0.216 0.2 0.009

9 1lcx 13 N 1.08 1.412 0.422 0.334 0.323 0.009 32 2bn6 33 A 2.17 2.33 0.22 0.329 0.319 0.010

10 3bu3 14 N 1.02 1.122 0.47 0.294 0.263 0.019 33 1wr4 36 B 3.18 3.09 0.55 0.243 0.21 0.018

11 1gjf 14 A 1.37 0.874 0.461 0.561 0.547 0.040 34 1yiu 37 B 3.01 3.17 0.455 0.221 0.202 0.011

12 1k43 14 B 2.92 1.488 0.916 0.303 0.261 0.027 35 1bhi 38 N 2.76 2.736 0.794 0.306 0.296 0.007

13 1a13 14 N 1.38 1.29 0.126 0.313 0.302 0.007 36 1i6c 39 B 4.29 3.51 0.505 0.205 0.191 0.010

14 1dep 15 A 0.98 0.762 0.352 0.641 0.603 0.023 37 1bwx 39 A 2.98 2.58 0.282 0.451 0.443 0.005

15 2bta 15 N 2.47 1.716 0.455 0.227 0.196 0.018 38 2ysh 40 B 3.21 3.46 0.493 0.243 0.222 0.016

16 1nkf 16 A 3.03 1.838 0.842 0.287 0.278 0.009 39 1wr7 41 B 3.71 3.55 0.146 0.223 0.208 0.011

17 1le3 16 B 1.02 1.25 0.77 0.224 0.215 0.007 40 2dmv 43 B 3.27 3.402 0.6 0.217 0.201 0.013

18 1pgbF 16 B 1.54 2.03 0.409 0.229 0.209 0.018 41 2p81 44 A 3.52 3.21 0.476 0.185 0.178 0.007

19 1niz 16 B 2.4 1.77 0.572 0.235 0.214 0.016 42 1f4i 45 A 3.13 3.46 0.221 0.31 0.302 0.006

20 1e0q 17 B 0.79 1.494 0.536 0.226 0.221 0.008 43 1dv0 47 A 2.65 2.94 0.437 0.303 0.283 0.011

21 1wbr 17 N 1.68 1.31 0.363 0.295 0.2716 0.016 44 1pgy 47 A 3.22 2.62 0.46 0.345 0.336 0.006

22 1rpv 17 A 0.81 0.71 0.096 0.469 0.463 0.005 45 1ify 49 A 2.56 2.77 0.4 0.311 0.297 0.008

23 1b03 18 B 3.04 2.356 0.629 0.2143 0.208 0.004 - - - - - - - - - -

Note: PDB code (Instance), number of amino acids (aa), SS is the predominant secondary structure type: beta strand (B), alpha-helix (A)
and none (N), TM1 = TM-score.

Figure 8 shows the GRSA2-SSP algorithm performance with instances classified by
secondary structure. We show that the GRSA2-SSP algorithm has the best behavior in alpha
structure instances evaluated with TM-score in Figure 8a and RMSD metrics in Figure 8b.
The values in Figure 8 are the best obtained using TM-score and their RMSD. In Figure 8c,d,
we present the TM-score average for the five best predictions and their RMSD average.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 14 of 21

Table 2. Results obtained by GRSA2-SSP.

N° PDB
Code aa SS RMSD RMSD

Ave
RMSD

std
TM1
Best

TM1
Ave

TM1
std N° PDB

Code aa SS RMSD RMSD
Ave

RMSD
std

TM1
Best

TM1
Ave

TM1
std

1 1egs 9 N 1.47 0.728 0.737 0.411 0.3630 0.043 24 1pef 18 A 1.5 0.706 0.468 0.686 0.661 0.014
2 1uao 10 B 0.71 1.214 0.828 0.401 0.375 0.022 25 1l2y 20 A 0.77 2.268 0.914 0.258 0.243 0.008
3 1l3q 12 N 1.55 1.486 0.727 0.271 0.252 0.025 26 1du1 20 A 1.13 1.62 0.463 0.266 0.266 0.001
4 2evq 12 B 2.43 1.274 1.020 0.382 0.318 0.031 27 1pei 22 A 2.02 1.43 0.366 0.379 0.364 0.010
5 1le1 12 B 0.38 1.356 1.208 0.316 0.301 0.011 28 1wz4 23 A 2.66 2.66 0.424 0.272 0.265 0.015
6 1in3 12 A 1.07 1.054 0.341 0.395 0.387 0.007 29 1yyb 27 A 1.47 1.75 0.306 0.397 0.395 0.002
7 1eg4 13 N 1.59 1.632 0.397 0.339 0.330 0.006 30 1by0 27 A 1.16 1.44 0.217 0.413 0.408 0.003
8 1rnu 13 A 0.26 0.288 0.033 0.628 0.616 0.010 31 1t0c 31 N 2.73 3.04 0.344 0.216 0.2 0.009
9 1lcx 13 N 1.08 1.412 0.422 0.334 0.323 0.009 32 2bn6 33 A 2.17 2.33 0.22 0.329 0.319 0.010

10 3bu3 14 N 1.02 1.122 0.47 0.294 0.263 0.019 33 1wr4 36 B 3.18 3.09 0.55 0.243 0.21 0.018
11 1gjf 14 A 1.37 0.874 0.461 0.561 0.547 0.040 34 1yiu 37 B 3.01 3.17 0.455 0.221 0.202 0.011
12 1k43 14 B 2.92 1.488 0.916 0.303 0.261 0.027 35 1bhi 38 N 2.76 2.736 0.794 0.306 0.296 0.007
13 1a13 14 N 1.38 1.29 0.126 0.313 0.302 0.007 36 1i6c 39 B 4.29 3.51 0.505 0.205 0.191 0.010
14 1dep 15 A 0.98 0.762 0.352 0.641 0.603 0.023 37 1bwx 39 A 2.98 2.58 0.282 0.451 0.443 0.005
15 2bta 15 N 2.47 1.716 0.455 0.227 0.196 0.018 38 2ysh 40 B 3.21 3.46 0.493 0.243 0.222 0.016
16 1nkf 16 A 3.03 1.838 0.842 0.287 0.278 0.009 39 1wr7 41 B 3.71 3.55 0.146 0.223 0.208 0.011
17 1le3 16 B 1.02 1.25 0.77 0.224 0.215 0.007 40 2dmv 43 B 3.27 3.402 0.6 0.217 0.201 0.013
18 1pgbF 16 B 1.54 2.03 0.409 0.229 0.209 0.018 41 2p81 44 A 3.52 3.21 0.476 0.185 0.178 0.007
19 1niz 16 B 2.4 1.77 0.572 0.235 0.214 0.016 42 1f4i 45 A 3.13 3.46 0.221 0.31 0.302 0.006
20 1e0q 17 B 0.79 1.494 0.536 0.226 0.221 0.008 43 1dv0 47 A 2.65 2.94 0.437 0.303 0.283 0.011
21 1wbr 17 N 1.68 1.31 0.363 0.295 0.2716 0.016 44 1pgy 47 A 3.22 2.62 0.46 0.345 0.336 0.006
22 1rpv 17 A 0.81 0.71 0.096 0.469 0.463 0.005 45 1ify 49 A 2.56 2.77 0.4 0.311 0.297 0.008
23 1b03 18 B 3.04 2.356 0.629 0.2143 0.208 0.004 - - - - - - - - - -

Note: PDB code (Instance), number of amino acids (aa), SS is the predominant secondary structure type: beta strand (B),
alpha-helix (A) and none (N), TM1 = TM-score.

Figure 8 shows the GRSA2-SSP algorithm performance with instances classified by
secondary structure. We show that the GRSA2-SSP algorithm has the best behavior in al-
pha structure instances evaluated with TM-score in Figure 8a and RMSD metrics in Figure
8b. The values in Figure 8 are the best obtained using TM-score and their RMSD. In Figure
8c,d, we present the TM-score average for the five best predictions and their RMSD aver-
age.

Figure 8. GRSA2-SSP according to the type of secondary structure. Figure 8. GRSA2-SSP according to the type of secondary structure.

In Figures 9–11, we present the behavior of the GRSA2-SSP algorithm, and we compare
it with the results obtained from the approaches PEP-FOLD3, I-TASSER, QUARK, and
Rosetta. We divided the dataset of Table 1 into three groups of 15 instances; groups 1, 2,
and 3 have instances 1–15, 16–30, and 31–45. We compared these groups using the metrics
RMSD, TM-score, GDT-TS [73], and TM-score (classical), and we present the best TM-score,

Math. Comput. Appl. 2021, 26, 39 15 of 21

the average of the five best predictions of the TM-score, and their RMSD. Additionally, we
present the GDT-TS average and TM-score average.

In Figure 9, we introduced the comparison of the first group, and we observed that
GRSA2-SSP behaves similarly to I-TASSER and PEP-FOLD3, but in this group of small
peptides, PEP-FOLD3 is slightly better than our algorithm and I-TASSER when GDT-TS
is compared (Figure 9e). Furthermore, we observed that our algorithm is competitive in
this group. In this comparison, Rossetta and QUARK were not added because the minimal
number of amino acids predicted are 27 and 20, respectively.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 15 of 21

In Figures 9–11, we present the behavior of the GRSA2-SSP algorithm, and we com-
pare it with the results obtained from the approaches PEP-FOLD3, I-TASSER, QUARK,
and Rosetta. We divided the dataset of Table 1 into three groups of 15 instances; groups
1, 2, and 3 have instances 1–15, 16–30, and 31–45. We compared these groups using the
metrics RMSD, TM-score, GDT-TS [73], and TM-score (classical), and we present the best
TM-score, the average of the five best predictions of the TM-score, and their RMSD. Ad-
ditionally, we present the GDT-TS average and TM-score average.

In Figure 9, we introduced the comparison of the first group, and we observed that
GRSA2-SSP behaves similarly to I-TASSER and PEP-FOLD3, but in this group of small
peptides, PEP-FOLD3 is slightly better than our algorithm and I-TASSER when GDT-TS
is compared (Figure 9e). Furthermore, we observed that our algorithm is competitive in
this group. In this comparison, Rossetta and QUARK were not added because the minimal
number of amino acids predicted are 27 and 20, respectively.

Figure 9. Comparison of GRSA2-SSP, PEP-FOLD3, and I-TASSER by RMSD (up to 15 amino ac-
ids). Figure 9 (a) best TM-score and (b) their RMSD, (c) TM-score average of the five best predic-
tions, (d) RMSD average of the five best predictions, (e) GDT-TS average.

Figure 10 compares the second group of 16 to 30 amino acids with the best and the
five best obtained using the TM-score metric and their RMSD, and the GDT-TS average.
In this comparison, we added the second group of instances’ results of QUARK; Rosetta
was omitted because it is unable to predict most of the instances of this group.

In Figure 10a we observe very similar behavior among GRSA2-SSP, PEP-FOLD3, I-
TASSER, and Rosetta. Note in this figure, GRSA2-SSP and PEP-FOLD3 obtain the best
prediction. In Figure 10c, when the best five predictions are compared, I-TASSER obtains
the best results, followed by PEPFOLD3 and GRSA2-SSP. Additionally, when the RMSD
average is compared (Figure 10d), I-TASSER is the best, followed by PEP-FOLD3 and
GRSA2-SSP. Finally, in Figures 10e, when GDT-TS is compared, GRSA2-SSP has a similar
performance to PEP-FOLD3, I-TASSER, and QUARK. According to this figure, GRSA2-
SSP and I-TASSER obtained a similar average.

Figure 9. Comparison of GRSA2-SSP, PEP-FOLD3, and I-TASSER by RMSD (up to 15 amino acids).
Figure 9 (a) best TM-score and (b) their RMSD, (c) TM-score average of the five best predictions,
(d) RMSD average of the five best predictions, (e) GDT-TS average.

Figure 10 compares the second group of 16 to 30 amino acids with the best and the
five best obtained using the TM-score metric and their RMSD, and the GDT-TS average. In
this comparison, we added the second group of instances’ results of QUARK; Rosetta was
omitted because it is unable to predict most of the instances of this group.

In Figure 10a we observe very similar behavior among GRSA2-SSP, PEP-FOLD3, I-
TASSER, and Rosetta. Note in this figure, GRSA2-SSP and PEP-FOLD3 obtain the best
prediction. In Figure 10c, when the best five predictions are compared, I-TASSER obtains
the best results, followed by PEPFOLD3 and GRSA2-SSP. Additionally, when the RMSD
average is compared (Figure 10d), I-TASSER is the best, followed by PEP-FOLD3 and
GRSA2-SSP. Finally, in Figure 10e, when GDT-TS is compared, GRSA2-SSP has a similar
performance to PEP-FOLD3, I-TASSER, and QUARK. According to this figure, GRSA2-SSP
and I-TASSER obtained a similar average.

Figure 11 compares the third group of 31 to 49 amino acids with the five best results
obtained using the TM-score metric and their RMSD y GDT-TS. This comparison added
the Rosetta approach because it can process the number of aa in this group. As we observe,
the best algorithm is I-TASSER, followed by Rosetta, QUARK, PEP-FOLD3, and finally
GRSA2-SSP.

Math. Comput. Appl. 2021, 26, 39 16 of 21
Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 16 of 21

Figure 10. Comparison of GRSA2-TBM, PEP-FOLD3, and I-TASSER by TM-score (16 to 30 amino
acids). Figure 10 (a) best TM-score, and (b) their RMSD, (c) TM-score average of the five best pre-
dictions, (d) RMSD of the five best predictions, and (e) GDT-TS average of the five best predic-
tions.

Figure 11 compares the third group of 31 to 49 amino acids with the five best results
obtained using the TM-score metric and their RMSD y GDT-TS. This comparison added
the Rosetta approach because it can process the number of aa in this group. As we observe,
the best algorithm is I-TASSER, followed by Rosetta, QUARK, PEP-FOLD3, and finally
GRSA2-SSP.

Figure 11. Comparison of GRSA2-SSP, PEP-FOLD3, I-TASSER, QUARK, and Rosetta by TM-Score
(31 to 49 amino acids). Figure 11 (a) best TM-score, and (b) their RMSD, (c) TM-score average of
the five best predictions, (d) RMSD average of the five best predictions, and (e) GDT-TS average of
the five best predictions.

The 45 instances evaluated in the below experimentation show the application of the
secondary structure results and refine them with the GRSAX algorithms, enhancing the
performance in energy, RMSD, and TM-score. Specifically, when GRSA2-SSP is compared
with PEP-FOLD3, I-TASSER, QUARK, and Rosetta, we observed that our algorithm per-
forms well in small instances (Group 1 and 2). Nevertheless, in the largest instances, our
algorithm is not the best, but it is competitive.

Figure 10. Comparison of GRSA2-TBM, PEP-FOLD3, and I-TASSER by TM-score (16 to 30 amino
acids). Figure 10 (a) best TM-score, and (b) their RMSD, (c) TM-score average of the five best
predictions, (d) RMSD of the five best predictions, and (e) GDT-TS average of the five best predictions.

Math. Comput. Appl. 2021, 26, x FOR PEER REVIEW 16 of 21

Figure 10. Comparison of GRSA2-TBM, PEP-FOLD3, and I-TASSER by TM-score (16 to 30 amino
acids). Figure 10 (a) best TM-score, and (b) their RMSD, (c) TM-score average of the five best pre-
dictions, (d) RMSD of the five best predictions, and (e) GDT-TS average of the five best predic-
tions.

Figure 11 compares the third group of 31 to 49 amino acids with the five best results
obtained using the TM-score metric and their RMSD y GDT-TS. This comparison added
the Rosetta approach because it can process the number of aa in this group. As we observe,
the best algorithm is I-TASSER, followed by Rosetta, QUARK, PEP-FOLD3, and finally
GRSA2-SSP.

Figure 11. Comparison of GRSA2-SSP, PEP-FOLD3, I-TASSER, QUARK, and Rosetta by TM-Score
(31 to 49 amino acids). Figure 11 (a) best TM-score, and (b) their RMSD, (c) TM-score average of
the five best predictions, (d) RMSD average of the five best predictions, and (e) GDT-TS average of
the five best predictions.

The 45 instances evaluated in the below experimentation show the application of the
secondary structure results and refine them with the GRSAX algorithms, enhancing the
performance in energy, RMSD, and TM-score. Specifically, when GRSA2-SSP is compared
with PEP-FOLD3, I-TASSER, QUARK, and Rosetta, we observed that our algorithm per-
forms well in small instances (Group 1 and 2). Nevertheless, in the largest instances, our
algorithm is not the best, but it is competitive.

Figure 11. Comparison of GRSA2-SSP, PEP-FOLD3, I-TASSER, QUARK, and Rosetta by TM-Score
(31 to 49 amino acids). Figure 11 (a) best TM-score, and (b) their RMSD, (c) TM-score average of the
five best predictions, (d) RMSD average of the five best predictions, and (e) GDT-TS average of the
five best predictions.

The 45 instances evaluated in the below experimentation show the application of the
secondary structure results and refine them with the GRSAX algorithms, enhancing the
performance in energy, RMSD, and TM-score. Specifically, when GRSA2-SSP is compared
with PEP-FOLD3, I-TASSER, QUARK, and Rosetta, we observed that our algorithm per-
forms well in small instances (Group 1 and 2). Nevertheless, in the largest instances, our
algorithm is not the best, but it is competitive.

We carried out a second experimentation with six mini-proteins (5wll, 5lo2, 5up5,
5uoi, 2ki0, and 2kik) presented in Table 3. The mini-proteins come from the de novo
protein design field [74–78]. This data set was proposed to observe the behavior of our best
algorithm in these kinds of instances.

Math. Comput. Appl. 2021, 26, 39 17 of 21

Table 3. Mini-proteins.

Instances

N◦ PDB Code aa Number of Variables
(Torsion Angles) SS

1 5wll 26 174 A

2 5lo2 34 192 A

3 2ki0 36 214 N

4 5up5 40 266 N

5 5uoi 43 282 A

6 2kik 48 306 A
Note: alpha-helix (A) and none (N) for secondary structure.

We applied the same evaluation of all the algorithms, as in the first experimentation,
using RMSD, TM-score, and GDT-TS metrics. Table 4 shows the results of all the algorithms
in this data set. Evaluating them with TM-score and GDT-TS, we observe that the best
algorithms were Rosetta, I-TASSER, and GRSA2-SSP, where the number of times the best
results were achieved 3, 2, and 1, respectively. Additionally, evaluating with the RMSD,
the best algorithms were again Rosseta, I-TASSER, and GRSA2-SSP, but this time they
obtained the best results in two instances, which were (5uoi, 2kik), (2ki0, 5up5), and (5wll,
5lo2), respectively. As a result, we can say that Rosetta is the best algorithm, followed by
I-TASSER, and GRSA2-SSP.

Table 4. Average metrics results of Mini-proteins.

Approaches

Instances

5wll 5lo2 2ki0

RMSD TM-Score GDT-TS RMSD TM-Score GDT-TS RMSD TM-Score GDT-TS

GRSA2-SSP 0.656 * 0.642 * 0.944 * 1.504 * 0.501 0.649 2.172 0.354 0.504

PEP-FOLD3 1.074 0.526 0.892 1.922 0.532 0.769 2.422 0.466 0.697

I-TASSER 0.823 0.530 0.737 1.734 0.608 0.776 0.620 * 0.899 * 0.986 *

QUARK 0.897 0.565 0.788 1.848 0.527 0.713 2.228 0.450 0.688

Rosetta N/A N/A N/A 1.552 0.694 * 0.849 * 2.146 0.460 0.710

Approaches

Instances

5up5 5uoi 2kik

RMSD TM-Score GDT-TS RMSD TM-Score GDT-TS RMSD TM-Score GDT-TS

GRSA2-SSP 2.234 0.277 0.403 3.194 0.192 0.340 2.756 0.339 0.508

PEP-FOLD3 2.512 0.372 0.541 2.516 0.481 0.629 2.282 0.395 0.597

I-TASSER 1.390 * 0.782 * 0.900 * 2.565 0.512 0.664 2.187 0.448 0.557

QUARK 1.880 0.614 0.778 2.022 0.633 0.777 2.028 0.462 0.627

Rosetta 1.716 0.692 0.838 1.642 * 0.753 * 0.871 * 1.968 * 0.665 * 0.785 *

Note: The asterisk (*) represents the best result in each column.

5. Conclusions

In this paper, we present the methodology GRSA-SSP for Protein Folding Problem
applied to peptides. The objective of this problem is to predict the functional tridimen-
sional protein structure. The algorithms developed with this methodology are GRSA0-SSP,
GRSA1-SSP, GRSAE-SSP, and GRSA2-SSP. The main relevance of the algorithm GRSA2-
SSP, developed with this methodology, is that it produces very good results in the case

Math. Comput. Appl. 2021, 26, 39 18 of 21

of peptides; specifically, it is similar or better than the algorithms Rosetta, PEP-FOLD3,
QUARK, and I-TASSER for the small and medium peptides, according to the experi-
mentation presented. The last algorithms have traditionally been among the best of the
CASP competition; besides, they use modern machine learning techniques like artificial
neural networks.

We compared the algorithms developed with the original algorithms GRSA0, GRSA1,
GRSAE, and GRSA2; we used a data set of 45 instances for this comparison. We showed
that the hybrid algorithms produced with the GRSA-SSP methodology outperform the
original ones. For this comparison, we used the metrics Energy, RMSD, TM-score, and
execution time. We observed that the best of all these algorithms is GRSA2-SSP formulated
with the proposed methodology.

We made a second evaluation comparing the GRSA2-SSP algorithm with the best
state-of-the-art algorithms (we used the same data set of 45 instances). We selected for this
comparison PEP-FOLD3, I-TASSER, QUARK, and Rosetta. We used a data set of forty-five
instances divided into three groups, from small to large peptides. The experimentation
shows that for groups 1 and 2, GRSA2-SSP performs as well as these algorithms. We
observe that for the first group PEP-FOLD3 was the best, followed by GRSA2-SSP, while
in the second group, the best algorithm was I-TASSER followed by GRSA2-SSP and PEP-
FOLD3. Finally, in the third group, the best algorithm was Rosseta, followed by I-TASSER.
Additionally, we present an analysis of GRSA2-SSP results for each type of secondary
structure, obtaining a better behavior with alpha structures.

Furthermore, we assessed GRSA2-SSP with a second data set of six instances named
mini proteins. The GRSA2-SSP results were compared with PEP-FOLD3, I-TASSER,
QUARK, and Rosetta. The best algorithms in this data set were Rosetta, I-TASSER, and
GRSA2-SSP because the number of times the best TM-score and GDT-TS were 3, 2, and 1,
respectively. However, each of the three achieved two times the first place when RMSD
was evaluated. As a result, the best of these algorithms for this data set is Rosetta, followed
by I-TASSER and GRSA2-SSP.

We conclude that GRSAX-SSP algorithms enhance the original GRSA algorithms.
The best of them is GRSA2-SSP which achieves very good results, surpassing the best
state-of-art for peptides up to thirty amino acids. Finally, we note that the main advantage
of our methodology is that it is simpler than the most powerful approaches of the literature.

Author Contributions: J.F.-S. and J.P.S.-H. contributed equally to the development of this paper.
Conceptualization, J.P.S.-H., D.A.S.-M. and J.F.-S.; methodology J.F.-S., D.A.S.-M., J.P.S.-H., and
J.J.G.-B.; Software J.P.S.-H., D.A.S.-M. and F.G.M.-N.; validation, J.P.S.-H. and J.F.-S.; formal analysis,
D.A.S.-M., F.G.M.-N., J.J.G.-B., and G.C.-V.; writing—original draft J.F.-S., J.P.S.-H., and D.A.S.-M.;
writing—review and editing, J.F.-S., D.A.S.-M. and J.P.S.-H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to acknowledge with appreciation and gratitude CONA-
CYT and TecNM/Instituto Tecnológico de Ciudad Madero. Also, we acknowledge Laboratorio
Nacional de Tecnologías de la Información (LaNTI) for the access to the cluster.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Calvo, X.R.; Verhaert, P. The emergence of peptides

in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteom. 2014, 4, 58–69. [CrossRef]
2. Agyei, D.; Danquah, M.K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv. 2011, 29,

272–277. [CrossRef]
3. Patel, L.N.; Zaro, J.L.; Shen, W.-C. Cell Penetrating Peptides: Intracellular Pathways and Pharmaceutical Perspectives. Pharm. Res.

2007, 24, 1977–1992. [CrossRef]
4. Danquah, M.; Agyei, D. Pharmaceutical applications of bioactive peptides. OA Biotechnol. 2012, 1. [CrossRef]
5. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128.

[CrossRef] [PubMed]

http://doi.org/10.1016/j.euprot.2014.05.003
http://doi.org/10.1016/j.biotechadv.2011.01.001
http://doi.org/10.1007/s11095-007-9303-7
http://doi.org/10.13172/2052-0069-1-2-294
http://doi.org/10.1016/j.drudis.2014.10.003
http://www.ncbi.nlm.nih.gov/pubmed/25450771

Math. Comput. Appl. 2021, 26, 39 19 of 21

6. Vetter, I.; Davis, J.L.; Rash, L.D.; Anangi, R.; Mobli, M.; Alewood, P.F.; Lewis, R.J.; King, G.F. Venomics: A new paradigm for
natural products-based drug discovery. Amino Acids 2010, 40, 15–28. [CrossRef] [PubMed]

7. Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The Future of Peptide-based Drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [CrossRef]
[PubMed]

8. Stalmach, A.; Johnsson, H.; McInnes, I.B.; Husi, H.; Klein, J.; Dakna, M. Identification of urinary peptide biomarkers associated
with rheumatoid arthritis. PLoS ONE 2014, 9, e104625.

9. Gautam, A.; Kapoor, P.; Chaudhary, K.; Kumar, R.; Raghava, G.P. Tumor homingpeptides as molecular probes for cancer
therapeutics, diagnostics and theranostics. Curr. Med. Chem. 2014, 21, 2367–2391. [CrossRef] [PubMed]

10. Li, Z.J.; Cho, C.H. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J. Transl. Med. 2012, 10
(Suppl. S1). [CrossRef]

11. Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorgan.
Med. Chem. 2018, 26, 2700–2707. [CrossRef] [PubMed]

12. Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today
2010, 15, 40–56. [CrossRef] [PubMed]

13. Kendrew, J.C.; Bodo, G.; Dintzis, H.M.; Parrish, R.G.; Wyckoff, H.; Phillips, D.C. A three-dimensional model of the myoglobin
molecule obtained by X-ray analysis. Nature 1958, 181, 662–666. [CrossRef] [PubMed]

14. Perutz, M.F.; Rossmann, M.G.; Cullis, A.F.; Muirhead, H.I.L.A.R.Y.; Will, G.; North, A.C.T. Structure of hemoglobin. Brookhaven.
Symp. Biol. 1960, 13, 165–183. [PubMed]

15. Anfinsen, C.B. Principles that Govern the Folding of Protein Chains. Science 1973, 181, 223–230. [CrossRef]
16. Hart, W.E.; Istrail, S. Robust Proofs of NP-Hardness for Protein Folding: General Lattices and Energy Potentials. J. Comput. Biol.

1997, 4, 1–22. [CrossRef] [PubMed]
17. Levinthal, C. Are There Pathways for Protein Folding. J. Chim. Phys. 1968, 65, 44–45. [CrossRef]
18. Li, Z.; Scheraga, H.A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad.

Sci. USA 1987, 84, 6611–6615. [CrossRef] [PubMed]
19. Morales, L.B.; Garduño-Juárez, R.; Romero, D. Applications of Simulated Annealing to the Multiple-Minima Problem in Small

Peptides. J. Biomol. Struct. Dyn. 1991, 8, 721–735. [CrossRef]
20. Frausto, J.; Román, E.F.; Romero, D.; Soberon, X.; Liñán, E. Analytically Tuned Simulated Annealing Applied to the Protein

Folding Problem. In Proceedings of the 7th International Conference on Computational Science, Beijing, China, 27–30 May 2007;
Springer: Berlin/Heidelberg, Germany, 2007; Volume 4488, pp. 370–377.

21. Frausto, J.; Sánchez, J.P.; Sánchez, M.; García, E.L. Golden Ratio Simulated Annealing for Protein Folding Problem. Int. J. Comput.
Methods 2015, 12, 1550037. [CrossRef]

22. Maldonado, F.; Frausto, J.; Sánchez, J.; González, J.; Liñán, E.; Castilla, G. Evolutionary GRSA for Protein Structure Prediction. Int.
J. Comb. Optim. Probl. Inform. 2016, 7, 75–86.

23. Frausto, J.; Sánchez, J.P.; Maldonado, F.; González, J.J. GRSA Enhanced for Protein Folding Problem in the Case of Peptides.
Axioms 2019, 8, 136. [CrossRef]

24. Hiranuma, N.; Park, H.; Baek, M.; Anishchenko, I.; Dauparas, J.; Baker, D. Improved protein structure refinement guided by deep
learning based accuracy estimation. Nat. Commun. 2021, 12, 1–11. [CrossRef]

25. Xu, D.; Zhang, Y. Toward optimal fragment generations for ab initio protein structure assembly. Proteins 2012, 81, 229–239.
[CrossRef] [PubMed]

26. Wang, D.; Geng, L.; Zhao, Y.-J.; Yang, Y.; Huang, Y.; Zhang, Y.; Shen, H.-B. Artificial intelligence-based multi-objective optimization
protocol for protein structure refinement. Bioinformatics 2020, 36, 437–448. [CrossRef] [PubMed]

27. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al.
Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction
(CASP13). Proteins Struct. Funct. Bioinform. 2019, 87, 1141–1148. [CrossRef] [PubMed]

28. Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de Novo Structure Prediction for
Linear Peptides in Solution and in Complex. Nucleic Acids Res. 2016, 44, W449–W454. [CrossRef]

29. Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 2004, 57, 702–710.
[CrossRef]

30. Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods
2015, 12, 7–8. [CrossRef] [PubMed]

31. Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015, 43,
W174–W181. [CrossRef] [PubMed]

32. Rohl, C.A.; Strauss, C.E.; Misura, K.M.; Baker, D. Protein Structure Prediction Using Rosetta. Oncogene Tech. 2004, 383, 66–93.
[CrossRef]

33. Xu, D.; Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based
force field. Proteins 2012, 80, 1715–1735. [CrossRef]

34. Dill, K.A.; Maccallum, J.L. The Protein-Folding Problem, 50 Years On. Science 2012, 338, 1042–1046. [CrossRef] [PubMed]
35. Dill, K.A. Dominant forces in protein folding. Biochemistry 1990, 29, 7133–7155. [CrossRef] [PubMed]
36. Ponder, J.W.; Case, D.A. Force Fields for Protein Simulations. Accessory Fold. Proteins 2003, 66, 27–85. [CrossRef]

http://doi.org/10.1007/s00726-010-0516-4
http://www.ncbi.nlm.nih.gov/pubmed/20177945
http://doi.org/10.1111/cbdd.12055
http://www.ncbi.nlm.nih.gov/pubmed/23253135
http://doi.org/10.2174/0929867321666140217122100
http://www.ncbi.nlm.nih.gov/pubmed/24533809
http://doi.org/10.1186/1479-5876-10-S1-S1
http://doi.org/10.1016/j.bmc.2017.06.052
http://www.ncbi.nlm.nih.gov/pubmed/28720325
http://doi.org/10.1016/j.drudis.2009.10.009
http://www.ncbi.nlm.nih.gov/pubmed/19879957
http://doi.org/10.1038/181662a0
http://www.ncbi.nlm.nih.gov/pubmed/13517261
http://www.ncbi.nlm.nih.gov/pubmed/13734651
http://doi.org/10.1126/science.181.4096.223
http://doi.org/10.1089/cmb.1997.4.1
http://www.ncbi.nlm.nih.gov/pubmed/9109034
http://doi.org/10.1051/jcp/1968650044
http://doi.org/10.1073/pnas.84.19.6611
http://www.ncbi.nlm.nih.gov/pubmed/3477791
http://doi.org/10.1080/07391102.1991.10507841
http://doi.org/10.1142/S0219876215500371
http://doi.org/10.3390/axioms8040136
http://doi.org/10.1038/s41467-021-21511-x
http://doi.org/10.1002/prot.24179
http://www.ncbi.nlm.nih.gov/pubmed/22972754
http://doi.org/10.1093/bioinformatics/btz544
http://www.ncbi.nlm.nih.gov/pubmed/31274151
http://doi.org/10.1002/prot.25834
http://www.ncbi.nlm.nih.gov/pubmed/31602685
http://doi.org/10.1093/nar/gkw329
http://doi.org/10.1002/prot.20264
http://doi.org/10.1038/nmeth.3213
http://www.ncbi.nlm.nih.gov/pubmed/25549265
http://doi.org/10.1093/nar/gkv342
http://www.ncbi.nlm.nih.gov/pubmed/25883148
http://doi.org/10.1016/s0076-687983004-0
http://doi.org/10.1002/prot.24065
http://doi.org/10.1126/science.1219021
http://www.ncbi.nlm.nih.gov/pubmed/23180855
http://doi.org/10.1021/bi00483a001
http://www.ncbi.nlm.nih.gov/pubmed/2207096
http://doi.org/10.1016/s0065-323366002-x

Math. Comput. Appl. 2021, 26, 39 20 of 21

37. Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A program for macromolecular
energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187–217. [CrossRef]

38. Momany, F.A.; McGuire, R.F.; Burgess, A.W.; Scheraga, H.A. Energy parameters in polypeptides. VII. Geometric parameters,
partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally
occurring amino acids. J. Phys. Chem. 1975, 79, 2361–2381. [CrossRef]

39. Eisenmenger, F.; Hansmann, U.H.; Hayryan, S.; Hu, C.-K. [SMMP] A modern package for simulation of proteins. Comput. Phys.
Commun. 2001, 138, 192–212. [CrossRef]

40. Jiang, P.; Xu, J. RaptorX: Exploiting structure information for protein alignment by statistical inference. Proteins 2011, 79, 161–171.
41. Zhou, H.; Pandit, S.B.; Skolnick, J. Performance of the Pro-sp3-TASSER server in CASP8. Proteins 2009, 77, 123–127. [CrossRef]
42. Konstantin, A.; Lorenza, B.; Jürgen, K.; Torsten, S. The SWISS-MODEL workspace: A web-based environment for protein structure

homology modelling. Bioinformatics 2006, 22, 195–201.
43. Schmitt, S.; Kuhn, D.; Klebe, G. A New Method to Detect Related Function among Proteins Independent of Sequence and Fold

Homology. J. Mol. Biol. 2002, 323, 387–406. [CrossRef]
44. Lemer, C.M.-R.; Rooman, M.J.; Wodak, S.J. Protein structure prediction by threading methods: Evaluation of current techniques.

Proteins 1995, 23, 337–355. [CrossRef]
45. Dorn, M.; e Silva, M.B.; Buriol, L.S.; Lamb, L.C. Three-dimensional protein structure prediction: Methods and computational

strategies. Comput. Biol. Chem. 2014, 53, 251–276. [CrossRef]
46. Zhang, Y. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins

2013, 82, 175–187. [CrossRef]
47. Bhardwaj, G.; Mulligan, V.K.; Bahl, C.D.; Gilmore, J.M.; Harvey, P.J.; Cheneval, O.; Buchko, G.W.; Pulavarti, S.V.S.R.K.; Kaas, Q.;

Eletsky, A.; et al. Accurate de novo design of hyperstable constrained peptides. Nature 2016, 538, 329–335. [CrossRef] [PubMed]
48. Harada, R.; Nakamura, T.; Shigeta, Y. A Fast Convergent Simulated Annealing Algorithm for Protein-Folding: Simulated

Annealing Outlier FLOODing (SA-OFLOOD) Method. Bull. Chem. Soc. Jpn. 2016, 89, 1361–1367. [CrossRef]
49. Zhang, L.; Ma, H.; Qian, W.; Li, H. Protein structure optimization using improved simulated annealing algorithm on a three-

dimensional AB off-lattice model. Comput. Biol. Chem. 2020, 85, 107237. [CrossRef] [PubMed]
50. Zhang, L.; Ma, H.; Qian, W.; Li, H. Sequence-based protein structure optimization using enhanced simulated annealing al-gorithm

on a coarse-grained model. J. Mol. Model. 2020, 26, 1–13. [CrossRef]
51. Mitra, P.; Shultis, D.; Brender, J.R.; Czajka, J.; Marsh, D.; Gray, F.; Cierpicki, T.; Zhang, Y. An Evolution-Based Approach to De

Novo Protein Design and Case Study on Mycobacterium tuberculosis. PLoS Comput. Biol. 2013, 9, e1003298. [CrossRef]
52. Banerjee, A.; Pal, K.; Mitra, P. An evolutionary profile guided greedy parallel replica-exchange Monte Carlo search algorithm for

rapid convergence in protein design. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 18, 489–499. [CrossRef] [PubMed]
53. Wu, S.; Zhang, Y. LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Res. 2007, 35, 3375–3382.

[CrossRef]
54. Zheng, W.; Zhang, C.; Wuyun, Q.; Pearce, R.; Li, Y.; Zhang, Y. LOMETS2: Improved meta-threading server for fold-recognition

and structure-based function annotation for distant-homology proteins. Nucleic Acids Res. 2019, 47, W429–W436. [CrossRef]
[PubMed]

55. Yang, J.; Roy, A.; Zhang, Y. BioLiP: A semi-manually curated database for biologically relevant ligand–protein interactions.
Nucleic Acids Res. 2012, 41, D1096–D1103. [CrossRef]

56. De Oliveira, S.; Law, E.C.; Shi, J.; Deane, C.M. Sequential search leads to faster, more efficient fragment-based de novo protein
structure prediction. Bioinformatics 2017, 34, 1132–1140. [CrossRef] [PubMed]

57. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999, 292, 195–202.
[CrossRef] [PubMed]

58. Faraggi, E.; Kloczkowski, A. Accurate Prediction of One-Dimensional Protein Structure Features Using SPINE-X. In Prediction of
Protein Secondary Structure; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1484, pp. 45–53.

59. Jones, D.T.; Singh, T.; Kosciolek, T.; Tetchner, S. MetaPSICOV: Combining coevolution methods for accurate prediction of contacts
and long range hydrogen bonding in proteins. Bioinformatics 2015, 31, 999–1006. [CrossRef] [PubMed]

60. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
61. Černý, V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory

Appl. 1985, 45, 41–51. [CrossRef]
62. Frausto, J.; Martinez, F. Golden Ratio Annealing for Satisfiability Problems Using Dynamically Cooling Schemes. In Foundations

of Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4994, pp. 215–224.
63. Frausto, J.; Martinez, F. Golden annealing method for job shop scheduling problem. In MACMESE’08: Proceedings of the 10th

WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering; World Scientific and
Engineering Academy and Society (WSEAS): Stevens Point, WI, USA, 2008; pp. 374–379.

64. Frausto, J.; Liñán, E.; Sánchez, J.P.; González, J.J.; González, C.; Castilla, G. Multiphase Simulated Annealing Based on Boltzmann
and Bose–Einstein Distribution Applied to Protein Folding Problem. Adv. Bioinform. 2016, 2016, 7357123.

65. Martinez, F.; Frausto, J. A simulated annealing algorithm for the satisfiability problem using dynamic Markov chains with linear
regression equilibrium. Simulated Annealing. InTechOpen 2012, 21, 281–285.

66. Lam, A.Y.S.; Li, V.O.K. Chemical Reaction Optimization: A tutorial. Memetic Comput. 2012, 4, 3–17. [CrossRef]

http://doi.org/10.1002/jcc.540040211
http://doi.org/10.1021/j100589a006
http://doi.org/10.1016/S0010-4655(01)00197-7
http://doi.org/10.1002/prot.22501
http://doi.org/10.1016/S0022-2836(02)00811-2
http://doi.org/10.1002/prot.340230308
http://doi.org/10.1016/j.compbiolchem.2014.10.001
http://doi.org/10.1002/prot.24341
http://doi.org/10.1038/nature19791
http://www.ncbi.nlm.nih.gov/pubmed/27626386
http://doi.org/10.1246/bcsj.20160244
http://doi.org/10.1016/j.compbiolchem.2020.107237
http://www.ncbi.nlm.nih.gov/pubmed/32109854
http://doi.org/10.1007/s00894-020-04490-6
http://doi.org/10.1371/journal.pcbi.1003298
http://doi.org/10.1109/TCBB.2019.2928809
http://www.ncbi.nlm.nih.gov/pubmed/31329126
http://doi.org/10.1093/nar/gkm251
http://doi.org/10.1093/nar/gkz384
http://www.ncbi.nlm.nih.gov/pubmed/31081035
http://doi.org/10.1093/nar/gks966
http://doi.org/10.1093/bioinformatics/btx722
http://www.ncbi.nlm.nih.gov/pubmed/29136098
http://doi.org/10.1006/jmbi.1999.3091
http://www.ncbi.nlm.nih.gov/pubmed/10493868
http://doi.org/10.1093/bioinformatics/btu791
http://www.ncbi.nlm.nih.gov/pubmed/25431331
http://doi.org/10.1126/science.220.4598.671
http://doi.org/10.1007/BF00940812
http://doi.org/10.1007/s12293-012-0075-1

Math. Comput. Appl. 2021, 26, 39 21 of 21

67. Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [CrossRef]

68. Maupetit, J.; Derreumaux, P.; Tuffery, P. PEP-FOLD: An online resource for de novo peptide structure prediction. Nucleic Acids
Res. 2009, 37 (Suppl. S2), W498–W503. [CrossRef]

69. Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-FOLD approach for peptide and miniprotein structure pre-diction.
J. Chem. Theory Comput. 2014, 10, 4745–4758. [CrossRef] [PubMed]

70. Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005, 33,
2302–2309. [CrossRef] [PubMed]

71. Munte, C.E.; Vilela, L.; Kalbitzer, H.R.; Garratt, R.C. Solution structure of human proinsulin C-peptide. FEBS J. 2005, 272,
4284–4293. [CrossRef]

72. Luitz, M.P.; Bomblies, R.; Zacharias, M. Comparative Molecular Dynamics Analysis of RNase-S Complex Formation. Biophys. J.
2017, 113, 1466–1474. [CrossRef]

73. Zemla, A.; Moult, J.; Fidelis, K. Processing and evaluation of predictions in CASP4. Proteins 2001, 45, 13–21. [CrossRef]
74. Lombardi, A.; Pirro, F.; Maglio, O.; Chino, M.; DeGrado, W.F. De Novo Design of Four-Helix Bundle Metalloproteins: One

Scaffold, Diverse Reactivities. Accounts Chem. Res. 2019, 52, 1148–1159. [CrossRef]
75. Liang, H.; Chen, H.; Fan, K.; Wei, P.; Guo, X.; Jin, C.; Zeng, C.; Tang, C.; Lai, L. De novo design of a beta alpha beta motif. Angew.

Chem. Int. Ed. Engl. 2009, 48, 3301–3303. [CrossRef] [PubMed]
76. Baker, E.G.; Bartlett, G.J.; Goff, K.L.P.; Woolfson, D.N. Miniprotein Design: Past, Present, and Prospects. Accounts Chem. Res. 2017,

50, 2085–2092. [CrossRef] [PubMed]
77. Rocklin, G.J.; Chidyausiku, T.M.; Goreshnik, I.; Ford, A.; Houliston, S.; Lemak, A.; Carter, L.; Ravichandran, R.; Mulligan, V.K.;

Chevalier, A.; et al. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 2017, 357,
168–175. [CrossRef] [PubMed]

78. Zhang, S.-Q.; Chino, M.; Liu, L.; Tang, Y.; Hu, X.; DeGrado, W.F.; Lombardi, A. De Novo Design of Tetranuclear Transition Metal
Clusters Stabilized by Hydrogen-Bonded Networks in Helical Bundles. J. Am. Chem. Soc. 2018, 140, 1294–1304. [CrossRef]
[PubMed]

http://doi.org/10.1093/nar/25.17.3389
http://doi.org/10.1093/nar/gkp323
http://doi.org/10.1021/ct500592m
http://www.ncbi.nlm.nih.gov/pubmed/26588162
http://doi.org/10.1093/nar/gki524
http://www.ncbi.nlm.nih.gov/pubmed/15849316
http://doi.org/10.1111/j.1742-4658.2005.04843.x
http://doi.org/10.1016/j.bpj.2017.08.008
http://doi.org/10.1002/prot.10052
http://doi.org/10.1021/acs.accounts.8b00674
http://doi.org/10.1002/anie.200805476
http://www.ncbi.nlm.nih.gov/pubmed/19347908
http://doi.org/10.1021/acs.accounts.7b00186
http://www.ncbi.nlm.nih.gov/pubmed/28832117
http://doi.org/10.1126/science.aan0693
http://www.ncbi.nlm.nih.gov/pubmed/28706065
http://doi.org/10.1021/jacs.7b08261
http://www.ncbi.nlm.nih.gov/pubmed/29249157

	Introduction
	Background
	Definition of Ab-Initio and Force Fields
	Computational Approaches for PFP

	GRSA-SSP Methodology
	Results
	Conclusions
	References

