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Abstract: We show how modern Bayesian Machine Learning tools can be effectively used in order
to develop efficient methods for filtering Earth Observation signals. Bayesian statistical methods
can be thought of as a generalization of the classical least-squares adjustment methods where both
the unknown signals and the parameters are endowed with probability distributions, the priors.
Statistical inference under this scheme is the derivation of posterior distributions, that is, distributions
of the unknowns after the model has seen the data. Least squares can then be thought of as a special
case that uses Gaussian likelihoods, or error statistics. In principle, for most non-trivial models, this
framework requires performing integration in high-dimensional spaces. Variational methods are
effective tools for approximate inference in Statistical Machine Learning and Computational Statistics.
In this paper, after introducing the general variational Bayesian learning method, we apply it to the
modelling and implementation of sparse mixtures of Gaussians (SMOG) models, intended to be used
as adaptive priors for the efficient representation of sparse signals in applications such as wavelet-type
analysis. Wavelet decomposition methods have been very successful in denoising real-world, non-
stationary signals that may also contain discontinuities. For this purpose we construct a constrained
hierarchical Bayesian model capturing the salient characteristics of such sets of decomposition
coefficients. We express our model as a Dirichlet mixture model. We then show how variational ideas
can be used to derive efficient methods for bypassing the need for integration: the task of integration
becomes one of optimization. We apply our SMOG implementation to the problem of denoising of
Synthetic Aperture Radar images, inherently affected by speckle noise, and show that it achieves
improved performance compared to established methods, both in terms of speckle reduction and
image feature preservation.

Keywords: probabilistic machine learning; signal processing; variational bayesian learning; sparse re-
covery; wavelet-based models; denoising; earth observation measurements; adjustment of observations

1. Introduction

Sparse decompositions of signals, images, and data have found widespread use across
a wide array of scientific disciplines and practical applications. The key insight is that
while modern sensors generate signals containing an often overwhelming amount of
data, the useful information in them can often be described by a much smaller number
of ‘primitives’. Early work in the compression, representation, and cleaning of seismic
and other nature-generated signals, for example, has lead to the discovery of wavelets,
bases that span signal spaces in a very efficient manner. A central modern motivation for
sparsity comes from applications such as compressed sensing and computation (sparse
recovery). The idea in sparse representation is to describe the original signals using such
‘atomic decompositions’, with the coefficients of the decomposition serving as the resultant
‘code’. This code is almost always sparse for a wide variety of signals, meaning that most
coefficients will be almost zero with only a small percentage of them being significantly
larger than zero. Statistically, the empirical histograms of those sets of coefficients are
highly peaked at zero. Our aim in this paper is to use appropriate probability density
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functions to describe such distributions. We would also like to incorporate notions of
uncertainty in the model parameters. For that purpose we propose to use the sparse
mixture of Gaussians (SMOG) model as a flexible prior on the decomposition coefficients,
learnt under the Bayesian framework. Olshausen and Millman [1] have used this prior for
learning sparse codes of natural images under a combined Maximum Likelihood/Markov
Chain Monte Carlo (MCMC) framework. Roussos, Roberts and Daubechies [2] have
used a similar model for functional MRI data, employing wavelet decompositions in an
independent component analysis setting, but learned under a Variational Bayes framework.
A wide range of other applications have used similar models from a maximum likelihood,
maximum a-posteriori, and expectation-maximization perspective. In this paper we give a
detailed description of the SMOG method and its implementation and place it in the wider
context of computational statistical inference.

Bayesian inference is mainly concerned with posterior inference, using Bayes’ theorem
as our vehicle [3]. This formally encodes the update of our prior knowledge in light of new
data. We express our prior beliefs regarding the various uncertain quantities of our models
in the form of Bayesian priors. The data, on the other hand, are probabilistically linked
with the parameters of our models using the likelihood. A defining characteristic of the
Bayesian approach is, therefore, that model parameters are regarded as random quantities,
described by distributions. This distinguishes Bayesian learning from standard frequentist
approaches. In the Bayesian approach learning and inference are treated exactly the same.

Posterior elicitation, however, puts on us the burden of computing often intractable,
high-dimensional integrals, as we need to integrate out certain model parameters and
hidden variables, often regarded as ‘nuisance variables’. A number of methods have been
developed from the Bayesian community to tackle this problem, ranging from deterministic
ones, such as the Laplace approximation, to stochastic, the main representative of which
are the various MCMC approaches. While extremely powerful, MCMC methods are
also computationally demanding. Another deterministic approach, based on principles of
Statistical Physics, which is more flexible than the Laplace approximation while being much
more computationally efficient than MCMC, is offered by variational methods [4,5]. These
make mean-field approximations to the Bayesian evidence and joint posteriors to derive a
rigorous lower-bound to the evidence and a set of ‘self-consistent’ update equations for the
unknowns of the problem. It should be noted here that the term ‘approximate’ does not
refer to the accuracy of the results, which is generally better than the classical ones, due to
the integration of knowledge and uncertainty, but only to the way in which the integrals
are calculated.

The rest of the paper derives the general variational Bayesian (VB) framework and
then applies it to the particular problem of learning the sparse mixture of Gaussians model,
with a special emphasis to encoding sets of coefficients from sparse signal representations of
Earth observation signals. Earth observation data, such as those from SAR, LiDAR, GNSS
time series, etc, are inherently noisy. In this paper, we focus on the problem of speckle
reduction in Synthetic Aperture Radar imagery, an increasingly important, high-resolution
Earth sensing modality for mapping and monitoring. The extremely complex nature of
terrestrial mechanisms and phenomena, such as tectonic shifts and deformations and their
corresponding magmatic masses, for example, make the use of sophisticated denoising
methods necessary for the extraction of the underlying signals.

2. Variational Bayesian Learning of SMOGs

In this section we present a hierarchical Bayesian model for modelling sparse sets of
decomposition coefficients in a basis, e.g., wavelet coefficients. The general problem we
want to solve is the following: given a noisy signal, y ∈ RN , and a basis, Φ = {ϕλ}, our
goal is to infer the posterior distribution of the wavelet decomposition coefficients, {cλ},
such that the unknown clean signal, x, is recovered, under the modelling constraint that it
is efficiently, i.e., sparsely, described in the given basis.
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2.1. Bayesian Modelling of Sparse Wavelet Coefficients
2.1.1. The Bayesian SMOG Model

The model should capture the desired or expected properties of those sets of expansion
coefficients in the prior, informed by the observed behaviour of those decompositions in
practice. It should also be constrained enough to enforce sparsity while at the same time
being flexible enough to capture a wide range of decompositions of a variety of signals.

A flexible prior that is at the same time mathematically tractable is a mixture distri-
bution. For an M–component model, a mixture-of-Gaussians (MOG) can be expressed
mathematically as a linear combination of component densities,

p(yn|θSMoG) =
M

∑
m=1

πm N
(

yn; µm,
1

βm

)
, (1)

where (µm, βm) are the mean and precision (inverse variance) parameters of the m–th
Gaussian component over yn and {πm}M

m=1 are mixing proportions. Since the πms are
non-negative the MOG is also a convex combination of Gaussians. We collect the learnable
parameters in a vector θSMoG = {π, µ, β}. Each component in the mixture may be inter-
preted as a ‘state’. In our implementation we enforce sparsity by restricting the general
mixture of Gaussians model to be a two-component, zero co-mean mixture: one component,
with small variance, captures non-active coefficients while the other, with large-variance,
capture active ones. Olshausen and Millman also propose a ternary version of the MOG
model for sparse coding in [1], in which the data can assume three states: non-active, active
negative and active positive; see Figure 1b. That is, while the ‘off’ mode is the same as
before, the ‘on’ mode has two sub-modes. The hope here is that this PDF will better describe
the behaviour of coding coefficients, focusing on the meso-scale coefficients. However,
Olshausen and Millman reported minimal benefits from this added complexity. Therefore,
we will use a two-state model in this paper. In [1] the state variables of the ternary model
are inferred using Gibbs sampling while the model parameters are learnt by a gradient,
maximum likelihood algorithm. In this paper, we instead employ a fully Bayesian model
and learning algorithm to the problem.

In multiscale, wavelet-type analysis, a separate SMOG is placed on each dyadic
scale, resulting in a collection of parameters, θSMoG =

⋃
j θSMoGj , and adapted to the

characteristics of the particular signal. We name our model a sparse MoG (SMOG). The
Bayesian SMOG model probability density is shown in Figure 1.

Introducing Hidden Variables

In order to derive a computationally efficient learning algorithm, we first start by per-
forming the following ‘thought experiment’: if we had access to the state of each data point,
as being active or non-active, the task of learning the parameters of the two components
would be much easier, as the two components would then be decoupled and we would only
need to learn the parameters of the individual component that the data points would be
assumed to have been generated from. We will regard those unknown states as ‘missing’
data and introduce a set of latent indicator variables, ξn, such that when “filled in” by our
algorithm, we will achieve our goal. The component indicators therefore play a very impor-
tant role in this model. They essentially signify the component, m, at which the data point n
becomes (probabilistically) assigned to; that is, in the case of SMOGs for wavelet analysis,
whether a particular wavelet basis ϕλ is significant or not for a specific dataset. This decision
happens at the ‘inference’ stage of the Bayesian algorithm, via the corresponding posterior
distribution, i.e., after the model has seen the data. The latent variables ξn effectively work
as ‘switches’, turning wavelet bases ‘on’ or ‘off’ for a particular signal. The likelihood for the
SMOG model after the introduction of the latent variables becomes:

p(yn|θSMoG) =
M

∑
m=1

p(ξn = m|π) p(yn|ξn, µ, β) . (2)
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Each component indicator, ξn, “picks” one of M components for its corresponding data
point yn with a-priori probability p(ξn = m|π), for all n.

0

0.5
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2.5

-3 -2 -1 0 1 2 3
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D

F
 p

(c
)

wavelet coefficient, c

Figure 1. Sparse mixture of Gaussians (SMOG) density, here used as an adaptive prior for the
decomposition coefficients, {cλ}, of a sparse signal. Blue/green curves: Gaussian components; thick
black curve, mixture density, p(cλ). In multiscale, wavelet-type analysis, a separate SMOG is placed
on each dyadic scale.

Probability Assignments

We will formulate our SMOG model as a Dirichlet mixture model. In Bayesian
modelling, the assumed distribution of the latent variables as well as the priors over the
parameters of the model must be stated, as they are an integral part of the model itself.
The indicator variables of the SMOG components, ξ = (ξn), are assigned a categorical (or,
generalized Bernoulli) distribution, such that p(ξn = m|π) = πm, ∀n. The above can be
thought of as the soft assignment n 7→ m, of the nth data point to the mth component, with
probability p(ξn = m|π). This prior can be more conveniently written as

p(ξ|π)
.
= Cat(π) =

N

∏
n=1

πm
[ξn=m] , (3)

where the symbol [·] is the Iverson bracket, which is equal to 1 if its argument is true
and 0 otherwise. This form offers some conceptual advantages with respect to expressing
conjugacies in the model and facilitates further mathematical manipulations.

The prior over the model parameters, θSMoG, as directly read from the SMOG DAG, is

p(π, µ, β) = p(π)
(

p(µ)p(β)
)
= p(π)

(
M

∏
m=1

p(µm)
M

∏
m=1

p(βm)

)
, (4)

with the following assignments:

• The prior over the mixing proportions vector, π, is a Dirichlet distribution with
concentration hyperparameters α = (α1, . . . , αM), with αm ≥ 0:

p(π|α) .
= Dir(π; α) =

1
B(α)

M

∏
m=1

πm
αm−1, B(α) =

∏M
m=1 (αm)(
∑M

m=1 αm

) , (5)

where (·) and B(·) are the Gamma and multivariate Beta functions, respectively.
The Dirichlet is sometimes called a ‘distribution over distributions’, since it is a
probability distribution on the simplex of sets of non-negative numbers that sum to
one [6]. In other words, each draw from a Dirichlet is itself a distribution. It is the
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conjugate prior of the Categorical distribution [3]. Note that in the SMOG model, in
contrast to the general MoG, it is more logical to assign different hyperparameters
αm for the different components, m = 1 and m = 2, in the binary case, i.e., have an
asymmetric prior because, for sparse data, we expect that most of the bases should be
inactive (‘off’). Therefore, we assign a much larger a-priori concentration parameter,
α1, corresponding to the peak of the distribution at zero, than α2. This means that the
a-priori probability of drawing an inactive coefficient cλ from the model is significantly
higher than drawing an active one.

• The prior over each component mean, µm, is a Gaussian, with hyperparameters
(m0, τ0) such that the hyperparameter m0 of the prior is m0

.
= 0, implying Ep[µ] = 0,

while we let the algorithm learn the posterior hyperparameters of q(µ). That is, we
do not fix the means themselves to 0 but only the prior hyperparameters and let the
algorithm learn the actual value of the corresponding posterior hyperparameters itself
using an empirical Bayes approach. The above expresses our prior belief that the
centres of the distribution of the cλ are drawn from a hyperprior with mean zero and
a small width, τ0. This reflects the empirical observation that, for sparse signals, it is
highly probable that most wavelet coefficients will be zero:

p(µm)
.
= N (µm; m0, τ0) =

1√
2π/τ0

e−
1
2 τ0(µm−m0)

2
. (6)

• The prior over each component precision, β jm, of the jth dyadic scale is a Gamma
distribution with hyperparameters (b0, c0). While in general we would often express
our lack of prior information in the scales of the β parameters by selecting a vague
(‘uninformative’) prior [7], in this case we want to express our expectation that, for
sparse signals, again, only a few wavelet coefficients will be significantly different
from zero. Therefore, we will select the prior hyperparameters (b0, c0) such that the
non-active coefficients cλ, which will form the majority of the representation, will be
neatly concentrated around 0, i.e., assign a high precision to that state, while the few
‘large’ ones will be drawn from a component with a small precision (high variance), to
allow “wiggle space”:

p(βm)
.
= Ga(βm; b0, c0) =

1
(b)bc0

0
βc0−1

m e−
1

b0
βm , (7)

where we have used the scale-shape parameterization of the Gamma distribution.

2.1.2. SMOG Bayesian Network

We will express our hierarchical Bayesian model as a directed acyclic graph that is
a particular type of a probabilistic graphical model (PGM) called a Bayesian network,
capturing the probabilistic dependence relations among the random variables in our model.
In PGMs a node represents a random variable and an edge a statistical dependence. In
a Bayesian network, each node has a set of ‘parent’ and a set of ‘children’ nodes. The
conditional probability of a variable, v, in the model given other variables is represented by
that node given its parents, pa(v). We next introduce the important concept of a Markov
blanket: the Markov blanket of a node is the set of its parents, children, and co-parents
(i.e., the other parents of its children). A Markov blanket defines a notion of ‘neighborhood’
in Bayesian networks: the probability of a random variable is independent of all other
variables outside of its Markov blanket. These concepts will prove to be essential during
learning and inference because they localize computations. The Bayesian network for the
model in Figure 2.
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Figure 2. Bayesian network representation, GSMoG, of a sparse mixture of Gaussian (SMOG) density.
Brown rectangles represent ‘plates’, iterating over collections of variables. The plate over n represents
the collection

{
(yn, ξn)

}
, n = 1, . . . , N, of pairs of state and representation coefficient values, for

each data point n. The plates over m represent the parameters of the set of M Gaussian components,
ΘSMoG =

{
(µm, βm)

}⋃ {
π
}

, m = 1, . . . , M, stored in a vector θSMoG. These collectively model
the generally non-Gaussian density of the coefficients of a signal. Filled nodes, such as yn, denote
instantiated nodes. Rectangle nodes denote hyperparameters of the model. In multiscale, wavelet-
type analysis this DAG is replicated for each dyadic scale, j, as well, resulting in a collection of
parameters, ΘSMoG =

⋃
j ΘSMoGj .

2.2. Variational Bayesian Inference

We now show how variational ideas can be used in order to construct methods for
approximating the integrals necessary for Bayesian learning [4,5]. In variational Bayesian
(VB) learning, the objective function to be optimized is the negative free energy (NFE) of
the system, F . The NFE forms a lower bound to the log-evidence of the model, log p(Y),
and is therefore the Bayesian quantity that we seek to maximize: see Figure 3.

K

l

F

Figure 3. The negative free energy (NFE),F
[
q
]
, forms a lower bound to the Bayesian log-evidence for

a data set under the model, log p
(
Y
)
. Their difference is the Kullback–Leibler divergence, KL

[
q
∥∥p
]
,

between the variational posterior, q(U ), and the true posterior, p(U|Y). The NFE is the optimization
function of the VB methodology.
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We will now show how the NFE is derived. Starting from the marginal likelihood,
L = p(Y) and expanding it in terms of the joint distribution over the the full genera-
tive probabilistic model, represented in the directed graphical model G, including the
unknowns, U = X ∪Θ (comprising the latent variables and the model parameters), and
the data, Y , we find the important relation

log p(Y)︸ ︷︷ ︸
log-evidence

= F
[
q(U )

]︸ ︷︷ ︸
Negative free energy

+ KL
[
q(U )

∥∥p(U|Y)
]︸ ︷︷ ︸

Kullback–Leibler divergence ≥ 0

. (8)

The second term in the equation above expresses the “distance” between the variational
posterior, q(U ), and the true posterior, p(U|Y), quantified by the Kullback–Leibler diver-
gence, or relative entropy, KL

[
q
∥∥p
]
. (Note that the KL divergence is not symmetric with

respect to commuting its arguments: KL(p‖q) 6= KL(q‖p). The particular form used in
the VB method is the one that forces the variational posterior to cover the majority of
the probability mass under the true posterior and also allows for easier mathematical
derivations.) This is a non-negative quantity; therefore the NFE is a rigorous lower bound
to the log-evidence. If the variational posterior equals the true posterior, the NFE is the
log-evidence. Of course, for all but the simplest statistical models certain approximations
have to be made in order for inference to be tractable. By choosing a set of approximate
distributions that facilitates easier computations, usually by choosing convenient functional
forms, such as PDFs in the exponential family, or/and breaking some dependencies in
the joint model, the KL divergence becomes non-zero and the NFE lowers. Our goal in
Bayesian modelling is first to judiciously choose the above aspects of our model and then
maximize F

[
q(U )

]
, in order to obtain the tightest possible bound, within the chosen set of

distributions. Focusing on the NFE, this can be expressed as

F
[
q(U )

]
=

〈
log p(U ,Y︸︷︷︸

G

)
〉

q︸ ︷︷ ︸
Variational Energy, E

[
p(G)

]
+

〈
− log q(U )

〉
q︸ ︷︷ ︸

Shannon entropy,H
[
q(U )

]
. (9)

The first term in the above equation, the expected log-probability of the model, i.e., the log-
joint log p(G), with respect to the variational posterior, is called the variational energy and
the second term is the Shannon entropy (information entropy) of the variational posterior
over the unknowns. Since the nodes Y are instantiated to the data, and are therefore fixed
quantities, the above integration gives us a functional that maps PDFs in the function
space of candidate approximate joint distributions, Q = {q(U )}, to R+. This functional
we be maximized using functional differentiation below. We will find it computationally
convenient later to further decompose the NFE into the following formula:

F
[
q(U )

]
= LΘ

(
X ,Y

)
+H

[
q(X )

]
−KL

[
q(Θ)‖p(Θ)

]
, (10)

whereLΘ
(
X ,Y

) def
=
〈

log p(X ,Y
∣∣Θ)

〉
q is the posterior-averaged complete-data log-likelihood.

This form will be useful for the evaluation of the NFE itself later.
Under the mean-field ansatz,

q(U ) .
= ∏

α

qα(uα) , (11)

where the posterior is factorized over subsets of the unknowns, U .
=
⋃

α uα, it can be shown
that our objective function, F , can be further written as

F
[
q(U )

]
= ∑

α

KL
[
exp

(〈
log p(U ,Y)

〉
q(U\{uff})

)∥∥∥qα(uα)
]
+ c ; (12)
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in other words, the dependence of F on the individual qα s is only via their corresponding
KL divergencies. Taking the functional derivative and equating it to 0, under the constraint
that each qα integrates to one (for it to be a proper probability distribution),

δ

δq(uff)

{
F [q(uff)] + λα

(∫
q(uff)duff − 1

)}
.
= 0 , (13)

and by the fundamental lemma of calculus of variations [8], we obtain the corresponding
Euler–Lagrange equation for the problem [9]. This in our case simplifies by the fact that
the functional does not depend on the derivatives q′α. Moreover, based on the observation
above that the NFE is maximized when the KL divergence is zero, and plugging that
into the above two equations, we obtain the final general expression for the optimal
variational posteriors:

q?α(uff) =
1
Zα

exp
(〈

log p(U ,Y)
〉

q(U\{uff})

)
; (14)

that is, we integrate over all the other variables with respect to their variational posterior.
We see that by following the VB approach we have transformed an inference problem into
an optimization one, which is often easier to solve.

The above generic equations of VB learning are then specialized for the particular
model at hand. That is, based on the Markov relations in the Bayesian network, G, cor-
responding to our problem, we can immediately write down the terms arising from the
logarithm inside the angle brackets of Equation (14) and the Markov factorizations in G.
Note that these Markovian relations refer to the prior, and not to the mean-field varia-
tional assumptions regarding the posterior, which enter the picture only via the mean-field
averaging, 〈·〉q. In terms of implementation, Equation (14) basically means that in order
to compute the update equation for some unknown u, q(u), we just need to apply the
following generic procedure:

1. Take the log-joint probability, log p(Y ,U ), expand it into the various terms that corre-
spond to the unkowns uα ∈ U , α = 1, . . . , |U |, and, for each α, keep only its ‘relevant’
terms, i.e., the terms that contain expressions containing the variable uα. These are
none other than the nodes in the Markov blanket of the node uα.

2. Take the posterior averages, 〈·〉q, of the various terms. If the model is constructed
such that the node conditional PDFs (i.e., given their parents) are in the conjugate-
exponential family of distributions, these averages will be analytically computable.

3. Rearrange and combine the various sub-terms so that we end up with expression
patterns that correspond to known distributions, such as those in the exponential
family, to finally find the expression of the update equation for each qα(uα).

Note that if the model is constructed such that it belongs to the conjugate-exponential
family of distributions, then the functional forms of the variational posteriors will be of
the same form as their corresponding priors. Essentially, computing the posteriors is
equivalent to shifting the priors to a position that balances both the requirement of fidelity
with respect to reconstructing the data and the constraints imposed by the prior. This will
be directly reflected in the form of the update equations. This means that the variational
posterior hyperparameters, ψ̂α, will be ‘moves’ in hyperparameter space, during learning,
i.e., shifted versions of the corresponding prior hyperparameters, ψα,0, updated according
to the observed data:

ψ̂α = ψα,0 ⊕ g(y) , (15)

where ‘⊕’ is a generalized addition operator, denoting the fusion of information from the
prior and likelihood of node α, and g(y) denotes a generic function of the data—these are
specialized for each particular model.
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2.3. Applying VB Learning to the SMOG Model

Applying the above general methodology and equations to the particular case of
Bayesian SMOGs (where the graphical model is shown in Figure 2), we obtain the concrete
expressions for the NFE and the update equations for the nodes of GSMoG for this model.

In particular, the ensemble of latent variables and parameters of the model is U = {ξ, θ}.
Under the mean-field assumption (Beal, [5]), the variational posterior, q(U ), factorizes over
the elements of U and, therefore, factors in each unknown can be maximized individually:

q(U ) = q(ξ)q(π, µ, β) , (16)

Note that, contrary to popular belief, we do not need to make a factorization assump-
tion over θ = {π, µ, β}, but only over {x, θ}; the factorization amongst the parameters
“falls out” of the Markovian structure of the DAG [5].

Now, the joint probability of GSMoG, by inspecting the dependencies of the graphical
model, is:

p(GSMoG) = p(USMoG,YSMoG) = p(y|ξ; µ, β)p(ξ|π)p(π)p(µ)p(β) , (17)

where the conditional likelihood (the data likelihood conditioned on the latent variables) is

p(y|ξ; µ, β) =
N

∏
n=1

p(yn|ξn; µm, βm) . (18)

This product is represented by the plate over {n} in the graphical model of Figure 2.
The NFE for the SMOG model, given the above graph-structured set of RVs and their

corresponding joint probability distribution, p(G), now becomes

F =
(〈

log p(y|ξ; µ, β)
〉

q(ξ)q(µ)q(β)
+
〈

log p(ξ|π)
〉

q(ξ)q(π)

)
+

H
[
q(ξ)

]
−(

KL
[
q(π)

∥∥p(π)
]
+ KL

[
q(µ)

∥∥p(µ)
]
+ KL

[
q(β)

∥∥p(β)
])

. (19)

The first two terms are the average complete-data likelihood, LΘ
(
X ,Y

)
, defined

above, each latent variable provides an entropy term, and each parameter provides a minus
KL divergence. The above expression is equivalent to the (negative of) the Helmholtz free
energy in Statistical Physics,

F = −
〈

log p(VG)
〉
+H

[
q(U )

]
,

where the first term is minus the ‘variational energy’ and the second is the ‘variational entropy’.
Note that the above Equation (19) is expressed in terms of the form

〈
log p

(
vβ|pa(vβ)

)〉
and〈

log q(vα)
〉
, where β ∈ {1, . . . , |U ∪ Y|} and α ∈ {1, . . . , |U |}. That is, they correspond to

internal and leaf nodes of the SMOG DAG, respectively. We will exploit this observation in
our implementation later.

2.3.1. Update Equations for the Unknowns of the Model

We now use the generic update equation for the optimal variational posteriors, Equa-
tion (14), derived in the previous section, and specialize it for our model. As an example,
the derivation of the update equations for the precisions, β, will be shown here in detail;
the remaining equations are derived similarly.

We first rewrite Equation (14), with u← β, Ref. [10] as

q?(β) ∝ exp
[〈

log p
(
ξ, y
∣∣β)〉q(ξ) + log p(β)

]
, (20)
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where the first term is the expected ‘complete-data’ likelihood for β, L
[
β
]
. (Here we just

break up the general expression for the variational posteriors,

q?(u) ∝ exp
(
〈log p(U ,Y)〉q(U\{u})

)
,

into a prior factor for the particular unknown times a likelihood term, which is reminiscent
of the Bayes’ rule.) This formulation is mainly used here for demonstrating a simple
derivation of the formulæ. This is reminiscent of the so-called Q–function of the expectation-

maximization (EM) algorithm, Q
(

θk
)

def
= Ep(X |Y)

[
log p

(
X ,Y|θk−1

)]
, k = 1, . . ., where

the parameter θ at the right-hand-side is instantiated in the value obtained in the previous
iteration. In that method, one then takes the gradient with respect to the parameter θk and
equates it to zero, to obtain the current point estimate of θ [11]. In the variational Bayesian
approach, we instead use the full sufficient statistics to obtain posterior distributions. We
will say more about the relation between the VB method and EM later.

Now, the complete-data log-likelihood for a single component βm is

log p
(
ξ, y
∣∣βm

)
=

1
2

N

∑
n=1

log βm −
1
2

βm

N

∑
n=1

(yn − µm)
2 ,

due to the i.i.d. data. Therefore, averaging the above over the variational posterior, implies
that L

[
β
]

can be written as

L
[
β
]
=

M

∑
m=1
L
[
βm
]

. (21)

Responsibility-Weighted Statistics

In order to evaluate the L
[
βm
]
’s, and equivalent quantities for the other variables in

the model, we need the following intermediate quantities. We define the responsibility of
component m with respect to data point n as the posterior probability value

γ̂nm = q(ξn = m), ∀n, m , (22)

seen as ‘soft’ assignments of data points to components. This will be implemented as
conditional probability tables (CPTs). We now define the following responsibility-weighted
statistics (resulting from integrating the data statistics over ξ wrt q(ξ) and over µm wrt
q(µm)):

π̄m =
1
N

N

∑
n=1

γ̂nm =
N̄m

N
, and N̄m = π̄mN , (23)

where N̄m can be interpreted as a pseudo-count of the number of data points that can be
attributed to the m–th Gaussian kernel, that is π̄m and N̄m are the proportion and number
of samples that are attributed to component m of the data, and

ȳm =
1
N

N

∑
n=1

γ̂nmyn , (24)

ỹ2
m =

1
N

N

∑
n=1

γ̂nmyn
2 , (25)

σ̃2
ym =

1
N

N

∑
n=N

γ̂nm(yn − µm)
2 , (26)

where
{

ȳm, ỹ2
m, σ̃2

ym

}
can be interpreted as the contribution of component m to the average,

second moment, and centred second moment (variance) of the data, respectively. Note that
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these three quantities are the only primary data-dependent quantities; all other quantities
are derivative ones.

Using the above, we obtain the following expression for the integral L
[
βm
]
, as an

expression in (βm, log βm):

L
[
βm
]
=

1
2

N̄m log βm −
1
2

Nσ̃2
ym βm . (27)

Because both L
[
β
]

and p(β) split into sums over m (Equations (4), (7) and (21), respec-
tively), the precisions, β, also factorize: q(β) = ∏M

m=1 q(βm). Combining the exponential
term, Equation (27), with the Gamma log-prior, and collecting the terms in βm and log βm,
we finally have the following variational update equation for the precisions, in log-space:

log q(βm) =

(
1
2

N̄m + c0 − 1
)

log βm −
(

1
2

Nσ̃2
ym +

1
b0

)
βm . (28)

We conclude that the optimal form for the q(βm) is a Gamma distribution with hyper-
parameters, (b̂m, ĉm), given by:

b̂m =

(
1
b0

+
1
2

Nσ̃2
ym

)−1
, (29a)

ĉm = c0 +
1
2

Nπ̄m = c0 +
1
2

N̄m . (29b)

Note that both hyperparameters are expressed in the form of Equation (15), as a
sum of the corresponding prior hyperperameter plus a data-dependent term. The update
equation for the b̂m variational hyperparameter, in particular, is of the form of a harmonic
mean between two precision terms (this expression is, up to a proportionality factor, the

harmonic mean [12], x⊕h y =

(
1
x +

1
y

2

)−1
). This is a typical form for scale variables such as

this, i.e., when the sequence to be averaged is comprised of rates.
Terms such as those in Equations (29a) and (29b) can be thought of as ‘messages’, sent

from the Markov blanket of the node βm in the Bayesian network G to it. We will see later
how these quantities can be formally rewritten as terms of a unified, conjugate-exponential
family distribution framework. For now, it is interesting to observe, however, that node βm
gets only one message from its parents (the terms 1

b0
and c0) while it gets N messages from

its children and co-parents (the terms 1
2 σ̃2

ym and 1
2 π̄m). These cardinalities are exactly the

cardinalities of those connectivities (edges) in G.
The remaining update equations are as follows (note that from now on, for conve-

nience, we drop the star notation for the q?s). The hyperparameters, (m̂m, τ̂m), of the
variational posterior over the Gaussian kernel means, µm, are updated based on equations

τ̂m = τ0 + τ̄m , (30)

where τ̄m is the responsibility-weighted average ∑N
n=1 γnm〈βm〉 = N̄m〈βm〉, which is the

data-dependent ‘message’ coming from the children and co-parents of node µm, and

m̂m =
1

τ̂m

(
τ0m0 + τ̄mm̄m

)
; (31)

that is, m̂m is a weighted average of prior and data-dependent quantities, where m̄m is the

responsibility-weighted ratio ∑N
n=1 γnmyn

∑N
n=1 γnm

= ȳm
π̄m

.

The mixing hyperparameters, {α̂m}, of the variational posterior q(π) over the mixing
parameters, π, are updated via

α̂m = α0 + N̄m . (32)
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That is, the ‘data counts’ are added to the ‘prior counts’.
Finally, the posterior of the latent indicator variables, ξ, is updated based on the equation

γ̂nm =
γ̃nm

Zn
, (33)

where

γ̃nm = π̃m

[(
β̃m
)1/2 exp

(
−1

2
〈βm〉

〈
(yn − µm)

2
〉

q(y,µ)

)]
, (34)

and
Zn = ∑

m′
γnm′ , (35)

ensuring that q(ξn) is a properly scaled probability density. The above update equation
takes

{
(yn),

(
y2

n
)}

, the data sufficient statistics, as input. Note how Equation (34) re-
flects Bayes’ theorem: the first factor comes from the prior and the expression inside the
square brackets comes from the likelihood. For the categorical latent indicators, ξn, it also
holds that 〈ξnm〉 = γnm. The tilded quantities in the above equations are the exponen-
tial parameters (compare this parameterization of the exponential family with the mean
parameterization) [5]

π̃m
def
= e〈log πm〉q (36)

and
β̃m

def
= e〈log βm〉q . (37)

These are computed by

e〈log πm〉q = exp
(

(α̂m)− (ᾱ)
)

, where ᾱ = ∑
m′

α̂m′ , (38)

and
e〈log βm〉q = b̂βm exp

( (
ĉβm

))
, (39)

respectively, where (·) is the digamma function, defined as the logarithmic derivative of
the Gamma function,

(x) def
=

d
dx

log (x) =
′(x)
(x)

. (40)

Note that although no functional forms for the variational posteriors were assumed,
due to conjugacy the deduced posteriors have the same functional form as the priors.

Update Schedule

The update equations above form a system of coupled nonlinear equations, which
must be solved iteratively. We note in particular that computations in this type of network
are local, in terms of quantities belonging only in the Markov blanket of each node. Starting
from an initial guess for the unknowns,

(
ξ(0), θ(0)

)
, the inference algorithm cycles through

the update Equations (21)–(40), using the moments calculated at each node of the graphical
model GSMoG, until convergence. The updates may be performed in a VEM way [5,13].
However, this is not necessary, since, as stated above, in the Bayesian approach learning
and inference are treated exactly the same. Therefore, the general formulation can be used
without any distinction into model parameters and latent variables.

2.3.2. Evaluating and Interpreting the Negative Free Energy

The negative free energy of the SMOG model,

F
[
q(ξ), q(θSMoG)

]
= LθSMoG

(
ξ, y
)
+H

[
q(ξ)

]
−KL

[
q(θSMoG)‖p(θSMoG)

]
, (41)
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can now be evaluated using the quantities derived above. It turns out that many of the
terms in F

[
q(ξ), q(θSMoG)

]
, coming from the various nodes in GSMoG, conveniently cancel

out, greatly simplifying the expression for the free energy. The final expression for the NFE
of the M–component SMOG is:

FM =
M

∑
m=1

log
(

Γ(α̂m)

Γ(α0,m)

)
− log

 Γ
(

∑M
m′=1 α̂m′

)
Γ
(

∑M
m′=1 α0,m′

)
+ (42a)

M

∑
m=1

[
log
(

Γ(ĉm)

Γ(c0,m)

)
+ ĉm log b̂m − c0,m log b0,m

]
+ (42b)

−
M

∑
m=1

1
2

[(
τ0

τ̂m
− 1
)

log
τ0

τ̂m
+ τ0(m̂m)

2
]
+ (42c)

−
N

∑
n=1

M

∑
m=1

γ̂nm log γ̂nm + (42d)

+N
(
−1

2
log 2π

)
. (42e)

Note that FM is expressed solely in terms of the prior and posterior hyperparameters,
ψ0, ψ̂, of the model. The first three lines come from the hyperparameters of π, β, and
µ, respectively, as a measure of distance between the assumed prior and the inferred
variational posterior, expressed in terms of their partition functions (their denominators);
the next is an entropic term, measuring how well the model fits the data; and the last term,
which is proportional to the cardinality of the dataset, N, effectively lowers the NFE by
that amount, and is a reflection of the ‘aleatory’ uncertainty in modelling a wide variety of
data by a particular model.

3. Variational Bayesian SMoG for Signal Denoising

The goal now is to reconstruct an unknown function, f , from noisy data. We will use a
flexible representation of the signal in a new basis, adapted to the localized features of the
data, in a way that only a few basis functions will be needed in order to describe the signal.
This is a reflection of the sparsity property in that particular basis: most of the coefficients
of the representation will be small, and correspond to the noise, and only a few of them
will be significant, and correspond to the signal.

We now briefly review some of the basic properties of wavelets that are of importance
to our framework next. Wavelets, and other wavelet-like function systems (such as wavelet
packets, local cosine bases, curvelets, ridgelets, and a whole other variety of bases), are a
natural way to model sparsity and smoothness for a very broad class of signals [14]. They
form ‘families’ of localized, oscillating, bandpass functions that are dilated and shifted
versions of a special function called ‘mother wavelet’, ψ. As such, they inherently contain a
notion of scale, the whole family spanning several scales from coarse to fine. This property
allows them to form multi-resolution decompositions of any finite-energy signal, f.

In the classical setting, wavelets together with a carefully chosen, lowpass function,
the ‘scaling function’, φ, can form orthonormal bases for L2(R). Let us denote such a
basis with D = {φk}

⋃(⋃
j

{
ψj,k

})
, where j denotes the scale and k the shift. We can then

perform wavelet expansions (inverse wavelet transforms) of the form

c 7−→ f s.t. f = ∑
k

c(φ)
k φk + ∑

j
∑
k

c(ψ)
j,k ψj,k, j, k ∈ Z, (43)

where ϕλ ∈
{

φk(t) ≡ φ(t− tk), ψj,k(t) ≡ 2j/2ψ
(
2jt− tk

)}
j,k

is an element in D, and the

scaling and wavelet coefficients, cλ ∈ C =
{

c(φ)
k

}⋃(⋃
j

{
c(ψ)

j,k

})
, known as the ‘smooth-
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ness’ (or ‘approximation’) and ‘detail’ coefficients, respectively, are computed by taking
inner products —measures of similarity— of the corresponding bases with the signal (more
precisely, the dual (analysis) wavelet, ϕ̄λ, which, in the case of an orthonormal basis, is
identical to ϕλ):

λ : cλ ≡ f̃λ = 〈f,ϕλ〉 . (44)

(Note that to unclutter notation we have used a single generic index, λ.)
We will model these wavelet coefficients using the SMOG model.

A One-Dimensional Example: Wavelet Analysis of Geodetic Signals

The theoretical developments above will be demonstrated by analyzing a simulated
Geodetic time-series with transient effects in a noisy setting. Large-scale Geodetic time-
series often contain both periodic and transient effects and are corrupted by coloured noise.
We simulated two sinusoids, corresponding to annual and semiannual harmonic functions,
plus a transient signal composed of a sigmoidal function, and added white noise as well as
coloured noise of comparable amplitude to the signal, using an autoregressive (AR) model,
in order to test the ability of the algorithm to detect the signal. We then used a wavelet
basis from the ‘Symmlet’ family with filter length 8, and kept the wavelet coefficients using
a low-frequency cutoff of J0 = 6. The simulation was then run 100 times. A typical run is
show in Figure 4.
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Figure 4. Detection of transient signals in noisy Geodetic time series. Blue line: annual and semian-
nual harmonic signals. Brown line: transient signal. Gray dots: a mixture of white noise as well as
coloured noise. Lower panel: green line: original signal, red line: reconstruction by the algorithm.

We see that the algorithm managed to successfully reconstruct the signal, despite the
high level of noise. It also managed to follow the change at t = 5, due to the transient. The
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average correlation coefficient between the original and reconstructed signal was 0.94929.
The denoising metrics of the reconstruction were as follows: mean squared error: 0.826791,
mean absolute error: 0.741917, signal to noise ratio: 5.153647 dB, peak signal to noise ratio:
12.123027 dB, and cross correlation: 0.949288.

4. Speckle Reduction in Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is an imaging radar technique that synthesizes a very
long, virtual aperture by combining radar echoes from a common scene, from different
positions along its flight path. This enables it to obtain images of a much higher-resolution
than those of a standard radar. SAR imagery and techniques offer global and repetitive
imaging of the Earth surface in a reliable and stable mannar, and as such they are an ideal
modality for mapping and monitoring dynamic processes.

SAR, however, as all coherent imaging systems in general, suffer from the presence of
a particular type of grainy noise, called speckle, which is caused by interference processes
among elemental scatterers within resolution cells on the ground. This has consequences
with respect to the processing and interpretation of images, as it hampers edge extraction
and image segmentation and introduces uncertainty in the inversion of ground surface
parameters [15]. A variety of speckle reduction methods have therefore been developed
to tackle this problem [16]. A major difficulty in the design of those filters is to be able
to smooth speckle noise while retaining as much detailed information as possible. We
can categorize SAR noise reduction techniques into two groups, multi-look processing
and speckle filtering methods proper. The former, which is routinely available in software
packages for SAR, is essentially a non-coherent averaging of several intensity images. This
reduces speckle noise, and, usually, produces approximately square ground pixels, but has
the disadvantage that it increases pixel spacing and reduces image resolution. In this paper
we will deal with the latter group of methods only. We give a brief description of the major
filters used for speckle reduction in practice next.

4.1. Established Speckle Reduction Filters

In this section, established filters mostly used in practice for speckle reduction of
SAR images will be briefly described, with an emphasis on the statistical assumptions
underlying their formulation. These filters will be compared with our proposed method in
Section 5.

4.1.1. The Median Filter

The classical median denoising filter will be used here as the baseline method. It is a
very simple algorithm, which, however, has sometimes achieved some rather impressive
denoising results. This filter is non-linear, and works by moving a small image window
over the original image and replacing the value of the centre pixel with the median of its
neighbouring entries within the window. Note that the median is a robust measure of
the central tendency of a dataset, and therefore better behaved than the mean. It’s main
advantages are that, unlike some other filtering operations for speckle reduction, used for
SAR multilooking, for example, the spatial resolution of filtered images using this filter
is not reduced and edges are not as severely degraded and that the median filter is very
efficient for filtering out salt-and-pepper type noise.

4.1.2. The Lee Filter

This filter is in a sense the prototype for all the adaptive, spatial filters in this section,
which use local statistics in a moving window. Therefore some of the concepts in this
subsection will be useful in other filters as well.

Starting from a signal model with multiplicative, signal dependent noise, u, the
method finds the optimal linear approximation to that observation equation such that
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it minimizes the mean squared error while making the model prediction an unbiased
estimate of the observations [17]. The model assumes the stochastic model

E[un] = ūn

E
[
(un − ūn)

2
]
= σu

2δnδn′ , (45)

for the speckle noise, where σu
2 is its variance and n = 1, . . . , N is the pixel index. These

second-order statistics are approximated by the corresponding local statistics within the
moving window. The resulting filtering equation is a linear filter that is exactly equivalent
to a static Kalman filter, where the Kalman gain, Kn, serves as the signal weight, wn, but
with a slightly different functional form due to the approximation to the multiplicative
noise. It can be shown that the Lee filter computes a weighted least-squares estimate of the
despeckled signal of the form

R̂n = wn In + (1− wn) Īn, ∀n , (46)

that is, it is a convex combination of the observed image, corrupted with speckle noise,
I = (In), and the mean image intensity of the nth pixel’s neighbours inside the window,

Īn
def
= IN (n). The weight, wn, can be written in a standard form involving coefficients of

variation (CV), also known as relative standard deviations (standard deviation to mean
ratios), c, as

wn = 1− cu
2

cIn
2 ≥ 0, (47)

where
cIn =

σIn

Īn
and cu =

σu

ū
, (48)

for each pixel, n. The coefficient of variation functions as a scene texture descriptor, being a
spatial heterogeneity index (SHI) of radar reflectivity in homogeneous regions.

Besides the statement of an appropriate signal model, successful despeckling, and
denoising in general, hinges on the appropriate estimation of the noise level. A question
then arises as to how the parameters of the speckle should be computed. The CV statistic

cu can be empirically estimated by the formula cu =

(√
Var(Ih)

Īh

)
, where the mean and

variance, Īh and Var(Ih), respectively, of the SAR image intensity are computed over a
number of homogeneous areas, Ih, in the image. Note that in those areas the observations
are dominated by speckle. Alternatively, it can be computed by cu = 1√

L
, where L is the

effective number of looks. The last equation is notable also because it says that speckle
noise drops with the square root of the number of looks, if multilook processing is chosen.

4.1.3. The Kuan Filter

The Kuan filter [18] is derived as the linear minimum mean square error (LMMSE)
estimator (i.e., conditional expectation) of an additive, signal-dependent model. The filter
equation is identical to the Lee filter,

R̂n = wn In + (1− wn) Īn , n = 1, . . . , N , (49)

but now the weighting function, wn, is

wn =
1− cu

2

cIn
2

1 + cu2 ≥ 0 , (50)

where, again, cIn =
σIn
Īn

and cu = σu
ū are the variation coefficients of the image and noise,

respectively. Note that wn is essentially a signal-to-noise ratio. The value of the Kuan-
filtered image, R̂n, is therefore a weighted avarage of In and Īn, the pixel’s observed
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grayscale value and that of the average of the pixel’s neighbourhood, with weights wn
and 1− wn, respectively. In practice, if the value of cIn falls under the noise threshold
cu, which means that the variation of values in the neighbourhood of pixel n is low, we
assign a zero weight wn to that pixel, and, consequently, R̂n takes the average value in
the neighbourhood.

4.1.4. The Frost Filter

Frost [19] takes a somewhat difference approach to despeckling, in that he uses a
spatial autoregressive model in order to capture spatial dependencies among pixels, with a
kernel (window) defined a function of the form

m(n) = e−αD(n,n̄) , (51)

where D(n, n̄) is a distance function between the central pixel, n̄, and a pixel beloging to
the window and α is a damping factor. Frost, in particular, uses the weighted distance
function D(n, n̄) = cIn‖n− n̄‖, where cIn =

σIn
Īn

, as before. The Frost filtering equation is
then the normalized weighted sum

R̂n =
M

∑
n=1

m(n)In

∑n m(n)
= wTIM , n = 1, . . . , N , (52)

where M is the number of pixels within the (discrete) kernel’s spatial extent, i.e., its area of
influence, and IM denotes the vector of pixel grayscale values within the filter window.

4.1.5. The Gamma Filter

The filters discussed up to now assume either implicitly, via their use of up to second-
order image statistics, or explicitly that the scene reflectivity is Gaussian-distributed. This is
not a very realistic assumption, however, as reflectivity is a non-negative physical quantity.
This prior knowledge can be encoded in the model using Bayesian prior probability density
functions (PDFs). Lopes [20] followed this approach, and modified the Kuan LMMSE filter
into a maximum a-posteriori (MAP) filter that uses non-negative, Gamma PDFs for both
the noise-free scene reflectivity and the speckle noise process itself. Moreover, he proposed
a more refined gradation of image texture content into three classes, homogeneous, het-
erogeneous, and point target, along with their corresponding thresholds. The idea behind
this formulation of the filter by Lopes is to reduce speckle while retaining edges and other
features of the SAR image.

Starting from the Gamma PDF (in its shape-scale parameterization [21]) for both the
likelihood and the prior, solving the MAP equation,

arg max
R

{
log pu(u) + log pR(R)

}
(53)

(involving the log-posterior), and imposing the above-mentioned thresholds, one can
derive the Gamma MAP (GMAP) filter

R̂n =


Īn , if cIn ≤ cu (homogeneous)
(β Īn+

√
∆)

2α , if cu < cIn ≤ cmax (heterogeneous)
In , if cIn ≥ cmax (point target)

, (54)

for each n = 1, . . . , N, where

α =
1 + cu

2

cIn
2 − cu2 (55)

β = (α− L)− 1 (56)

∆ = (β Īn)
2 − 4α(−LIn Īn) . (57)
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Note that the CV is cIn =

√
Var(IM)

Īn
, and also cRn =

√
cIn

2−cu2

1+cu2 ; therefore this is also the

reciprocal of the parameter α. The thresholds in the GMAP method are given by

cu =
1√
L

(58)

cmax =
√

2cu , (59)

where L is the equivalent number of looks, as before. Note that in the more complex,
heterogeneous case, the MAP estimate of Rn in Equation (54) is a non-linear combination
of the observed intensity, In, of pixel n and the mean intensity of the neighbouring pixels
of n in the window, Īn, via the square root of discriminant ∆.

4.2. Evaluation Indices

The quantitative evaluation of the studied methods will be performed via the use
of a number of indices, some of which are generic and others specific for speckle. The
former include:

• The Pearson correlation coefficient (corrcoef), r(x̂, x),

r(x̂, x) = ∑n(xn − x̄)(x̂n − ˆ̄x)√
∑n(xn − x̄)2

√
∑n(x̂n − ˆ̄x)2

, (60)

where x̂ is a model estimate of a (known, in this case) quantity, x.
• The signal-to-noise ratio (SNR), measured in dB,

SNR = 10 log10

(
E
[
x2]

E[ε2]

)
, (61)

where ε̂ = x− x̂ is the error committed by the estimator at hand, leading to the mean
squared error (MSE), where MSE = 1

N ∑N
n=1 εn

2.
• The peak signal-to-noise ratio (PSNR), measured in dB,

PSNR = 10 log10

(
maxx

2

MSE

)
, (62)

where maxx is the maximum grayscale value an image can take, e.g., 28 − 1 for an
8–bit encoded image.

The latter are without–reference indices, that is, they only operate on pairs of observed
and reconstructed images, without the need for ground truth. These are essential for
assessing the quality of reconstruction of real-world images [22]. These include:

• The Equivalent Number of Looks (ENL). ENL, which is a measure of noise level, is
one of the most common indices used in SAR images. It is defined as

ENL = L̃ =
E[I]2
Var[I]

. (63)

ENL refers to one image, and can be used both on the original, observed image and the
reconstructed image. In multilook processing, the number of looks, L, of a SAR image
is the number of independent images of a scene that have been averaged to produce a
smoother image, and, as mentioned before, speckle noise drops by the square root of L.
In the case of a single image, the equivalent number of looks, L̃, is a good measure of
the speckle noise level. To compute the ENL, one selects a large uniform image region,
or a number of such regions, and computes the empirical statistics of speckle there.

• The Edge Preserving Index (EPI), as the name implies, is a measure of the edge and
linear feature preserving capability of despeckling algorithms. Since any form of
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denoising inevitably leads to some degradation of high-frequency features, this is an
important quality index in SAR. EPI therefore compares the edges of the original with
those of the restored image, and is computed as the ratio of highpass versions of the
original and despeckled images. A simple definition is

EPI =
∑ij |R̂i+1,j − R̂i,j|+ |R̂i,j+1 − R̂i,j|

∑ij |Ii+1,j − Ii,j|+ |Ii,j+1 − Ii,j|
, (64)

where the pixel indices ij were used here to highlight the row-wise and column-wise
operations, respectively. In practice, smoother forms of edge detection may be used,
for example using a higher-order Laplacian filter, implementing the operator

∆ f (x, y) =
∂2 f (x, y)

∂x2 +
∂2 f (x, y)

∂y2 . (65)

From its functional form it is easy to see that EPI is analogous to an edge correlation
index. A value of one indicates perfect edge preservation. The SNR and corrcoef are
measures that use global image properties. On the contrary, oftentimes we want to
focus on specific features, such as edges. EPI complements those measures.

• The Radiation Accuracy Error (RAE) is a measure of radiometric loss due to filtering
between the original image and the filtered image. It therefore operates on the pair of
original and filtered images and is defined as the ratio of the average grayscale values
of the estimated SAR image to that of the measured one:

RAE = 10 log10

(
E
[
R̂
]

E[I]

)
, (66)

A value close to zero indicates an unbiased estimator.

5. Experiments and Analysis

In this section, experiments on simulated data and real SAR images are described. A
comparison study between our method and the major filters used for speckle reduction in
practice, given in Section 4.1, was performed and the results were evaluated perceptually
and numerically. For our variational Bayesian wavelet-based method, the classical Sym-
let 8 wavelet family was used in all experiments, as it provides a good balance between
frequency and time resolution, and has been widely used in image processing research,
without being specialized to any particular image. The various evaluation indices that
were used are given in Section 4.2.

First, the experimental results of applying the above methods and the proposed one
on these datasets are presented, and then a critical analysis of the pros and cons of the most
competitive filter and our proposed method as well as some pointers for future research
are given.

5.1. Experiments with Simulated SAR Images

To test the speckle reduction abilities of our method, and to compare it with established
algorithms, we performed a simulation study, inspired by a similar study by Sun et al. [22].
Simulated SAR images were created by adding multiplicative noise to a known ‘clean’
target image. Two noise levels, of 20% and 50% noise with respect to the signal, were used.
Examples of those images are shown in Figure 5.

We ran the various established speckle reduction filters discussed in Section 4.1 and
our own proposed method (Section 2) on this dataset and evaluated the results using the
despeckling performance indices presented in Section 4.2. For comparison, we present the
resulting denoised images arranged together, per noise level, in the order the filters were
introduced, except for our own method which will be presented last. Figure 6 displays the
results for the simulated images corrupted with 20% noise, and Figure 7 the corresponding
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results for the 50% noise. The numerical evaluation indices for the corresponding methods,
and for the two noise levels, are shown in Tables 1 and 2, respectively.

(a) (b)
Figure 5. Instances of simulated SAR images for assessing the speckle reduction methods used in this paper. (a) 20% noise.
(b) 50% noise. Adapted from Sun et al. [22], under the Attribution 3.0 Unported (CC BY 3.0) licence. ‘Clean’ targets were
cropped from the original and simulated speckle was added.

Denoised SAR image (ε=20%): Median filter

(a) Median filter (b) Lee filter

(c) Kuan filter

Denoised SAR image (l
ε
=20%): Frost filter

(d) Frost filter

(e) GMAP filter (f) VB wavelet-based filter
Figure 6. Speckle reduction simulation experiment at 20% noise level. The reconstructed images are arranged according to
the filters Median, Lee, Kuan, Frost, Gamma MAP, and, finally, our VB wavelet-based method. The corresponding numerical
evaluation indices are shown in Table 1.

https://creativecommons.org/licenses/by/3.0/
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Denoised SAR image (ε=50%): Median filter

(a) Median filter (b) Lee filter

(c) Kuan filter

Denoised SAR image (l
ε
=50%): Frost filter

(d) Frost filter

(e) GMAP filter (f) VB wavelet-based filter
Figure 7. Speckle reduction simulation experiment at 50% noise level. The reconstructed images are arranged according to
the filters Median, Lee, Kuan, Frost, Gamma MAP, and, finally, our VB wavelet-based method. The corresponding numerical
evaluation indices are shown in Table 2.

As a general comment, we first note that the descpeckling capabilities of the filters were
consistent, that is their relative ranking did not change (the worst filter remained worst,
and analogously for the others) with respect to the noise level. All methods achieved a very
high correlation coefficient (above 0.99), except for the Lee filter. However, observing the
resulting images, it becomes obvious that there were important differences with respect to
how well the various methods did. (This leads to the conclusion that, while the correlation
coefficient was a useful indicator of the overall performance of a method, this index should
always be interpreted in combination with the other evaluation indices.) Except for the
Lee filter, and to some degree the Kuan filter, all the others managed to maintain edges
pretty well. This was reflected in their EPI index, which was around and above 0.7 in most
cases. Visually, the ranking of the methods studied in terms of speckle reduction, from
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best to worst, is VB wavelet-based method, Frost filter, GMAP filter, Lee filter, Kuan filter,
Median filter.

Table 1. Evaluation indices for the SAR speckle reduction simulation experiment at 20% noise level,
for the various methods examined in this paper. The corresponding despeckled images are displayed
in Figure 6. The best result for each index is marked in bold typeface.

Corr. Coef. SNR (dB) PSNR (dB) ENL EPI RAE

Median filter 0.9950 12.171 28.907 57.565 0.7500 −0.013079
Lee filter 0.8734 5.1333 14.831 84.751 0.3985 −0.2191
Kuan filter 0.9935 11.593 27.750 50.878 0.5680 −0.025053
Frost filter 0.9974 13.566 31.696 157.22 0.9427 −7.8217×10−3

GMAP filter 0.9911 10.856 26.277 63.864 0.7497 −0.051018
VB Wavelets 0.99900.99900.9990 15.38415.38415.384 35.33235.33235.332 633.14633.14633.14 0.97200.97200.9720 1.3528×10−41.3528×10−41.3528×10−4

Table 2. Evaluation indices for the SAR speckle reduction simulation experiment at 50% noise level,
for the various methods examined in this paper. The corresponding despeckled images are displayed
in Figure 7. The best result for each index is marked in bold typeface.

Corr. Coef. SNR (dB) PSNR (dB) ENL EPI RAE

Median filter 0.9890 10.431 25.427 31.717 0.5621 −0.023736
Lee filter 0.8723 5.1149 14.794 57.672 0.3222 −0.2188
Kuan filter 0.9898 10.625 25.814 34.399 0.4656 −0.027765
Frost filter 0.9960 12.643 29.850 85.742 0.9225 −8.1316×10−3

GMAP filter 0.9899 10.598 25.760 46.723 0.6776 −0.049878
VB Wavelets 0.99800.99800.9980 13.75313.75313.753 32.07132.07132.071 276.57276.57276.57 0.95600.95600.9560 5.8928×10−45.8928×10−45.8928×10−4

In particular, the median filter did not perform very well for this task, in both cases.
A large percentage of speckle noise in the simulated SAR images remained. The Kuan
filter did somewhat better than the median filter, as it discriminated homogeneous areas
of different grayscale texture slightly better, but it was still quite noisy. The Lee filter
did reasonably well for this task, but it introduced considerable blurring in the results.
As a consequence, edges in the image became smeared. Interestingly, the addition of
significantly more speckle in the second noise regime did not seem to have a severe effect
on the results of this filter. The Gamma MAP filter did somewhat worse than expected,
given its strong theoretical foundation. Although it visually produced slightly brighter
images than the Frost filter, all its evaluation indices were significantly worse than those
of the Frost filter, except for the correlation coefficient. This radiometric difference was
however artificial, since the radiation accuracy error (RAE) of the Frost filter was almost
an order of magnitude better than that of the Gamma MAP. This behaviour seemed to
repeat over the experiments. Conversely, the Frost filter performed surprising well for this
task, with all its evaluation scores being significantly higher than all the other established
methods studied. We attribute this performance to its use of a proper distance kernel,
which seemed to weight each individual pixel contribution in its area of influence better
than the simple average of the other filters. It also performed very well with respect to
edge preservation for this task. The variational Bayesian wavelet-based method performed
the best, managing to reduce speckle almost perfectly for this task, and also in terms of
edge preservation. This is reflected in its quantitative evaluation scores over all indices
(Tables 1 and 2), which were significantly higher than all the competing methods. In
particular, its equivalent number of looks (ENL) and radiation accuracy error (RAE) scores
were an order of magnitude better than those of the other methods, while the SNR and
PSNR achieved a double score (logarithmic scale) and the edge preservation index (EPI)
was almost 1.
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5.2. Despeckling of Real SAR Images

In this section we will demonstrate the performance of our variational Bayesian
wavelet-based denoising method on a real SAR image acquired by the ERS 1 satellite
(Images or videos released by ESA under Creative Commons Attribution-ShareAlike 3.0
IGO (CC BY-SA 3.0 IGO) Licence, https://www.esa.int/ESA_Multimedia/Copyright_
Notice_Images (accessed on 3 June 2021)) [23], over Tiber Valley north to Rome, Italy, on 21
April 1994 (Figure 8).

Figure 8. The original ERS 1 SAR image of Tiber Valley (Central Italy). (Image: ESA).

The image shows some agricultural fields located along the river Tiber and some
hilly areas. This image was chosen for two reasons: first, older SAR images are ideal for
demonstrating despeckling algorithms, as they are more heavily impacted by noise, while
providing an invaluable resource for multi-temporal analysis, and second, as a means for
comparison with established, as well as more state-of-the-art denoising algorithms. Regard-
ing the latter, more refined reconstruction techniques can be defined, such as combining
speckle filtering with edge and line detection algorithms. One such reconstruction method,
of particular interest for the reasons explained below, will be given later in this section.

We applied the previously presented despeckling algorithms, Median, Lee, Kuan,
Frost, Gamma MAP, and our variational Bayesian wavelet-based method, along with an
enhanced version of Gamma MAP, employing edge and line detection. This section is
structured in two parts. We first give a qualitative, visual assessment of the results and link
those aspects of the evaluation to the corresponding numerical indices, presented in Table 3.
In particular, we used the without–reference evaluation indices ENL, EPI, and RAE; in
real-world data we do not have the actual scene reflectivities to compared to. (In the Inverse
Problems and Machine Learning terminology, this is a blind image reconstruction problem.)
According to our analysis below, these indices managed to capture the essential aspects
of despeckling performance on real-world SAR images. We then give a more analytical
comparison of the most competitive result to the proposed method, emphasizing their pros
and cons.

We show the collective results in Figure 9, side-by-side, to make comparison easier,
and we we comment on each method and its corresponding resulting image.

As mentioned above, the Median filter was used here as the baseline method. It did
not manage to adequately despeckle the image in this case, as displayed in Figure 9b, which
resulted in the lowest equivalent number of looks (ENL). However, its edge preserving
index (EPI) was quite high. This apparent contradiction was resolved by reflecting on what
the EPI computed. In essence, it was a measure of similarity between the observed noisy
image and the denoised one. While its focus is on revealing how much the edges and

https://creativecommons.org/licenses/by-sa/3.0/igo/
https://www.esa.int/ESA_Multimedia/Copyright_Notice_Images
https://www.esa.int/ESA_Multimedia/Copyright_Notice_Images


Math. Comput. Appl. 2021, 26, 45 24 of 28

other features were preserved during despeckling, its domain was over the whole image.
Comparing the Median-despeckled image with the original observations, we realize that
the filter did not alter the observed data enough, hence the relatively high EPI.

The established algorithms used for SAR despeckling (Lee, Kuan, Frost, and Gamma
MAP) performed sufficiently well in this task, as expected, but with some variability in the
results. The Lee algorithm, however, produced overblurred results (Figure 9c), which is
something that was reflected in its ENL index, and it was not very good at preserving detail,
as is reflected in its EPI index, which was the second lowest of the algorithms studied. We
believe that the blurring stems from the nature of the basic algorithm, as essentially an
optimal linear filter that assumes Gaussian statistics, which does not represent a physically
plausible condition.

Similarly to the Median filter, the Kuan filter (Figure 9d) was also somewhat noisy, and
with a very similar EPI, while achieving a slightly higher ENL. However, it also produced
slightly darker images than the Median filter.

The Fost filter achieved somewhat better denoising results, but it was quite bad at
preserving detail, as it is reflected in its EPI index, which was the lowest of the algorithms
studied (Figure 9e). We can attribute its relative efficiency to the particular form of kernel
that the method used. Nevertheless, its speckle suppression performance for this task was
still mediocre. The kernel could potentially be refined and fine-tuned; however, the method
still assumed a Gaussian distribution for the image statistics. Therefore, it is unclear how
far this method could be pushed in order to achieve state-of-the-art results.

All of the above despeckling methods achieved a RAE index of a similar order (10−2),
preserving the original SAR image radiometry.

The Gamma MAP filter produced the best results out of the established despeckling
algorithms for this task. It was more balanced than the previous filters, providing the
cleanest results of this group and preserving image detail relatively well. The despeckling
result of this filter is shown in Figure 9f. We can attribute this mostly to the use of a proper,
non-negative, Gamma prior for the noise-free scene and the speckle noise. However, some
of the details, especially the finer ones, were still not preserved well. In fact the Gamma
MAP filter achieved an edge preserving index lower that that of the Median and the
Kuan filter.

As mentioned above, an interesting approach is the combination of despeckling filters
with other methods, e.g., feature extraction. One such reconstruction, using an enhanced
Gamma Map filter, is shown in Figure 9g, from the ESA site [24] (ESA did not give the
particular details of the implementation of this filter). This combination produced the
most competitive results to our proposed method in terms of visual appearance, at least.
It achieved an estimated equivalent number of looks much higher than the standard
despeckling methods; however both its EPI and RAE indices were rather mediocre. In
particular, they were lower than those of the standard Gamma MAP filter. This implies
a better denoising/smoothing but a not-so-good edge and radiometry preservation. We
will investigate this issue further below, after we first present the results of our proposed
method and comment on the indicators a little more thoroughly.

Our Bayesian wavelet-based method performed very well on this task, displaying
very good capability for speckle suppression while retaining edges and shape features
in the image (Figure 9h); this is reflected in all its numerical evaluation indices, shown
in Table 3, which were the best among all competing methods. The nature and possible
cause of some artifacts that seemed to be remaining and possible ways to fix them will be
discussed below.

The numerical comparison of the various despeckling methods examined in this paper
with respect to this image is summarized in Table 3.
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We first show the collective results in Figure 9, side-by-side, to make comparison
easier, and we then zoom into each individual resulting image as we comment on each
method.

(a) Original SAR image (b) Median filter

(c) Lee filter (d) Kuan filter

(e) Fost filter (f) GMAP filter

(g) Enhanced GMAP filter (h) VB wavelet-based
Figure 9. Aggregated results of all despeckling methods examined in this paper on the noisy ERS 1 SAR image of Tiber Valley (Central
Italy) of Figure 8. See text and individual images for an analysis of the results.Figure 9. Aggregated results of all despeckling methods examined in this paper on the noisy ERS 1

SAR image of Tiber Valley (Central Italy) of Figure 8. See text and individual images for an analysis
of the results.
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Table 3. Evaluation indices ENL, EPI, and RAE for the real, Tiber Valley SAR image reconstructions
from each of the despeckling methods examined (see text for explanation). The best result for each
index is marked in bold typeface.

ENL EPI RAE

Median filter 14.280 0.6333 0.029565
Lee filter 32.158 0.5156 −0.073089
Kuan filter 17.112 0.6340 −0.011139
Frost filter 27.402 0.5144 −5.0381×10−3

Gamma MAP filter 28.623 0.6197 −0.020175
Enhanced Gamma MAP 47.294 0.5561 0.1333
VB Wavelet Method 55.69655.69655.696 0.66480.66480.6648 6.7503×10−146.7503×10−146.7503×10−14

Let us analyze these results in more detail. First, we note that the methods have been
arranged with respect to their mathematical sophistication and evolution of development
(first column), as discussed above. In addition, we should stress that the above evaluation
metrics should be interpreted in combination, since they emphasize different aspects of
image reconstruction, in order to illuminate insights: it may look surprising at first that
some simple methods, such as the Median filter, for example, achieve better scores for
some indices than the much more sophisticated Modified Gamma MAP filter, if taken
individually. However, even a simple visual inspection shows that the Median filter does
not perform so well in this task. This can be quantified by the crucial ENL metric. The
combination of the three metrics can give us a more fine-grained, quantitative comparison
among methods that look qualitatively similar. Nevertheless, if an image analyst wants to
emphasize a particular aspect of a method, such as edge preservation, for example, then a
focus on a particular metric might be appropriate. As in all inverse problems, the particular
task at hand should inform the particular strategy one should follow.

We are now in a position to make a more informed evaluation of the two best results.
Going back to the enhanced Gamma MAP filter (Figure 9), we note that it seemed to
produce slightly cartoonish images, giving it a look reminiscent of an oil painting, which,
while æsthetically pleasing, do not seem very realistic for SAR. In that respect it was
somewhat similar to the result produced by the Lee filter. Additionally, notice that the
despeckled image looked brighter than the original; this is because the RAE index was
positive and relatively large. The method therefore was not unbiased, in the statistical
sense (a perfect RAE index should be zero). Comparing equivalent areas of the original
SAR image and the one produced by the Enhanced Gamma MAP filter, for example the
upper-left part, we see that that algorithm artificially tinted parts of the image. Indeed, the
above can be quantified by the fact that all evaluation indices, ENL, EPI, and RAE, were
significantly lower than those produced by our method.

Close inspection shows that our method managed to preserve edges and linear fea-
tures better than the Enhanced Gamma MAP filter. This was reflected in the much higher
EPI measure. It seems that the Enhanced Gamma MAP filter oversmoothed the image,
losing some significant details. Overall, our method achieved significantly higher scores
over all evaluation metrics. Nevertheless, our method still contained some artifacts, in
particular in areas of homogeneous texture. Focusing on those areas and closely examining
the shape and orientation of those artifacts reveals that this is most likely a result of the cur-
rent use of the particular wavelet basis, which was not rotationally invariant. This means
that these bases, taken individually, did not describe those particular features optimally,
and a destructive interference of a number of those bases was needed to locally produce
a result similar to that of the Enhanced Gamma MAP filter in these areas. However, the
combination with the global search for sparsity, seemed to disallow this effect. However,
there are a variety of other, wavelet-like bases, such as curvelets, ridgelets and bandelets,
which possess this property and could be used in the future. For example, Argenti and Al-
parone [25] present one such choice, using the undecimated wavelet transform. Kseneman
and Gleich [26] use second generation wavelets, in particular bandelets and contourlets,
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under a maximum a-posteriori (MAP) framework, with very promising results. In this
paper, the emphasis was on providing the fully Bayesian, variational inference scheme.
The combination of these more adapted local image bases with our variational Bayesian
framework is a topic of ongoing research.

6. Conclusions

We introduced a fully Bayesian, variational framework for inference and learning
under uncertainty, and applied the method to a constrained version of the general Gaussian
mixture model specifically tailored to model sparse sets of decomposition coefficients,
such as those obtained from wavelet-type decompositions of signals. Modelling those
coefficients under a mean-field approximation allows an efficient algorithm to be derived.
The general derivation of the equations of variational inference was shown, connections
with relevant Statistical Physics concepts was given, and then the specific update equations
and negative free energy functional for the SMOG model were derived in the context of
Bayesian networks. Particular emphasis was given to the locality of computations offered
by the structuring of sets of random variables in a DAG with probabilistic semantics.

The sparse representation model and learning algorithm was then used to infer
the wavelet decomposition coefficients of SAR images and other remotely-sensed Earth
signals, with the particular aim of developing a denoising scheme for those signals. The
corresponding processor formulated in the above efficient variational framework avoids
costly sampling methods such as Markov chain Monte Carlo, and employs a flexible prior
per decomposition scale whose posterior hyperparameters are learned directly from the
data and adapt to the characteristics of the particular dataset at hand.

We applied the model to both synthetic data and real SAR images and evaluated
the results using standard quality metrics for SAR denoising. The results show that our
algorithm is more effective than traditional despeckling methods both in terms of speckle
reduction and preservation is image details such as edges.

In this work we used the generic, ‘least asymmetric’, orthogonal wavelet family, since
we focused more on the theoretical foundation and proof of concept. This is very efficient
for sparsity but it can be suboptimal for pattern representation and recognition. Future
work will refine and extend the method to more effective families, and possibly take into
account residual dependencies among representation coefficients. Another avenue for
research is the combination of pure denoising/despeckling with other image processing
operations, such as edge and line detection algorithms, and the investigation of the effect
of our method on subsequent processing for SAR interferometry and polarimetry. A
comparison with Markov Chain Monte Carlo using Gibbs sampling (which provides
somewhat similar expressions and piecemeal update philosophy but approaching the
problem from a stochastic simulation viewpoint), in terms of quality of results and running
time with experimental data, is a topic of ongoing research.
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