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Abstract: This paper reviews the interdisciplinary collaboration between Environmental Sciences
and Statistics. The usage of statistical methods as a problem-solving tool for handling environmental
problems is the key element of this approach. This paper enhances a clear pavement for environ-
mental scientists as well as quantitative researchers for their further collaborative learning with an
analytical base.

Keywords: descriptive statistics; inferential statistics; species abundance data plots; abundance
models; species richness indices; diversity measures; sampling; community comparisons; diversity
in space (time); extreme value modeling; epidemiology; adaptive sampling; trend analysis; ecological
modeling; detection limit

1. Introduction

In its simplest sense, the environment means the surrounding external conditions
influencing the growth of people, animals or plants, living or working conditions, etc.
Environmental Sciences (EVS) is an integrated multidisciplinary approach that studies the
environment and solutions of environmental problems. In the present scenario, the envi-
ronment has become a global agenda item, which has increased the scope and importance
of EVS. In the development of different stages of civilization, humans were accompanied
both by the environment and statistics. Since the early days, they were found to be know-
ingly accustomed to the environment and unknowingly played with statistics. Thus, both
statistics and the environment have shared a long history of mutual reciprocation. In
modern times, these two subjects are independently able to attract the academic attention
of scholars throughout the world (see [1]).

The United Nations Statistics Division (UNSD) has an exclusive branch for environ-
mental statistics, established in 1995. Its major area of work is data collection, methodology,
capacity development, and coordination of environmental statistics and indicators. They
have a dedicated newsletter called “ENVSTATS”, which publishes the activities of UNSD in
the area of environmental statistics. The Framework for the Development of Environmental
Statistics (FDES 2013) is an updated version of the original FDES, which was published
by UNSD in 1984. In India, the Ministry of Statistics and Programme Implementation has
a specific publication report in the branch of environmental statistics called “EnviStats”
which updates recent developments in the field of environmental statistics.

The extensive use of statistics in EVS led to the development of a new branch called
Environmental Statistics. We all know that statistics are an inevitable context in any scien-
tific arena. Even so, the motivation for conducting this specific review is that environmental
statistics have an integrated multidisciplinary face, which will shed light on the pure biolog-
ical field of modern science with its analytical nature. That undiscovered interconnection
with statistics and environmental science will be revealed through this review, which will
be an easy access point for future investigators. This review has been conducted in two
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parts, i.e., the pure statistical techniques and those specific techniques that have been
exclusively invented for environmental science. A brief state of the art is presented below.
The authors of [2] discussed different statistical techniques which are helpful to environ-
mental engineers. It addresses different environmental problems with a solution-oriented
approach that encourages students to view statistics as a problem-solving tool.

The use of statistical techniques to understand various environmental phenomena was
explained in [3]. He examined different statistical tools, such as probabilistic and stochastic
models, data collection, data analysis, inferential statistics, etc. In addition, he discussed
principles and methods applicable to a wide range of environmental issues (including
pollution, conservation, management, control, standards, sampling, monitoring, etc.) across
all fields of interest and concern (including air and water quality, forestry, radiation,
climate, food, noise, soil condition, fisheries and environmental standards). Accordingly,
he considered sophisticated statistical techniques, such as extreme processes, stimulus
response methodology, linear and generalized linear models, sampling principles and
methods, time series, spatial models, multivariate techniques, design of experiments, etc.

This article is an attempt to describe some basic statistical concepts used in EVS,
thereby establishing a link between the two subjects. It studies some basic statistical
concepts relevant to environmental study. Illustrations are discussed on the basis of [4,5].

In this article, Section 2 presents the basic concepts in statistics, Section 3 describes the
application of statistical tools in EVS, Section 4 is about the various illustrations regarding
the topic, and Section 5 is the conclusion.

2. Basic Concepts

With the advent of the theory of probability and games of chance in the mid-seventeenth
century, the concept of modern statistics was born. The name “statistics” appears to have
come from the German word “Statistik,” the Italian word “statista,” or the Latin word
“status,” all of which mean “political state” or “state craft”, respectively. The term statistics
can be used in two different senses.

In the plural sense, it means “a collection of numerical facts”. According to Horace
Secrist, “Statistics may be defined as the aggregate of facts, affected to a marked extent by
a multiplicity of causes, numerically expressed, enumerated or estimated according to a
reasonable standard of accuracy, collected in a systematic manner, for a predetermined
purpose and placed in relation to each other”. This definition explains the characteristics of
statistical data.

In its singular sense, it means “statistical methods for dealing with numerical data”.
According to Croxton and Cowden, “Statistics is the science of collection, presentation,
analysis, and interpretation of numerical data”. This definition points out different stages
of statistical investigation. Hence, statistics is concerned with exploring, summarizing, and
making inferences about the state of complex systems, for example, the state of a nation
(social statistics), the state of people’s health (medical and health statistics), the state of the
environment (environmental statistics), as extensively described in [6].

In the midst of its wide range of applications and advantages, one important allegation
about statistics is that the concerned parties may make misleading statements in their favor.
However, the fact is that, as in the case of any science, only an expert can make use of
statistical tools effectively. One should make sure that the statistical study is conducted by
the right person. There are lots of good ways, many more bad and wrong ways too. So,
be sure about the correctness of the tool used. The notorious allegation by Mark Twain
citing the British Prime Minister Benjamin Disraeli that “there are three types of lies: lies,
damned lies, and statistics” (but the phrase is nowhere in Disraeli’s works, and the earliest
known appearances were years after his death, so it is assumed to be by some anonymous
writer in mid-1891) is just a lie, provided the precaution is served. In such a context, it
is interesting that the author of [7] beautifully coined the title “Truth, Damn Truth and
Statistics” for his article.
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3. Application of Statistical Tools in EVS

In statistics, data analysis is divided into two sections: descriptive statistics and
inferential statistics. The authors of [5] discussed the two in depth, and Sections 3.1 and 3.2
below present them in summary form.

3.1. Descriptive Statistics

Descriptive statistics are the initial stage of data analysis where exploration, visualiza-
tion and summarization of data are done. We will look at the definitions of population and
random sample in this section. Different types of data, viz. quantitative or qualitative, dis-
crete or continuous, are helpful for studying the features of the data distribution, patterns,
and associations. The frequency tables, bar charts, pie diagrams, histograms, etc., represent
the data distribution, position, spread and shape efficiently. This descriptive statistical
approach is useful for interpreting the information contained in the data and, hence, for
drawing conclusions.

Further, different measures of central tendency viz. mean, median, etc., were calcu-
lated for analyzing environmental data. It is also useful to study dispersion measures,
such as range, standard deviation, etc., to measure variability in small samples. One of the
important measures of relative dispersion is the coefficient of variation, and it is useful
for comparing the variability of data with different units. Skewness and kurtosis charac-
terize the shape of the sample distribution. The concepts of association and correlation
demonstrate the relationships between variables and are useful tools for a clear under-
standing of linear and non-linear relationships. Important measures of these fundamental
characteristics are briefly discussed here in the following.

3.1.1. Central Tendency

The tendency of the observations to cluster around some central value is called central
tendency. Any measure of central tendency is termed “average”. The most commonly used
averages are the following:

Mean x̄ =
n

∑
i=1

xi
n

,

where xi denotes the ith observation and n is the number of observations.

Median is the middle-most observation when observations are arranged in ascending or
descending order

and
Mode is the most frequently occurring observation.

3.1.2. Dispersion

The scattering of observations about the central value is called dispersion. Important
measures of dispersion are range, quartile deviation, mean deviation, standard deviation
and coefficient of variation. These four measures depend on the unit of measurement of
the observations, hence, they are absolute measures. They can be defined as:

Range is the difference between largest and smallest observations.

Measure based on quartiles:

• Quartile deviation

QD =
Q3 −Q2

2

where Q3 and Q2 are the third and first quartile in the frequency distribution, respec-
tively;
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• Mean deviation

MD =
n

∑
i=1

|xi − x̄|
n

where x̄ is mean of xi (observed values);
• Standard deviation

SD =

√
n

∑
i=1

(xi − x̄)2

n
;

• Coefficient of variation

CV =
SD

Mean
× 100.

Thus, CV is the relative measure (measure independent of unit) corresponding to SD.

3.1.3. Skewness

The lack of symmetry is termed as skewness or asymmetry. In a frequency curve, if
both the sides of the mode are distributed in the same manner, the distribution is symmetric,
otherwise it is skewed. When more area is on the right side of the mode, the distribution is
positively skewed. If more area is on the left side of the mode, the distribution is negatively
skewed. Figure 1 depicts the three situations. There are mainly two measures:

1. Pearson’s measure

S =
Mean −Mode

SD

If S = 0, the distribution is symmetric, if S > 0, positively skewed and if S < 0,
negatively skewed.

2. Moment measure

β1 =
µ3

µ3/2
2

where

µ2 = SD2

and

µ3 =
n

∑
i=1

(xi − x̄)3

n
.

If β1 = 0, it is symmetric, if β1 > 0, positively skewed and if β1 < 0, negatively
skewed.
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(a) (b) (c)

Figure 1. (a) Negative skewness, (b) symmetric, and (c) positive skewness.

3.1.4. Kurtosis

Kurtosis measures the degree of peakedness or flatness of a curve. The normal curve
is called mesokurtic. If the curve is more peaked than normal, it is called leptokurtic. If it is
flatter than normal, it is called platykurtic. Figure 2 illustrates the nature of different types
of kurtosis.

The moment measure of kurtosis is

β2 =
µ4

µ2
2

where

µ4 =
n

∑
i=1

(xi − x̄)4

n

If β2 = 3, the distribution is mesokurtic, if β2 > 3, the distribution is leptokurtic, and if
β2 < 3, the distribution is platykurtic.

(a) (b) (c)

Figure 2. (a) Leptokurtic, (b) mesokurtic, and (c) platykurtic.

3.2. Inferential Statistics

In inferential statistics, the concept of probability is important for studying the un-
certainties in the environment. For example, whether it will rain or not tomorrow can be
best inferred by using probability. Several theoretical probability distributions, such as the
Bernoulli distribution, the binomial distribution, the Poisson distribution, etc., are useful for
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modeling the probability distribution of real environmental data. For example, decisions,
such as coin tossing, rain/no rain, yes/no, etc., are explained by Bernoulli variables since
their outcomes are binary. In addition, if we are interested in counting the number of times
floods occurred in the Dhemaji district of Assam, India, out of the total number of floods
that occurred, because we are counting the number of times a flood (X), a Bernoulli event,
occurs with a probability of p out of a total, i.e., out of n trials, the probability distribution
of such variables is given by a binomial distribution. In addition, if we do not know the
total number of flood occurrences but know the meaning of the flood occurrences, the
distribution is modeled by the Poisson distribution. Statistical tools such as estimation,
hypothesis testing, etc., play a vital role in analyzing environmental data. Some of the
frequently used statistical tests in atmospheric and environmental science are the “Z-test,”
“T-test,” “F-test,” etc. Another statistical approach is time series analysis, which studies
environmental quantities with respect to time. For example, the monthly/yearly mean
temperature, rainfall, humidity, etc., are best studied by time series (see [8]).

4. Illustrations

In this section, we are discussing the available statistical techniques that are used in
the field of environmental sciences along with some practical examples in the context of
data based on environmental sciences. There are examples of how collaboration between
environmental scientists and quantitative researchers has aided future learning in both
fields, based primarily on two works: [4], which deals with statistical techniques, and [5],
which deals with practical examples.

The statistical techniques available are given below, based on [4].

4.1. Methods of Plotting Species Abundance Data
4.1.1. Whittaker Plot

One of the best informative methods is the rank/abundance plot, or dominance
diversity curve. Here, species are plotted from most to least abundant along the x axis and
abundance in the y axis in log10 format (here, abundance of several orders of magnitude
can be accommodated in the same graph). Proportional or percentage abundance are used
in order to facilitate easy comparison.

The authors of [9] named this plot the Whittaker plot in remembrance of R. H. Whit-
taker for his famous contribution described in [10]. This plot has several advantages.
Contrasting patterns of species richness are clearly displayed. If there are only a few of
some species, all the information concerning their relative abundance is visible, as they are
represented in their histogram format (see [11]). For following environmental impacts and
succession, this plot is very effective. For that, we should plot a rank/abundance graph.
The shape of the curve gives inference about which species abundance model best fits the
data. The steep plot describes assemblages with high dominance, while the shallower plot
symbolizes low dominance. High dominance plots are consistent with geometric or log
series, while low dominance plots suit the log normal or broken stick model. However, the
curves of different models are rarely fitted with empirical data (see [11]).

4.1.2. k-Dominance Plot

This kind of plot shows the relationship between percentage cumulative abundance
(y axis) and species rank/log series rank (x axis). Here, the elevated curve represents the
less diverse assemblages (see [12,13]).

4.1.3. Abundance/Biomass Comparison Curve or ABC Curve

A variant of the k-dominance plot was introduced by [14]. The related curve is
constructed using two measures of abundance: the number of individuals and biomass.
The level of disturbance, pollution-induced or otherwise, affecting the assemblage can be
inferred from the resulting curve.
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The method was developed for benthic macrofauna and has been used productively
by a number of investigators in this context.

The ABC plot is used to study the entire species abundance distribution. The author
of [15] has introduced a summary statistic specified as W (named after R. M. Warwick),
and defined by

W =
S

∑
i=1

Bi − Ai
50(S− 1)

where Bi denotes the biomass value of each species rank (i) in the ABC curve, S represents
the number of species, and Ai represents the abundance (individuals) value of each species
rank (i). Ai and Bi do not necessarily refer to the same species, since species are ranked
separately for each abundance measure. The result will be positive if the biomass curve
is consistently above the individual curve. This symbolizes undisturbed abundance. In
contrast, a grossly perturbed assemblage will give a negative value (consistently above
the biomass curve). A curve that produces a value of W close to 0 and overlaps signifies
moderate disturbance. W ranges usually from −1 to +1.

The W statistics are generally computed for each sample separately. ANOVA can be
used to test for significant differences, if treatments have been replicated. Alternatively,
graphing W values can be a very effective way of illustrating shifts in the composition of
the assemblage if un-replicated samples have been taken along a transect or over a time
series (such as before, during and after a pollution event). While considering ABC curves
at discriminating samples, W statistics are most useful (see [16]).

4.2. Species Abundance Models

Statistical models were initially devised as the best empirical fits to the observed data
(see [17]). They help the investigator to objectively compare different assemblages, which
is one of its advantages. In some cases, a parameter of the distribution can be used as an
index of diversity. Another set of models is biological or theoretical models.

4.2.1. Statistical Models

• log series model
In this model, the number of species (y axis) is displayed in relation to the number
of individuals per species (x axis), the abundance classes which are presented on log
scale. This plot is typically used when the log normal distribution is chosen. This
type of graph is sometimes dubbed the “Preston plot” (see [18]) in remembrance of
Preston F., who pioneered the use of the log normal model in [19]. In the log series
model, the mode will fall to the class with the lowest abundance, which represents a
single individual, and in the case of this plot, it is more focused on rare species. In log
transformation, the x axis has a tendency to shift a mode to the right so as to reveal a
log normal pattern.

• Negative binomial model
The author of [20] describes many applications of the negative binomial model in
ecology. Particularly in estimating species richness (see [21]). However, the authors
of [22] remarked that it is only rarely fitted to data of species abundance (one exception
being [23]). Since it came from a stable log series model, it has some potential interest.

• Zipf-Mandelbrot model
This model has its roots in linguistics and information theory. This model has several
applications in environmental diversity, which are well described in [24–28]. The
Zipf-Mandelbrot model is important for a rigorous sequence of colonists from the
same species, always present at the same point in the succession in identical habitats.
According to [29], this model is not better than the log series or log normal model. This
model, however, has been successfully used in [28,30–32]. We also refer to [33–35] for
the use of this model in terrestrial studies, and [36] for the use of this model in aquatic
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systems. The author of [37] states that it can be used to test the performance of various
diversity estimators. The Zipf-Mandelbrot model provided the best description of the
cover data, while the biomass data are compatible with the log normal distribution.

4.2.2. Goodness of Fit Tests

A goodness of fit test, often called χ2, is used to find the relationship between the
observed and expected frequencies of a species in each abundance class [38]. To fit a
deterministic model, the conventional method used is to assign the observed data to
abundance classes. Classes based on log2 are usually used. According to the model used,
the number of species expected in each abundance class is determined.

The model takes the S (number of species) as observed values and N (total abundance),
and then determines how these N individuals should be distributed among the S species.
If p < 0.05 (p-value), the model is rejected because it does not adequately describe the
pattern of species abundances. If p > 0.05, the fit fails to be rejected or, ideally, p >> 0.05
is assumed to be a good fit. Tests of empirical data typically involve a very small number
of abundance classes (10 or fewer). This causes a reduction in the degrees of freedom (d.f.)
available. The more the degrees of freedom get the least value, the harder it becomes to
reject a model.

The authors of [29] remarked that goodness of fit tests work most effectively with large
assemblages (but might not be ecologically coherent units). Instead of χ2 he recommends
the Kolmogorov–Smirnov (K–S) goodness of fit (GOF) test, as said in [38,39]. Indeed,
Tokeshi suggests adopting the K–S-GOF test, as the standard method of assessing the
goodness of fit of deterministic models. He also suggests the K–S two-sample test can be
used to compare two datasets directly to describe their abundance patterns.

The author of [11] reinforces that, if one model fits the data and another does not, it
is not possible to conclude that the fit of the two is significantly different. His solution
is to use replicated observations. The deviations can be log transformed, if necessary to
achieve normality. A multiple comparison test, for example, Duncan’s new multiple range
test (see [38]) can then be used to infer which models are significantly different from one
another.

4.2.3. Biological or Theoretical Models

• Deterministic and stochastic models
Deterministic models assume that N individuals will be distributed amongst the S
species in the assemblage. The geometric series is the only deterministic niche appor-
tionment model. Stochastic models recognize that replicate communities structured
according to the same set of rules will vary according to the relative abundances of
species found there, and they try to capture the random elements inherent in natural
processes. This makes biological sense. Perhaps not surprisingly, stochastic models
are more challenging to fit than their deterministic counterparts. In a practical sense,
it is necessary to know whether a model is deterministic or stochastic. Stochastic
models have a complexity that requires replicated data, and this problem is solved in
Tokeshi’s refinements (see [40]).

• Geometric series
Assume that the dominant species pre-empts a limiting resource percentage k, and the
second most dominant species pre-empts the same k of the remaining part, and so on,
until all S have been chosen. If the species abundance is proportional to the resource
amount and the assumption stated above is fulfilled, the resulting pattern will follow a
geometric series (or niche pre-emption hypothesis). Here, species abundance is ranked
from most to least. Ratio of abundance of each species to abundance of predecessor is
being a constant through the species and the ranked list is the reason. In addition, the
series will appear as a straight line when plotted on log abundance/species rank graph.
This plot helps identify whether the dataset is consistent or not with a geometric series.
A full mathematical treatment of the geometric series can be found in [41], who also
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presents the species abundance distribution corresponding to the rank/abundance
series. In a geometric series, the abundances of species, ranked from the most to least
abundant will be (see [41,42]):

ni = NCkk(1− k)i−1

where ni is the total number of individuals in the ith species, n is the total number
of species, N is total number of individuals, k is the proportion of the remaining
niche space occupied by each successively colonizing species (k is a constant), and
Ck =

[
1− (1− k)S]−1 is a constant that insures that ∑n

i=1 ni = N. Because the ratio of
the abundance of each species to the abundance of its predecessor is constant through
the ranked list of species, the series will appear as a straight line when plotted on a
log abundance/species rank graph.

• Broken stick model
The broken stick model, alias the random niche boundary hypothesis, was proposed
in [43]. This model plots relative species abundance in the y axis on a linear scale, and
in the x axis, they plot the logged species sequence abundance, so as to represent it
from most to least. Then, we will get a straight line. As [22] states, the model has a
demerit in that it may be derived from more than one hypothesis. It provides evidence
that some ecological factors are being shared more or less evenly between species
(see [41]). It represents a group of S species with equal competitive ability vying for
niche space, according to [29]. It is typically organized in the order of rank order
abundance (see [11]). The authors of [44] prepared a program which estimates species
abundance. This model is tricky enough to fit with empirical data (see [29]).

• Tokeshi’s models
Tokeshi has developed several niche apportionment models, including the dominance
pre-emption, random fraction, power fraction, MacArthur fraction, and dominance
decay models in [45,46]. They work with the assumption that abundance is propor-
tional to the fraction of niche space occupied by a species. The model here assumes
that the target niche selected is divided at random. The only difference between the
models is how the target niche is selected. The larger the niche is, the more even the
resulting species abundance distribution will be. Evenness ranges from least to most
from the dominance pre-emption model, following the order of explanation. The
random assortment model represents a random collection of niches of arbitrary sizes
(see [45]).

– Random fraction
In this model, available niche space is divided at random into two pieces. Among
these two, one is selected randomly for further subdivision, and so on, till all
species are accommodated (see [40]). The sequential breakage model depicts a
situation in which a new colonist competes for the niche of a species that is already
in the community and takes over a random proportion of the previously existing
niche. This model can be used to cover speciation events (see [40]). In addition,
this is conceptually simple and found to be fit for a small community of freshwater
chironomids (see [45,47]). The authors of [44] have created a Microsoft Excel
program which can model the species abundance and distribution associated
with it.

– Power fraction model
The Tokeshi model is applicable to species-rich assemblages, which is an excep-
tion to others (see [46]). In this case, the niche space is subdivided in the same
way that a random fraction is. However, the probability of a niche splitting
increases in this model, albeit only slightly in relation to size (x) via the power
function (K). When K approaches 1, the largest niche is selected for fragmenta-
tion. When K = 1, the power fraction model resembles the MacArthur fraction
model. Instead, when K = 0, niche fragmentation is done by random choice
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and becomes a random fraction model. Usually K is set to 0.5 for the power
fraction model (see [46]). Tokeshi accounts for virtually all assemblages. The
author of [48] states that larger niches have a high fragmented probability or
could occur either ecologically or evolutionarily.

– Dominance pre-emption model
This model assumes that each species pre-empts more than half the niche space
remaining. Because of this, it is dominant among combined species (see [45]).
The proportion of available niche space is assigned between 0.5 and 1. When the
number of replications increases (or K = 0.75, the same as the power fraction
model), it becomes more similar to the geometric series (see [45]). It can also be
applied to niche fragmentation (see [29,40]).

– MacArthur fraction model
In the case of predicted species abundance distribution, the MacArthur fraction
and the broken stick models paved the way to the same result. In this model, the
probability of niche fragmentation is inversely proportional to size. This creates
a very uniform distribution of species abundances and is only plausible in small
communities of taxonomically related species. However, Tokeshi also reminds us
that unreplicated data are not good for either the broken stick or the MacArthur
fraction models.

– Dominance decay model
Here, a more uniform pattern of species abundance is considered. At random, the
niche space for fragmentation is selected at random. No empirical data indicate
that communities as predicted by Tokeshi’s dominance decay model can be found
in nature till date. This can be due to insufficient investigations or due to the
lower chance of finding an even distribution in nature.

4.2.4. Fitting Niche Apportionment Models to Empirical Data

The author of [45] found a new way of testing stochastic models. Species (S) are
listed in decreasing order of abundance. The equation given below is used to fit a niche
apportionment model if the mean observed abundance falls within the confidence limits of
expected abundance.

R(xi) = µi ± rσi
√

n

where

xi=1 = mean abundance of most abundant;
xi=2 = mean abundance of next most abundant;
.
.
.
xi=S = mean abundance of least abundant;
µi = mean of abundance ranked from i = 1 to S;
σi = standard deviation of abundance;
n = number of replicated samples;
r = breadth of confidence limit.

The mean abundance constitutes the observed distribution. For an assemblage of the
same number of species (S), the expected abundance is estimated. For this model, we have
to choose a large N, µi, σi and n. In addition, confidence limits are assigned to each rank of
expected abundance by considering n rather than N (the number of times the model was
simulated).

4.3. Species Richness Indices

There are two well-known species richness indices, which are easy to calculate too,
which were introduced by [49,50], respectively.
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• Margalef’s diversity index (DMg)

DMg =
S− 1
log N

• Menhinick’s index (DMn)

DMn =
S√
N

where S is the number of species recorded, N the total number of individuals in the sample.
Despite the attempt to correct for sample size, both measures remain strongly influ-

enced by sampling effort. Nonetheless, they are intuitively meaningful indices that can be
useful in biological diversity research.

Estimating Species Richness

There are two approaches to estimating species richness from samples, as cited
in [51,52]. The first is the extrapolation of species accumulation or species–area curves. The
second approach is to use a non-parametric estimator.

• Species accumulation curves
Species accumulation curves, also known as collector curves, plot S, the total number
of species, as a function of sampling effort (n) (see [51]). These curves are widely
used in botanical research (see [53,54]). This is only a type of species accumulation
curve. Curves that are S versus A for different areas (such as islands) and those used
in increasingly larger parcels of the same region are the most common.
The overall shape of species accumulation curves is determined by the order of
samples (or individuals). By randomizing, the curve can be made smoother. It also
helps deduce the mean and standard deviation of species richness. According to [55],
these curves resemble rarefaction curves (see [56]). They usually move from left to
right, as new species are added. However, rarefaction curves conventionally move
from right to left. Many scientists have plotted species accumulation curves using
linear scales on both axes. However, it is better to use a log-transformed x axis since
semi-log plots make it easier to identify asymptotic curves from logarithmic curves
(see [57]). To find an estimate of total species richness, the authors of [58] extrapolate
the graph.
Functions used in this kind of extrapolation can be classified into asymptotic or non-
asymptotic. Both of their roles are to help the user predict an increase in species
richness with additional sampling effort rather than to estimate total species richness.

– Asymptotic curves
They can be generated using two methods. The first is by using a negative
exponential model (see [58]). The second is using the Michaelis–Menten equation
(see [59]). The usual form of the equation is

S(n) =
nSmax

B + n

where S(n) is the number of species observed in n samples, Smax is the total
number of species in the assemblage, and B is the sampling effort required to
detect 50% of Smax and n is the sample count.

– Non-asymptotic curves
These curves are used to estimate species richness. The authors of [60] proposed
that the relationship between area and species be best described by a log linear
model, extrapolated to a larger area. The authors of [61] imposed an asymptote
on the log-log species area curve to avoid extremely high estimates of species
richness.
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* Parametric methods: log series and log normal distributions are the most
potent two abundance models in this context (see [51]). Of these, the easiest
fit is log series distribution, and it is also simple to apply. In addition, the
log series model helps obtain a good estimate of total species richness if the
number of individuals in the target area can be estimated. In this case, S
will be underestimated where it should not be. Furthermore, this method
is also used during rarefaction. Most people adopt the pragmatic approach
when fitting continuous log normal distribution, which is inappropriate
when observed data are in discrete form (see [22,51]). According to [21], this
method has the unique property of generating a mode in the second or third
class, giving the appearance of a log normal distribution even if it is not
a log normal distribution. There is, however, no method for generating a
confidence interval for any estimate of species richness found in a continuous
log normal distribution (see [21,22,51,62]). An alternative to this is Poisson
log normal (see [51]), which is rarely used as it is hard to fit. However, it
produces higher estimates of species richness than any other method.

* Non-parametric methods:

· Chao1
It represents a simple estimator of the absolute number of species in
an assemblage, which was introduced by Anne Chao (see [63]). The
measure is named by [51] as Chao1 and it is based on the number of
rare species in a sample. The following notation was provided by [52]:

SChao1 = Sobs +
F2

1
2F2

where Sobs denotes the number of species in the sample, F1 is the num-
ber of observed species represented by a single individual (singletons)
and F2 denotes the number of observed species represented by two
individuals (doubletons).
The requirement for abundance data is an obvious disadvantage of
Chao1. The abundance data should at least show whether they are
singleton or doubleton. However, rather than presence/absence, they
are often called incidence or occurrence data. The calculation of the
variance of Chao1 is possible (see [64,65]).

· Chao2
Anne Chao was well aware that the number of species found in one sam-
ple is the only essential factor for calculation. For this, a new estimator,
Chao2 was invented. It is as follows (see [51]):

SChao2 = Sobs +
Q2

1
2Q2

where Q1 is the number of species that occur in one sample only (unique
species) and Q2 is the number of species that occurs in two samples.

· Other estimators
The author of [51] also invented another category of estimator called
coverage estimators (see [66]). Coverage estimators are based on the
assumption that widespread or abundant species can be included in any
sample (see [67]). The abundance-based coverage estimator, alias ACE,
is another estimator based on empirical data (see [68]). The partner
incidence-based coverage estimator, ICE, focuses its eye on species
found in <10 sampling units. Here, to estimate the true number of
species, two estimators in this category are Jackknife and bootstrap
estimators, which are described in the following sections. The estimators
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are evaluated using some criteria, such as sample size, patchiness and
overall abundance.

4.4. Diversity Measures

Species richness measures and estimators all fall into two categories: either parametric
diversity indices or non-parametric diversity indices.

4.4.1. Parametric Measures of Diversity

• log series α
The parameters of the log series model are x and α, where α is a diversity index. In
addition, α is calculated during the fitting of a distribution. When S and N are known,
the value of α can be easily calculated using the Williams monograph (see [69]) or
appendix 4 of [70]. Here, x is estimated by iterating the following form:

S
N

= − log(1− x)
1− x

x

According to [70], until x > 0.5 and as S > α, the log series distribution is not the
best descriptor of species abundance pattern. In fact, for natural assemblages, usually
x > 0.9 or close to 1 and S > α. This implies that α is approximately the same as the
number of species represented by a single individual.

• log normal λ
The standard deviation (σ) of the log normal distribution would be a good measure
of diversity. Although we can use it as an evenness measure and as an index for
discriminating amongst samples, σ is not a good choice. It is also impossible to
estimate for small sample sizes (see [71]). Then, S∗ (S∗ is the estimator of S, the
number of species) is a good predictor of total species richness. However, the ratio of
these two unsuitable parameters (S∗/σ) turns out to be an effective diversity measure
(λ). It is effective in discriminating against assemblages (see [72]). Its ranking of sites
suits well with α.

• The Q statistic
The authors of [73,74] proposed the Q statistic, which is based on the distribution of
species abundance data. For this measure, the user does not require a model to fit
the empirical data. Hence, for empirical data, a cumulative species abundance curve
is drawn and its inter-quartile slope is used to measure diversity. The author of [75]
suggests that by restricting the measure to the inter-quartile region, the complete
cumulative species abundance curve can be used to explain diversity as well as to
remove the bias caused by the extremities (very rare and very abundant species).
This is analogous to α and hence can be expressed in terms of a log series model,
described by [76]. The following equation is estimated from empirical data:

Q =
(1/2)nR1 + ∑R2−1

R1+1 nr + (1/2)nR2

log(R2/R1)

where nr is the total number of species with abundance R, R1 and R2 are the 25% and
75% quartiles, nR1 is the number of species in the class where R1 falls, and nR2 is the
number of species in the class where R2 falls.
The quartiles are chosen so that:

R1−1

∑
1

nr <
1
4

S ≤
R1

∑
1

nr
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and

R2−1

∑
1

nr <
3
4

S ≤
R2

∑
1

nr

where S is the total number of species in the sample, although the placement of R1
and R2 is not critical as the inter-quartile region of a cumulative species abundance
curve, or indeed a rank/abundance plot, tends to be linear.
Because Q = 0.371 for the log normal model, it is not formally a parametric index.
Thus, its performance is somewhat similar to that of parametric ones. However, for
species which are censused >50%, Q may be biased (see [74]). The author of [77]
has found an evenness measure which is similar to Q statistic, i.e., EQ which will be
discussed later.

4.4.2. Non-Parametric Measures of Diversity

Most diversity measures are not explicitly associated with named species abundance
models, even though their performance is often governed by the underlying distribution
of species abundances. They are non-parametric measures of diversity.

• Shannon Index (H
′
)

It was independently derived by Claude Shannon and Warren Weaver and is generally
known as the Shannon index or Shannon information index. However, it is sometimes
mistakenly referred to as the Shannon–Weaver index (see [9]). It is represented as

H
′
= −

n

∑
i=1

pi log pi

Usually, in samples, pi will be unknown but it is estimated using the maximum
likelihood estimator, ni/N (see [78]), where ni is the total number of individuals
in the ith species and N is the total number of individuals. The ecological validity
and computational easiness led Shannon to represent the index as logarithm of pi.
Historically, log2 is used for calculating the Shannon index, but this is without any
biological reason. An increased trend in logarithm standardization is found in [79].
However, Shannon index does not have an unbiased estimate (see [80]).

– A model using Shannon index: Caswell’s neutral model
Caswell’s neutral model is very famous for its innovative approach to community
structure analysis (see [81]). The model focuses on species abundance patterns
when biological interactions are removed. It is represented by the deviation
statistic defined by

V =
H
′ − E[H

′
]

SD(H′)

where H
′

is the Shannon diversity index. It can be used to compare observed
diversity (H

′
) with the predicted neutral diversity E[H

′
]. For values of V > 2

or V < −2, it depicts the departure from neutrality [82]. The author of [83]
presented a computer program in PRIMER to calculate V which is termed a
measure of environmental stress (see [84,85]) but is very rarely used. As richness
and evenness are in complex relationships, V is probably useful only as a measure
of disturbance. For large values of S and N, the expected values of H

′
are

generated by a neutral model that closely resembles the predicted values in the
log series model (see [70]), where S is the total number of species in the sample
and N is the total number of individuals.



Math. Comput. Appl. 2021, 26, 74 15 of 31

• The Shannon evenness measure (J
′
)

Assume a situation where all species have equal abundance. Then, the ratio of
observed diversity will generate a new measure J

′
(see [22,78]). It is defined as

J
′
=

H
′

Hmax
=

H
′

log S

where S is the number of species and H
′

is the Shannon diversity index.
To find Hmin, the author of [86] gives a simple method that can be utilized in other
forms of the Shannon evenness (see [87]).

• Heip’s index of evenness (EHeip)
In [88], Heip notes that the evenness measure should not be based on species richness.
So, according to this idea, he proposed the following new measure:

EHeip =
eH
′
− 1

S− 1

Compared to J
′
, EHeip is least affected by species richness, it does not require sample

size to be independent if there are only 10 species in 1 sample (see [89]). EHeip’s
minimum value is 0 and it usually goes to 0.006 when an extremely uneven community
is considered.

• SHE analysis
One of the main characteristics of the Shannon index is that it depends extremely
on species richness and evenness. In [70,90], they identified that this property of
the Shannon index can be utilized in another way. Consider a measure of evenness

E = eH
′
/S (see [88]), such that

H
′
= log S + log E

This decomposition aids the user in interpreting changes in diversity.
A decrease in diversity tends to cause pollution incidents due to loss of richness,
evenness, or a combination of them.
The essence of SHE analysis is the triangular relationship between S (species richness),
H (diversity as measured by the Shannon index) and E (evenness). SHE analysis
used by [91] in examining geographic patterns of body mass diversity in Mexican
mammals found that evenness was high at intermediate spatial scales but low at the
regional one.

• The Brillouin index (HB)
The Brillouin index, abbreviated HB, is appropriate when sample randomness is not
guaranteed, a community is completely censused, or every individual is accounted
for (see [22,78]). It is given as

HB =
log N!−∑S

i=1 log ni!
N

where N is the total number of individuals in the sample, ni is the number of individu-
als from the ith species and S is the number of species. The HB value is rarely greater
than 4.5. When compared to the Shannon Index, HB always yields a lower value, but
they both provide similar or correlated estimates of diversity. The reason is that the
Brillouin index describes a completely known collection without any uncertainty.
Evenness (E) for the Brillouin diversity index is obtained from

E =
HB

HBmax
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where HBmax is calculated as

HBmax =
1
N

log
(

N!
NS!S−r(NS + 1)!r

)
where NS is the integer part of N/S and r = N − S(NS).
The index is unavailable with variance, and hence, no statistical test is needed to
test significance. HB is mathematically speaking superior to the other two indices
presented by [92]. However, some scientists state that it is more time-consuming and
less familiar. Its over-dependence on sample size leads to unexpected results. This is
unsuitable when abundance is measured as biomass or productivity (see [9,93]).

• Dominance and evenness measures
A group of diversity indices is weighted by abundances of the commonest species
and is usually referred to as either dominance or evenness measures.

– Simpson’s index (D)
It is occasionally called the Yule index in remembrance of G. U. Yule (see [20]).
The probability of any two individuals drawn at random from an infinitely large
community being of the same species is given by [94] as

D =
n

∑
i=1

p2
i

where pi denotes the proportion of individuals in the ith species, and n number
of species. The form of the index appropriate for a finite community is:

D =
n

∑
i=1

ni(ni − 1)
N(N − 1)

where ni is the number of individuals in the ith species and N is the total number
of individuals in the sample.
Simpson’s index is expressed as 1− D or 1/D because diversity decreases as
D increases, and thus, it captures the variance of species abundance distribu-
tion. Simpsons’ index, on the other hand, is less sensitive to species richness
and more oriented toward species abundance. Confidence limits are applied
using jackknifing. Simpson’s index is the most meaningful and robust of all the
measures. The reciprocal nature of the Simpson index was questioned by [95] and
he recommends using log(D) instead of (1− D) or (1/D), because this notation
ensures severe variance problems. He also advises Kemp’s transformation.

– Simpson’s measure of evenness (E1/D)
The Simpson measure of evenness, denoted by E1/D and stated in [9,89], is
defined by

E1/D =
1/D

S

Here, E1/D usually ranges between 0 and 1 and is not so related to species
richness. Because Simpson’s index is a product of Simpson’s evenness measure
and S, multiplying S turns any good evenness index into a heterogeneity measure
(see [96]).

– McIntosh’s measure of diversity (U)
McIntosh postulated in 1967 that a community may be thought of as a point in a S-
dimensional hyper volume, with the Euclidean distance between the assemblage
and its origin serving as a measure of diversity (see [97]). The distance is known
as U and is calculated as
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U =

√
n

∑
i=1

n2
i

where ni is the number of individuals in the ith species and n number of species.
The McIntosh U index is formally not a dominance index. However, a measure
of diversity (D) or dominance that is independent of N can also be calculated as

D =
N −U

N −
√

N

A further evenness measure can be obtained from the following formula (see [22]):

E =
N −U

N − N/
√

S

– The Berger-Parker index (d)
The Berger-Parker index, denoted by d, is an easy-to-calculate dominance mea-
sure (see [41,98]). The proportional abundance of the most abundant species is
expressed by this index:

d =
Nmax

N

where Nmax is the number of individuals in the most abundant species. In
this case, d denotes the relative importance of the most dominant species in
the assemblage; both are considered equivalent. The reciprocal form of the
Berger-Parker index is accepted because an increase in the value of the index
accompanies an increase in diversity and a reduction in dominance, making it
similar to Simpson’s index. It is one of the most satisfactory diversity measures
available because of its simplicity and biological significance (see [41]). In small
assemblages, d is independent of S, and its value decreases with increasing
species richness.

– Nee, Harvey and Cotgreave’s evenness measure (ENHC)
As an evenness measure, the authors of [77] proposed the slope b of a rank/abund-
ance plot (with abundances log transformed). The resulting measure is

ENHC = b

ENHC ranges from −∞ and 0, where 0 is perfect evenness. This measure is
difficult to interpret due to its range of values. It is more properly a measure of
diversity than of evenness, and this is one of its demerits (see [73]). The authors
of [89] therefore proposed a new form of the measure, which is

EQ = − 2
π arctan(b′)

In this measure, the ranks are scaled before the regression is fitted, and b′ denotes
the corresponding slope. Thus, this is accomplished by dividing all ranks by the
highest rank, such that the most abundant species receives a rank of 1.0 and the
least abundant receives a rank of 1/S. The transformation (−2/[π arctan(b′)])
places the measure in the 0 (no evenness) to 1 (perfect evenness) range.
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– Camargo’s evenness index (Ec)
The author of [99] also introduced the following evenness measure:

Ec = 1−
S

∑
i=1

S

∑
j=i+1

pi − pj

S

where Ec is Camargo’s index of evenness, pi the proportion of species i in the
sample, pj the proportion of species j in the sample, and S the sample size.
Although, the index is simple to calculate and relatively unaffected by rare species
(see [100]). The authors of [37] found it to be biased, especially in comparison
with the Simpson index.

– Smith and Wilson’s evenness index (Evar)
The authors of [89] proposed a new index to provide an intuitive measure of
evenness. This index takes the variation in species abundances and divides it
by log abundance to produce proportional differences. This makes the index
independent of measurement units. Smith and Wilson called their measure Evar.
It is defined by

Evar = 1− 2

π arctan
{

∑S
i=1

(
log ni −∑S

j=1
log nj

S

)2
/S
}

where ni is the number of individuals in species i, nj is the number of individuals
in species j and S represents the total number of species. The conversion by
1− 2/(π arctan(x)) ensures that the resulting measure falls between 0 (minimum
evenness) and 1 (maximum evenness).

4.4.3. Taxonomic Diversity

If two assemblages have the same number of species and similar patterns of species
abundance, but differ in the diversity of taxa to which the species belong, it seems intuitively
reasonable that the assemblage with the most taxonomically diverse taxa is the more
diversified assemblage. A taxonomic distinctness measure is one of the most recent
developments in taxonomic diversity (see [101,102]).

• Clarke and Warwick’s taxonomic distinctness index
This measure gives the average taxonomic distance, or simply the path length be-
tween two randomly chosen organisms through phylogeny. Two forms can be taken
by species in an assemblage. The first is taxonomic diversity (∆), which considers
taxonomic relatedness or species abundance. The two organisms may belong to the
same species. The second form is taxonomic distinctness (∆∗), a pure measure of
taxonomic relatedness, which is equivalent to dividing ∆ by the value it would take if
all species belonged to the same genus, that is, in the absence of a taxonomic hierarchy.
When presence/absence data are used, both measures reduce to the same statistic, ∆+,
which is the average taxonomic distance between two randomly selected species. It is
calculated as follows:

∆+ =
∑S

i=1 ∑S
j=i+1,i<j ωij

S(S− 1)/2

where S denotes the number of species in the study and ωij is the taxonomic path
length between species i and j.
The taxonomic distinctness index is distinguished by its lack of reliance on sampling
effort (see [103]).
Using ∆+, a significance test can be carried out. Here, the null hypothesis considered is
“taxonomic distinctness of a locality is not significantly different from the global list”.
On the other hand, the author of [104] used multivariate methods during detection
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of small variations in community structure and diversity. Multivariate analysis also
helps find increased variability between samples (see [105]).

4.5. Sampling: An Essential Attribute

There are essentially two choices regarding sample size. The investigator may either
adjust the sample size to cope-up with the situation or adopt a standard sample size. The
second approach, which is also recommended by [70], is the best. If two samples with
different sample sizes are drawn from the same assemblage, then this may lead to different
conclusions about its diversity (see [22]). If samples are replicated several times, the curve
obtained by plotting the measure of diversity (or evenness) against cumulative sample size
may lead to a smooth curve.

• Replications
The number of replications required is always an unanswerable question. Ideally,
the available sample size and number of replications required to complete this are
selected on the basis of the most diverse assemblage. In addition, it will be the same
throughout the study. When sample size is not consistent, this becomes more true.
One should be well aware of the difference between replication and pseudoreplication
(see [106]). For more ideas in this context, users can refer to [107]. The primary
condition is that all replicates must be independent (spatially).

4.6. Comparison of Communities

The manner in which the statistical comparison of communities or other ecological
entities is achieved depends to some extent, though with significant overlaps, on the aspect
of biodiversity that has been measured.

• Rarefaction—Sample data to common abundance level
Rarefaction is a technique that reduces sample data to a common abundance level,
which helps direct mapping between species richness in communities. During rarefac-
tion, to estimate the richness of a small sample, complete information regarding all
the collected species is required. Rarefaction curves converge when sample sizes are
small (see [55,108]). Sampling should be enough to characterize the community, but
there is a chance that estimates will be biased if the sample is insufficient.
The author of [109] states that software can be used to create rarefaction curves.
In [65], sample-based rarefaction curves were calculated using the EstimateS software.
Confidence intervals can be incorporated into these curves. Rarefaction by the log
series model is computationally simple. Indeed, it may even be used in circumstances
where species abundances do not follow a log series distribution. However, if the
sampling was inadequate in the first place, no method of rarefaction is going to
compensate.

• Statistical tests
Standard statistical techniques such as T-tests and ANOVA can be used to compare
assemblages (see [38]). Alternatively, jackknifing or bootstrapping can be used to
attach confidence intervals to a diversity statistic.

– Jackknifing: a measure of diversity
Jackknifing (see [110]) is a strategy for improving the estimate of almost any
statistic. It can also be used to calculate the number of species present. It was
first proposed by Quenouille in 1956, with Tukey making changes in 1958. The
author of [111] was the first to apply the approach to diversity statistics. This
application was further investigated by [112,113].
Jackknifing does not require assumptions about the underlying distribution.
Instead, it uses a set of “pseudo-values” which are artificially produced. These
pseudo-values are (usually) normally distributed, their mean forms the best
estimate of the statistic. Approximate confidence limits can also be attached to
the estimate. The procedure is simple. The first step is to estimate the diversity of
all n samples together. This produces St, the original diversity estimate. Next, the
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diversity measure is recalculated n times, missing out each sample in turn. Each
recalculation produces a new estimate, St−i. The pseudo-value (φi) can then be
calculated for each of the n samples as

φi = nSt− (n− 1)St−i

The jackknifed estimate of the diversity statistic is simply the mean of these
pseudo-values:

φ̄ =
n

∑
i=1

φi
n

The approximate standard error of the jackknifed estimate is

SEφ̄ =

√
n

∑
i=1

(φi − φ̄)2

n(n− 1)

This standard error may be used to assign approximate confidence limits to the
jackknifed diversity estimate. Confidence limits are set in the usual way, i.e.,

φ̄± t0.05(n−1)SEφ̄

Prior to jackknifing, the author of [38] recommended that statistics with a re-
stricted range (such as those constrained between 0 and 1) should be modified.
Following that, same methods were used to estimate species richness, with con-
siderable success. They are called Jackknife 1, a first-order jackknife estimator that
employs the number of species that occur only in a single sample (see [114,115]),
and Jackknife 2, a second-order estimator which, like the Chao2 equation, takes
both the number of species found in one sample only (Q1) and in precisely two
samples (Q2) into account (see [116]). Both require incidence data.
In the following equations, m denotes the number of samples:

SJack1 = Sobs + Q1

(
m− 1

m

)

SJack2 = Sobs +

(
Q1(2m− 3)

m
− Q2(m− 2)2

m(m− 1)

)
The variances of both estimators can be calculated.

– Bootstrapping
A related method for producing standard errors and confidence bounds is boot-
strapping. It is more computationally intensive than the jackknife, although it
is regarded as an improvement. In essence, the original dataset is sampled nu-
merous times to obtain a large number of different observations. These are then
used to deduce the standard error. The authors of [20,38] provide more details.
Bootstrapping, like jackknifing, can be used in species richness estimation.

• Null models
In the last decade, there has been a rising use of null models in diversity measurement.
Ecologists are becoming aware of the importance of developing testable null hypothe-
ses (see [117]). The observed patterns are not due to the presumed causal explanation,
according to the null hypothesis. It is based on the assumption that nothing significant
has occurred (see [118]). Null models can also be used to determine whether perceived
differences in diversity are simply an artifact of sampling. As [55] emphasizes, a null
model does not presume that there is no structure in a community or that all processes
are random. Instead, randomness is assumed only in respect of the mechanism being
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tested. Null models are already used extensively to evaluate species co-occurrence
patterns (see [119]).

4.7. Diversity in Space (and Time)

Till now, we have focused on the diversity of a defined assemblage or habitat, or
α diversity. The author of [120] makes the distinction between α and β diversity where
diversity increases as the similarity in species composition decreases. β diversity reflects
biotic change or species replacement, whereas α diversity is a property of a specific spatial
unit. The diversity of two or more spatial units differs. We can use β diversity. The
relationship between α and β diversity is scale-dependent. The observation made by [80] is
that

Dγ = D̄α + Dβ

When species richness is used to measure α and γ diversity, β diversity may be
estimated as follows:

Dβ = ST − S̄j =
n

∑
j=1

qj(ST − Sj)

where ST is the species richness of the landscape (γ diversity), Sj denotes the richness of
assemblage j and qj is the proportional weight of assemblage j based on its sample size(n)
or importance.

This approach is also used in the Shannon and Simpson diversity measurements. Low
α and high β diversity will come from many small sampling units, but the opposite will
be true if there are fewer but larger samples. If all other factors are equal, both sampling
procedures yield the same conclusions concerning γ diversity.

• Indices of β diversity
The majority of these indices use presence/absence data and, as such, focus on the
species richness element of diversity.

1. Whittaker’s measure (βW)
One of the simplest, and most effective, measures of β diversity was devised
by [120]:

βW =
S
ᾱ

where S is the total number of species recorded in the system (i.e., γ diversity)
and α is the average sample diversity, where each sample is a standard size and
diversity is measured as species richness. This is equivalent to:

Dβ =
ST

S̄j

in Lande’s notation.
When Whittaker’s measure is used to compute βW , values of the measure will
range from 1 (complete similarity) to 2 (no overlap in species composition). The
author of [121] introduced a modification of Whittaker’s measure. This allows
the user to compare two transects (or samples) of different size. The related
formula is

βH1 =
S/α− 1
N − 1

× 100

where S denotes the total number of species recorded, α means α diversity and
N is the number of sites (or grid squares) along a transect. The measure ranges
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from 0 (no turnover) to 100 (every sample has a unique set of species) and can
be used to examine pairwise differentiation between sites. The author of [121]
suggested a second modification which is insensitive to species richness trends.
It is given by

βH2 =
S/(αmax − 1)

N − 1
× 100

Here, αmax is the maximum within-taxon richness per sample. The authors
of [122] used βH2 to compare the turnover of various taxa in relation to distur-
bance in a Cameroon forest.

2. Cody’s measure (βC)
The author of [123] proposed an index, which is easy to calculate and is a good
measure of species turnover. It is given by

βC =
g(H) + l(H)

2

where g(H) is the number of species gained and l(H) is the number of species
lost.

3. Routledge’s measures (βR, β I and βE)
The author of [124] was concerned with how diversity measures can be parti-
tioned into α and β components. His first index, denoted by βR, takes overall
species richness and the degree of species overlap into consideration. This index
is defined by

βR =
S2

2r + S
− 1

where S is the total number of species in all samples and r is the number of
species pairs with overlapping distributions.
β I , the second index, stems from information theory and has been simplified for
presence/absence data and equal sample size by [125]:

β I = log T − 1
T

n

∑
i=1

ei log ei −
1
T

n

∑
j=1

Sj log Sj

where ei is the number of samples in the transect in which species i is present,
Sj is the species richness of sample j, and T = ∑n

i=1 ei = ∑n
i=1 Sj, and n the total

number of samples.
The third index, βE, is simply the exponential form of β I . That is

βE = eβ I

4. Wilson and Shmida’s index βT
The authors of [125] proposed a new measure of β diversity. It is given by

βT =
g(H) + l(H)

2S̄j

where S̄j is the mean of Sj. Most measures of β diversity are sensitive to scale.
Turnover decreases as progressively larger areas are investigated.

• Indices of complementarity and similarity
The author of [126] coined the term complementarity to characterize the differences
across locations in respect of the species they support. Complementarity is, of course,
another name for the β variety. The larger the β diversity of two sites, the more
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complimentary they are. Measures typically combine three variables: a, the total
number of species present in both quadrants or samples, b the number of species
present only in quadrant 1 and c the number of species present only in quadrant 2.
There are mainly two indices.

1. Marczewski–Steinhaus (MS) distance
Following [127], the author of [51] recommended the Marczewski–Steinhaus
(MS) distance as a measure of complementarity. It is expressed as

CMS = 1− a
a + b + c

This measure is in fact the complement of the familiar [128] similarity index:

CJ =
a

a + b + c

As suggested by Pielou, the statistic can also be adapted to give a single measure
of complementarity across a set of samples or along a transect:

CT =
n

∑
i=1

n

∑
j=1,i 6=j

Ujk

n

where Ujk = Sj + Sk − 2Vjk and is summed across all pairs of samples, Vjk is
the number of species common to the two lists j and k (the same value as a in
the formulae above), Sj and Sk are the number of species in samples j and k,
respectively, and n is the number of samples.
When n is large, CT approaches a value of nST/4, where ST is the species richness
of all samples combined.
A metric (as opposed to a nonmetric) measure is the Marczewski–Steinhaus dis-
similarity measure (and hence the complement of the Jaccard similarity measure).
This indicates that it meets specific geometric criteria. The significant result for
the user is that it may now be used as a distance measure and in ordination
(see [127]).

2. Sorensen’s measure
Another popular similarity measure was devised by [129]:

CS =
2a

2a + b + c

Sorensen’s measure (see [20]) is widely recognized as one of the most effec-
tive presence/absence similarity metrics. The Bray-Curtis presence/absence
coefficient is the same.

3. Lennon turnover measure
Sorensen’s measure will always be large. Therefore, they introduce a new
turnover measure βsim, that focuses more precisely on differences in compo-
sition:

βsim = 1− a
a + min(b, c)

This is related to a measure derived by [130]. Any difference in species richness
inflates either b or c. The consequence of using the smallest of these values in the
denominator is thus to reduce the impact of any imbalance in species richness.
The authors of [131] found that this measure performs well.
One of the primary advantages of these measurements is that they are simple
to calculate and comprehend. Furthermore, the coefficients do not take into
consideration the relative abundance of species, which is a flaw.
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4. Sorensen quantitative index or Bray-Curtis index
Similarity/dissimilarity measures based on quantitative data. The author of [132]
introduced a modified version of the Sorensen index. This is sometimes called
the Sorensen quantitative index (see [133]). It is given by

CN =
2jN

Na + Nb

where Na is the total number of individuals in site A, Nb is the total number of
individuals in site B, and 2jN is the sum of the lower of the two abundances for
species found in both sites.

5. Other notable indices
The authors of [134] looked into a number of quantitative similarity indices and
discovered that, with the exception of the Morisita–Horn index, they were all
heavily influenced by species richness and sample size. The Morisita–Horn
index (MH) has the drawback of being extremely sensitive to the abundance of
the most abundant species. Despite this, the author of [135] was able to measure
β diversity in tropical cockroach assemblages using a modified version of the
index. It is defined by

CMH =
2 ∑n

i=1 aibi

(da + db)× Na × Nb

where Na is the total number of individuals at site A, Nb is the total number of
individuals at site B, ai is the number of individuals in the ith species in A, bi is
the number of individuals in the i species in B, n is the total number of species
and da and db are calculated as follows:

da =
∑n

i=1 a2
i

N2
a

The Morisita–Horn measure is widely used (see [136,137]). The authors of [20]
provided a version of Morisita’s original index that is suitable for easy computa-
tion. A further simple measure is percentage similarity (see [20]):

P = 100− 0.5
S

∑
i=1
|Pai − Pbi|

where Pai and Pbi is the percentage abundances of species i in samples a and b,
respectively, and S is the total number of species.

Some practical applications are given below based on [5].

4.8. Extreme Values in Modeling Atmospheric Ozone

The traditional method of extreme value analysis popularized by [138] was the annual
maximum method, in which one of the three classical types of extreme value distributions
was fitted to, say, the annual maxima of a river or sea level series. Modified approaches to
extreme value analysis which cope with time series dependence are discussed by [139,140].
The extreme value trend centered on the statistical features of insurance claims for environ-
mental damage. The author of [141] suggested that exceedances over a high threshold can
be modeled approximately by the generalized Pareto distribution (GPD).

4.9. Environmental Epidemiology

The study of associations between environmental pollutants and negative health
consequences is a prominent topic in current environmental health science.
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The authors of [142,143] have considered some methodological issues associated with
detecting clusters in spatial point processes of disease. The authors of [144] extended
the approach to the modeling of spatially aggregated data. Earlier, the authors of [145]
proposed a non-parametric test for identifying disease clusters. However, as there are
several sources for a disease, it has become impossible to associate the effect of each.
Therefore, the cluster cannot be detected easily. In such cases, it is generally assumed that
comparison of mortality or disease incidence with levels of counter-revolutionary spatial
regions is subject to so much confounding with other environmental effects. To estimate the
sequential mean and covariances, Zidek adapted Bayesian approach on spatial prediction
of a multidimensional variable (see [146]).

4.10. Adaptive Sampling for Pollution ‘Hot Spots’

The population mean concentration of the chemical pollutant will be estimated by
identifying hotspots. Some clusters may be overlooked if basic random sampling is used.
The sample mean, while unbiased as a population mean estimate, will have a substantial
variance. In this circumstance, adaptive sampling is a viable alternative. In this case, the
sampling procedure’s direction at any stage is influenced at least in part by the information
gathered in prior samplings.

The sampling procedure is as follows. Take a random sample of a certain size from
the study area. Return and sample every unit adjacent to the contaminated unit if any of
the selected units reveals contamination. If any neighboring units exhibit contamination,
sample their neighbors, and so on, until each detected cluster has a clean boundary.

The total sample size is unknown in advance, however, the accuracy of the outcome
will overcome this disadvantage. However, if the resulting data are evaluated naively,
this strategy will produce erroneous estimates of population parameters. To avoid this,
the authors of [147] outlined a sampling theory, i.e., employed a useful strategy for se-
lecting the initial sample in clusters and stratifying those samples. Then, using modified
Horvitz–Thompson or Hansen–Hurwitz estimators, unbiased estimators of the unknown
population’s mean can be obtained. These estimators, such as the mean of the initial sample,
are unbiased, but they do not always have the lowest variance. The Rao–Blackwell theorem
can be used to improve them.

4.11. Trend Analysis

Analysis of trends in environmental science leads to adjustments for autoregressive
effects or other spatial-temporal correlations in the data. This is another important area of
environmental trend analysis (see [148]). Any data that posses time-dependency will lead
to auto-correlation and then to time series analysis.

4.12. Ecological Modeling

In building stochastic models of vertebrate populations, statistics have an useful inter-
action with fisheries and wildlife sciences. Analyzing the survival of the northern spotted
owl after it experiences habitat loss and employing the well-known Leslie–Lefkovitch
model suggested by [149] is an example. The model uses information about survival
and fecundity in a matrix framework to predict future age structure based on past age
structure information. After statistical analysis, it is found that the characteristic root was
significantly less than zero, suggesting a decline in female owl populations due to habitat
loss. However, other parameters, including vitality rates, do not show any negative trend.
Here, they use an appropriate variance model, which is critical in stochastic modeling.

If single sampling is considered, the variance estimate computed will be misleading.
However, if a number of sampling occasions are considered, then the process variance will
give a better estimate.
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4.13. Combining Environmental Information

Another increasingly important issue in the environmental sciences is the need to
combine information from diverse sources that relate to a common endpoint. Combining
information is a very active area of statistical and applied subject-matter research.

A common technique for combining independent results is Meta analysis (see [150]),
which brings together the results of different studies, reanalyzes the disparate results
within the concept of their common endpoints, and provides a quantitative analysis of the
phenomenon of interest based on the combined data. In the case of environmental science,
the effect of interest may be very small and therefore hard to detect. The limited sample
sizes or data on many multiple endpoints lead to highly localized effects.

1. Combining p-values: Perhaps, the most known method of combining information
is Fisher’s inverse χ2 method (see [151]), where individual p-values, (Pk), from K
independent studies are combined. The resultant is combined p-value, which is
compared to a χ2 reference distribution with 2K degrees of freedom.

2. Hierarchical Bayesian method of combining information which leads to Bayesian or
empirical Bayesian analysis.

3. Hierarchical regression model: The inclusion of factors that represented the various
sources of variability was a key element. The odds ratio of exposure for responding
patients (cases) versus non-responding, healthy subjects (controls) was the outcome
of interest in each investigation. The hierarchical model was able to synthesize
information across the ensemble of data, allowing more significant impacts to be
investigated.

4.14. Space–Time Modeling with Applications to Atmospheric Pollution and Acid Rain

The space time autoregressive moving average (STARMA) approach was utilized
by [152] (see [153]). For most latitudes, Niu and Tiao chose the STAR(2,1) model. The
authors of [154] studied the logarithms of sulfate content in rainfall at 19 sites in the eastern
and mid-western United States for 24 monthly measurements from 1982 to 1983, and came
up with a substantially different atmospheric contaminant model. They calculated their
estimator’s variance. An empirical Bayesian approach was used to generate the sample
spatial covariance matrix from the residuals of the fit.

4.15. Detection Limits

The authors of [155] illustrated a robust parametric method for quantifying non-
detects, using a simple probability plot regression. A straight line is fitted through the
observations displayed on normal (or lognormal) probability paper. The line offers estima-
tions for the non-detected values when extrapolated back into the non-detect zone.

5. Conclusions

The statistical concepts act as a valuable tool for monitoring environmental systems.
Agricultural activities, such as timing of cropping and harvesting, timing of chemical
applications, type of crops planted, irrigation scheduling, etc., require knowledge of en-
vironmental statistics. The forestry activities of a country, such as extraction of timber,
forestation, reforestation projects, etc., need statistical information. In addition, in mea-
suring environmental diversity, statistics also plays a vital role. Thus, the application of
statistics is important in environmental sciences for effective and innovative monitoring of
environmental variables over time. To avoid mistakes at the end of the statistical analysis,
it is very important to detect the actual distribution of the observed data (see [156,157]).
For environment-related problems, the lack of sufficient data is a major problem. Given a
small set of data, it is very difficult to correctly detect heavy-tailed distributions. Hence,
the proportion of the middle and tails of the same set of data is taken for analysis. As a
result, calculating the relative frequency of the outside values and the theoretical p-outside
values is critical. In the particular case when p = 0.25, p-outside values coincide with
extreme outliers and, at least, these outside values should be estimated from the sample
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(see [158,159]). They are useful in detecting the parameters that are used to find the tail of
the distribution. They also help in finding probabilities of events. As p-outside values do
not depend on moments, they can be easily applied to situations where moments are not
essential or where they do not exist.

Many of the environmental difficulties discussed here are just a small sample of the
wide range of challenging issues in quantitative environmental research, as well as the
wide range of approaches to solving them. Based on [4,5], this review paper demonstrates
that there are numerous viewpoints on the nature of Environmental Sciences and Statistics.
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