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Abstract: With the rapid advancement of sensor and network technology, there has been a notable
increase in the availability of condition-monitoring data such as vibration, temperature, pressure,
voltage, and other electrical and mechanical parameters. With the introduction of big data, it
is possible to prevent potential failures and estimate the remaining useful life of the equipment
by developing advanced mathematical models and artificial intelligence (AI) techniques. These
approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper
presents a systematic literature review of statistical inference approaches, stochastic methods, and
AI techniques for predictive maintenance in the automotive sector. It provides a summary on these
approaches, their main results, challenges, and opportunities, and it supports new research works for
vehicle predictive maintenance.

Keywords: predictive maintenance; data-driven methods; machine learning algorithms; Industry 4.0

1. Introduction

Thanks to new digital technologies, it is possible to interconnect, in industrial pro-
cesses, production machines with their software. This technological progress has several
advantages, including accelerating processes related to digital data collection, optimizing
production process times, producing higher quality goods at lower costs, and having all the
necessary information to implement strategic decisions to support the business [1]. In the
production field, the connection between physical systems (in particular machines) and IT
systems is the core of Industry 4.0 (I4.0). Rüßmann et al. [2] describe the major technological
trends that are the building blocks of I4.0 and explore their potential technical and economic
benefits for manufacturers and suppliers of production equipment. In the context of I4.0,
the collection and comprehensive evaluation of data from different sources—equipment
and production systems, as well as business and customer management systems—will
become the standard to support decision-making in real time.

The contribution of I4.0, particularly relevant in the automotive sector, has led to a
change in the maintenance paradigm [3,4], both in terms of vehicle production [5,6] and
subsequent maintenance [7–10]. We can say that the automotive world is one of the most
advanced in adopting the Internet of Things (IoT) [11]. This innovative technology allows
the creation of a wide range of features and services that would have seemed impossible to
develop only a few years ago. As an example, we can consider all applications related to
the management and maintenance of vehicles. In this scenario, sensors and IoT manage-
ment systems minimize inconvenience and time consumption related to maintenance [12].
Thanks to computing capacity provided by edge computing systems, it is possible to
analyze the vehicle parameters and alert operators of any critical issues. This allows to
promptly notify, in advance, the driver or vehicle manager that the vehicle may require
some intervention and avoid the occurrence of serious damage, as well as preserving the
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safety of those on board. To understand the benefits of predictive maintenance, it is neces-
sary to note traditional management techniques. Industrial and process plants typically
employ three types of maintenance management [13] (see Figure 1).

• Run-to-failure (RtF) or reactive maintenance, where maintenance interventions are
performed only after the occurrence of failures. This approach is common when
equipment failure does not significantly affect operations or productivity.

• Planned preventive maintenance (PvM): Time-based maintenance or scheduled main-
tenance, which involves taking the necessary precautions and actions to reduce the
likelihood of equipment failure, and prevent accidents or failures before they occur. It
is performed regularly while the equipment is still running so that it does not fail un-
expectedly. Therefore, in terms of complexity, this maintenance strategy lies between
run-to-failure and predictive maintenance.

• Predictive maintenance (PdM), which employs condition-monitoring technology to
measure equipment performance through IoT systems that allow the connection of
electronic devices to mechanical and digital machines and the collecting of a significant
amount of data. Data are collected over time to monitor the state of equipment and
construct models that can help prevent failures.

Figure 1. Maintenance strategies.

In the next section, we describe a cost model for continuous-time maintenance which
proves that the predictive approach allows one to optimize costs.

1.1. The Maintenance Costs

In choosing the most suitable maintenance strategy, the involved costs must be taken
into consideration. An effective solution certainly implies a reduction of expenses and an
increase in productivity. The cost model varies as the applied maintenance strategy varies.
For the reactive maintenance strategy, the maintenance action for repairing the equipment is
performed if the equipment has stopped working, so there is only the corrective replacement
cost (Cc). For the preventive maintenance strategy, sequential maintenance actions are
scheduled, and the overall cost often includes costs related to preventive replacement (Cp),
inspection costs (Ci), costs related to unit downtime (Cd), and the costs associated with
corrective replacement (Cc). In particular, in [14], Grall et al. propose a cost model for
continuous-time predictive maintenance that aims to find an optimal prevention threshold.
The objective function to be minimized EC∞ represents the total expected cost for long-term
maintenance. The cumulative maintenance cost can be expressed as

C(t) = Ci · Ni(t) + Cp · Np(t) + Cc · Nc(t) + Ct · d(t), (1)
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where Ni(t), Np(t), and Nc(t) represent, respectively, the number of inspections, preventive
repairs, and corrective repairs carried out in the time interval [0, t], while d(t) represents
the duration of the machine inactivity time in [0, t]. Therefore, the cost function to be
minimized is defined as follows:

EC∞ = lim
t−→∞

E[C(t)]
t

(2)

where E[C(t)] is the expected value of the maintenance cost.
For the predictive maintenance strategy, maintenance actions are performed according

to the results of the failure prediction, so the cost model is usually associated with the
estimation of the remaining useful life (RUL) and depends on the specific system or
equipment [15]. As pointed out in [16], reactive maintenance has the lowest prevention
cost, while preventive has the lowest repair cost due to well-planned machine downtime.
Instead, predictive maintenance allows obtaining the best compromise between repair cost
and prevention cost (see Figure 2). Ideally, this maintenance strategy provides for a lower
frequency of maintenance and prevents unexpected repair costs without incurring the costs
associated with excessive prevention.

As shown in the US Department of Energy report [17], it is possible to save about
8–12% with the predictive approach compared to relying on planned preventive main-
tenance. Predictive maintenance increases the asset lifespan and decreases equipment
downtime and costs of spare parts and labor. Moreover, this approach improves worker
safety, increases plant reliability, and optimizes the equipment’s operation, leading to
immediate energy savings. On the other hand, this approach requires initial capital costs
for acquiring and setting up diagnostic equipment. In addiction, it needs investment in
employee training to effectively use the predictive maintenance technology adopted by
the company. Generally speaking, the advantages of this approach outweigh the disad-
vantages. Surveys on industrial average savings showed that companies removed 70–75%
asset breakdown, reduced maintenance costs by 25–30%, and increased production by
20–25% after implementing a predictive maintenance program. The return on investment
(ROI) was an average of 10 times, making it a proper investment.

Throughout the paper, we thus focus our analysis on predictive maintenance in the
automotive sector.

Figure 2. Comparison of reactive maintenance, preventive maintenance, and predictive maintenance
on the cost and frequency of maintenance work.
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1.2. Predictive Maintenance

Predictive maintenance represents a very complex process; indeed, for a real-time
view of the state of health and reliability of industrial machines, it is necessary to collect
data from different sensors of the system. This maintenance strategy is developed in four
phases [18]:

(1) Collecting data from different sensors of the system.
(2) Data preprocessing [19].
(3) Faults diagnosis and prognosis.
(4) Decision-making on the maintenance strategy.

Faults diagnostics and prognosis are two research topics that have attracted attention
from the academic world and industry. The purpose of diagnostics is to detect, isolate, and
identify a fault that has occurred. There are usually two crucial steps in fault diagnostics:

(1) Feature extraction and selection: in this phase, the discriminating features of the raw
data are extracted and selected.

(2) Classification of faults: the main task of this phase is to classify the different faults and
identify the causes of the failure using the selected discriminating characteristics.

Prognostics is based on observing the variation of operating parameters of a system
during its normal operating cycle. It allows you to predict a failure before it occurs and
estimate your equipment’s RUL. It is generally performed with three key steps:

(1) Construction of the health indicator (HI): the HIs are indexes constructed to represent
the health of the equipment.

(2) Health stage (HS) division: the life of the equipment is divided into different HS based
on the defined HI index.

(3) Prediction of the machinery RUL: the RUL can be estimated through the evaluation of
the health status of the equipment.

The information provided by the implemented diagnostic and prognostic methods can
support the maintenance decision-making process. Maintenance personnel can perform
maintenance actions in advance to effectively prevent equipment failure. A schematic
representation of predictive maintenance is shown in Figure 3.

The process of gathering and interpreting data acquired from the physical world is pos-
sible using artificial intelligence (AI) techniques and machine learning algorithms [20,21].
Sajid et al. [22] identify several methods for predictive maintenance:

• Physical model approach, which uses a physics or mathematical model of the system
for assessing degradation of components. The accuracy of this approach relies on the
model, and it also uses statistical methods to validate it [23].

• Knowledge-based approach, which relies on some knowledge or expertise on the system
to reduce its complexity. Expert systems and fuzzy logic belong to this category [24].

• Data-driven approach, which employs computational power and a large amount of data.
This model is classified into three types—statistical models [25], stochastic models [26],
and machine learning models.

• Digital twin approach, which combines data and models and creates a link between the
physical world and the digital ones [27].

This work aims to present a literature review on approaches that have emerged in the
last years as powerful tools for predictive maintenance in the context of the transportation
and vehicle industry. Data-driven machine learning algorithms require an effective analysis
of a huge amount of historical and real-time data via multiple streams (sensors and com-
puter systems [28]). Therefore, data preprocessing has a significant impact on performance
of a machine learning algorithm [19,29,30].

In the following sections, we describe these methods and provide an overview of
recent research contributions in predictive maintenance. This paper is organized as follows.
Section 2 introduces physics-based models presented in literature. Section 3 describes the
so-called knowledge-based models, which simulate the skills and behavior of the experts.
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Section 4 describes the most common traditional machine learning techniques and the main
deep learning techniques. The use of digital twin technology for predictive maintenance is
illustrated in Section 5 and the last section, Section 6, compares different approaches.

Figure 3. Schematic representation of predictive maintenance.

2. Physics-Based Models

A first approach to faults prediction is the formulation of physics-based models
characterized by the physical description of the machine degradation process. Nowadays,
even if data-based methods are mainly implemented, the choice of physics-based models
may be more appropriate, especially in some areas (including monitoring of offshore
turbines, and maritime and military systems) [31]. From a mathematical point of view, this
approach correlates the phenomenon of wear and the useful life of components. Among
the variables considered in the formulation of the physical–mathematical model, various
physical quantities describe the thermal, mechanical, chemical, and electrical nature of
the analyzed component. Being able to describe the impact they have on the health of
machinery is a rather tricky task due to the fact that this type of solution requires high
knowledge of the domain. Once the model is formulated, it is necessary to have sensors
available that make it possible to obtain the values assumed by the quantities considered
relevant in the analysis and modeling phase to use as inputs. The main advantage of this
type of approach is that it allows you to precisely describe the outputs it provides, because
it is based on a physical description of the process. As for accuracy, it is strongly correlated
to the quality of the analysis and modeling by the domain experts. On the other hand,
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the negative aspects are the complexity, the high cost of implementation, and the high
specificity for the system, which give a minor possibility of reuse and extension. Now, we
recall some recent results in the literature:

In [23], the authors propose a simplified physics-based model to describe a compact
angular head (roller hemming) RHEvo, a tool for hemming mainly used in production
lines and consisting of mechanical parts such as springs, rollers, skates, and bearings. After
developing the model, the authors use a neural network to estimate the current state of the
internal components. From the physical analysis of the internal springs, one can observe
that aging affects the elastic coefficient due to the fatigue degradation processes. Finally, an
estimate of the internal spring’s RUL is calculated with a stochastic model. One can use the
proposed approach for various devices that use springs; in fact, the coil springs of traction
and compression have numerous uses, particularly the suspension systems of automobiles,
the recoil mechanisms of weapons, and the shut-off valves in engines.

In [31] the authors present a series of methods and tools that improve predictive
maintenance. They examine specific cases to demonstrate how the developed methods and
tools could be implemented in different fields. In particular, the authors state that vibration-
based machinery health monitoring techniques can help detect damage, diagnose the health
of a system, and predict the remaining life of the machinery. Furthermore, one emphasizes
the importance of in-depth knowledge of system dynamics in the development of well-
performing algorithms. An approach to developing physics-based models is presented,
underlining the need to understand the physics of the faults to predict the life of systems
in highly variable operating conditions. Finally, they present a decision support tool that
helps users choose the most suitable approach to predictive maintenance and the most
appropriate technique for monitoring conditions.

3. Knowledge-Based Models

Domain experts are also relied upon to create knowledge-based models, as this ap-
proach aims to simulate the skills and behavior of the experts. Therefore, after a formal-
ization of knowledge, it is possible to reproduce it and apply it automatically. Expert
systems are programs that use experts’ knowledge in a given field and apply inference
mechanisms to emulate thought and provide support and practical solutions. Among the
most common approaches for implementing this type of model are rule-based systems and
fuzzy logic. The rule-based systems have the advantage of simplicity in the implementation
and interpretability, but they can be poorly performing, especially when one needs to
express complicated conditions or when the number of rules is very high. Similarly, fuzzy
logic allows describing the system state by imitating human decision-making processes,
making the formalization process and description of the model more straightforward and
intuitive. Even for expert systems, as for physical models, the results are highly dependent
on the quality and level of accuracy achieved by the model and are highly specific.

In the literature, this approach is often applied in combination with data-driven
methods. For example, Zhou et al. [24] tackle the problem of real-time and onboard electric
vehicle fault diagnosis by combining a neural network and fuzzy logic. It is clear that
electric vehicles’ low calculating ability and limited storage capacity hamper real-time
and onboard fault diagnosis. To address this issue, combining neural network and fuzzy
logic, Zhou et al. [24] propose a low-complexity onboard vehicle fault diagnosis method
to monitor the vehicle status and give early warning of accidents. The authors collect real
data relating to the components of three different electric vehicles and propose a training
method based on a neural network to define the correlation between data types and types
of faults. Subsequently, using this correlation, a classification method based on fuzzy logic
is introduced, making it possible to evaluate the vehicle state and prevent any anomalies
and malfunctions. The simulation results indicate that the onboard method could correctly
diagnose vehicle faults with an accuracy of 88%.
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4. Data-Driven Methods

As a consequence of the rapid development of cars’ features, traditional rule-based
diagnostic systems became very limited. Therefore, more sophisticated data-driven ap-
proaches need to be investigated towards more efficient solutions. In this section, we
present the state of the art on data-driven approaches recently introduced for predictive
maintenance in the transport and vehicle industry. One can classify them into the following:

• Statistical approaches.
• Stochastic approaches.
• Machine learning techniques.

4.1. Statistical and Stochastic Approaches

Statistical and stochastic approaches make it possible to deal with complex systems
whose evolution over time is not easily predictable. As we will see in this section, the
application of statistical methods for the prediction, estimation, and optimization of the
probability of survival and the average life span of a system can be advantageous in some
specific cases related to the operation of mechanical components such as the battery of
electric vehicles or spur gears of a car. Below, some recent results in the literature are briefly
described.

In [32], the authors use statistical analysis to diagnose battery faults. This method
is efficient and accurate and can predict faults in advance. They use the usual statistical
analysis methods of big data to determine the probability of error on the voltage of the
battery cell terminal, and they obtain the diagnosis of 3σ multilevel screening error based
on the Gaussian distribution. In this work, one applies the neural network algorithm and
combines the results of the fault diagnosis in the case of a specific car with the statistical
adjustment of large samples. Moreover, the authors build a comprehensive method of
diagnosing the battery faults and perform a corresponding analysis between the statistical
result and the actual breakdown of the vehicle.

In [33], the authors focus on faults diagnosis of the connection of lithium-ion battery in
series. In particular, one uses the mean squared error (MSE) to indicate the mean squared
discrepancy between the experimental data and the data obtained through the simulation
and to describe the voltage state of each cell. It also provides a preliminary assessment
of the tension. In the case of abnormal voltage values, this is analyzed using the Z-score
parameter, and in this way, one establishes if a fault has occurred.

In [25], Ashok Raj et al. show how one of the approaches used to estimate the severity
of a failure in the cylindrical gears is the analysis of statistical parameters extracted from
the vibration signals. The parameters used in this paper are the fourth-order normalized
statistical moment and the Curtosi index, while the technique applied for the extraction of
these signals is the empirical decomposition (EMD). This approach allows decomposing
the vibration signal of the machine into several intrinsic mode functions (IMF) to acquire
the local characteristics both in the frequency domain and in the time domain. Finally, local
characteristics have been identified from the information obtained. The results reveal that
the EMD-based vibration technique is the most suitable for fault detection and their severity
estimation. It has also been shown that using the statistical parameters obtained by the IMFs
is very effective for early fault detection compared with using the parameters extracted
from the original non-elaborated signals. This approach can prove to be a powerful tool for
identifying various developmental defects in a spur gear system.

Garay et al. [6] describe degradation processes with the following expression:

X(t) = h(t, ε(t)) (3)

where the stochastic process X(t) is a function of time h(·), depending on error ε(t), which
characterizes the variability and uncertainty of parameters involved in the process.



Math. Comput. Appl. 2022, 27, 2 8 of 21

Shen et al. [26] propose an innovative stochastic model based on the two-stage Wiener
process to describe lithium-ion batteries’ degradation behavior, taking into account different
degradation phases.

Recent developments in industrial systems provide us with a large amount of time
series data from sensors, logs, system settings, physical measurements, etc. These data
provide insights into complex systems and could detect anomalies. However, the character-
istics of these time series data, such as high dimensions and complex dependencies between
variables, pose great challenges to existing anomaly detection algorithms. Therefore, when
analyzing complex systems in which variables exhibit strong correlations, multivariate
statistical methodologies provide more precise results than univariate techniques. Principal
component analysis (PCA) is one of the most effective multivariate statistical techniques
that find applications for process monitoring and control, fault detection and diagnosis, and
sensor validation in various process industries. In fact, in exploratory data analysis, PCA
can reduce data dimensionality and, consequently, the computation time. The use of this
technique for fault detection was discussed in [34], where PCA-based fault amplification
methodology was developed for estimating the fault propagation path in industrial systems.
It is possible to apply this methodology for small systems with limited variables; however,
it can become more complex and time-consuming with an increased number of variables.

Generally speaking, the fault in one process can influence the error in other variables
involved, making the fault detection process more difficult and time-consuming. In this
case, another useful tool is Granger causality (GC) algorithm that can estimate causal
relationships among variables and help detect the root cause of the faults. GC algorithms
find their application in process [35] and energy industries [36,37] due to their simple
implementation and reliable interpretation of the empirical findings.

For instance, Bhat et al. [38] model Granger causal relationships between pairs of
sensor data streams to detect changes in their dependencies. They compare the method
on simulated signals with the Pearson correlation and show that the method sufficiently
handles noise and lags in the signals and provides appreciable dependency detection.
Nevertheless, the results show that the method is also prone to detecting false positives.
Therefore, this method can be used as a weak detection of faults, but other methods, such
as the use of a structural model, are required to detect and diagnose faults reliably.

Qiu et al. [39] propose a novel method based on Granger causality to detect anomalies
regarding dependency changes in multivariate time series. They also investigated several
stochastic and parallel optimization algorithms to speed up their approach. The empirical
results verified the effectiveness of this method in accuracy and persistence. In [40], Kordes
et al. discuss an automotive application of the Granger causality algorithm. This approach
is applied to model all possible causal relationships between sensor signals recorded
directly from CAN bus in-vehicle networks (IVNs), which connect electronic control units
(ECUs). Most of the communication on the IVNs directly affects the comfort or even the
safety of the driver. Therefore, it is necessary to monitor these systems to find the cause
and effect of a fault. In the case of mechanical wear, it is possible to obtain automatic fault
detection with a positive result in a simulated situation and by using real data. According
to the results presented in [40], modeling causal relationships between time series can be
applied to sensor signals of IVNs very well.

Finally, as pointed out in [34], combining PCA models with the GC algorithms ad-
dresses a more efficient process monitoring.

4.2. Machine Learning Algorithms

Machine learning is a subset of artificial intelligence (AI) and deals with creating
systems that learn and improve performance based on the data they use. There are four
types of machine learning algorithms currently used: supervised, semi-supervised, unsu-
pervised, and reinforcement learning algorithms. The difference between these four types
of algorithms is defined by how each algorithm learns the data to make predictions.
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In unsupervised learning, the data is not labeled, and the model is formulated so that
it identifies patterns and structures in the data on its own. In semi-supervised learning, the
input data is a combination of labeled and unlabeled data.

In supervised learning, the ML model uses labeled training data. In other words, input
variables and the corresponding output are supplied to the machine to learn a mapping
from the inputs to the outputs, often adjusting the model iteratively. This process is repeated
until the model achieves the desired level of accuracy on the training data and can correctly
predict outputs for new data. Supervised learning is probably the most frequently used
machine learning in practical applications.

Finally, reinforcement learning enables the system to learn by rules, trial, and error to
discover the most beneficial actions. Concerning applications in the automotive industry,
reinforcement learning has been fundamental to allow the development of self-driving
vehicles that learn to recognize the surrounding environment (with the data collected by
GPS, sensors, etc.) and to adapt their “behavior” according to the specific situations they
have to face.

Machine learning algorithms require an effective analysis of a considerable amount
of historical data and real-time data extrapolated through multiple streams (sensors and
IT systems) [28]. Therefore, the data preprocessing phase has a significant impact on the
performance of machine learning algorithms [19,29,30].

This section explores the traditional machine learning approaches and more advanced
deep learning methods, which are usually employed for predictive maintenance in the
automotive domain.

4.2.1. Traditional Algorithms

This section explores the most advanced deep learning methods typically employed
for predictive maintenance in the automotive industry. The term deep learning (DL) refers
to a subset of artificial intelligence and machine learning that uses multilayer artificial
neural networks to estimate a better mapping function between specific inputs and outputs.
DL algorithms require huge amounts of data to achieve high accuracy. These algorithms
have been widely used in many automotive sectors, such as autonomous driving and
manufacturing [41]. The most spread traditional algorithms used in predictive maintenance
are linear regression (LR), Gaussian process regression (GPR), artificial neural network
(ANN), decision tree (DT), support vector machine (SVM), and k-nearest neighbors (k-NN).

Linear Regression

Linear regression (LR) analysis is a statistical technique for investigating and modeling
the functional relationship between dependent variables (response) and independent
variables (predictor). If we denote with y the dependent variable and x1, x2, . . . , xN the
independent variables, then the equation of a straight line relating these variables is

y = β0 + β1x1 + β2x2 + . . . + βN xN + ε (4)

where β0, β1, . . . , βN are equation parameters, and ε represents the difference between the
values of Y and the model used to represent them, β0 + ∑N

j=1 β jxj. Typically, ε ∼ N(0, σ2),
and so it is referred to as the error term that accounts for the failure of the model to fit the
data exactly. The adjective linear is employed to indicate that the model is linear in the
parameters β0, β1, . . . , βN , not because Y is a linear function of Xis.

Dehning et al. in [42] provide an insight into how the multiple linear regression
approach can be used to identify and quantify factors influencing the energy intensity of
automotive plants. The presented model aims at supporting strategic decision-making and
forecasting the future energy demand of automotive plants. The model can be used for
different purposes for automotive companies and other stakeholders.

Kong et al. [43] discusses the development of multiple linear regression (MLR)-based
spring durability models for predicting the fatigue life of automotive coil springs based
on the vertical vibrations of the vehicle and natural frequencies of the vehicle suspension
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system. In these models, the fatigue life of the automotive coil spring f (Xi) is the dependent
variable, whereas the weighted acceleration (vertical vibrations of the vehicle) and natural
frequencies of the vehicle suspension system are used as independent variables xi. The
results indicate that the MLR-based spring durability models can predict the fatigue life of
automotive coil springs with reasonable accuracy. The fault prediction task is formulated
in [44] as regression and classification problems. In particular, the authors compare two
ML approaches: the first is an autoregression model of vehicle failure ratios based on past
information. The second is the aggregation of individual vehicle failure predictions based
on their personal usage.

Gaussian Process Regression

Gaussian process regression (GPR) is a nonparametric, Bayesian approach that has
been widely used for regression and classification tasks. This algorithm is an efficient tool
to develop forecasting models and estimate predictions by incorporating prior knowledge
(kernels). Aye et al. [45] proposed an integrated GPR model to predict the RUL of slow
speed bearings and achieved lower prediction error.

However, in some cases, approaches such as linear regression or GPR can provide
inaccurate estimates. In fact, the work of Tosun et al. [46] compares the results obtained by
linear regression (LR) and artificial neural networks (ANN) to predict some performance
and emission data of a diesel engine fueled with alcohol and biodiesel blends. They show
that while linear regression was lacking in predicting the desired parameters, it is possible
to obtain more accurate results using ANN. The idea behind artificial neural networks is
illustrated below.

Artificial Neural Network

An artificial neural network (ANN) has hundreds or thousands of artificial “neurons”
(named processing units), which are interconnected by nodes. They are called “neural
networks” because the behavior of the nodes that compose them resembles that of biological
neurons. These processing units are made up of input and output units. The input units
receive information, and the neural network attempts to learn it to produce the outputs.
Just as humans need rules and guidelines to obtain a result, ANNs use a network training
algorithm named backpropagation to refine the output results. Initially, an ANN goes
through a training phase in which it learns to recognize patterns from the data. During this
supervised learning phase, the network compares the actual output produced with what
it should have produced—the desired output. The difference between the two results is
minimized by using the backpropagation of the error. In other words, the network works
backward, going from the output unit to the input unit to adjust the unit’s connection
weights until the difference between the actual and the desired result produces the least
possible error.

In an ANN, we denote by wl
jk the weight of the connection from the kth neuron of the

(l − 1)th layer to the jth neuron of the lth layer (see Figure 4). The signal arriving at the jth
node in the (l + 1)th layer is determined by the signal arriving in the lth layer:

f (l+1)
j (x) = g

(
w(l)T

j f (l)(x) + w(l)
j0

)
(5)

where w(l)
j =

[
w(l)

j1 , w(l)
j2 , . . . , w(l)

jn

]T
and f (l)(x) = [ f (l)1 (x), . . . , f (l)n (x)]T .

The value of f0(x) is the input x, while the so-called activation function g(·) is a
nonlinear and nondecreasing function. Generally, the most commonly used activation
functions are as follows:

1. The sigmoid function g(x) = 1
1+e−x .

2. The hyperbolic tangent function g(x) = 1 + tanh(x).
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This technique has several applications in maintenance [46–49]. A particularly inter-
esting model is the new ANN architecture presented in [50], which significantly improves
predicting a vehicle powertrain failure with a reduction in the input data size.

Figure 4. A schematic representation of an artificial neural network.

Support Vector Machine

Another supervised learning technique is the support vector machine (SVM). Support
vector machines perform the classification task by constructing, in a higher-dimensional
space, the hyperplane that optimally separates the data into two categories. Then, the
SVM algorithm tries to find the maximum margin that separates the two categories of
data and then determines the hyperplane in the center of the maximum margin. The term
margin means the minimum distance of points of the two classes in the training set from
the identified hyperplane. The boundary that separates the classes is called the decision
boundary. Therefore, the points closest to the decision boundary are at the same distance
from the optimal hyperplane.

Let us consider a training set {(x1, y1), (x2, y2), . . . , (xn, yn)} where xi ∈ Rd are mul-
tidimensional patterns and yi ∈ {−1, 1} the labels of the two classes. The equation of a
generic hyperplane is f (x) = wx + b. The goal of SVM is to find the parameters w and b of
the linear function f that identify the optimal hyperplane. The points closest to the decision
boundary define the margin. Considering two generic points, x1, x2, on opposite sides of
the margin such that f (x1) = 1 and f (x2) = −1, the margin is equal to f (x1)− f (x2)

‖w‖ = 2
‖w‖ .

Therefore, maximizing the margin is equivalent to minimizing ‖w‖2 or ‖w‖
2

2 (see Figure 5).
Therefore, to find the optimal hyperplane, SVM solves the following convex optimization
problem (which admits a global minimum):

min
w

[
1
2

wTw
]

(6)

s.t. yi · (wTxi + b) ≥ 1. ∀i = 1, . . . , n (7)

where wT denotes the transposed vector of w. Patterns in the training set that lie on
edge are called support vectors. These patterns, which constitute the most complex cases,
completely define the problem solution, which can be expressed exclusively as a function
of these patterns, regardless of the size of the space d and the number n of elements in
the training set. In practice, data is often not linearly separable from a hyperplane, and
therefore a more sophisticated SVM is used to solve it.

To map the training data in a nonlinear way in the space of characteristics with multiple
dimensions, we introduce variables ξi, i = 1, . . . , n and modify the separation constraints:

yi · (wTxi + b) ≥ 1− ξi ∀i = 1, . . . , n. (8)
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For each pattern xi in the training set, the variable ξi encodes the deviation from the
margin. For separable patterns, the corresponding variables ξi will take value 0. In this
case, the optimal hyperplane must maximize the margin and, at the same time, minimize
the number of incorrectly classified elements. The objective function and, consequently, the
optimization problem are modified as follows:

min
w

[
1
2

wTw
]
+ C

N

∑
i=1

ξi (9)

s.t. yi · (wTxi + b) ≥ 1− ξi ∀i = 1, . . . , n, (10)

where the coefficient C is a hyperparameter that the user must choose in the algorithm
implementation phase, which indicates the relative importance of the classification errors
concerning the width of the margin.

Figure 5. Optimal hyperplane for support vector machine with two classes.

SVM provides an important extension of the theory initially developed for hyperplanes
to the (nonlinear) case of separation of patterns even with very complex surfaces. In this
case, we introduce a nonlinear function φ of the patterns from the space Rd to a space Rm

of greater dimension (m > d):
φ : Rd −→ Rm.

In the space Rm, where the degrees of freedom are greater, the patterns φ(xi), φ(x2),
. . . , φ(xn) can be more easily separated by a hyperplane using the general theory. This is
equivalent to splitting the patterns x1, x2, . . . , xn in Rd with arbitrarily complex surfaces.

To determine the separation surface, we define the scalar product of two patterns
mapped in the space Rm as a function (called kernel) K : Rd ×Rd −→ R of the two original
patterns in the space Rd.

φ(xi) · φ(xj) = K(xi, xj). (11)

This allows to solve the optimization problem without particular complications com-
pared to the linear case [51].

The SVM algorithm is widely used in maintenance, especially for the classification of
faults. For example, Jeong et al. [52] propose a fault diagnosis algorithm to detect sensor
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faults robustly in vehicle suspension systems, and they evaluated them using an SVM.
Nevertheless, this machine-learning application method allows reducing the effort required
when designing fault diagnosis algorithms and achieves excellent performance at the same
time. Nevertheless, this approach has some drawbacks, such as performance deviation
depending on the configuration of the residual dataset used for learning. In this paper,
the dataset is collected based on simulations. However, if the proposed fault diagnosis
method is applied to an actual vehicle, actual vehicle test data must be collected in various
scenarios. Biddle et al. [53] use the SVM technique to detect and identify faults in sensors
for autonomous vehicle control systems, and they propose a novel predictive algorithm to
identify degrading performance in a sensor and predict the time at which a fault will occur.
The experimental results show good performance, with a relatively simple implementation
resulting in prediction accuracy of 75.35%.

k-Nearest Neighbors

Another machine learning technique is the k-nearest neighbor (k-NN) algorithm
used mainly in pattern recognition and fault classification in the context of predictive
maintenance. Given a test instance, one can either search for k training instances closest to
this test instance or predict the value of a new test instance.

The distance between two instances x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) is
calculated as

d(x, y) =

√
n

∑
i=1

wi(xi − yi)2 (12)

where n is the number of features in the dataset and wi is the weight of feature i. When i
is set to 1, the distance between two instances becomes the Euclidean distance. The value
of k should be an odd number for binary classification [54]. In the case study of [55], a
cyber-physical system analyzes and records the vibration data of an electrical motor to
identify and classify the vibration motor severity and implement a predictive maintenance.
The vibration severity was classified through the k-nearest neighbour algorithm (k-NN).

Vasavi et al. [48] presents an edge computing-based fault prediction system that
predicts vehicle health using internal and external sensors in real time. The results show
that by combining ANNs and k-NN algorithms it is possible to achieve better accuracy
compared to ANN and k-NN when applied individually.

Decision Tree

Other algorithms used for fault classification are the so-called decision tree (DT). The
decision tree is a particular supervised learning technique that can be used both to predict
discrete variables (in this case, we are talking about classification) and to predict continuous
variables (in this case, we are talking about regression). It is mainly used as a tree-structured
classifier, where the internal nodes represent the characteristics of a dataset, the branches
represent the decision rules, and each leaf node represents the result. There are two types
of nodes in a decision tree: the decision node and the leaf node. Decision nodes are used
to make any decisions and have multiple branches, while leaf nodes are the output of
those decisions and contain no further branches [56]. Decisions or tests are made based
on the characteristics of the used dataset. It is called a decision tree because it starts with
the root node, which expands to further branches and builds a tree structure. Several
algorithms are used to build a tree. Among the best known are the classification and
regression tree (CART) algorithm [57], ID3 [58], and C4.5 [59]. For a detailed analysis of the
aforementioned algorithms, please refer to [60,61].

An example of application of this technique for the fault classification is given in [62],
where to better understand the real faults of axle box bearings, the authors identify five
different fault types by applying the C4.5 decision tree algorithm.
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4.2.2. Deep Learning Approaches

This section explores the more advanced deep learning methods, which are usually
employed for predictive maintenance in the automotive domain.

Deep learning (DL) refers to a subset of AI and machine learning that uses multilayered
artificial neural networks to estimate a better mapping function between given inputs and
outputs. To achieve high accuracy, DL algorithms require huge amounts of data. DL
has been employed in many automotive sectors, such as autonomous driving, vehicle
development, and manufacturing [41].

There are several deep learning techniques used in predictive maintenance: long
short-term memory (LSTM) [63], autoencoder (AE), convolutional neural network (CNN),
recurrent neural network (RNN), deep beliefs networks (DBN), generative adversarial
network (GAN), transfer learning, deep reinforcement learning (DRL), and random forest
(RF). For a complete discussion of these techniques, see the references [64,65].

Let us discuss some applications of deep learning techniques for predictive mainte-
nance in the automotive field.

In [66], two machine learning-based methods are developed for heavy medium lead-
acid battery prognosis, one based on long short-term memory (LSTM) neural networks and
one on random survival forest (RSF). The lead-acid battery is mainly used when starting
the engine and heating and cooling the passenger compartment. It is an essential part of
the electrical system essential for the safe operation of the vehicle.

A novel health monitoring system based on a LSTM network is proposed in [67] to
estimate the remaining fatigue life of automotive suspension.

In [68], the authors focus on utilizing deep learning to build a diagnostic system
that efficiently and effectively predicts a wide range of faults by relying on a new model,
called the deep symptoms-based model (deep-SBM). The performance of this approach
was compared against the state-of-the-art models, and better results have been reported in
terms of accuracy, precision, and F-score.

Particularly interesting is the ensemble learning technique, a machine learning paradigm
that combines different machine learning techniques in a single predictive model to improve
the overall accuracy of artificial intelligence algorithms [69]. For example, the method
proposed in [70] combines the autoencoder (AE) technique with the long short-term memory
(LSTM) algorithm to predict time series of mechanical failures. Another approach of this type
can be found in [71], where a model of prediction of the RUL for electric valves is obtained by
combining the convolutional autoencoder (CAE) and LSTM algorithms. The obtained results
show a significant improvement in RUL prediction compared to the estimates obtained with
other ML techniques, and, consequently, a relatively good accuracy on the prediction of
equipment failures.

Surrounding factors such as weather, traffic, and terrain could influence the vehicle
lifecycle. It is only recently that these factors have been taken into account in the study of
automobile time-between-failure (TBF) prediction modeling [72]. With GPS information,
these real-time data can be collected from external sources and transmitted to the cloud.
As pointed out in this paper, it is possible to integrate these real-time telematics data
with historical maintenance data to establish a more accurate automobile maintenance
prediction model, offering real-time health condition monitoring and RUL prediction. For
this purpose, a novel deep learning architecture called a merged-LSTM (M-LSTM) network
is proposed to build a TBF prediction model based on multisource data. The experimental
results show that the introduction of these data can improve TBF prediction modeling.

In [73], a CNN classifier is proposed for real-time multisensor monitoring to capture
faulty signals and construct sensors’ health index (HI). The proposed fault detection system
obtained an accuracy of 99.84%.

In [74], the idea of ensemble learning is applied, and relevant vector machine (RVM)
is used as a weak learning machine under the framework of ensemble learning to predict
the health trend with uncertainty conditions. On this basis, this novel prediction model
allows to effectively convert point estimation to continuous estimation.
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5. Digital Twin Technology

Digital twin (DT) technology refers to a complete physical and functional description
of a physical component, product, or entire system with all operational data. A product
digital twin establishes a virtual connection that opens the way for real-time monitoring of
the entire lifecycle of that product. In other words, a digital twin, like a virtual prototype, is
a dynamic digital representation of a physical system. However, unlike a virtual prototype,
a digital twin is a virtual instance of a physical (twin) system that is continually updated
with data on its performance, maintenance, and health throughout the entire lifecycle
of the physical system [75]. For a detailed discussion on the technologies that support
DT and its applications in different sectors, see the reference [76]. In recent years, digital
twin technology has been widely used to support automotive maintenance processes.
For example, in [77], the authors describe the application of digital twin technology to
support the predictive maintenance of an automotive braking system. The vehicle brake
pressure was measured at different speeds using the ThingWorx Internet of Things (IoT)
platform. The data acquired using this platform predict brake wear using the CAD model
implemented in CREO Simulate. The approach applied in [78] combines physics-based
modeling techniques (0-D, 1-D, 3-D) to create a digital twin that allows predicting brake
pad wear in a conventional car. In [79], a multidimensional digital twin model dedicated
to the product lifecycle is developed to improve the production quality and maintenance
efficiency of the constant velocity joint of a car. The constant velocity joint is one of the
main components of the automobile transmission system, and its reliability and stability
are essential for the good functioning of the vehicle. This device represents a key factor in
the realization of the steering and propulsion of the vehicle, the quality of which directly
impacts safety, maneuverability, and comfort. The use of computer simulation technology
reduces production and test costs so that the digital twin model can diagnose faults and
optimize the design.

6. Comparison among Different Approaches

Generally speaking, selecting the most appropriate machine learning algorithm for
predictive maintenance depends on many factors, from the type of issue at hand to the
nature of data, and involves conducting experiments, evaluating different approaches, and
tuning parameters. In the literature, there are many comparisons among different machine
learning approaches.

For example, in [47], the authors use six machine learning algorithms, which include
artificial neural network (ANN), support vector machine (SVM), linear regression (LR),
Gaussian process regression (GPR), ensemble bagging, and ensemble boosting algorithms
for estimating lithium-ion batteries’ state of charge (SoC). As a result of this comparison,
with 85% mean absolute error, the proposed ANN and GPR approach achieved strong per-
formance while outperforming other methods. Therefore, ANN and GPR could help design
the optimum battery management system for electric vehicles based on SoC predictions.
In [80], a hybrid data-driven algorithm combining the benefits of GPR and long short-term
memory was proposed to improve the accuracy of RUL prediction for lithium-ion (Li-ion)
batteries with reliable uncertainty management. In [26], a novel two-stage Wiener process
model is proposed to describe the degradation behavior of lithium ion batteries in different
degradation stages.

According to [9], four classifiers were compared, namely, SVM, DT, RF, and kNN.
Results show that all algorithms are very accurate, especially the SVM classifier, which
obtained the best performance on four operating systems. The lowest accuracy of the SVM
model is 96.6%, which was achieved on the ignition and cooling systems, while the best
accuracy is 98.5%, which was achieved on the fuel system. The SVM classifier obtained
the best performance on four operating systems, and the accuracy of the SVM was 96.6%,
98.7%, 98%, and 96.6%.

The purpose of the study in [49] is to show the feasibility of using different ma-
chine learning approaches implemented as classification predictors for fault detection



Math. Comput. Appl. 2022, 27, 2 16 of 21

tasks, including random forest (RF), support vector machines (SVM), artificial neural net-
works (ANN) variants, and Gaussian processes (GP). The authors use training and testing
datasets of different standardized driving cycles generated by a simulation testbed for
fault diagnosis in turbocharged petrol engine systems. The best results are achieved by the
random forest method, since its minimum accuracy, i.e., 0.88539, is greater than the sec-
ond maximum accuracy, i.e., 0.806120, performed by the support vector machine method.
Nevertheless, it is possible to increase the accuracy of all methods by low-pass filtering the
outputs.

In Table 1, we present a comparison between existing works from three perspectives:
methods, applications, and data types.

Table 1. Summary of the most recent papers for predictive maintenance in automotive sector. The
data types are Real Data (RD) and Synthetic Data (SD).

Ref. Year Method(s) Main Applications Data Types Used
Physics-Based Models

[23] 2018 Description of a compact angular head (roller hemming) SD
[31] 2019 Vibration-based machinery health monitoring techniques RD

Knowledge-Based Models
[24] 2020 Fuzzy logic Evaluation of vehicle state to prevent anomalies and malfunctions RD

Statistical and Stochastic Approaches
[32] 2017 Diagnosis of battery faults RD
[33] 2018 Diagnosis of the connection of lithium-ion battery in series RD

[40] 2018
Modeling of all possible causal relationships between sensor signals
recorded directly from CAN bus in-vehicle networks

RD

[6] 2019 Description of degradation processes RD
[26] 2021 Description of lithium-ion batteries’degradation RD
[25] 2021 Identification of defects in a spur gear system RD

Traditional Machine Learning Approaches
[46] 2016 LR, ANN Diesel engine fueled with biodiesel alcohol mixtures RD
[42] 2017 MLR Energy intensity of new automotive plants RD
[45] 2017 GPR RUL prediction for slow speed bearings RD

[55] 2018 k-NN
Classification of vibration gravity to predict anomalies
in electric inductive motors

RD

[62] 2018 DT Identification of different fault types of axle box bearings RD
[9] 2018 DT, SVM, RF, k-NN Monitoring and fault predicting system in vehicle RD
[43] 2019 MLR Fatigue life evaluation of automotive coil springs RD
[52] 2019 SVM Fault diagnosis of vehicle suspensions SD
[49] 2020 RF, SVM, ANN, GP Fault diagnosis in turbocharged petrol engine systems SD
[44] 2020 LR Failures prediction of a given vehicle component RD

[47] 2021 ANN, SVM, LR, GPR
State of charge Estimation of lithium-ion battery for
electric vehicles

RD

[48] 2021 ANN + k-NN Vehicle health monitoring RD

[53] 2021 SVM
Fault detection, identification, and prediction for
autonomous vehicle controllers

SD

Deep Learning Approaches

[80] 2020 LSTM+GPR
RUL prediction for lithium-ion (Li-ion) batteries with reliable
uncertainty management

RD

[50] 2020 AE Prediction of upcoming failures in trucks RD
[66] 2020 LSTM, RF Heavy medium lead-acid battery prognosis RD

[72] 2020 Merged-LSTM
Time-between-failure (TBF) prediction modeling
based on multisource data

RD
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Table 1. Cont.

Ref. Year Method(s) Main Applications Data Types Used
[71] 2021 CAE+LSTM RUL prediction for electric valves SD
[47] 2021 EBa, EBo State of charge estimation of lithium-ion battery for electric vehicles RD
[70] 2021 EFMSAE-LSTM Prediction of mechanical fault time series RD
[67] 2021 LSTM Remaining fatigue life of automotive suspension RD
[73] 2021 CNN Multisensor fault detection for autonomous vehicles RD
[74] 2021 Ensemble method Health prediction for sensor systems RD

Digital Twin Technology
[78] 2017 Prediction of brake pad wear in a car SD
[77] 2019 Predictive maintenance of an automotive braking system SD
[79] 2021 Maintenance of the constant velocity joint of a car SD

7. Conclusions

Timely and adequate maintenance actions are essential for the operation of industrial
equipment as they can significantly improve the reliability, availability, and safety of
the equipment and minimize failures. Predictive maintenance (PdM) is an advanced
maintenance strategy that allows you to predict potential failures and take maintenance
actions in a timely and appropriate manner [18]. It has gradually replaced traditional
maintenance strategies, including reactive and preventive maintenance (also known as
scheduled maintenance). In recent years, with the rapid advancement of sensor and
network technology, there has been a notable increase in the availability of data such as
vibration, temperature, pressure, and other types of electrical and mechanical equipment
condition-monitoring data. With the development of big data, artificial intelligence (AI)
techniques, especially machine learning and deep learning, have been widely applied in
current predictive maintenance systems.

In recent years, numerous research articles in predictive maintenance, including
theoretical studies and industrial applications, have been published in scientific journals
and research reports. This work aims to provide a brief overview of recent research
contributions on techniques used for predictive maintenance, especially in the automotive
field. We have seen how deep learning methods, on the one hand, guarantee better accuracy
in predicting failures, and on the other, require a greater amount of data than traditional
machine learning techniques. The case studies analyzed in this work show how machine
learning can effectively predict failures or anomalies in a wide range of applications and
how it has improved (and will continue to do so) the toolset for predictive maintenance [7].
We have seen how hybrid models and physical models represent the most reasonable choice
in some cases, such as those analyzed in [31], in which a large set of data is not available.
Finally, we analyzed the role of digital twin technology in predictive maintenance. Digital
twins give car manufacturers a greater ability to diagnose abnormal conditions and predict
the remaining useful life of degradable components, improving vehicle performance and
safety.

One of the main limitations of these contributions, also recognized in other reviews [7],
is the non-availability of real datasets. These data are usually considered highly confidential
by automotive companies. Consequently, this does not allow comparing qualitatively novel
approaches with the state of the art because the dataset where the previous approaches
were tested is usually unavailable online. Another limitation is that it is difficult to evaluate
the validity of developed methods by using real data. Real data is often not, or only
partially, labeled, and annotating data is time-consuming and requires expert knowledge.
Nevertheless, to build methods that yield more robust results, it is necessary to test models
with labeled data, even if only having trained them on unlabeled data.

Future research could address the application of general predictive maintenance
achievements to automotive use cases and compare the approaches present in literature
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by testing, when it is possible, different models on the same real dataset. Another fu-
ture research perspective is the development of models obtained by combining different
approaches in order to give more efficient predictive analytics.
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