
Citation: Gelvez-Almeida, E.;

Mora, M.; Barrintos, R.J.;

Hernández-García, R; Vilches-Ponce,

K.; Vera, M. A Review on Large-Scale

Data Processing with Parallel and

Distributed Randomized Extreme

Learning Machine Neural Networks.

Math. Comput. Appl. 2024, 29, 40.

https://doi.org/10.3390/mca29030040

Academic Editor: Leonardo Trujillo

Received: 9 April 2024

Revised: 5 May 2024

Accepted: 7 May 2024

Published: 27 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical

and Computational

Applications

Review

A Review on Large-Scale Data Processing with Parallel and
Distributed Randomized Extreme Learning Machine
Neural Networks
Elkin Gelvez-Almeida 1,2,†,* , Marco Mora 3,† , Ricardo J. Barrientos 3,†,* , Ruber Hernández-García 3,† ,
Karina Vilches-Ponce 3,† and Miguel Vera 2,†

1 Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas,
Universidad Católica del Maule, Talca 3480112, Chile

2 Centro de Crecimiento Empresarial—MACONDOLAB, Facultad de Ciencias Básicas y Biomédicas,
Universidad Simón Bolívar, San José de Cúcuta 540006, Colombia; miguel.vera@unisimon.edu.co

3 Laboratory of Technological Research in Pattern Recognition (LITRP), Depto. DCI, Facultad de Ciencias
de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile; mmora@ucm.cl (M.M.);
rhernandez@ucm.cl (R.H.-G.); kvilches@ucm.cl (K.V.-P)

* Correspondence: elkin.gelvez@unisimon.edu.co (E.G.-A.); rbarrientos@ucm.cl (R.J.B.)
† These authors contributed equally to this work.

Abstract: The randomization-based feedforward neural network has raised great interest in the scien-
tific community due to its simplicity, training speed, and accuracy comparable to traditional learning
algorithms. The basic algorithm consists of randomly determining the weights and biases of the
hidden layer and analytically calculating the weights of the output layer by solving a linear overdeter-
mined system using the Moore–Penrose generalized inverse. When processing large volumes of data,
randomization-based feedforward neural network models consume large amounts of memory and
drastically increase training time. To efficiently solve the above problems, parallel and distributed
models have recently been proposed. Previous reviews of randomization-based feedforward neural
network models have mainly focused on categorizing and describing the evolution of the algorithms
presented in the literature. The main contribution of this paper is to approach the topic from the
perspective of the handling of large volumes of data. In this sense, we present a current and extensive
review of the parallel and distributed models of randomized feedforward neural networks, focusing
on extreme learning machine. In particular, we review the mathematical foundations (Moore–Penrose
generalized inverse and solution of linear systems using parallel and distributed methods) and
hardware and software technologies considered in current implementations.

Keywords: randomization-based feedforward neural network; extreme learning machine;
Moore–Penrose generalized inverse matrix; parallel and distributed computing

MSC: 68T07; 15A09; 15A10

1. Introduction

Feedforward neural networks with random weights (RWNNs) [1] and random vector
functional link (RVFL) networks [2,3] were presented in 1992, introducing the randomized
feedforward neural networks. Particularly, the extreme learning machine (ELM) is an
algorithm that was initially proposed in 2004 for single-hidden-layer feedforward networks
(SLFNs) [4]. ELM is a variant of RVFL neural networks that eliminates the direct connections
between the input layer and the output layer [2,3]. The method randomly assigns the
weights and biases of the hidden layer, and then, analytically calculates the weights of
the output layer using the Moore–Penrose generalized inverse (MPGI) matrix [4,5]. ELM
research has become highly relevant in the field of artificial neural networks (ANNs) due

Math. Comput. Appl. 2024, 29, 40. https://doi.org/10.3390/mca29030040 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca29030040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0001-5157-3341
https://orcid.org/0000-0003-3619-2561
https://orcid.org/0000-0001-5345-7061
https://orcid.org/0000-0002-9311-1193
https://orcid.org/0000-0001-7689-1696
https://orcid.org/0000-0001-7167-6356
https://doi.org/10.3390/mca29030040
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca29030040?type=check_update&version=3

Math. Comput. Appl. 2024, 29, 40 2 of 33

to its faster training speed and good performance compared to other traditional learning
algorithms such as back-propagation (BP) and support vector machines (SVMs) [4].

Because of the evolution and great acceptance of ELM networks in the scientific com-
munity, several papers have reviewed the topic in the last decade. Previous review papers
have mainly focused on the following: mathematical and computational theory of ELM
networks, which includes the system of linear equations (SLEs) solution because of its direct
relationship with the MPGI matrix; applications in different areas of science and technology;
the evolution of ELM networks since their presentation in previous research [4]; variants
of ELM networks for solving classification and regression problems in different contexts;
strengths and weaknesses of ELM networks and their variants; and open challenges to
the scientific community. Among the main limitations, processing large volumes of data
remains a problem, and it is a major challenge due to high memory consumption and
training time. To cope with the memory and training time issues, distributed and parallel
computing is considered a suitable solution. The size of data sets processed with ELM has
been steadily increasing; however, it is still a challenge to process large amounts of data
on the order of millions of samples. In this paper, it is important to clarify that parallel
computing refers to systems with a shared memory architecture; meanwhile, distributed
computing points to systems with distributed memory architectures where different nodes
are connected in a network.

In this sense, thoroughly addressing the advances of ELM based on parallel and
distributed computing is the main objective of the present review, with more attention paid
to working with large-scale data sets. This review brings the following contributions to the
scientific community:

• An overview of the basic structure of ELM and the variants with parallel and dis-
tributed computing to solve problems with large-scale data sets.

• A discussion of advances in solving SLE using parallel and distributed computing to
address high-dimensional arrays.

• A description of the parallel and distributed tools used to improve the performance of
the ELM algorithm and its variants by solving problems associated with training time
and memory capacity.

• A summary of the evolution in the last decade of the ELM algorithm and its variants
combined with parallel and distributed tools.

Identifying the challenges of processing large-scale databases with ELM networks is
the main scope of this review article. In this regard, the size of databases and computational
architectures used with ELM are reviewed in this paper. In addition, a section to discuss
the computing of MPGI with high-dimensional matrices is presented. Database size,
computational architectures, and the MPGI matrix are the main focus of this review.

The remainder of this paper is as follows: Section 2 presents a discussion on the contri-
butions of review articles published in the last decade. Section 3 describes the fundamentals
of ELM and the variants adapted to parallel and distributed computing. Section 4 discusses
parallel methods that have been used for the SLE solution and the improvements they
can bring to the ELM algorithm. Section 5 reviews the parallel and distributed algorithms
for ELM developed in the last decade and provides a brief description of the parallel and
distributed tools used in these works. Section 6 discusses the findings. Finally, we present
the conclusions in Section 7.

2. Related Reviews about Extreme Learning Machine

ANNs (artificial neural networks) have been widely accepted into the scientific commu-
nity. New proposals constantly appear which combine various techniques and algorithms
to address problems in different contexts. Considering the latter, some recent work in-
cludes a deep neural network (DNN) with fuzzy wavelet for predicting energy demand in
Iran [6]. A hybrid method incorporating an inline particle swarm optimization (PSO) and a
gradient-based algorithm is used in the training. The authors show that the PSO method

Math. Comput. Appl. 2024, 29, 40 3 of 33

improves model accuracy and reduces training time. The proposed deep neural network
based on fuzzy wavelet (DNFW) outperformed other models in all simulations.

In addition, six classification methods for diagnosing fatigued foot from digital im-
ages of the footprint are used in one study [7]. K-nearest neighbors (KNNs) classifier,
multilayer perceptron (MLP), SVM, naïve Bayesian (NB) learning, decision tree (DT), and
convolutional neural network (CNN) architecture are used by the authors. The results
show that CNN is the most accurate method, with 100% accuracy. In another study [8], a
classifier based on fuzzy logic and wavelet transformation, in the form of a neural network
(FWNNet), is presented for brain tumor diagnosis. The results show that the proposed
FWNNet has an accuracy of 100%. Also, FWNNet is presented as the best classifier for
brain tumor diagnosis.

An approach to identify breast cancer using machine learning and image processing
is presented in another study [9]. The particle-swarm-optimized wavelet neural network
(PSOWNN) method presented was proven to be more accurate than other machine learning
algorithms such as SVM, KNNs, and CNN. In this direction, a method combining signal
processing techniques and machine learning algorithms (MLP, KNNs, NB, and SVM) is
presented in another study [10]. The method is proposed to suppress different types
of electroencephalogram artifacts. The results show that the proposed method is fully
automated and more accurate. However, this approach is computationally extensive, and
fast processing machines are required.

As can be seen, ANN-based models have proven to be adequate to address problems
widely studied by the scientific community. In this paper, we present a review of the
advances in ANNs, with a focus on ELM networks and their variants to address large-scale
database problems, as well as the associated mathematical and computational schemes.
This section presents a discussion of previous review articles on randomized feedforward
neural networks published in the last decade, focusing on ELM networks. Table 1 shows
a brief description of these studies, including publication type, focus, some advantages
and disadvantages, and the number of citations up to February 2024. The following review
papers have been found using the WoS, Scopus, and Google Scholar databases.

Table 1. Summary of reviews on ELM in the last decade up to February 2024. The data were obtained
from the databases Google Scholar, WoS, and Scopus.

Reference Type Focus Advantages/Disadvantages
No. Citations *

WoS Scopus Scholar

Huérfano-Maldonado et al.
(2023) [11] Journal: Neurocomputing

Medical image
processing using
ELM

ELM offers advantages such as fewer training
parameters, fast learning speed, and high
generalization ability. However, most
publications focus on supervised learning, with
fewer on unsupervised learning.

3 4 5

Patil and Sharma (2023) [12]

Conf: Int. Conf. on
Computational Intelligence and
Sustainable Engineering
Solutions

Theories,
algorithms, and
applications of
ELM

ELM exhibits fast training and efficient
processing of large data sets; however, it is
constrained by its limited capacity to learn
complex patterns.

- 0 0

Kaur et al. (2023) [13] Journal: Multimedia Tools and
Applications Multilayer ELM

The applications of ML-ELM in parallel and
distributed computing are open. Also, its
effectiveness for big data applications can be
investigated further.

0 3 3

Vásquez-Coronel et al.
(2023) [14]

Journal: Artificial Intelligence
Review Multilayer ELM

With the advancement of technology and the
Internet, the amount of data continues to
increase exponentially, giving rise to a current
open problem in machine learning.

4 4 5

Wang et al. (2022) [15] Journal: Multimed. Tools Appl. ELM neural
network

ELM has the potential of playing a more
important role in big data. 120 138 241

Zheng et al. (2022) [16] Journal: Big Data Research
Data-stream
classification
based on ELM

ELM-based algorithms have better
generalization ability and less computation
time. However, these algorithms are little
focused on multi-label data-stream
classification.

3 6 7

Math. Comput. Appl. 2024, 29, 40 4 of 33

Table 1. Cont.

Reference Type Focus Advantages/Disadvantages
No. Citations *

WoS Scopus Scholar

Martínez et al. (2022) [17]
Conf: Colombian Conf.
Communications and
Computing

Identification and
classification of
fingerprint
databases

ELM-based algorithms are an economical and
accessible alternative to reduce the penetration
rate in fingerprint databases compared to
traditional algorithms.

- 0 1

Kaur et al. (2022) [18]
Conf: Int. Conf. Machine
Learning, Computer Systems,
and Security

ELM on TF-IDF
features for
sentiment analysis

The need for a high number of hidden nodes in
ELM is one of the drawbacks which needs to be
addressed.

- 0 0

Nilesh and Sunil (2021) [19]

Journal: EAI Endorsed
Transactions on Industrial
Networks and Intelligent
Systems

Optimization
algorithms for
ELM

The efficiency, accuracy, and easy
implementation in various fields are
advantages. However, ELM cannot handle
massive high-dimensional information. It needs
additional hidden nodes.

- 2 5

Mujal et al. (2021) [20] Journal: Advanced Quantum
Technologies

Quantum
reservoir
computing (QRC)
and quantum
ELM (QELM)

QRC and QELM are still taking their first steps,
so it is premature to make quantitative
comparisons with their much more advanced
classical counterparts.

33 41 79

Nilesh and Sunil (2021) [21]
Conf.: Int. Conf. Advanced
Computing and
Communication Systems

Optimization
algorithm for ELM

Parallel and transmitted processing of ELM will
become the following focal point. Identifying
the appropriate number of hidden layer
neurons is a disadvantage.

- 7 9

Rodrigues et al. (2021) [22] Journal: Informatics Convolutional
ELM (CELM)

The training time, test time, and accuracy are
some advantages of CELM. However, when the
number of layers increases, problems with
increasing training time and a loss of
generalization capacity emerge.

8 15 19

Saldaña et al. (2021) [23] Conf.: Brazilian Technology
Symposium

ELM for business
sales forecasts

There exists little information on the subject
because it is a new topic. - 3 5

Wang et al. (2020) [24] Journal: IEEE Access

Application of
ELM in
computer-aided
diagnosis (CAD)

The research in this field has important medical
and social value. ELM has a short processing
time and also has good generalization
performance.

9 11 12

Wang et al. (2020) [25] Journal: IEEE Access
Distributed and
parallel ELM for
big data

The limitation of hardware is a disadvantage of
distributed ELM. Distributed ELM does not
apply well to specific problems.

4 7 9

Alaba et al. (2019) [26] Journal: Neurocomputing
Advances and
drawbacks of
ELM

The adoption of parallel computing based on
MapReduce and GPU acceleration has
demonstrated better efficiency.

38 44 51

Yibo et al. (2019) [27] Journal: J. Phys.: Conf. Ser. Prediction model
of ELM

A combination forecasting method is better
than a single forecasting method in forecasting
accuracy.

- 8 10

Li et al. (2019) [28] Journal: Multimed. Tools Appl.
Improved ELM
algorithms used
for data stream

There is no ideal solution for determining the
optimal number of hidden layer nodes. The
application of improved ELM for data-stream
classification is limited.

16 22 25

Eshtay et al. (2019) [29] Journal: Int. J. Machi. Learn.
and Cyber.

ELM based on
metaheuristics

In real life specific problems are still at an early
stage. There is still no work that has researched
the performance of this type of model using
large-scale data sets.

33 38 47

Ghosh et al. (2018) [30]
Conf.: Int. Conf. Recent Trends
in Image Processing and
Pattern Recognition

ELM and the
evolution of its
variants

ELM is well-defined in the field of pattern
recognition, medical diagnosis, and forecasting
areas. The applications of ELM are still open for
parallel and distributed computing.

- 5 7

Zhang et al. (2018) [31]
Conf.: Int. Conf. Control,
Decision and Information
Technologies (CoDIT)

Online sequential
extreme learning
machine
(OS-ELM)

OS-ELM is a faster and more accurate algorithm
as compared to other online learning
algorithms. The improved OS-ELM algorithms
need to be network structure adjusted to
improve learning prominence.

- 7 10

Alade et al. (2018) [32]
Conf.: Int. Conf. Reliable
Information and
Communication Technology

Advances in ELM
techniques and
their applications

The relevance of ELM in artificial intelligence
has brought about great interest. The handling
of high-dimensional data is a disadvantage.

- 19 26

Salaken et al. (2017) [33] Journal: Neurocomputing Transfer learning
(TL) using ELM

The papers published to validate the
effectiveness of ELM to solve transfer learning
problems. However, these articles failed to
compare their performance against existing
algorithms.

65 78 98

Math. Comput. Appl. 2024, 29, 40 5 of 33

Table 1. Cont.

Reference Type Focus Advantages/Disadvantages
No. Citations *

WoS Scopus Scholar

Albadra and Tiun
(2017) [34]

Journal: Int. J. Appl.
Engineering Research

Advances in ELM
techniques and
their applications

ELM’s major strength is that the learning
parameters do not have to be iterative.
However, the classification boundary of the
parameters may not be optimal because they
remain the same during training.

- 86 111

Ali and Zolkipli (2016) [35]
Journal: ARPN Journal of
Engineering and Applied
Sciences

Integration of
genetic algorithms
(GAs) and ELM to
function as an
intrusion
detection system
(IDS)

Advantages of ELMs include ease of
implementation and the ability to perform
multi-class classification directly without using
binary classification techniques in succession.

- 9 12

Huanh et al. (2015) [36] Journal: Neural Networks Trends in ELM

ELM and its variants are efficient, accurate, and
easy to implement. High-dimensional data
analysis is a challenging problem for ELM and
its variants.

1240 1461 1839

Cao and Lin (2015) [37] Journal: Mathematical
Problems in Engineering

ELM on
high-dimensional
and large data
applications

ELM has a fast data learning speed and easy
implementation. Designing real-time
processing systems and devices for applications
is highly desired.

33 66 116

Ding et al. (2015) [38] Journal: Artif. Intell. Rev.
ELM algorithms,
theory, and
applications

ELM generates a unique optimal solution with
the advantages of fast learning speed and
generalization performance. However, setting
the number of nodes in the hidden layer is a
disadvantage.

344 440 574

Deng et al. (2015) [39] Journal: Sci. China Inf. Sci.
New trends and
applications of
ELM

Fast learning speed, ease of implementation,
and minimal human intervention are significant
advantages of ELM compared with traditional
NNs and SVM.

103 123 154

Ding et al. (2014) [40] Journal: Neural Computing
and Applications

ELM and its
applications

The generalization performance of ELM turns
out to be stable. Parallel and distributed
computing of ELM are some open problems.

163 213 283

* The references that are not indexed in these databases are represented by a hyphen (-).

In Ding et al. [40], a review of variants and applications of ELM is presented. The
variants that focus on adjusting the number of nodes in the hidden layer include incremental
ELM (I-ELM), pruned ELM (P-ELM), error-minimized ELM (EM-ELM), and two-stage ELM
(TS-ELM). This review also presents online sequential ELM (OS-ELM) [41]. This model
performs one-to-one or batch online learning, which makes the algorithm faster without
losing accuracy. The model performs initial training with the first batch of data, and then,
these results are used to train the next batches of data or individual data. Evolutionary
ELM (E-ELM) manages to optimize the hidden layer weights and biases, obtaining good
generalization performance. However, the method requires a longer training time because
it requires constant iteration of the differential evolution (DE) algorithm. The fully complex
ELM (C-ELM) extends the domain of the algorithm to complexes. Finally, the authors show
that voting-based ELM (V-ELM), ordinal ELM, and symmetric ELM (S-ELM) improve the
ELM algorithm to some extent.

Also, Ding et al. [40] mention that regression and classification problems require
less training time and have better performance and generalization (compared to other
conventional ANN algorithms), mainly in the following applications: pattern recognition,
prediction, diagnosis, image processing, and reporting a good overall performance. In
addition, the authors expose the following as open problems: computation of neurons in
the hidden layer for good performance according to data characteristics, solving problems
with big data, and parallel and distributed computing in ELM. Moreover, Ding et al. [38]
reviewed the progress of ELM algorithms, theories, and applications. This study shows
that the ELM algorithm still has some shortcomings that require further development and
refinement. Among the improvements considered by the researchers are the following:
(1) the model structure and generalization performance; (2) the combination of online
learning, genetic algorithms, SVM, and ELM; and (3) the extension of ELM applications.

Math. Comput. Appl. 2024, 29, 40 6 of 33

Subsequently, Cao and Lin [37] reviewed applications with large amounts of high-
dimensional data. Applications with these characteristics are related to image, video, and
medical signal processing. The exact number of neurons in the hidden layer and the design
of real-time processing systems and devices are the open problems highlighted by the
authors. Also, trends in ELM are discussed in Huang et al. [36], where they highlight the
runtime difficulties faced by ELM when working with large data sets. In addition, the
authors also highlight parallel computing as an alternative to address these difficulties.
Although some researchers have implemented parallel computing, it is considered a field
that needs to be further explored in ELM research with large-scale data sets. Ali and
Zolkipli [35] reviewed ELM and genetic algorithms (GAs) to integrate them as an intrusion
detection system (IDS) in cloud computing. Their proposal aimed to improve the speed
and accuracy of the IDS. Two years later, the authors developed a hybrid model based
on particle swarm optimization (PSO-ELM) [42] and showed that the model improves
accuracy, with fewer neurons compared to the standard ELM algorithm.

The papers of Alade et al. [32], and Albadra and Tiun [34] present an updated view of
ELM and describe its strengths and weaknesses. Among the advantages they highlight is
that the parameters of the hidden layer do not need to be tuned. Furthermore, ELM can
bridge the gap between biological learning machines and conventional learning machines.
Despite the advantages of ELM, the authors highlight the importance of further research in
finding the optimal number of hidden nodes, training with large data sets, and modifying
the algorithm for distributed and parallel computation. In addition, Salaken et al. [33] study
transfer learning (TL) using ELM. Their work considers kernel ELM (K-ELM), OS-ELM,
and reduced kernel ELM (RK-ELM), providing an updated review for future TL research
using ELM. In Zhang et al. [31], the authors study the OS-ELM model, and Ghosh et al. [30]
review ELM variants. As in previous works, they highlight the importance of expanding
research on the OS-ELM algorithm, as well as regarding the use of distributed and parallel
computing for training ELM on massive data sets. In addition, Eshtay et al. [29] provides
the first review of ELM based on metaheuristics. Their work shows that applications of
ELM using metaheuristics are still in a very early and open stage for research, and no
studies have implemented these models on large-scale data sets.

Li et al. [28] conducted a review of recently used algorithms for data mining. The
authors consider it necessary to study the monolayer and multilayer ELM algorithms for
data-stream classification due to the complexity of massive data labeling. In contrast, Yibo
et al. [27] discussed ELM-based prediction algorithms, highlighting several advances in
ELM prediction research, although this requires further research. Furthermore, Alaba
et al. [26] reviewed the main advantages and disadvantages of ELM, where the main
limitation is the determination of the hidden layer structure. They conclude that although
the computation of the pseudo-inverse has been addressed with different methods, it
requires further research. Their report shows that methods based on the MapReduce
framework, GPU acceleration, and block training have shown better performance for
parallel computing and large-scale data handling.

Wang et al. [24] reviewed the application of ELM in computer-aided diagnostics (CAD).
The authors showed it is possible to apply ELM in the construction of CAD systems, so
the perspective is broad and deserves further study. Moreover, Wang et al. [25] presented
the research background of ELM and enhanced ELM, implementing a distributed ELM
from matrix set operations. The authors highlight that the most computationally expensive
computation is the MPGI multiplication operator. They conclude that the implementation
of parallel and distributed ELM algorithms will become one of the key points of future
research. At this point, it is important to highlight that, unlike the review by Wang et al. [25],
our work, in addition to reviewing the distributed and parallel algorithms developed for
ELM models, emphasizes observing and describing the parallel architectures and tools
used and the size of the databases, because these are very important aspects to consider
when analyzing the performance of ELM variants for large-scale databases. In addition,
considering the high time required for the computation of the MPGI, an updated review

Math. Comput. Appl. 2024, 29, 40 7 of 33

of the solution of systems of linear equations through parallel methods is made, because
these are important developments to improve the current ELM variants.

In Saldaña-Olivas and Huamán-Tuesta [23], a systematic review was carried out to
identify the level of help that an ELM network provides to companies’ sales forecasts.
The authors conclude that ELM models greatly improve the accuracy of sales forecasts
compared to traditional techniques, so they suggest further research and studies with real
data. In Rodrigues et al. [22], a systematic review is presented on the alternative architec-
tures of convolutional ELM (CELM), a combination of deep learning and ELM networks.
The authors focus their study on the solution of problems based on image analysis and
highlight that CELM models present good accuracy, convergence, and computational per-
formance. In the same year, Nilesh and Sunil [19,21] reviewed the different optimization
algorithms developed to improve the performance of ELM networks. The authors note
that optimization techniques in ELM still present certain drawbacks and emphasize that
parallel processing will become the next focus of research on ELM and its variants. In Mujal
et al. [20], a review of recent proposals, first experiments, and the potential of quantum
devices for reservoir computing (RC) and ELM is performed. The results of this review
show that several tasks can be successfully performed; however, these models are still at an
early stage, so it is too early to make comparisons with classical models that today have
much more progress in terms of efficiency or performance.

One year later, a review of data-stream classification based on ELM was realized
by Zheng et al. [16]. The authors consider that little research has yet been conducted
in this field. ELM for multi-label data-stream classification based on semi-supervised
learning, high-dimensional data processing based on ELM, the random mechanism of ELM
parameters, and the impact of the distribution of hidden layer parameters are considered
open problems by the authors. Wang et al. [15] presented a theoretical analysis of the
universal approximation and generalization of ELM. This review notes how interesting
it could be to combine deep learning and ELM in big data problems. Additionally, ELM
reviews for sentiment analysis [18] and fingerprint classification [17] have been presented
at international conferences. These highlight the need to investigate further the number
of neurons in the hidden layer in future studies. Recently, two reviews of multilayer ELM
neural networks [13,14] have been presented, highlighting the importance of implementing
parallel and distributed computing to address big data problems with this variant. Finally,
Patil and Sharma [12] provide a review of theories, algorithms, and applications of ELM,
while Huérfano-Maldonado et al. [11] present a comprehensive review of medical image
processing with ELM. The authors highlight the large number of parameters, fast training,
and efficiency in processing large-scale databases as advantages of these models. However,
they also note disadvantages such as the limited ability to learn complex patterns and the
high focus on supervised learning compared to unsupervised learning. A background
on ELM and other randomized feedforward neural network models is presented in the
following section.

3. Background

The ELM model was proposed in 2004 [4] as an SLFN learning scheme with high
generalization capabilities that require less training time. This algorithm has similarities
with RWNN [1] and RVFL [3], presented in 1992 and 1994, respectively. The algorithm
consists of a pseudo-random initialization of the hidden layer weights and biases; thus, the
weights of the output layer are calculated analytically using the MPGI. Below, we introduce
the randomized feedforward neural networks, mainly by focusing on RWNN, RVFL, and
the origin or inspiration of ELM and its variants. Additionally, we present the basics of the
ELM and describe its parallel and distributed variants.

Math. Comput. Appl. 2024, 29, 40 8 of 33

3.1. Moore–Penrose Generalized Inverse

In ELM networks and other randomized feedforward neural network models, the
Moore–Penrose generalized inverse (MPGI) [43] is used for the analytical computing of
the output layer weights. The MPGI is commonly known as the pseudo-inverse and is
defined as follows. Let Ax = y be a linear system where A ∈ Rm×n with m, n ∈ N,
and m > n; its solution can be simplified with the MPGI matrix A† ∈ Rn×m. The MPGI
matrix is unique and satisfies the following four conditions, which are usually called
Moore–Penrose conditions:

AA†A = A, A†AA† = A†, A†A = (A†A)T , and AA† = (AA†)T . (1)

For a linear system Ax = y that has no exact solution, the solution of the problem is
by the method of least squares with Euclidean min ||Ax − y|| norm. The solution of the
linear system Ax = y by the least squares method corresponds to the matrix form of the
system ATAx = ATy and can be written as follows:{

x = (ATA)−1ATy

A† = (ATA)−1AT
(2)

where A† is the MPGI of the matrix A [43]. The pseudo-inverse is a concept that has been
useful for solving SLE in multiple contexts [43,44].

3.2. Standard Model of Extreme Learning Machine

The standard ELM model is composed of an input layer, a hidden layer, and an output
layer, as shown in Figure 1. Given an arbitrary training set ℵ = {(xi, ti) | xi ∈ Rn, ti ∈ Rm},
with i = 1, . . . , N, an activation function g(x) : Rn → Rm, and the number of hidden
neurons L | L ≤ N, the training algorithm of an SLFN is defined as follows:

L

∑
i=1

βig(wi · xj + bi) = tj, j = 1, . . . , N, (3)

where wi and bi are the i-th weight and bias of the hidden layer, respectively, βi is the
i-th weight of the output layer, and wi · xj represents the inner product of wi and xj [44].
Equation (3) can be written in matrix notation as Hβ = T, where

H =

 g(w1x1 + b1) · · · g(wLx1 + bL)
...

. . .
...

g(w1xN + b1) · · · g(wLxN + bL)

N×L

, β =

β1
...

βL

L×m

, and T =

 t1
...

tN

N×m

. (4)

Input
Hidden

Layer
Output

Figure 1. Basic structure of the standard ELM model.

Math. Comput. Appl. 2024, 29, 40 9 of 33

The H matrix in (4) is called the output matrix of the hidden layer of the neural
network [4,44]. Thus, the weights βi of the output layer are calculated analytically using
the following:

β = H†T, (5)

where H† is the MPGI of the matrix H. A brief description of randomized feedforward
neural networks is presented below. We focus on the similarity of ELM with RWNN
and RVFL.

3.3. Randomized Feedforward Neural Networks and ELM’s Origin

Several randomization-based feedforward neural networks have been proposed in the
literature. The similarities that RWNN and RVFL have with ELM are introduced in this
section. In 1992, Schmidt et al. [1] proposed feedforward neural networks with random
weights (RWNNs). In this work, random values were assigned to the weights in the hidden
layer. The following represents the function computed by a network:

L

∑
i=1

wig
(
∑ mi · xj

)
+ wL+1, j = 1, . . . , N, (6)

Here, mi and xj are the weight and input vectors in the hidden layer, respectively.
wi is the weights in the output units and wL+1 is always multiplied by one and can be
regarded as a threshold value. In this model, the network weights are optimized by using
the well-known L2 criterion. The parameters wi and wL+1 are then optimized for a chosen
set of weights mi, taken randomly. Furthermore, only one hidden layer is used.

Pao et al. [2,3] proposed a random vector functional link (RVFL) network. As shown
in Figure 2, this model is a semi-random realization of the functional link neural networks
with direct links from the input layer to the output layer [45,46]. The RVFL network
performs a nonlinear transformation of the input pattern before it is fed to the input layer of
the network. The essential action is, therefore, the generation of an enhanced pattern to be
used instead of the original [3]. In this model, if the input data has K features and there are
L enhancement (hidden) nodes, then there are in total K + L inputs for each output node.
The RVFL output layer weights are obtained by minimizing the following squared error:

E =
1
N

N

∑
i=1

(ti − βjdi)
2, j = 1, . . . , K + L, (7)

where di is the concatenation of hidden features and original features via direct links. Using
a generalized Moore–Penrose inverse matrix, the solution is given by β = D†T, where
D = [HX].

Input
Hidden

Layer
Output

1

1

1

2

2

3

m

L

Figure 2. Basic structure of the RVFL model.

Math. Comput. Appl. 2024, 29, 40 10 of 33

In the case of ELM, the direct link from the input layer to the output layer is elimi-
nated, so it can be said that ELM is a simplified version of RVFL inspired by the different
randomization-based feedforward neural networks reported in the literature before 2004.
Reviews of randomization-based feedforward neural networks have been presented in
a couple of previous studies [45,46]. The similarities between RVFL and ELM are also
visible in the variants of both models. An updated review of recent developments, ap-
plications, and future directions of RVFL is presented in another study [47], where the
authors present the RVFL network variants in detail and classify them as shallow RVFL,
ensemble-learning-based RVFL, deep RVFL architectures, semi-supervised and unsuper-
vised methods based on RVFL, and hyper-parameter optimization. A summary of RVFV
applications is further presented in another study [47], where electricity load forecasting,
solar power forecasting, wind power forecasting, and financial time-series forecasting are
the highlighted applications.

Because our goal is to identify the challenges of processing large-scale databases with
ELM, below we present a review of ELM variants implemented by using parallel and
distributed computing.

3.4. ELM Variants Implemented by Using Distributed and Parallel Computing

To obtain better performance of the ELM algorithm, different variants have emerged
to improve its training time, accuracy, and generalization capability. This section presents
a brief description of the two variants of ELM that have been most widely implemented
through distributed and parallel computing tools to solve regression and classification
problems on large-scale data sets.

The most widely implemented variant for solving problems on large-scale data sets
using distributed and parallel computing is called online sequential extreme learning
machine (OS-ELM) [41]. This algorithm is presented as an alternative for those applications
where new data are constantly being received. In this case, training the network with new
data requires performing the entire training process, which requires a significant amount
of time. Therefore, the OS-ELM algorithm allows training with new samples based on the
previous training results through a sequential learning process without the need to retrain
the entire network.

Figure 3 shows a general scheme of the OS-ELM algorithm, which consists of two
phases: the initialization phase and the sequential training phase. During the initialization,
an initial training set is provided ℵ0 = {(xi, ti) | xi ∈ Rn, ti ∈ Rm}, with i = 1, . . . , N0.
Therefore, the initial matrix H0 is computed and the weights β(0) of the output layer are
estimated using the standard ELM model algorithm. In the sequential training phase, a
new set of samples is given ℵ1 with corresponding labels T1, for which the output partial
matrix of the hidden layer H1 is calculated. From this new output matrix H1, the new labels
T1, previous weights β(0), and current weights β(1) are estimated. The sequential training
phase is continuously repeated as sets of training samples, which are not necessarily the
same size, are obtained.

Because OS-ELM allows batch training, the database can be divided into smaller
batches to be used for sequential training. Splitting the database is presented as a good
alternative for those cases where the computational architecture does not allow processing
the large size of the hidden layer output matrix, having as an alternative sequential training.
In addition, it is possible to speed up the training time of each batch by combining this
methodology with parallel methods to compute the MPGI. Among the most recent work
using this algorithm with parallel and distributed computing is that presented in a system-
on-a-chip field-programmable gate array (SoC-FPGA) study [48]. In another study [49],
the authors implement a parallel OS-ELM algorithm for particulate matter prediction. In a
study on the prediction of avionics [50], a core system of modern aircraft is made using
ensemble-enhanced OS-ELM. Finally, in another study [51] a regularized mixed-norm OS-
ELM (MRO-ELM) algorithm accelerated with a parallel GPU is proposed that outperforms
the standard OS-ELM version.

Math. Comput. Appl. 2024, 29, 40 11 of 33

Initialization

phase

Sequential

learning

phase

Figure 3. General scheme of the training process of the OS-ELM.

K-ELM is also widely used for solving problems with distributed and parallel com-
puting. This model is identical to kernel ridge regression (KRR) [52], was renamed in
another study [53], and differs from the classical ELM and other randomized feedforward
neural networks models because it uses a kernel function that does not take into account
the weights w, biases b, and number of neurons L of the hidden layer. Equation (8) rep-
resents the kernel matrix, which only depends on the input data xi and the number of
training samples.

HHT = ΩELM =

K(x1, x1) · · · K(x1, xN)
...

. . .
...

K(xN , x1) · · · K(xN , xN)

. (8)

In this sense, the weights of the output layer β are calculated as follows:

β =

(
I
C
+ ΩELM

)−1
T, (9)

where I is the identity matrix, C is a regularization parameter, and T is the vector of the
labels of the training set. The features of the K-ELM algorithm have been used to propose
online sequential algorithms (OS-RKELM) that, like OS-ELM, allow training samples
to be split for one-to-one or block-by-block learning [54], enabling configurations for
parallel training. A recent study using the K-ELM algorithm with parallel and distributed
methods has also been presented [55]. The authors propose a new K-ELM model together
with K-means clustering and firefly algorithms (Kmeans-FFA-KELM) to accurately and
quickly estimate reference evapotranspiration, an important process for determining crop
water requirements.

3.5. Other Variants

The Incremental ELM (I-ELM) algorithm utilizes an incremental approach for con-
structing the network, allowing for the gradual addition of hidden nodes. Before training,
the network begins with no nodes in the hidden layer [56]. The addition of new hidden
nodes occurs randomly, one at a time. While adding a new hidden node, the output weights
of the existing hidden nodes are maintained without modification. This methodology not
only enhances the efficiency of I-ELM for SLFN featuring continuous activation functions
but also for those utilizing piecewise continuous activation functions like threshold func-
tions. Pruned ELM(P-ELM) is a systematic and automated method for designing ELM
classifier networks [57]. The use of an inappropriate number of hidden nodes can lead
to issues of underfitting or overfitting in pattern classification. P-ELM addresses this by
starting with a large number of hidden nodes, and then, removing those that are irrelevant
or have low relevance to the class labels during the learning process. This automated

Math. Comput. Appl. 2024, 29, 40 12 of 33

approach to network design results in compact network classifiers that exhibit fast response
times and robust prediction accuracy on unseen data. P-ELM is particularly well-suited for
pattern classification tasks.

Evolutionary ELM (E-ELM) optimizes input weights and hidden biases, as well as
determines output weights. The algorithm employs a modified differential evolutionary
(DE) algorithm to optimize input weights and hidden biases, while the MPGI is used to
analytically determine output weights [58]. Experimental results demonstrate that E-ELM
achieves good generalization performance with more compact networks compared to other
algorithms such as BP and the original ELM. An overview of these and other variants of
ELM can be found in review articles reported in the literature [5,34,39,40]. Section 5 delves
into the distributed and parallel systems that have been used to improve ELM variants in
the last decade, with an emphasis on the architectures and tools used.

4. Methods for Solving Linear Systems with Parallel and Distributed Computing

In this section, we review the most relevant methods proposed to solve a system of
linear equations in an accelerated manner by applying distributed and parallel computing.
The reported works are classified as follows: (1) methods based on matrix operations,
(2) methods based on matrix decomposition, and (3) iterative methods. This section is
an update of the review in a previous study [59]. The works presented are related to the
algebraic processes associated with ELM models and their variants. Parallel architectures
and tools and the size of the databases used are also presented. In the following, let us
consider a linear system (LS) as

AX = B, (10)

where A ∈ Rn×n is a regular matrix and B ∈ Rn.
Matrix-operations-based methods represent a great variety of methods that com-

bine matrix operations to solve (10). Among the most applied and performed with dis-
tributed and parallel computing is Gaussian elimination and its variants (Gauss–Jordan,
Gauss–Huard). The methods based on Gaussian elimination used to solve (10) perform
elementary operations to obtain the step form of A (diagonal or triangular). The sequence
of equivalent linear systems is obtained by applying elementary operations (i.e., AkX = Bk)
for k = 1, . . . , n, where n is the smallest positive number for which An is the step form
of A. The reduced system AnX = Bn has solutions equivalent to solutions of (10), and
obtaining its solution is easier [43]. Concerning matrix-decomposition-based methods, the
effective algorithms to solve (10) are the methods based on singular value decomposition
(SVD), Cholesky factorization, QR factorization, tensor product, and the conjugate process
of Gram–Schmidt [60]. To apply Cholesky decomposition, let A be a positively defined
Hermitian matrix in (10). Cholesky’s method is a decomposition of a positively defined
Hermitian matrix into the product of a lower triangular matrix and its conjugate transpose.
The method defines L as a lower triangular matrix (Cholesky factor) in such a way that
A = LLT . Thus, Lu et al. [60] introduce the Cholesky factorization algorithm of a singular
matrix as a fast method for ELM (Geninv-ELM).

In the case of oversized systems, that is, the matrix A in (10) is not a square matrix,
other methods should be applied. For instance, the singular value decomposition (SVD)
method, which consists of decomposing the matrix A ∈ Rm×n with rank r as follows:
A = UΣVT , where U ∈ Rm×m y V ∈ Rn×n are unitary matrices [43]. Using SVD decompo-
sition, the MPGI A†, which is defined by A† = VΣ†UT , is calculated. SVD decomposition
is supported as an effective algorithm for estimating the MPGI in ELM [60]. In addition, QR
factorization is another widely used method in the ELM algorithm. This method consists
of a matrix A ∈ Rm×n with linearly independent columns, which decomposes in the form
A = QR, where Q is a unit matrix with orthonormal columns and R an upper triangular
matrix [43]. In the ELM model, QR factorization is used to obtain HP = QR, where H is
the output matrix of the hidden layer and P ∈ RL×L is a permutation matrix. The MPGI
matrix of H is obtained by H† = PR†QT [60].

Math. Comput. Appl. 2024, 29, 40 13 of 33

Finally, an iterative method involves the selection of an initial approximation X0 of (10)
and the sequence X1, X2, . . . , Xk, defined by an approximation algorithm. Mathematical
efforts are concentrated on finding the sequence (Xk) that converges (in some sense) to the
solution of (10) [61]. The advantage of using iterative methods to compute the solution of
the system in (10) is that this type of algorithm does not alter the matrix A during the process.
Therefore, the accumulation error is smaller than for other algorithms. However, many
times, the size and density of A can affect the computational speed [61]. By defining an
iterative method to solve (10), the sequence Xk converges to an approximation of the exact
solution of (10) for any initial condition X0, where the iteration terminates upon satisfying
a predefined stopping criterion related to the desired accuracy (tolerance). Among the
most popular classical iterative methods for SLE solutions are the Jacobi, Gauss–Seidel,
and successive over-relaxation (SOR) methods [43].

Table 2 presents a summary of proposed works for solving a linear system using
parallel and distributed computing. As can be seen, the implementation of parallel and dis-
tributed computing provides better performance in solving the LS with matrix-operations-
based methods, matrix-decomposition-based methods, and iterative methods.

Table 2. Summary of papers that have used matrix-operations-based methods, matrix-decomposition-
based methods, and iterative methods with parallel and distributed computing to solve
linear systems.

Reference Application Architecture Parallel Tool Data Results Limitations

Li (2024) [62]

Sparse
Triangular
Solver
(SpTRSV)

Sunway many-core
processors.

swSparse
library

949 real square
matrices and
32 complex square
matrices from the
SuiteSparse matrix
data set.

Outperforms cuSparse on
NVIDIA V100 GPUs and Intel
MKL library, with better
speedup for larger matrices (size
> 10,000).

Further comparison is
needed to determine how
closely the observed
performance matches the
hardware peak.

Gelvez-
Almeida et al.
(2023) [63]

Strassen
algorithm

Server, 2 × Intel Xeon
Gold 6238R (56 cores),
128 GB RAM.

OpenMP

Full-rank matrices
m × n with
Rank = n, and
n = 5000 to
n = 25, 000.

Superior computation time for
the Moore–Penrose generalized
inverse compared to previously
reported algorithms.

High memory
consumption.

Lukyanenko
(2023) [64]

Conjugate
gradient
method

Supercomputer, Intel
Xeon E5-2697 (14 cores)
each node, 64 GB RAM,
Tesla K40s GPU
11.56 GB.

MPI

Matrices of size
m × n with
m = 90, 000 and
n = 70, 000.

The implementation provides a
suitable approximate solution
without increasing
computational complexity.

The matrix dimensions are
limited by the available
memory.

Suzuki et al.
(2023) [65]

Blocks into
ILU precondi-
tioning
(ILUB)

Server, 2 × Intel Xeon
Gold 6148
(20 cores/CPU), 384 GB
RAM; Intel Xeon Phi
7250 (68 cores), 96 GB
RAM.

OpenMP

Several data sets
of dimensions
17, 758 to
1, 602, 111.

Outperformed conventional
ILU(0) preconditioning.

Future research should
explore how ILUB performs
when combined with others
reordering techniques.

Sabelfeld et al.
(2023) [66]

Random
vector
estimator

Cluster, 2 × Intel Xeon
E5-2697A v4 (32 cores,
64 threads per node),
128 GB RAM.

MPI and
OpenMP

Dense matrices of
size 104 and 105.

The "RAM" implementation is
faster and preferable for large
linear systems if the matrix fits
in the node’s RAM.

The implementations
developed are restricted in
problem size by the node’s
limited memory.

Catalán et al.
(2022) [67]

QR and SVD
factorization

Servers, Intel Xeon
Gold 6138 (20 cores),
96 GB RAM; AMD
EPYC 7742 (64 cores),
512 GB RAM.

OpenMP
Square matrices of
dimensions 1000
to 16,000.

Outperforms Intel’s MKL and
the AMD AOCL routine. It is
highly competitive with
PLASMA and outperforms its
counterparts.

Manufacturers’ effort in
tuning the performance of
linear algebra libraries is
rarely shared with the
scientific community.

Rivera et al.
(2022) [68]

Barrett
reduction for
Wiedemann

Multicore CPU servers,
Supercomputer
ABACUS, NVIDIA
TITAN.

OpenMP and
CUDA

Quadratic, cubic,
and quartic
matrices of
dimensions 55,000
to 266,000.

GPU is faster than the CPU for
the cubic and quartic families.
CPU outperforms GPU for the
quadratic matrix.

The large size of this matrix
causes a costly divergence
between the thread
computations.

Li and Han
(2022) [69]

Gauss–
Newton
method

PC, Intel i5-6400
2.7 GHz Quad Core
processor, 16 GB RAM.

MATLAB
Unbalanced IEEE
33 and 123-bus
systems.

The algorithm is
computationally efficient and
requires fewer iterations.

Each iteration requires
solving a large linear
system.

Hwang et al.
(2022) [70]

Gauss–Seidel
method

Multiple input multiple
output (MIMO)
systems.

Rayleigh flat
fading
channel

Matrices with
independent
Gaussian random
variables.

Up to a certain point, the
performance of this model is
better than the conventional
Gauss–Seidel.

Performance with too much
parallel computation is
poorer than the
Gauss–Seidel.

Math. Comput. Appl. 2024, 29, 40 14 of 33

Table 2. Cont.

Reference Application Architecture Parallel Tool Data Results Limitations

Catalán et al.
(2021) [71]

Gauss–
Jordan
elimination

Server, Intel Xeon Gold
6138 (20 cores), 96 GB
RAM.

OpenMP
Square matrices of
dimension n up to
30,000.

Yields a high core occupation,
and its parallel performance
exceeds that of IntelMKL, BLAS
and PLASMA.

Non-overlapping execution
of the cores is likely to
result in poor performance.

Marrakchi
and Jemni
(2021) [72]

Gaussian
elimination

Cluster Econome, Intel
Xeon E5-2660 (8 cores). OpenMP

Square matrices of
dimensions 1000
to 3500.

A higher degree of parallelism is
achieved, and the approach is
adjusted to theoretical values.

Efficiency decreases with
each additional core.

Lu et al.
(2021) [73]

LU and
Cholesky
factorizations

MLU270-S4 AI card
(GDRAM and NRAM).

BANG C
language

Square matrices of
dimensions 128 to
8192.

A variety of optimizations
demonstrated their
effectiveness.

When the size of the matrix
is larger, data transmission
congestion occurs.

Lee and
Achar
(2021) [74]

LU
factorization

8 × Intel Xeon i7-9700F,
16 GB RAM, NVIDIA
Turing RTX2060
(1920 cores), 6 GB
DRAM.

CUDA
Several matrices
of dimensions
1879 to 1,585,478.

The proposed advancements
provide superior performance
compared to GLU 3.0 and KLU.

Because the GPU has
limited global memory, it is
necessary to limit the
number of columns used at
one time for parallel
processing.

Zhang et al.
(2021) [75]

LDL
factorization

Xilinx Virtex-7
XC7VX690T FPGA.

Xilinx Vivado
toolset

Square and
triangular
matrices of
dimensions 32 to
128.

Square matrix inversion was
achieved with different sizes in
the FPGA chip.

Matrix inversion in the
different FPGAs is not
discussed.

Rubensson et
al. (2021) [76]

Localized
inverse
factorization

Rackham cluster, Intel
Xeon E5-2630 v4
(10 cores), 128 GB
RAM.

MPI and
OpenBLAS

Several matrices
of dimensions up
to 5,373,954.

Represents a dramatic
improvement over the regular
recursive inverse factorization.

Localized inverse
factorization is completely
dominated by the solutions
to the subproblems.

Rodriguez et
al. (2021) [77]

QR
factorization

Xilinx VU7P FPGA and
Xilinx VU9P FPGA. LUT RAM

Square matrices of
dimensions 4000
to 131,000.

This design outperforms highly
optimized QR solvers running
on CPUs and GPUs.

Overall performance is
limited when the input
matrix has few columns.

Duan and
Dinavahi
(2021) [78]

Linking-
domain
extraction
(LDE)-based
decomposi-
tion method

Xilinx VCU-118 board
with the XCVU9P
FPGA at 100 MHz
frequency and NVIDIA
Tesla V100 GPU with
5012 cores.

Not reported
Square matrices of
dimensions 30 to
301.

LDE method can compute the
matrix inversion directly and
can also run faster compared to
the Schur complement.

The connections between
interface nodes are not
dense, and there is no
trans-conductance between
the interface nodes and the
other nodes.

Shäfer et al.
(2021) [79]

Cholesky
factorization

Server, Intel Skylake
2.10 GHz (32 threads),
192 GB RAM; PC, Intel
Core i7-6400 4.00 GHz,
64 GB RAM.

IntelMKL
Square matrices of
dimensions 10,000
to 1,000,000.

The optimal inverse Cholesky
factor of a positive-definite
matrix, subject to a sparsity
pattern, can be computed in
closed form.

More efficient squaring
rules need to be
implemented to compete
with the state of the art in
terms of wall clock times.

Boffi et al.
(2021) [80]

Iterative
incomplete
LU (ILU)
method

Laptop, Intel
i7-6700HQ, 16 GB
RAM.

MATLAB
Square matrices of
dimensions 10,000
to 1,000,000.

The new preconditions have
been successfully applied to
linear systems and eigenvalue
problems.

The proposed algorithms
may become unstable and
fail for some matrices.

Ahmadi et al.
(2021) [81]

Jacobi-
embedded
Gauss–Seidel
method

Server, 2 × Intel Xeon
Gold 6148
(20 cores/CPU),
4 × NVIDIA Tesla
V100-SXM2-16 GB.

MATLAB
Square matrices of
dimensions 500 to
25,000.

Performance up to 7 × faster on
multicore CPUs and 87 × on
many-core GPUs.

Limitations with MATLAB
linear algebra libraries for
GPU implementation.

Liu et al.
(2020) [82]

Blocked
adaptive
cross approxi-
mation
(BACA) and
SVD

Cori Haswell at NERSC
(2388 dual-socket
nodes), Intel Xeon
E5-2698v3
(16 cores/each), 128 GB
DDR4.

PBLAS and
ScaLAPACK

Several matrices
of dimensions
1000 to 21,788.

Robustness and favorable
parallel performance compared
to the baseline ACA algorithm.

The effects of block size
variation merit further
analysis.

Davis et al.
(2020) [83]

LU
factorization

Supercomputer
(HPC2N), Intel Xeon
E5-2690v4
(2 × 14 cores), 128 GB
RAM.

OpenMP
Square matrices of
dimensions 53,000
to 659,000.

Excellent performance for highly
unsymmetrical matrices.

Sometimes produces
factorizations with more
fill-in.

Yang et al.
(2020) [84]

Gauss–Seidel
method PC, Intel Core i5. MATLAB

(R2016a)

Matrices of
dimensions 20 to
1000.

Numerical results show that the
method is valid.

The dimensions of the
matrices are not large
enough.

Li and Zhang
(2020) [85]

Gauss–Seidel
method

Cluster, CPU IBM
POWER, NVIDIA P100
and V100.

CUDA

Laplacian and
general matrices
with different
dimensions.

Efficient algorithm compared to
state-of-the-art software
packages.

Performance deteriorates
with the amount of fill-in in
the ILU factorizations.

Math. Comput. Appl. 2024, 29, 40 15 of 33

Table 2. Cont.

Reference Application Architecture Parallel Tool Data Results Limitations

Singh et al.
(2020) [86]

Gauss–
Newton
method

Blue Waters and
Stampede2
Supercomputers of
Texas Advanced
Computing Center.

Intel
compilers,
MKL library
for BLAS,
and Cyclops

Square matrices
with different
dimensions.

Good scalability for the
implementation of the
Gauss–Newton method.

The method does not apply
to triangular matrices.

Alyahya et al.
(2020) [87]

Jacobi
method

Aziz Supercomputer of
King Abdulaziz
University, Jeddah.

Intel MIC and
OpenMP

Sparse matrices
with 28M rows
and 640M
non-zero
elements.

Speedup to 27.75 × compared
to the sequential method.

A method is needed for
larger sparse SLEs of
various application
domains.

Huang et al.
(2020) [88]

Jacobi, SOR,
and other
iterative
methods

Server, 2 × Intel Xeon
E5-2640 v3 2.60 GHz
(16 cores).

OpenMP

Three-
dimensional
sphere DDA
(SDDA).
10,000 spheres and
200,000 calculation
steps.

About 6 × faster than serial
computing.

Other approaches can be
used to improve the
efficiency of solving the
equations in the DDA.

In matrix-operations-based methods and decomposition-based methods, using parallel
architectures such as multicore CPUs and GPUs [89], combined with parallel tools such
as OpenMP [90], OpenBLAS [91], LAPACK [92], MPI [93], IntelMKL [94], and CUDA [95],
are efficient and feasible for speeding up the solution of linear systems [44]. The results
show increased performance and acceleration in the matrix factorization process. Given
the large use of these processes for the computation of the MPGI matrix, it is convenient to
implement them in the ELM algorithm to accelerate the training process. Different authors
have reported efficiency improvements in the speedup of the SLE solution using these
tools on matrices reaching up to 30,000 rows or columns. In addition to the traditional
technologies, the all-optical signal processor of Xilinx Virtex-7 FPGAs from Xilinx has
been implemented in iterative methods. This architecture includes a design option that
reduces the number of different voltages required [96]. OpenMP, MPI, and CUDA are
the most common parallel tools. The performance improvements for the SLE solution
reported in the reviewed literature are good alternatives to speed up the training of the
ELM algorithm because the largest computational cost is found in the calculation of the
MPGI matrix. Below, Table 3 presents a summary of the methods used to compute the
output layer weights in the proposals of parallel and distributed ELM networks reported
in the last five years.

Table 3. Summary of methods used to compute output layer weights in parallel and distributed ELM
networks proposed in the last five years.

Reference Network Type MPGI Orthogonal Projection SVD Cholesky Iterative Methods Not Reported

Wang et al. (2024) [97] Regularized ELM ✓

Jagadeesa et al. (2023) [98] SVM-Based ELM ✓

Wang et al. (2023) [99] Regularized ELM ✓

Wang and Soo (2023) [100] Ensemble ELM ✓ ✓

Zhang et al. (2023) [101] Regularized ELM ✓

Gelvez-Almeida et al.
(2022–2023) [102,103] Ensemble Online ELM ✓ ✓

Polat and Kayhan (2022) [51] Online ELM ✓

Chidambaram and Gowthul
(2022) [104] Improved ELM ✓

Hira and Bai (2022) [105] Regularized ELM ✓

Rajpal et al. (2022) [106] Standard ELM ✓

Zha et al. (2022) [107] Robust ELM ✓ ✓

Vidhya and Aji (2022) [108] Online ELM ✓ ✓

Zehai et al. (2021) [50] Ensemble Online ELM ✓ ✓

Wu et al. (2021) [55] Kernel ELM ✓

Math. Comput. Appl. 2024, 29, 40 16 of 33

Table 3. Cont.

Reference Network Type MPGI Orthogonal Projection SVD Cholesky Iterative Methods Not Reported

Rath et al. (2021) [109] Hierarchical ELM ✓

Ji et al. (2021) [110] Online ELM ✓

Luo et al. (2021) [111] Kernel ELM ✓

Tahir and Loo (2021) [112] Kernel ELM ✓

Dong et al. (2021) [113] Standard ELM ✓ ✓

Ezemobi et al. (2021) [114] Deterministic ELM ✓

Xu et al. (2020) [115] Distributed ✓

Li et al. (2020) [116] Online ELM ✓

Safaei et al. (2019) [48] Online ELM ✓

Grim et al. (2019) [49] Online ELM ✓

Liang et al. (2019) [117] Voltage ELM ✓

Dokeroglu and Sevinc (2019) [118] Evolutionary ELM ✓

The methods reported for training parallel and distributed ELM networks include
the MPGI, orthogonal projection, SVD, Cholesky factorization, and iterative techniques.
While there is a greater tendency to use the Moore–Penrose inverse, the exact procedure
for calculating it is not precisely reported. Iterative methods are favored for training
regularized models. Given the MPGI connection with SLE and the array of parallel and
distributed proposals in the literature (see Table 2), researching the parallel training of ELM
networks is a field deserving of further exploration.

5. Review of Distributed and Parallel Systems for Extreme Learning Machine

Parallel and distributed computing technologies have been implemented to reduce the
training time of randomized feedforward neural networks without losing generalization
capability. Despite advances, parallel and distributed computing in ELM is a field that is
still open for improvement [25]. Given the continuous growth of data due to technological
and Internet advances, the traditional ELM algorithms have become insufficient to process
this large amount of data [28]. The dimensions of the output matrix H of the hidden
layer of the neural network in (4) depend on the number of samples N and the number of
neurons in the hidden layer L. The weights β of the output layer are calculated analytically
using the MPGI of the matrix H. When the number of samples is large, the number of
rows of matrix H is also high, thus significantly increasing the training time. In some
cases, if the dimensions of the H matrix are large, the computational architecture may be
insufficient to perform the training. For this reason, some ELM variants have emerged that
implement data distribution for parallel processing. This section presents implemented
tools and technologies for distributed and parallel computing in ELM networks during the
last decade. In addition, we give an updated review of the ELM models employing these
tools and technologies to address the limitations presented by traditional models in terms
of training time and memory consumption.

5.1. MapReduce

MapReduce is a parallel and distributed programming model proposed by Google [119,120].
The model can process large amounts of data, which would otherwise have to be processed
on hundreds or thousands of machines to have reasonable processing times. Figure 4 shows
a diagram of the MapReduce programming model.

The proposed scheme takes a set of input key/value pairs and produces a set of output
key/value pairs. The mapping operation takes a pair from the input, creating a set of
intermediate key/value pairs. These pairs are grouped according to the intermediate key
I and passed to the reduce function. The reduce function merges these values to create a
possibly smaller set of values. Thus, it makes it possible to handle lists of values that are
too large to fit in memory. Significant advances have been made in distributed ELM using

Math. Comput. Appl. 2024, 29, 40 17 of 33

the MapReduce model, allowing it to work with more data than traditional ELM models.
Table 4 briefly summarizes ELM’s advances in addressing problems involving large data
sets using the MapReduce model as a tool.

In
p
u

t

O
u

tp
u

t

Chunk n

Chunk 1 Map ()

Chunk 2 Map ()

Chunk 3 Map ()

Map ()

Reduce

Reduce

Reduce

Figure 4. General scheme of the MapReduce programming model.

Table 4. Summary of advances in distributed ELM using the MapReduce model.

Reference Application Architecture Data Size (GB) * Limitations

Chidambaram
and Gowthul
(2022) [104]

Classification PC, Intel Core i5 9th Gen, 8 GB
RAM.

Rotten Tomatoes movie and
critic review data set (DS-I) and
dermatology data set (DS-II).

0.004 A basic architecture was used during the
experiments.

Hira and Bai
(2022) [105] Classification Different cluster managers.

GSE13159, SRBCT, acute
leukaemia, leukaemia 2, and
colon cancer.

Information
not provided

MapReduce is not suitable for
applications that share data in more than
one step.

Gayathri et al.
(2021) [121] Classification Hadoop clusters. PIMA Indians diabetes and

activity recognition data set. 0.00005; 0.005
Feature selection and dimensionality
reduction techniques have not been
considered.

Rath et al.
(2021) [109] Regression Not reported. NASDAQ (ten years of historical

data).
Information
not provided

It must wait for all the parallel work
tasks to be completed before moving on
to the next step.

Yao and Ge
(2019) [122] Regression Cluster (4 PCs), Intel Core

i5-4590 3.30 GHz, 4 GB RAM.
DCS (110,000 samples × 20 pro-
cesses).

Information
not provided. The files must have the same size.

Ku and
Zheng
(2017) [123]

Classification Not reported.
AVIRIS Indian Pines
(10,366 samples), ROSIS Pavia
University (46,697 samples).

Information
not provided

A second computer is needed when
training data overcome some limitations
when calculating the H matrix and
pseudo-inverse.

Pang et al.
(2017) [124] Classification

Cluster (31 PCs), 2 × 3.1 GHz
CPUs, 8 GB RAM, 500 GB hard
disk.

DBLP (1,817 AI y 1,817 CV);
Synthetic (500,000 pos. and
500,000 neg.; 4,997,537 total).

Information
not provided

The proposed algorithm is
time-consuming because the algorithm
consists of several MapReduce jobs.

Inaba et al.
(2016) [125] Classification PC, Intel Core i7 3.6 GHz, 8 GB

RAM.
Various. DNA (3186 × 180);
Satimage (6435 × 36). 0.004; 0.002

Training time for DGR-ELM can be
improved by using GPU-based linear
algebra packages.

Huang et al.
(2016) [126] Classification Cluster (5 PCs), 2 × Intel Xeon

E5-2620 (6 cores), 32 GB RAM.

Various. KDDcup99
(5,190,731 × 41); Synthetic
(5,120,000 × 512).

0.67; 19.53

More scheduling and ensemble methods
need to be integrated to make the
algorithm more suitable for
heterogeneous environments.

Wang et al.
(2015) [127] Classification Cluster (9 PCs), Intel Quad core

Q8400 2.66 GHz, 4 GB RAM.
Various. Covtype (580,000 × 54);
Synthetic (1,280,000 × 128). 0.23; 1.22 The block size of the algorithm influences

the learning performance.

Bi et al.
(2015) [128] Classification Cluster (9 PCs), Intel Quad Core

2.66 GHz, 4 GB RAM.
Various. Synthetic
(25,000 × 5000). 0.93 Some matrix operations cannot be

implemented on MapReduce directly.

Han et al.
(2015) [129] Classification

Cluster (8 PCs), Intel core
2 Quad Q8400 2.66 GHz, 4 GB
RAM.

Various. Iris (6,000,000 × 4);
Spambase (18,400,000 × 57). 0.18; 7.81

When the block size is larger, the amount
of computation increases, and the
concurrency of the algorithm decreases.

Xiang et al.
(2014) [130] Classification PC, 2 × CPU 2.53 GHz

(4 cores/CPU), 32 GB RAM.
KDDcup99 (1 to 3
million samples).

Information
not provided

A distributed approach is needed to solve
a linear system to enable the use of larger
network architectures.

Xin et al.
(2014) [131] Regression Cluster (9 PCs), Intel Quad Core

2.66 GHz, 4 GB RAM.
Synthetic (3 to 7
million samples). 1.4 to 3.27 Training time increases with an

increasing number of training lengths.

He et al.
(2013) [132] Regression Cluster (10 PCs),

4 × 2.8 GHz cores, 4 GB RAM. Stock (950 × 12). 0.000085 It is necessary to make better use of IT
resources.

* An approximation of the size is made according to the information from the databases reported by the authors.

Math. Comput. Appl. 2024, 29, 40 18 of 33

In this regard, He et al. [132] proposed a parallel ELM model for regression based on
MapReduce, addressing problems involving large data sets and achieving better perfor-
mance in general. Similarly, Xin et al. [131] introduced a new distributed ELM that can
compute the matrix multiplication required by the MPGI in parallel with MapReduce to
compute the output layer weights. The authors demonstrate that the proposed model can
learn with large amounts of training data and emphasize that the strategy can improve
applications with large-scale data. Xiang et al. [130] proposed the use of ELM to detect
network intrusion attempts. The authors demonstrate that their variant can process data
sets that traditional ELM cannot, and it tends to have a high performance in speedup and
accuracy. Han et al. [129] introduced distributed ELM (DELM) and distributed ELM-based
weighted set classifier (WE-DELM) as a way to optimize large-scale matrix operations.
In DELM, the (HTH)−1 and HTT operations are used to compute the weights β of the
output layer. The matrices are divided into blocks consisting of several rows and columns
to be multiplied independently by a reduced work node. WE-DELM divides the database
into several smaller blocks to independently train several DELM-based classifiers. The
pre-trained classifiers classify the new samples. Finally, the classification error of each clas-
sifier is calculated to predict the final results. Experimental results showed that WE-DELM
improves learning efficiency, accuracy, and speedup. In addition, a kernelized distributed
ELM (DK-ELM) that implements kernel-based ELM in MapReduce was proposed in Bi
et al. [128]. Experimental results show that this proposal has good scalability for massive
learning applications. In the same year, Wang et al. [127] introduced a parallel online se-
quential ELM (POS-ELM) based on MapReduce, which was evaluated on real and synthetic
data. Their results prove that POS-ELM has good accuracy and comparable performance to
OS-ELM and ELM. The work in Huang et al. [126] presented a parallel assembly of OS-ELM
(PEOS-ELM), and like the previous case, it was evaluated on real and synthetic data. The
accuracy of the algorithm is quite similar to OS-ELM, achieving up to 40 speedups with a
maximum of 80 cores.

Furthermore, Pang et al. [124] proposed a parallel algorithm to tackle the problem of
classifying multiple graphs in massive data sets, obtaining effective and efficient results
for real and synthetic data. In Ku and Zheng [123], the authors developed a distributed
kernel-based ELM using the MapReduce framework (DK-ELMM). According to their
results, DK-ELMM improves the results of equivalent ELM and SVD-based classifiers for
classifying remotely sensed hyperspectral images. Yao et al. [122] designed two distributed
and parallel models for ELM (DP-ELM) and hierarchical ELM (DP-HELM). The feasibility
and efficiency of the algorithms are evaluated by building an industrial-quality prediction
model with big data processing. The proposal by Rath et al. [109] processes historical large-
scale data sets by developing a MapReduce-based ELM (ELM-MapReduce). In the same
year, a wavelet kernel ELM (WKELM) model based on the activity recognition and diabetes
data sets was implemented in Gayathri et al. [121]. The authors use the MapReduce model
to deal with the large-scale data set, where the presented model outperforms the compared
methods with a maximum accuracy of 98%. Chidambaram and Gowthul Alam [104]
proposed a novel MapReduce framework based on the improved Archerfish hunter spotted
hyena optimization-based ELM (AHSHO-IELM) classifier for big data classification. Finally,
a novel MapReduce based on parallel feature selection and ELM method was proposed
in Hira and Bai [105] for classifying microarray cancer data. The authors show that the
proposed method achieves a perfect classification accuracy of 99.58%.

5.2. Spark

Spark is a framework proposed to address problems that are not possible with MapRe-
duce while preserving scalability and fault tolerance [133]. Spark introduces resilient
distributed data sets (RDDs) as a read-only collection from partitioned objects on a set of
machines, which is rebuilt if a partition is lost. The process involves reduce (to combine
elements of the data set) and collect (to send all elements to the driver program) and

Math. Comput. Appl. 2024, 29, 40 19 of 33

a foreach passes each element through a function provided by the username. Figure 5
represents a schematic of the main components of Apache Spark.

The framework is composed of five main parts: Spark Core, which is the base or set
libraries supporting the other modules; Spark SQL, for structured or semi-structured data
processing; Spark Streaming, for real-time data processing; Spark MLlib, which is a library
for machine learning; and Spark Graph, for graph processing. Considering the aforemen-
tioned features, Spark has been used in distributed ELM algorithms. Table 5 presents a
summary of ELM’s advances in processing large data sets using the Spark framework.

Spark

SQUL

Spark

Streaming

MLlib

(Machine

Learning)

GraphX

(Graph)

Apache Spark

Figure 5. Apache Spark main components.

Table 5. Summary of advances in distributed ELM using the Spark framework.

Reference Application Architecture Data Size (GB) * Limitations

Jagadeesan et al.
(2023) [98] Classification

Cluster (3 nodes), Intel Core i5
3470 3.2 GHz (8 cores,
16 threads), 16 GB RAM.

Over 11,000 tweets relevant to
disasters are included, along with
tweets from news agencies and
disaster relief organizations on
Twitter.

Information
not provided

Reliance on random operators
for implementation, which can
slightly affect output results
when applied in different
domains.

Jaya et al.
(2022) [134] Classification

Cluster (8 nodes), 4 × 2.4 GHz
processors, 200 GB hard disk,
16 GB RAM.

Various from UCI data repository. Information
not provided

Limited use of classifiers
available in the distributed
Spark environment.

Ji et al.
(2021) [110] Classification

Cluster (5-node OMNISKY),
2 × Intel Xeon E5-2603V4
1.70 GHz, 2 × NVIDIA
Quadro M4000, 16 TB hard
disk, 64 GB RAM.

Synthetic data set. 0.1

The combination of distributed
computing and GPU
acceleration has not been used
with a real data set.

Luo et al.
(2021) [111] Classification

Single-server and multi-node in
Spark cluster, 4-core 2 GHz
CPU, 8 GB RAM.

Various from Mulan and extreme
repository data sets.

Information
not provided

The analysis of the relationship
between the labels should be
strengthened.

Xu et al.
(2020) [115] Regression Different nodes on the clusters

of the Apache Spark platform.

Three real wind speed data sets and a
group of analog wind speed big data
(1000 to 600,000 samples).

Information
not provided

The Spark platform needs time
to start the framework and
distribute tasks.

Kozik et al. 2018
[135] Classification HPC cluster. Real-world attacks data set. Information

not provided

The computation time increases
as the number of
training samples increases.

Kozik (2018) [136] Classification Computing cluster. CTU data set. 5.2 to 60
Other algorithms perform better
in terms of accuracy and error
rates.

Oneto et al.
(2017–2018)
[137,138]

Regression

PC, 4 × Intel Xeon E5-4620
2.20 GHz, 128 GB RAM, 500 GB
SSD disk; 4 × n1-standard-16 of
the Google Compute Engine,
60 GB RAM, 16 cores, 500 GB
SSD disk.

Real data of Rete Ferroviaria Italiana
(RFI) and the Italian infrastructure
manager (IM).

Information
not provided

It does not take into account
information available from
external sources.

Duan et al.
(2017) [139] Classification Cluster (10–35 servers), 2.5 GHz

Core, 16 GB RAM, 2 TB disk.
Various. Hypertension (38 M × 8);
heart disease (10 M × 35). 4.65; 5.08

There is a high probability that
one or more nodes will not be
able to function.

Liu et al.
(2016) [140] Classification

Local Cluster, VMare
workstation 9.0.2 for Windows
Ubuntu system.

Various. Forest types prediction
(581,012 × 54). 2.34

As the number of hidden layer
nodes increases, the learning
and training time will gradually
increase.

* An approximation of the size is made according to the information from the databases reported by the authors.

Math. Comput. Appl. 2024, 29, 40 20 of 33

To increase the analysis speed of the traditional ELM algorithm, Liu et al. [140] pre-
sented a parallel ELM algorithm on the Spark platform. In Duan et al. [139], an efficient
Spark-based ELM (SELM) is proposed by partitioning the data set appropriately and im-
proving the performance in matrix computation of the output layer values. The model
proposed by the authors achieves speedups of 8.71 × , 13.19 × , 18.74 × , 23.79 × , and
33.81 × in clusters with 10, 15, 20, 25, and 30 nodes, respectively. Oneto et al. [137,138]
developed a dynamic prediction system that leverages historical data on train movements
and weather data provided by meteorological services. Their experimental results showed
that the proposal improved the real systems of the Italian rail network. Moreover, a
cost-sensitive distributed ELM training algorithm for network security was presented by
Kozik [136]. The author implemented the proposed algorithm using the Apache Spark
framework, a NetFlow data structure, and the MapReduce programming model. Their
results indicated that the proposed ELM-based NetFlow analysis was valuable for network
incident detection. In the same year, Kozik et al. [135] designed a model based on ELM to
transfer computationally expensive operations to the cloud to improve attack detection,
successfully decoupling and moving the training process to the cloud. Meanwhile, in Xi
et al. [115], distributed computing is applied for time speed prediction using an improved
ELM predictor with a data decomposition and reconstruction component result in Spark.

Later, a multi-label algorithm based on a kernel extreme learning machine (ML-KELM)
was proposed by Luo et al. [111]. The proposed method provides an efficient solution to
multi-label classification with large-scale data sets. In the same year, an efficient stream-
based distributed framework for ELM and OS-ELM was proposed by Ji et al. [110]. The
proposed model achieves better performance concerning offline and online training in
different data arrival modes and user needs. Meanwhile, in Jaya et al. [134], a health status
prediction system was proposed to detect cardiovascular diseases through patients’ tweets.
The performance of the proposed framework with ELM outperforms other classifiers in
both accuracy and time. Finally, Jagadeesan et al. [98] introduced a novel approach for
predicting disaster events in big data, utilizing a model based on the ensemble support
vector machine (ESVM-ELM) optimized by the city councils evolution (CCE) algorithm.
The model enhances accuracy, precision, recall, and F-measure compared to baselines. Ad-
ditionally, it improves prediction accuracy, speed, and scalability for big data classification.

5.3. Graphics Processing Unit

GPU programming has been a useful tool in speeding up the execution times of
programs that process large volumes of data in different applications, and randomized
feedforward neural networks are no exception. The GPU programming model is orga-
nized by three hierarchical levels corresponding to threads, blocks, and grids [141]. The
implementation of parallel algorithms using tools such as CUDA [95] allows applications
to be accelerated and performance scales according to the characteristics of the GPU; the
higher the power, the greater the scalability. The advantages of GPU programming have
been used in ELM to accelerate the training process, enabling large-scale data processing.
Table 6 presents a summary of the reported ELM-based approaches to address large-scale
problems on GPU platforms.

Table 6. Summary of advances in parallel ELM-based approaches using GPU computing.

Reference Application Architecture Parallel Tool Data Size (GB) * Limitations

Wang et al.
(2023) [99] Classification

PCs, Intel Core i7-10700 (8 cores)
2.9 GHz; Intel Core i7-4790 (4 cores)
3.60 GHz; Intel Core i7-8700 (6 cores)
3.2 GHz; NVIDIA GeForce GT 730

MATLAB
toolbox
(gpuArray
function).

Various. Gissete
(7000 samples). 0.26 Requires a large amount of

storage and computation.

Polat and
Kayhan
(2022) [51]

Classification
PC, Intel Core i7-6700K, 32 GB RAM,
NVIDIA GeForce GTX 1070,
1920 CUDA cores.

C++ and
CUDA
Toolkit 10.2.

Various. Landsat
Satellite (6435 × 36);
MNIST (70,000 × 784).

0.002; 0.409

Computationally, it is very
time-consuming to apply
cross-validation for each
different hyper-parameter
for online learning.

Math. Comput. Appl. 2024, 29, 40 21 of 33

Table 6. Cont.

Reference Application Architecture Parallel Tool Data Size (GB) * Limitations

Tahir and Loo
(2021) [112] Classification Server, 16 GB GPU, 64 GB

RAM.
Python Django
framework.

Various. Food101
(101 images);
VireoFood-172
(110,241 images).

0.041; 7.22

Various image quality
distortions affect the
robustness of the
features.

Hou et al.
(2021) [142] Classification

PC, Intel Core i7-8700K
3.7 GHz, NVIDIA GeForce
RTX-2080Ti, 64 GB RAM.

MATLAB 2017.

Various. NORB
(74,300 images);
MNIST
(70,000 × 784).

3.34; 0.35

Parameter selection
and efficiency are not
explored when
memory is limited.

El Zini et al.
(2021) [143] Regression

PCs, Intel core-i7 and
Core-i5, NVIDIA Tesla
K20m (2688 CUDA cores),
NVIDIA Quadro K2000,
16 GB RAM.

CUDA.

Various. Electric
Motor
Temperature data
set (998,000 in-
stances).

Up to 0.12

Portability and
scalability of the
proposed algorithm
need to be further
studied.

Rajpal et al.
(2021) [106] Classification NVIDIA Tesla K80 (Google

Collaboratory). Python. Chest X-ray
images (CXRs).

Information not
provided

It is necessary to
explore the
segmentation of the
pulmonary region.

Grim et al.
(2019) [49] Regression

Virtual machine, 6 vCPUs
Xeon E5-2690 2.60 GHz,
1 Tesla K80 823.5 MHz and
11.5 GB, 56 GB RAM.

OpenBLAS,
IntelMKL and
MAGMA.

Environmental
data set
with samples of
particulate matter
concentrations.

Information not
provided

For a small set
of samples, the number
of function calls is
higher and this time
overhead becomes
considerable.

Li et al.
(2017) [144] Classification

PC, Intel E5-2650 2.0 GHz,
512 GB RAM, NVIDIA Tesla
K20c (2496 CUDA cores).

CUDA (MAGMA),
OpenBLAS
(MPICH).

Various. COIL-100
(70,000 × 2500);
MNIST
(6,000,000 × 784).

1.30; 0.35

The performance of the
heterogeneous
CPU–GPU blocked
algorithm is slightly
better.

Chen et al.
(2017) [145] Classification

Flink cluster, Intel Core
i5-4590 3.30 GHz, 12 GB
RAM, 2 × NVIDIA GeForce
GTX 750 (512 CUDA cores).

Flink and CUDA. Various. MNIST
(6,000,000 × 784). 0.35

Performance on some
GPUs is almost the
same.

Lam and Wunsch
(2016) [146] Classification

PC, Intel Xeon E5645
2.4 GHz, 12 GB RAM,
NVIDIA Tesla M2075
(448 cores clocked) 1.5 GHz,
6 GB RAM.

CUDA.

CIFAR-10
(60,000 × 3072);
MNIST
(70,000 × 784).

1.37; 0.41

Each thread has a
limited number of fast
registers to store local
variables.

* An approximation of the size is made according to the information from the databases reported by the authors.

In this regard, Van Heeswijk et al. [147] presented GPU-accelerated ELM models to
perform regression on large data sets. The work focuses on accelerating the training by
implementing parallel computations on the GPU and combining processes in GPUs and
CPUs, with the goal of building multiple models simultaneously. The results obtained show
that the use of GPUs achieves significant acceleration compared to using a single CPU.
Similarly, the work of Jezowicz et al. [148] demonstrated that the ELM learning algorithm
is significantly accelerated on GPU platforms. In addition, Li et al. [149] proposed an
ELM-based coordinated memory-to-GPU power-saving approach based on ELM that
proved effective and could provide a maximum power saving of 10.63% and an average
power saving of 2.68% compared to traditional dynamic voltage and frequency scaling.
Krawczyk [150] proposed using the online version of ELM to address the class imbalance
problem and use GPU scheduling to speed up the classifier. Their results enabled faster
classification of the data stream with high accuracy. In the same year, a method to improve
both the speed and accuracy performance of an ELM model based on radial basis function
(ELM-RBF) by exploiting the parallel computing attributes of modern GPUs was presented
in Lam and Wunsch [146]. The results showed that the precision is maintained compared
to other algorithms, while the acceleration is up to 20 × times with optimized linear
algebra packages. Also, a parallel H-ELM algorithm based on Flink, which is one of the
most popular in-memory and GPU cluster computing platforms, was introduced by Chen
et al. [145]. The authors confirmed that the proposed model processes large amounts of
data with accuracy, scalability, and speedup in training time.

Li et al. [144] developed three approaches to improve ELM based on local receptive
fields (ELM-LRF) as follows: (1) a new blocked LU decomposition algorithm, (2) an efficient

Math. Comput. Appl. 2024, 29, 40 22 of 33

blocked Cholesky decomposition algorithm, and (3) a locked heterogeneous CPU–GPU
parallel algorithm to maximize the resources on a GPU node. The authors believe that the
proposed algorithms can also be adapted to other ELM variants and easily applied to a
distributed system. Parallel implementations for OS-ELM applied to particle prediction are
discussed by Grim et al. [49]. They show that the implementation of parallel versions of
the algorithm in the C language with the OpenBLAS, Intel MKL, and MAGMA libraries
is more advantageous compared to the reference version of MATLAB. Afterward, Rajpal
et al. [106] addressed the problem of ELM-based COVID-19 classification (COV-ELM)
into three classes: (1) COVID-19, (2) normal, and (3) pneumonia. The results showed
that COV-ELM outperforms new-generation machine learning algorithms. In El Zini
et al. [143], an ELM-based recurrent neural network training algorithm was presented that
takes advantage of GPU-shared memory and parallel QR factorization algorithms to reach
optimal solutions efficiently. The proposed algorithm reaches up to 461 times the speedup
of its sequential counterpart. In the same year, an alternating direction multiplier method
(ADMM) for regularized ELM (RELM) was developed by Hou et al. [142]. The results
show GPU speedup, which demonstrates the high parallelism of the proposed RELM.
Meanwhile, a progressive kernel ELM (PKELM) for food categorization and ingredient
recognition was introduced by Tahir and Loo [112]. During online learning, the novelty
detection mechanism of PKELM detects label noise and assigns labels to those unlabeled
training instances, performing better than other online variants of ELM.

In recent work by Polakt and Kayhan [51], they proposed a version of ELM accelerated
by a GPU to shorten training time. This version processes relevant parts in parallel using
custom kernels, outperforming OS-ELM in training speed and testing accuracy. Finally,
Wang et al. [99] proposed an adaptive method to automatically tune algorithm parameters
during training for the regularized extreme learning machine (ELM), improving computa-
tion efficiency for large-scale convex optimization problems. Their results suggest that the
algorithm can enhance convergence speed due to its simpler solution process.

5.4. Other Tools and Technologies for Distributed and Parallel Computing

In addition to MapReduce, Spark, and GPU, other distributed and parallel computing
tools and technologies have been used in ELM to improve training times. Table 7 sum-
marizes ELM-based work using other tools and technologies for distributed and parallel
computing on large-scale data sets.

Table 7. Summary of advances in ELM using other tools and technologies for distributed and
parallel computing.

Reference Application Architecture Parallel Tool Data Size (GB) * Limitations

Wang et al.
(2024) [97] Classification PC, Intel Core i7-10700

(8 core), 16 GB RAM. MATLAB (2019). Various. Gissete
(7000 samples). 0.26

The algorithm computes and
stores the matrix in each
iteration, resulting in high
computational cost and slow
convergence.

Wang and Soo
(2023) [100] Classification

PC, Intel(R) Xeon(R) Silver
4114 2.20 GHz, 16.0 GB
RAM.

Python 3.8. Various. Adults
(44,222 samples). 0.0046

Optimal ELM number
undefined, lacks online version,
and adaptation to changing
environments not developed.

Zhang et al.
(2023) [101]

Classification
and
regression

PC, AMD Ryzen 2600
3.40 GHz (6 cores), 16 GB
RAM.

MATLAB (2021a).
Various.
Mushroom
(8124 samples).

0.0013
Further enhancements are
needed, particularly in exploring
additional regularization terms.

Gelvez-Almeida et
al. (2022–
2023) [102,103]

Classification
Server, 2 × Intel(R) Xeon(R)
Gold 2.20 GHz, 128 GB
RAM.

OpenMP.

Synthetic
fingerprint data
set (2,000,000 sam-
ples).

3.01
It is necessary to compare with
other ensemble models for
validation and benchmarking.

Zha et al.
(2022) [107] Regression PC, Intel Core i5-9400F

2.9 GHz, 16 GB RAM. MATLAB R2018b. Various. SinC
(5000 data). 8.8 × 10−5 The proposed model makes the

model training time longer.

Vidhya and Aji
(2022) [108] Classification PC, Intel Core i5 2.90 GHz

(6 core), 32 GB RAM. Not reported Various. RCV1
data set. Up to 42.22 The process of updating

knowledge is not explored.

Math. Comput. Appl. 2024, 29, 40 23 of 33

Table 7. Cont.

Reference Application Architecture Parallel Tool Data Size (GB) * Limitations

Dong et al.
(2021) [113] Regression PC, Intel Core i7-6700-K

3.4 GHz.

MATLAB and
PSpice software
platforms.

Various
high-resolution
images with
512 × 512 pixels.

0.0003
The passive-resistive network
limits the size of the array and its
use in memory design.

Dwivedi et al.
(2021) [151] Classification PC, Intel Core i7, 16 GB

RAM. MATLAB R2016.

NSL-KDD;
AWID-ATK-R;
NGIDS-DS data
sets.

0.052; 2.92;
5.04

Only the basic architecture was
used during the experiments.

Zehai et al.
(2021) [50] Regression Not reported. Not reported.

Sinc and
Mackey–Glass
time-series data
set.

Up to 0.002
There are still many problems
and challenges in other modular
systems.

Ezemobi et al.
(2021) [114] Regression

Texas F28379D
microcontroller unit (MCU)
board.

MATLAB.

2 Ah capacity
lithium-ion (does
not report the
number
of samples).

Information
not provided

The performance of the model is
influenced by the choice of the
discrete point-invariance interval
of the input characteristics.

Wu et al.
(2021) [55] Regression PC, Intel Core i7-4700,

16 GB RAM. R program.

Real data set
(1966–2000
training and
2001–2015
testing).

Information
not provided

The selection of the appropriate
number of classifications
remains a problem.

Li et al.
(2020) [116] Regression PC, 2.5 GHz CPU, 4 GB

RAM. MATLAB 2012a.

Various. Bank
domains
(8190 × 8);
Elevator
(8752 × 18); CBM
(11,934 × 15).

0.00024;
0.00058;
0.00066

Decreasing learning is not
considered in the model.

Liang et al.
(2019) [117] Classification Not reported. Not reported.

It is obtained by
the calibration
experiment.

Information
not provided

Excessive numbers of neurons
will increase training time and
may result in overfitting.

Dokeroglu and
Sevinc et al.
(2019) [118]

Classification Server, 64-bit CPU (8 cores),
256 GB RAM, 1.5 TB disk. MPI.

Various. CHESS
(3196 × 36); SPAM
(4601 × 57).

0.00043;
0.00097

Future work proposes the use of
hybrid metaheuristic algorithms
supported by the GPU.

Safaei et al.
(2019) [48] Classification Xilinx Zynq platform.

System-on-a-chip
(SoC)
FPGA-based.

Housing
(500 samples),
Hollywood 3D
and HON4D.

Information
not provided

Floating-point is not used in this
work.

Li et al.
(2018) [152] Classification PC, AMD Athlon TM X2

250 3.00 GHz, 2 GB RAM. MATLAB 7.11.0

Various. DNA
(data with
180 features);
Wine (data with
178 features).

Information
not provided

Real-world applications should
consider an online version of
parallel ELM.

Ming et al.
(2018) [153]

Classification
and
regression

Supercomputer (2048 PCs),
2 × Intel Xeon X5670
2.93 GHz (6 cores), 48 GB
RAM.

MPI and MKL
(BLAS, PBLAS,
ScaLAPACK,
BLACS, among
others.).

Various. YearPre-
dictionMSD
(515,345 × 90);
MNIST8M
(8.1M × 784).

0.17; 23.65

The method cannot support a
large number of hidden neuron
nodes, and the communication
overhead is large.

Henríquez and
Ruz (2017) [154]

Classification
and
regression

PC, Intel Core i5 2.6 GHz,
8 GB RAM.

fOptions, RSNNS,
MASS, and car.

Various. Skin
(245,057 × 4);
PPPT (45,730 × 9).

0.0073; 0.003
The performance of the
proposed algorithm and ELM
with some data sets is similar.

Luo et al.
(2017) [155]

Classification
and
regression

Server, 8 × 2.8 GHz, 8 GB
RAM. Not reported.

Various. Banknote
(1372 × 4); Stock
(950 × 12).

0.000085;
0.00004

More iterations with a larger
number of processors are
required to converge the
objective function.

Wang et al.
(2016) [156] Classification

Cluster (6 nodes), 2 × Intel
Xeon E5-2640 2.5 GHz
(12 cores), 64 GB RAM.

Armadillo,
LAPACK,
OpenBLAS, and
MPICH.

Various. NORB
(97,200 × 9216). 3.34

On the same data set, the
upscaling is slightly reduced in
the presence of more
computational nodes.

* An approximation of the size is made according to the information from the databases reported by the authors.

From this perspective, two variants of parallel ELM were proposed by Wang et al. [156]
and Ming et al. [153], named data-parallel regularized ELM (DPR-ELM) and model parallel
regularized ELM (MPR-ELM), respectively. Both approaches together are referred to as par-
allel regularized ELM (PR-ELM) and aim to improve large-scale learning. The authors used
a multi-node platform using the message passing interface (MPI) [93]. Experiments show
that the proposed models have better performance and scalability than other distributed
approaches. Similarly, in Luo et al. [155], a distributed ELM (DELM) was evaluated on a

Math. Comput. Appl. 2024, 29, 40 24 of 33

multicore computer with eight 2.8 GHz cores. For their part, Henríquez and Ruz [154] de-
veloped a model based on a parallel nonlinear layer with a deterministic assignment in the
hidden layer weights and bias, using low discrepancy sequences (LDSs). In Li et al. [152],
a parallel ELM model of a kernel-based class was introduced to address the unbalanced
classification problem. The model consists of separating the data according to the number
of classes, k, and then, using the kernel-based one-class ELM to train each subset of data
separately. Finally, conditional and prior probabilities are estimated for each class, and
they are used to obtain the final classification results. The training of the subsets separated
by class is performed in parallel because each training is independent. Experimental re-
sults show that P-ELM can significantly improve classification performance compared to
various class imbalance learning approaches. In Safaei et al. [48], an ELM and OS-ELM
were implemented using a system-on-a-chip field-programmable gate array (SoC FPGA)
architecture, including parallel extraction and efficient shared memory communication in
the process. Dokeroglu and Sevinc [118] proposed an island parallel evolutionary ELM
(IPE-ELM) classification algorithm that combines evolutionary genetic algorithms, ELM,
parallel computation, and parameter tuning. In the same year, Liang et al. [117] presented
a parallel voltage ELM-based nonlinear decoupling method (PV-ELM) that outperforms
linear decoupling algorithms for six-axis F/M sensors.

Furthermore, in Li et al. [116] a parallel least squares ELM and a kernel-based ELM
model combining Kmeans-FFA-KELM were proposed for regression problems, and both
models were applied for estimating baseline evapotranspiration (ET0), which is an impor-
tant process for determining water requirements, designing an irrigation schedule, and
managing agricultural water resources. In Ezemobi et al. [114], the parallel layer ELM
(PL-ELM) model is analyzed to estimate battery health status; the results show the model
is suitable for online applications. Multiple enhanced parallel ELMs were proposed by
Zehai et al. [50] for remaining-useful-life prediction of integrated modular avionics. The
prediction results demonstrate that the proposed method is suited for the online predic-
tion of a real-time system. In Dwivedi et al. [151], an ELM model with a grasshopper
multi-parallel adaptive optimization technique was used to detect anonymous attacks in
wireless networks. The proposed intrusion detection technique outperforms other detection
techniques concerning classification performance. A new hardware implementation of
memristor-based ELM with a suitable training method was presented by Dong et al. [113].
The proposed method can produce more details on the final images. A distributed ELM ver-
sion of batch processing was proposed by Vidhya and Aji [108]. This method outperformed
the other methods in terms of performance metrics. A new approach based on an improved
M-estimation-optimized double-parallel ELM was proposed by Zha et al. [107]. The pro-
posed method is applied to a real operational condition of a power plant with efficient
processing of the influence of outliers and noise with strong anti-interference ability.

More recently, Gelvez Almeida et al. [102,103] introduced a parallel training approach
with multiple OS-ELM running on separate CPU cores to reduce ELM’s training time.
Initial findings indicate that increasing the thread count reduces training time with minimal
impact on test accuracy. Zang et al. [101] introduced the regularized functional extreme
learning machine (RF-ELM), which uses a regularization functional instead of a preset
parameter to adaptively select regularization parameters. The authors also created a
parallel version of RF-ELM for handling big data tasks. Experimental results show the
effectiveness and competitiveness of these models. Wang and Soo [100] introduced a
novel biological ensemble approach for ELMs, emphasizing the advantage of parallelizing
multiple ELM base learners without explicit aggregation, simplifying the learning process.
Experimental results demonstrated its superior generalization performance compared
to traditional ELMs and other state-of-the-art ensemble ELMs. Finally, Wang et al. [97]
introduced a computationally efficient alternating direction method of multipliers (ADMM)
with approximate curvature information for solving the update in ADMM inexactly. This
algorithm, when applied to the RELM model, decomposes the model fitting problem into
parallelizable subproblems, enhancing classification efficiency. Results in machine learning

Math. Comput. Appl. 2024, 29, 40 25 of 33

tasks indicate that this method is competitive, offering improved computational efficiency
and accuracy compared to similar approaches.

6. Discussion

This section presents a discussion of the results of this review. To draw conclusions,
we analyzed current trends in distributed and parallel methods for solving both SLE and
ELM models. Turning to the related topic of solving SLE with parallel and distributed
methods, we reviewed three groups of methods for solving this type of system. The first
group included approaches based on operations such as Gaussian elimination and its
variants (Gauss–Jordan and Gauss–Huard). Within this group, research has considered
matrices with dimensions ranging from 64 to 30,000 rows and columns. The second
group is related to the factorization-based methods and, within this group, the literature
reports algorithms such as Cholesky decomposition, singular value decomposition, and
QR factorization. In factorization methods, researchers have worked on matrices ranging
from 1000 to 115,000 rows and columns. The most common iterative methods reported in
the third group are Gauss–Seidel, Gauss–Newton, SOR techniques, and Jacobi methods
based on both the original version and its variants.

In terms of parallel tools, one of the most popular is CUDA programming, which
takes advantage of the different features of the GPU architecture. In this regard, the
most widely used GPUs are the NVIDIA GeForce GTX, TITAN, and TESLA series, while
there is extensive research on using CPU-based architectures such as IntelMCI and tools
like MPI, IntelMKL, LAPACK, and Plasma. Thus, in the iteration-based SLE solution,
several authors have processed matrices of up to 28 million rows and columns using
the IntelMIC architecture. According to this scenario, we can establish that the use of
both CPUs combined with IntelMKL and GPU architecture considering CUDA, MPI, and
OpenMP improves the performance quality of computer systems compared to traditional
methods. In this sense, the aforementioned methods for SLE resolution show that parallel
versions with these tools and architectures are significantly more efficient in execution time,
scalability, and overall performance.

In ELM models, GPU programming via CUDA is widely used to address regression
and classification problems with ELM models and databases containing a lot of data.
In several papers reviewed, the computers were equipped with NVIDIA GeForce GTX,
GeForce GT, and TESLA and processed databases ranging from 96.46 KB to 1.79 GB. In
addition, other distributed ELM models have been proposed with tools such as MPI, Intel
MKL, SoC-FPGAs through the Xilinx Zynq platform, and other machine learning toolboxes.
The ELM variants proposed by many authors are presented in Section 5.3. In this case,
the size of databases ranges from approximately 89 KB to 3.34 GB. Moreover, MapReduce
has emerged as a dynamic tool for data distribution, so it has been widely accepted in the
ELM model and its variants. The proposed ELM implementations using MapReduce were
described in Section 5.1. The architecture typically used by the authors is mainly clusters
composed of several computers without GPU. Using MapReduce, the size of the databases
varies between approximately 180 MB and 19.53 GB. Another tool that has been widely
accepted in ELM-based models is Apache Spark. Proposed ELM variants that have used
Apache Spark were reviewed in Section 5.3.

Like MapReduce, multi-computer clustering is the architecture reported by different
authors working on databases ranging in size from approximately 2.34 GB to 60 GB. Among
all the works analyzed, the largest database used was 60 GB under the Spark architecture.
In addition, it remains a challenge to process information that greatly exceeds the size
reported in this review. In practical applications, the ELM models have increased the
amount of data to be processed. However, their variants are still being developed to
handle information close to the scope of big data. Similarly, parallel architectures and
programming tools are evolving rapidly, offering great opportunities for the ELM model
and its variants to process larger amounts of data than currently reported. Finally, in the
presented review, it is possible to identify parallel architectures that have not yet been

Math. Comput. Appl. 2024, 29, 40 26 of 33

used with ELM models, such as multi-GPU, multi-FPGA, multi-node/multi-FPGA, or
multi-node/multi-GPU. Therefore, addressing these problems can be considered as an
open field of research.

7. Conclusions

For this paper, we have performed an updated review of distributed and parallel ELM
models to address regression and classification problems with large databases. Mainly,
we focus on the data dimension and the parallel architectures reported in the literature.
Moreover, this paper presents a review of current trends in solving SLE using distributed
and parallel approaches, which are useful for improving the computation of the MPGI
matrix required in ELM models. In addition, as the data’s dimensions has been a relevant
aspect in this review, we estimated the size of databases considering their characteristics.

ELM models with distributed and parallel computing have advanced significantly in
the last decade. However, we can conclude that distributed and parallel ELMs are still in
an early stage of development. Different authors have reported significant improvements
in accuracy and training time using both distributed and parallel computing compared
with traditional methods. In addition, that fact has allowed a more complete and optimal
use of the available architectures. In fact, parallel and distributed computing is used for
large-scale data sets, while the cost of time is replaced by the cost of hardware. In the
context of ELM models, the most used architectures are GPU and multi-node programming
considering tools such as CUDA, MPI, IntelMKL, MapReduce, and Spark. There are also
works developed on IntelMCI architectures and programmable chips such as the Xilinx
Zynq platform.

The need to process ever-increasing data volumes and the constant advancement of
parallel architectures constitute a broad scenario of opportunities for both the ELM models
and the scientific community. In this sense, distributed and parallel computing can be
considered a constantly advancing framework for tackling problems involving more and
more data. In particular, our review shows that in solving SLE, distributed and parallel
approaches have achieved speedups of up to 27.75 × compared to sequential methods; in
addition GPUs can offer speedups of 46 × compared to CPUs.

Regarding the size of the databases, we can state that it is a challenging feature both
in the solution of an SLE and in parallel and distributed ELM models. In the first case,
the literature reports processes with matrices of up to 28 million rows and columns. In
the second, the authors have evaluated different approaches with databases sizing up to
60 GB. The parallel SLE solution is in direct relation to the MPGI matrix and has undergone
constant improvements. This type of solution can generate a positive impact on ELM
models and their variants because it can reduce the high computational cost associated
with the training process.

Moreover, the ELM models based on distributed and parallel programming belong to
a scientific field in permanent development. Thus, thanks to the advance of the Internet
and the constant generation of big data, these models have generated remarkable high-level
improvements. Despite all the work performed in the international context, it is still a
challenge to work with databases of the order of terabytes. The following aspects can be
considered as strengths in this review article:

1. Researchers who wish to use distributed and parallel computing in ELM, its variants,
and other randomized feedforward neural network models can use this work as a
reference to identify the technologies and tools that have been implemented so far.

2. According to the large amount of time involved in computing the MPGI matrix,
we have presented an updated review of the most widely used methods and their
implementation with distributed and parallel architectures and tools.

3. The review on distributed and parallel methods for computing the MPGI matrix
is relevant to accelerate the training of ELM, its variants, and other randomized
feedforward neural network models.

Math. Comput. Appl. 2024, 29, 40 27 of 33

Some weaknesses have been detected during the development of this review. First,
little recognition has been given to older randomized feedforward neural network models
that have inspired the ELM model and its variants. Second, many reviewed works have
been developed with synthetic or traditional public databases without implementing the
results to real-world applications. In future work, we invite researchers to recognize the
older randomized feedforward neural network models and conduct research on distributed
and parallel ELM models to address problems with more realistic database sizes that can
be used in real-world applications.

Author Contributions: The manuscript was written through the contributions of all authors. E.G.-A.:
conceptualization, formal analysis, funding acquisition, investigation, writing—original draft; M.M.:
conceptualization, funding acquisition, methodology, project administration, supervision, validation,
writing—review and editing; R.J.B.: conceptualization, methodology, project administration, supervi-
sion, validation, visualization, writing—review and editing; R.H.-G.: methodology, visualization,
writing—review and editing; K.V.-P.: methodology, visualization, writing—review and editing. M.V.:
methodology, visualization, writing—review and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the National Agency for Research and Development (ANID)/Scholarship
Program/BECAS DOCTORADO NACIONAL/2020—21201000. The authors of the paper also thank
the Research Project ANID FONDECYT REGULAR 2020 No. 1200810 “Very Large Fingerprint
Classification Based on a Fast and Distributed Extreme Learning Machine,” Government of Chile.
R.H.-G. also thanks to the Research Project ANID FONDECYT INICIACIÓN 2022 No. 11220693
“End-to-end multi-task learning framework for individuals identification through palm vein patterns”,
Government of Chile.

Data Availability Statement: The data that support the findings of this paper are available from the
corresponding author upon reasonable request.

Acknowledgments: E.G.-A. is appreciative of the licenses for doctoral studies for the “Fund for
Teacher and Professional Development” of the Universidad Simón Bolívar, Colombia.

Conflicts of Interest: The authors declare no conflicts of interest related to this work.

References
1. Schmidt, W.F.; Kraaijveld, M.A.; Duin, R.P. Feed forward neural networks with random weights. In Proceedings of the 11th

IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and Systems, The
Hague, The Netherlands, 30 August–3 September 1992; IEEE: Piscataway, NJ, USA, 1992; pp. 1–4. [CrossRef]

2. Pao, Y.H.; Takefuji, Y. Functional-link net computing: theory, system architecture, and functionalities. Computer 1992, 25, 76–79.
[CrossRef]

3. Pao, Y.H.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector functional-link net.
Neurocomputing 1994, 6, 163–180. [CrossRef]

4. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In
Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, Hungary,
25–29 July 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 985–990. [CrossRef]

5. Huang, G.B.; Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [CrossRef]
6. Ahmadi, M.; Soofiabadi, M.; Nikpour, M.; Naderi, H.; Abdullah, L.; Arandian, B. Developing a deep neural network with fuzzy

wavelets and integrating an inline PSO to predict energy consumption patterns in urban buildings. Mathematics 2022, 10, 1270.
[CrossRef]

7. Sharifi, A.; Ahmadi, M.; Mehni, M.A.; Ghoushchi, S.J.; Pourasad, Y. Experimental and numerical diagnosis of fatigue foot using
convolutional neural network. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1828–1840. [CrossRef]

8. Ahmadi, M.; Ahangar, F.D.; Astaraki, N.; Abbasi, M.; Babaei, B. FWNNet: presentation of a new classifier of brain tumor
diagnosis based on fuzzy logic and the wavelet-based neural network using machine-learning methods. Comput. Intell. Neurosci.
2021, 2021, 8542637. [CrossRef] [PubMed]

9. Nomani, A.; Ansari, Y.; Nasirpour, M.H.; Masoumian, A.; Pour, E.S.; Valizadeh, A. PSOWNNs-CNN: A Computational Radiology
for Breast Cancer Diagnosis Improvement Based on Image Processing Using Machine Learning Methods. Comput. Intell. Neurosci.
2022, 2022, 5667264. [CrossRef]

10. Zangeneh Soroush, M.; Tahvilian, P.; Nasirpour, M.H.; Maghooli, K.; Sadeghniiat-Haghighi, K.; Vahid Harandi, S.; Abdollahi, Z.;
Ghazizadeh, A.; Jafarnia Dabanloo, N. EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary
wavelet transform and machine learning algorithms. Front. Physiol. 2022, 13, 1572. [CrossRef]

http://doi.org/10.1109/ICPR.1992.201708
http://dx.doi.org/10.1109/2.144401
http://dx.doi.org/10.1016/0925-2312(94)90053-1
http://dx.doi.org/10.1109/IJCNN.2004.1380068
http://dx.doi.org/10.1007/s13042-011-0019-y
http://dx.doi.org/10.3390/math10081270
http://dx.doi.org/10.1080/10255842.2021.1921164
http://dx.doi.org/10.1155/2021/8542637
http://www.ncbi.nlm.nih.gov/pubmed/34853586
http://dx.doi.org/10.1155/2022/5667264
http://dx.doi.org/10.3389/fphys.2022.910368

Math. Comput. Appl. 2024, 29, 40 28 of 33

11. Huérfano-Maldonado, Y.; Mora, M.; Vilches, K.; Hernández-García, R.; Gutiérrez, R.; Vera, M. A comprehensive review of
extreme learning machine on medical imaging. Neurocomputing 2023, 556, 126618. [CrossRef]

12. Patil, H.; Sharma, K. Extreme learning machine: A comprehensive survey of theories & algorithms. In Proceedings of the 2023
International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), Greater Noida, India,
28–30 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 749–756. [CrossRef]

13. Kaur, R.; Roul, R.K.; Batra, S. Multilayer extreme learning machine: a systematic review. Multimed. Tools Appl. 2023. [CrossRef]
14. Vásquez-Coronel, J.A.; Mora, M.; Vilches, K. A Review of multilayer extreme learning machine neural networks. Artif. Intell. Rev.

2023, 56, 13691–13742. [CrossRef]
15. Wang, J.; Lu, S.; Wang, S.H.; Zhang, Y.D. A review on extreme learning machine. Multimed. Tools Appl. 2022, 81, 41611–41660.

[CrossRef]
16. Zheng, X.; Li, P.; Wu, X. Data Stream Classification Based on Extreme Learning Machine: A Review. Big Data Res. 2022, 30, 100356.

[CrossRef]
17. Martínez, D.; Zabala-Blanco, D.; Ahumada-García, R.; Azurdia-Meza, C.A.; Flores-Calero, M.; Palacios-Jativa, P. Review of

extreme learning machines for the identification and classification of fingerprint databases. In Proceedings of the 2022 IEEE
Colombian Conference on Communications and Computing (COLCOM), Cali, Colombia, 27–29 July 2022; IEEE: Piscataway, NJ,
USA, 2022; pp. 1–6. [CrossRef]

18. Kaur, M.; Das, D.; Mishra, S.P. Survey and evaluation of extreme learning machine on TF-IDF feature for sentiment analysis. In
Proceedings of the 2022 International Conference on Machine Learning, Computer Systems and Security (MLCSS), Bhubaneswar,
India, 5–6 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 247–252. [CrossRef]

19. Nilesh, R.; Sunil, W. Review of Optimization in Improving Extreme Learning Machine. EAI Endorsed Trans. Ind. Netw. Intell. Syst.
2021, 8, e2. [CrossRef]

20. Mujal, P.; Martínez-Peña, R.; Nokkala, J.; García-Beni, J.; Giorgi, G.L.; Soriano, M.C.; Zambrini, R. Opportunities in quantum
reservoir computing and extreme learning machines. Adv. Quantum Technol. 2021, 4, 2100027. [CrossRef]

21. Nilesh, R.; Sunil, W. Improving extreme learning machine through optimization a review. In Proceedings of the 2021 7th
International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 906–912. [CrossRef]

22. Rodrigues, I.R.; da Silva Neto, S.R.; Kelner, J.; Sadok, D.; Endo, P.T. Convolutional Extreme Learning Machines: A Systematic
Review. Informatics 2021, 8, 33. [CrossRef]

23. Saldaña-Olivas, E.; Huamán-Tuesta, J.R. Extreme learning machine for business sales forecasts: A systematic review. In Smart
Innovation, Systems and Technologies, Proceedings of the 5th Brazilian Technology Symposium (BTSym 2019), Campinas, Brazil, 22–24
October 2019; Iano, Y., Arthur, R., Saotome, O., Kemper, G., Padilha França, R., Eds.; Springer: Sao Paulo, Barzil, 2021; pp. 87–96.
[CrossRef]

24. Wang, Z.; Luo, Y.; Xin, J.; Zhang, H.; Qu, L.; Wang, Z.; Yao, Y.; Zhu, W.; Wang, X. Computer-Aided Diagnosis Based on Extreme
Learning Machine: A Review. IEEE Access 2020, 8, 141657–141673. [CrossRef]

25. Wang, Z.; Sui, L.; Xin, J.; Qu, L.; Yao, Y. A Survey of Distributed and Parallel Extreme Learning Machine for Big Data. IEEE Access
2020, 8, 201247–201258. [CrossRef]

26. Alaba, P.A.; Popoola, S.I.; Olatomiwa, L.; Akanle, M.B.; Ohunakin, O.S.; Adetiba, E.; Alex, O.D.; Atayero, A.A.; Daud, W.M.A.W.
Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend. Neurocomputing
2019, 350, 70–90. [CrossRef]

27. Yibo, L.; Fang, L.; Qi, C. A Review of the Research on the Prediction Model of Extreme Learning Machine. J. Phys. Conf. Ser. 2019,
1213, 042013. [CrossRef]

28. Li, L.; Sun, R.; Cai, S.; Zhao, K.; Zhang, Q. A review of improved extreme learning machine methods for data stream classification.
Multimed. Tools Appl. 2019, 78, 33375–33400. [CrossRef]

29. Eshtay, M.; Faris, H.; Obeid, N. Metaheuristic-based extreme learning machines: A review of design formulations and applications.
Int. J. Mach. Learn. Cybern. 2019, 10, 1543–1561. [CrossRef]

30. Ghosh, S.; Mukherjee, H.; Obaidullah, S.M.; Santosh, K.; Das, N.; Roy, K. A survey on extreme learning machine and evolution of
its variants. In Proceedings of the Recent Trends in Image Processing and Pattern Recognition. Second International Conference,
RTIP2R 2018, Solapur, India, 21–22 December 2018; Santosh, K.C., Hegadi, R.S., Eds.; Springer: Singapore, 2019; Volume 1035,
pp. 572–583. [CrossRef]

31. Zhang, S.; Tan, W.; Li, Y. A survey of online sequential extreme learning machine. In Proceedings of the 2018 5th International
Conference on Control, Decision and Information Technologies (CoDIT), Thessaloniki, Greece, 10–13 April 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 45–50. [CrossRef]

32. Alade, O.A.; Selamat, A.; Sallehuddin, R. A review of advances in extreme learning machine techniques and its applications. In
Proceedings of the Recent Trends in Information and Communication Technology, Johor Bahru, Malaysia, 23–24 April 2017; Saeed,
F., Gazem, N., Patnaik, S., Saed Balaid, A.S., Mohammed, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 885–895.
[CrossRef]

33. Salaken, S.M.; Khosravi, A.; Nguyen, T.; Nahavandi, S. Extreme learning machine based transfer learning algorithms: A survey.
Neurocomputing 2017, 267, 516–524. [CrossRef]

34. Albadra, M.A.A.; Tiun, S. Extreme learning machine: A review. Int. J. Appl. Eng. Res. 2017, 12, 4610–4623.

http://dx.doi.org/10.1016/j.neucom.2023.126618
http://dx.doi.org/10.1109/CISES58720.2023.10183613
http://dx.doi.org/10.1007/s11042-023-14634-4
http://dx.doi.org/10.1007/s10462-023-10478-4
http://dx.doi.org/10.1007/s11042-021-11007-7
http://dx.doi.org/10.1016/j.bdr.2022.100356
http://dx.doi.org/10.1109/Colcom56784.2022.10107849
http://dx.doi.org/10.1109/MLCSS57186.2022.00053
http://dx.doi.org/10.4108/eai.17-9-2021.170960
http://dx.doi.org/10.1002/qute.202100027
http://dx.doi.org/10.1109/ICACCS51430.2021.9442007
http://dx.doi.org/10.3390/informatics8020033
http://dx.doi.org/10.1007/978-3-030-57548-9_8
http://dx.doi.org/10.1109/ACCESS.2020.3012093
http://dx.doi.org/10.1109/ACCESS.2020.3035398
http://dx.doi.org/10.1016/j.neucom.2019.03.086
http://dx.doi.org/10.1088/1742-6596/1213/4/042013
http://dx.doi.org/10.1007/s11042-019-7543-2
http://dx.doi.org/10.1007/s13042-018-0833-6
http://dx.doi.org/10.1007/978-981-13-9181-1_50
http://dx.doi.org/10.1109/CoDIT.2018.8394791
http://dx.doi.org/10.1007/978-3-319-59427-9_91
http://dx.doi.org/10.1016/j.neucom.2017.06.037

Math. Comput. Appl. 2024, 29, 40 29 of 33

35. Ali, M.H.; Zolkipli, M.F. Review on hybrid extreme learning machine and genetic algorithm to work as intrusion detection system
in cloud computing. ARPN J. Eng. Appl. Sci. 2016, 11, 460–464.

36. Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015, 61, 32–48. [CrossRef]
37. Cao, J.; Lin, Z. Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey. Math. Probl. Eng. 2015,

2015, 103796. [CrossRef]
38. Ding, S.; Zhao, H.; Zhang, Y.; Xu, X.; Nie, R. Extreme learning machine: Algorithm, theory and applications. Artif. Intell. Rev.

2015, 44, 103–115. [CrossRef]
39. Deng, C.; Huang, G.; Xu, J.; Tang, J. Extreme learning machines: New trends and applications. Sci. China Inf. Sci. 2015, 58, 1–16.

[CrossRef]
40. Ding, S.; Xu, X.; Nie, R. Extreme learning machine and its applications. Neural Comput. Appl. 2014, 25, 549–556. [CrossRef]
41. Liang, N.Y.; Huang, G.B.; Saratchandran, P.; Sundararajan, N. A fast and accurate online sequential learning algorithm for

feedforward networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [CrossRef]
42. Ali, M.H.; Fadlizolkipi, M.; Firdaus, A.; Khidzir, N.Z. A hybrid particle swarm optimization-extreme learning machine approach

for intrusion detection system. In Proceedings of the 2018 IEEE Student Conference on Research and Development (SCOReD),
Selangor, Malaysia, 26–28 November 2018; IEEE: Piscataway, NJ, USA, pp. 1–4. [CrossRef]

43. Lyche, T. Numerical Linear Algebra and Matrix Factorizations; Springer: Oslo, Norway, 2020; Volume 22.
44. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

[CrossRef]
45. Zhang, L.; Suganthan, P.N. A survey of randomized algorithms for training neural networks. Inf. Sci. 2016, 364–365, 146–155.

[CrossRef]
46. Suganthan, P.N.; Katuwal, R. On the origins of randomization-based feedforward neural networks. Appl. Soft Comput. 2021,

105, 107239. [CrossRef]
47. Malik, A.K.; Gao, R.; Ganaie, M.; Tanveer, M.; Suganthan, P.N. Random vector functional link network: Recent developments,

applications, and future directions. Appl. Soft Comput. 2023, 143, 110377. [CrossRef]
48. Safaei, A.; Wu, Q.J.; Akilan, T.; Yang, Y. System-on-a-Chip (SoC)-Based Hardware Acceleration for an Online Sequential Extreme

Learning Machine (OS-ELM). IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 2127–2138. [CrossRef]
49. Grim, L.F.L.; Barajas, J.A.B.; Gradvohl, A.L.S. Implementações paralelas para o algoritmo Online Sequential Extreme Learning

Machine aplicado à previsão de material particulado. Rev. Bras. Comput. Apl. 2019, 11, 13–21. [CrossRef]
50. Zehai, G.; Cunbao, M.; Jianfeng, Z.; Weijun, X. Remaining useful life prediction of integrated modular avionics using ensemble

enhanced online sequential parallel extreme learning machine. Int. J. Mach. Learn. Cybern. 2021, 12, 1893–1911. [CrossRef]
51. Polat, Ö.; Kayhan, S.K. GPU-accelerated and mixed norm regularized online extreme learning machine. Concurr. Comput.

Pract. Exp. 2022, 34, e6967. [CrossRef]
52. Vovk, V. Kernel ridge regression. In Empirical Inference; Schölkopf, B., Luo, Z., Vovk, V., Eds.; Springer: Berlin, Germany, 2013;

pp. 105–116. [CrossRef]
53. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans.

Syst. Man, Cybern. Part Cybern. 2011, 42, 513–529. [CrossRef]
54. Deng, W.Y.; Ong, Y.S.; Tan, P.S.; Zheng, Q.H. Online sequential reduced kernel extreme learning machine. Neurocomputing 2016,

174, 72–84. [CrossRef]
55. Wu, L.; Peng, Y.; Fan, J.; Wang, Y.; Huang, G. A novel kernel extreme learning machine model coupled with K-means clustering

and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation. Agric. Water Manag. 2021,
245, 106624. [CrossRef]

56. Huang, G.B.; Chen, L.; Siew, C.K. Universal approximation using incremental constructive feedforward networks with random
hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [CrossRef] [PubMed]

57. Rong, H.J.; Ong, Y.S.; Tan, A.H.; Zhu, Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing 2008,
72, 359–366. [CrossRef]

58. Zhu, Q.Y.; Qin, A.K.; Suganthan, P.N.; Huang, G.B. Evolutionary extreme learning machine. Pattern Recognit. 2005, 38, 1759–1763.
[CrossRef]

59. Gelvez-Almeida, E.; Baldera-Moreno, Y.; Huérfano, Y.; Vera, M.; Mora, M.; Barrientos, R. Parallel methods for linear systems
solution in extreme learning machines: An overview. J. Phys. Conf. Ser. 2020, 1702, 012017. [CrossRef]

60. Lu, S.; Wang, X.; Zhang, G.; Zhou, X. Effective algorithms of the Moore-Penrose inverse matrices for extreme learning machine.
Intell. Data Anal. 2015, 19, 743–760. [CrossRef]

61. Young, D.M. Iterative Solution of Large Linear Systems; Elsevier: Orlando, FL, USA, 2014.
62. Li, J.; Li, L.; Wang, Q.; Xue, W.; Liang, J.; Shi, J. Parallel optimization and application of unstructured sparse triangular solver on

new generation of sunway architecture. Parallel Comput. 2024, 120, 103080. [CrossRef]
63. Gelvez-Almeida, E.; Barrientos, R.J.; Vilches-Ponce, K.; Mora, M. A Parallel Computing Method for the Computation of the

Moore–Penrose Generalized Inverse for Shared-Memory Architectures. IEEE Access 2023, 11, 134834–134845. [CrossRef]
64. Lukyanenko, D. Parallel algorithm for solving overdetermined systems of linear equations, taking into account round-off errors.

Algorithms 2023, 16, 242. [CrossRef]

http://dx.doi.org/10.1016/j.neunet.2014.10.001
http://dx.doi.org/10.1155/2015/103796
http://dx.doi.org/10.1007/s10462-013-9405-z
http://dx.doi.org/10.1007/s11432-014-5269-3
http://dx.doi.org/10.1007/s00521-013-1522-8
http://dx.doi.org/10.1109/tnn.2006.880583
http://dx.doi.org/10.1109/SCORED.2018.8711287
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.ins.2016.01.039
http://dx.doi.org/10.1016/j.asoc.2021.107239
http://dx.doi.org/10.1016/j.asoc.2023.110377
http://dx.doi.org/10.1109/TCAD.2018.2878162
http://dx.doi.org/10.5335/rbca.v11i2.9089
http://dx.doi.org/10.1007/s13042-021-01283-y
http://dx.doi.org/10.1002/cpe.6967
http://dx.doi.org/10.1007/978-3-642-41136-6_11
http://dx.doi.org/10.1109/TSMCB.2011.2168604
http://dx.doi.org/10.1016/j.neucom.2015.06.087
http://dx.doi.org/10.1016/j.agwat.2020.106624
http://dx.doi.org/10.1109/TNN.2006.875977
http://www.ncbi.nlm.nih.gov/pubmed/16856652
http://dx.doi.org/10.1016/j.neucom.2008.01.005
http://dx.doi.org/10.1016/j.patcog.2005.03.028
http://dx.doi.org/10.1088/1742-6596/1702/1/012017
http://dx.doi.org/10.3233/IDA-150743
http://dx.doi.org/10.1016/j.parco.2024.103080
http://dx.doi.org/10.1109/ACCESS.2023.3338544
http://dx.doi.org/10.3390/a16050242

Math. Comput. Appl. 2024, 29, 40 30 of 33

65. Suzuki, K.; Fukaya, T.; Iwashita, T. A novel ILU preconditioning method with a block structure suitable for SIMD vectorization.
J. Comput. Appl. Math. 2023, 419, 114687. [CrossRef]

66. Sabelfeld, K.K.; Kireev, S.; Kireeva, A. Parallel implementations of randomized vector algorithm for solving large systems of
linear equations. J. Supercomput. 2023, 79, 10555–10569. [CrossRef]

67. Catalán, S.; Herrero, J.R.; Igual, F.D.; Quintana-Ortí, E.S.; Rodríguez-Sánchez, R. Fine-grain task-parallel algorithms for matrix
factorizations and inversion on many-threaded CPUs. Concurr. Comput. Pract. Exp. 2022, 35, e6999. [CrossRef]

68. Rivera-Zamarripa, L.; Adj, G.; Cruz-Cortés, N.; Aguilar-Ibañez, C.; Rodríguez-Henríquez, F. A Parallel Strategy for Solving
Sparse Linear Systems Over Finite Fields. Comput. Sist. 2022, 26, 493–504. [CrossRef]

69. Li, K.; Han, X. A distributed Gauss-Newton method for distribution system state estimation. Int. J. Electr. Power Energy Syst.
2022, 136, 107694. [CrossRef]

70. Hwang, H.S.; Ro, J.H.; Park, C.Y.; You, Y.H.; Song, H.K. Efficient Gauss-Seidel Precoding with Parallel Calculation in Massive
MIMO Systems. CMC-Comput. Mater. Contin. 2022, 70, 491–504. [CrossRef]

71. Catalán, S.; Igual, F.D.; Rodríguez-Sánchez, R.; Herrero, J.R.; Quintana-Ortí, E.S. A New Generation of Task-Parallel Algorithms
for Matrix Inversion in Many-Threaded CPUs. In Proceedings of the 12th International Workshop on Programming Models
and Applications for Multicores and Manycores, Association for Computing Machinery, Virtual, 22 February 2021; pp. 1–10.
[CrossRef]

72. Marrakchi, S.; Jemni, M. Parallel gaussian elimination of symmetric positive definite band matrices for shared-memory multicore
architectures. RAIRO Oper. Res. 2021, 55, 905–927. [CrossRef]

73. Lu, Y.; Luo, Y.; Lian, H.; Jin, Z.; Liu, W. Implementing LU and Cholesky factorizations on artificial intelligence accelerators.
CCF Trans. High Perform. Comput. 2021, 3, 286–297. [CrossRef]

74. Lee, W.K.; Achar, R. GPU-Accelerated Adaptive PCBSO Mode-Based Hybrid RLA for Sparse LU Factorization in Circuit
Simulation. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 2320–2330. [CrossRef]

75. Zhang, X.W.; Zuo, L.; Li, M.; Guo, J.X. High-throughput FPGA implementation of matrix inversion for control systems. IEEE Trans.
Ind. Electron. 2021, 68, 6205–6216. [CrossRef]

76. Rubensson, E.H.; Artemov, A.G.; Kruchinina, A.; Rudberg, E. Localized inverse factorization. IMA J. Numer. Anal. 2021,
41, 729–763. [CrossRef]

77. Rodriguez Borbon, J.M.; Huang, J.; Wong, B.M.; Najjar, W. Acceleration of Parallel-Blocked QR Decomposition of Tall-and-Skinny
Matrices on FPGAs. ACM Trans. Archit. Code Optim. TACO 2021, 18, 27. [CrossRef]

78. Duan, T.; Dinavahi, V. A novel linking-domain extraction decomposition method for parallel electromagnetic transient simulation
of large-scale AC/DC networks. IEEE Trans. Power Deliv. 2021, 36, 957–965. [CrossRef]

79. Shäfer, F.; Katzfuss, M.; Owhadi, H. Sparse Cholesky Factorization by Kullback-Leibler Minimization. SIAM J. Sci. Comput. 2021,
43, A2019–A2046. [CrossRef]

80. Boffi, D.; Lu, Z.; Pavarino, L.F. Iterative ILU preconditioners for linear systems and eigenproblems. J. Comput. Math. 2021,
39, 633–654. [CrossRef]

81. Ahmadi, A.; Manganiello, F.; Khademi, A.; Smith, M.C. A Parallel Jacobi-Embedded Gauss-Seidel Method. IEEE Trans. Parallel
Distrib. Syst. 2021, 32, 1452–1464. [CrossRef]

82. Liu, Y.; Sid-Lakhdar, W.; Rebrova, E.; Ghysels, P.; Li, X.S. A parallel hierarchical blocked adaptive cross approximation algorithm.
Int. J. High Perform. Comput. Appl. 2020, 34, 394–408. [CrossRef]

83. Davis, T.A.; Duff, I.S.; Nakov, S. Design and implementation of a parallel markowitz threshold algorithm. SIAM J. Matrix
Anal. Appl. 2020, 41, 573–590. [CrossRef]

84. Yang, X.; Wang, N.; Xu, L. A parallel Gauss-Seidel method for convex problems with separable structure. Numer. Algebr.
Control. Optim. 2020, 10, 557–570. [CrossRef]

85. Li, R.; Zhang, C. Efficient parallel implementations of sparse triangular solves for GPU architectures. In Proceedings of the
2020 SIAM Conference on Parallel Processing for Scientific Computing, SIAM, Washington, DC, USA, 12–15 February 2020;
pp. 106–117. [CrossRef]

86. Singh, N.; Ma, L.; Yang, H.; Solomonik, E. Comparison of Accuracy and Scalability of Gauss-Newton and Alternating Least
Squares for CP Decomposition. arXiv 2020, arXiv:1910.12331. [CrossRef]

87. Alyahya, H.; Mehmood, R.; Katib, I. Parallel iterative solution of large sparse linear equation systems on the intel MIC architecture.
In Smart Infrastructure and Applications; Mehmood, R., See, S., Katib, I., Chlamtac, I., Eds.; Springer: Cham, Switzerland, 2020;
pp. 377–407. [CrossRef]

88. Huang, G.H.; Xu, Y.Z.; Yi, X.W.; Xia, M.; Jiao, Y.Y.; Zhang, S. Highly efficient iterative methods for solving linear equations
of three-dimensional sphere discontinuous deformation analysis. Int. J. Numer. Anal. Methods Geomech. 2020, 44, 1301–1314.
[CrossRef]

89. Kirk, D.B.; Mei W. Hwu, W. Programming Massively Parallel Processors: A Hands-On Approach, 3 ed.; Morgan Kaufmann: Cambridge,
UK, 2016.

90. Chapman, B.; Jost, G.; Pas, R.V.D. Using OpenMP: Portable Shared Memory Parallel Programming; The MIT Press: London, UK, 2008.
91. Xianyi, Z.; Kroeker, M. OpenBLAS: An Optimized BLAS Library. 2022. Available online: https://www.openblas.net (accessed on

20 September 2022).

http://dx.doi.org/10.1016/j.cam.2022.114687
http://dx.doi.org/10.1007/s11227-023-05079-5
http://dx.doi.org/10.1002/cpe.6999
http://dx.doi.org/10.13053/CyS-26-1-3494
http://dx.doi.org/10.1016/j.ijepes.2021.107694
http://dx.doi.org/10.32604/cmc.2022.019397
http://dx.doi.org/10.1145/3448290.3448563
http://dx.doi.org/10.1051/ro/2020013
http://dx.doi.org/10.1007/s42514-021-00075-8
http://dx.doi.org/10.1109/TCAD.2020.3046572
http://dx.doi.org/10.1109/TIE.2020.2994865
http://dx.doi.org/10.1093/imanum/drz075
http://dx.doi.org/10.1145/3447775
http://dx.doi.org/10.1109/TPWRD.2020.2998397
http://dx.doi.org/10.1137/20M1336254
http://dx.doi.org/10.4208/jcm.2009-m2020-0138
http://dx.doi.org/10.1109/TPDS.2021.3052091
http://dx.doi.org/10.1177/1094342020918305
http://dx.doi.org/10.1137/19M1245815
http://dx.doi.org/10.3934/naco.2020051
http://dx.doi.org/10.1137/1.9781611976137.10
https://doi.org/10.48550/arXiv.1910.12331
http://dx.doi.org/10.1007/978-3-030-13705-2_16
http://dx.doi.org/10.1002/nag.3062
https://www.openblas.net

Math. Comput. Appl. 2024, 29, 40 31 of 33

92. University of Tennessee; University of California; University of Colorado Denver; NAG Ltd. LAPACK—Linear Algebra PACKage.
Netlib Repository at UTK and ORNL. 2022. Available online: http://www.netlib.org/lapack/ (accessed on 15 September 2022).

93. Gropp, W.; Lusk, E.; Skjellum, A. Using MPI: Portable Parallel Programming with the Message-Passing Interface (Scientific and
Engineering Computation Series), 3rd ed.; The MIT Press: London, UK, 2014.

94. Intel Corporation. Intel oneAPI Math Kernel Library. Intel Corporation. 2020. Available online: https://software.intel.com/
content/www/us/en/develop/tools/oneapi/components/onemkl.html (accessed on 14 September 2022).

95. NVIDIA Corporation. CUDA: Compute Unified Device Architecture. NVIDIA Corporation. 2022. Available online: http://
developer.nvidia.com/object/cuda.html (accessed on 15 September 2022).

96. Iles, G.; Jones, J.; Rose, A. Experience powering Xilinx Virtex-7 FPGAs. J. Instrum. 2013, 8, 12037. [CrossRef]
97. Wang, K.; Huo, S.; Liu, B.; Wang, Z.; Ren, T. An Adaptive Low Computational Cost Alternating Direction Method of Multiplier

for RELM Large-Scale Distributed Optimization. Mathematics 2024, 12, 43. [CrossRef]
98. Jagadeesan, J.; Subashree, D.; Kirupanithi, D.N. An Optimized Ensemble Support Vector Machine-Based Extreme Learning

Model for Real-Time Big Data Analytics and Disaster Prediction. Cogn. Comput. 2023, 15, 2152–2174. [CrossRef]
99. Wang, Z.; Huo, S.; Xiong, X.; Wang, K.; Liu, B. A Maximally Split and Adaptive Relaxed Alternating Direction Method of

Multipliers for Regularized Extreme Learning Machines. Mathematics 2023, 11, 3198. [CrossRef]
100. Wang, G.; Soo, Z.S.D. BE-ELM: Biological ensemble Extreme Learning Machine without the need of explicit aggregation.

Expert Syst. Appl. 2023, 230, 120677. [CrossRef]
101. Zhang, Y.; Dai, Y.; Wu, Q. A novel regularization paradigm for the extreme learning machine. Neural Process. Lett. 2023,

55, 7009–7033. [CrossRef]
102. Gelvez-Almeida, E.; Barrientos, R.J.; Vilches-Ponce, K.; Mora, M. Parallel training of a set of online sequential extreme learning

machines. In Proceedings of the 2022 41st International Conference of the Chilean Computer Science Society (SCCC), Santiago,
Chile, 21–25 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [CrossRef]

103. Gelvez-Almeida, E.; Barrientos, R.J.; Vilches-Ponce, K.; Mora, M. Parallel model of online sequential extreme learning machines
for classification problems with large-scale databases. In Proceedings of the XI Jornadas de Cloud Computing, Big Data &
Emerging Topics, Universidad de la Plata, La Plata, Argentina, 27–29 June 2023.

104. Chidambaram, S.; Gowthul Alam, M. An Integration of Archerfish Hunter Spotted Hyena Optimization and Improved ELM
Classifier for Multicollinear Big Data Classification Tasks. Neural Process. Lett. 2022, 54, 2049–2077. [CrossRef]

105. Hira, S.; Bai, A. A Novel MapReduced Based Parallel Feature Selection and Extreme Learning for Micro Array Cancer Data
Classification. Wirel. Pers. Commun. 2022, 123, 1483–1505. [CrossRef]

106. Rajpal, S.; Agarwal, M.; Rajpal, A.; Lakhyani, N.; Saggar, A.; Kumar, N. COV-ELM classifier: An Extreme Learning Machine
based identification of COVID-19 using Chest X-Ray Images. Intell. Decis. Technol. 2022, 16, 193–203. [CrossRef]

107. Zha, L.; Ma, K.; Li, G.; Fang, Q.; Hu, X. A robust double-parallel extreme learning machine based on an improved M-estimation
algorithm. Adv. Eng. Inform. 2022, 52, 101606. [CrossRef]

108. Vidhya, M.; Aji, S. Parallelized extreme learning machine for online data classification. Appl. Intell. 2022, 52. [CrossRef]
109. Rath, S.; Tripathy, A.; Swagatika, S. Application of ELM-mapreduce technique in stock market forecasting. In Intelligent and Cloud

Computing; Mishra, D., Buyya, R., Mohapatra, P., Patnaik, S., Eds.; Springer: Singapore, 2021; Volume 2, pp. 469–476. [CrossRef]
110. Ji, H.; Wu, G.; Wang, G. Accelerating ELM training over data streams. Int. J. Mach. Learn. Cybern. 2021, 12, 87–102. [CrossRef]
111. Luo, F.; Liu, G.; Guo, W.; Chen, G.; Xiong, N. ML-KELM: A Kernel Extreme Learning Machine Scheme for Multi-Label

Classification of Real Time Data Stream in SIoT. IEEE Trans. Netw. Sci. Eng. 2021, 9, 1–12. [CrossRef]
112. Tahir, G.A.; Loo, C.K. Progressive kernel extreme learning machine for food image analysis via optimal features from quality

resilient CNN. Appl. Sci. 2021, 11, 9562. [CrossRef]
113. Dong, Z.; Lai, C.S.; Zhang, Z.; Qi, D.; Gao, M.; Duan, S. Neuromorphic extreme learning machines with bimodal memristive

synapses. Neurocomputing 2021, 453, 38–49. [CrossRef]
114. Ezemobi, E.; Tonoli, A.; Silvagni, M. Battery State of Health Estimation with Improved Generalization Using Parallel Layer

Extreme Learning Machine. Energies 2021, 14, 2243. [CrossRef]
115. Xu, Y.; Liu, H.; Long, Z. A distributed computing framework for wind speed big data forecasting on Apache Spark. Sustain. Energy

Technol. Assess. 2020, 37, 100582. [CrossRef]
116. Li, X.; Liu, J.; Niu, P. Least Square Parallel Extreme Learning Machine for Modeling NOx Emission of a 300MW Circulating

Fluidized Bed Boiler. IEEE Access 2020, 8, 79619–79636. [CrossRef]
117. Liang, Q.; Long, J.; Coppola, G.; Zhang, D.; Sun, W. Novel decoupling algorithm based on parallel voltage extreme learning

machine (PV-ELM) for six-axis F/M sensors. Robot.-Comput.-Integr. Manuf. 2019, 57, 303–314. [CrossRef]
118. Dokeroglu, T.; Sevinc, E. Evolutionary parallel extreme learning machines for the data classification problem. Comput. Ind. Eng.

2019, 130, 237–249. [CrossRef]
119. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th Symposium on

Operating Systems Design and Implementation. USENIX Association, San Francisco, CA, USA, 6–8 December 2004; Volume 6,
pp. 137–149.

120. Dean, J.; Ghemawat, S. MapReduce: simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
121. Gayathri, T.; Bhaskari, D.L. Oppositional Cuckoo Search Optimization based Clustering with Classification Model for Big Data

Analytics in Healthcare Environment. J. Appl. Sci. Eng. 2021, 25, 743–751. [CrossRef]

http://www.netlib.org/lapack/
https://software.intel.com/content/www/us/en/develop /tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop /tools/oneapi/components/onemkl.html
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://dx.doi.org/10.1088/1748-0221/8/12/C12037
http://dx.doi.org/10.3390/math12010043
http://dx.doi.org/10.1007/s12559-023-10176-x
http://dx.doi.org/10.3390/math11143198
http://dx.doi.org/10.1016/j.eswa.2023.120677
http://dx.doi.org/10.1007/s11063-023-11248-7
http://dx.doi.org/10.1109/SCCC57464.2022.10000361
http://dx.doi.org/10.1007/s11063-021-10718-0
http://dx.doi.org/10.1007/s11277-021-09196-3
http://dx.doi.org/10.3233/IDT-210055
http://dx.doi.org/10.1016/j.aei.2022.101606
http://dx.doi.org/10.1007/s10489-022-03308-7
http://dx.doi.org/10.1007/978-981-15-6202-0_48
http://dx.doi.org/10.1007/s13042-020-01158-8
http://dx.doi.org/10.1109/TNSE.2021.3073431
http://dx.doi.org/10.3390/app11209562
http://dx.doi.org/10.1016/j.neucom.2021.04.049
http://dx.doi.org/10.3390/en14082243
http://dx.doi.org/10.1016/j.seta.2019.100582
http://dx.doi.org/10.1109/ACCESS.2020.2990440
http://dx.doi.org/10.1016/j.rcim.2018.12.014
http://dx.doi.org/10.1016/j.cie.2019.02.024
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.6180/jase.202208_25(4).0019

Math. Comput. Appl. 2024, 29, 40 32 of 33

122. Yao, L.; Ge, Z. Distributed parallel deep learning of Hierarchical Extreme Learning Machine for multimode quality prediction
with big process data. Eng. Appl. Artif. Intell. 2019, 81, 450–465. [CrossRef]

123. Ku, J.; Zheng, B. Distributed extreme learning machine with kernels based on MapReduce for spectral-spatial classification of
hyperspectral image. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE)
and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 325–332. [CrossRef]

124. Pang, J.; Gu, Y.; Xu, J.; Kong, X.; Yu, G. Parallel multi-graph classification using extreme learning machine and MapReduce.
Neurocomputing 2017, 261, 171–183. [CrossRef]

125. Inaba, F.K.; Salles, E.O.T.; Perron, S.; Caporossi, G. DGR-ELM–distributed generalized regularized ELM for classification.
Neurocomputing 2018, 275, 1522–1530. [CrossRef]

126. Huang, S.; Wang, B.; Qiu, J.; Yao, J.; Wang, G.; Yu, G. Parallel ensemble of online sequential extreme learning machine based on
MapReduce. Neurocomputing 2016, 174, 352–367. [CrossRef]

127. Wang, B.; Huang, S.; Qiu, J.; Liu, Y.; Wang, G. Parallel online sequential extreme learning machine based on MapReduce.
Neurocomputing 2015, 149, 224–232. [CrossRef]

128. Bi, X.; Zhao, X.; Wang, G.; Zhang, P.; Wang, C. Distributed Extreme Learning Machine with kernels based on MapReduce.
Neurocomputing 2015, 149, 456–463. [CrossRef]

129. Han, D.H.; Zhang, X.; Wang, G.R. Classifying Uncertain and Evolving Data Streams with Distributed Extreme Learning Machine.
J. Comput. Sci. Technol. 2015, 30, 874–887. [CrossRef]

130. Xiang, J.; Westerlund, M.; Sovilj, D.; Pulkkis, G. Using extreme learning machine for intrusion detection in a big data environment.
In Proceedings of the 2014 workshop on artificial intelligent and security workshop, Association for Computing Machinery,
Scottsdale, AZ, USA, 7 November 2014; pp. 73–82. [CrossRef]

131. Xin, J.; Wang, Z.; Chen, C.; Ding, L.; Wang, G.; Zhao, Y. ELM∗: distributed extreme learning machine with MapReduce. World
Wide Web 2014, 17, 1189–1204. [CrossRef]

132. He, Q.; Shang, T.; Zhuang, F.; Shi, Z. Parallel extreme learning machine for regression based on MapReduce. Neurocomputing
2013, 102, 52–58. [CrossRef]

133. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Computing, USENIX Association, Boston, MA, USA, 22–25 June 2010;
pp. 1–10. [CrossRef]

134. Jaya Lakshmi, A.; Venkatramaphanikumar, S.; Venkata, K.K.K. Prediction of Cardiovascular Risk Using Extreme Learning
Machine-Tree Classifier on Apache Spark Cluster. Recent Adv. Comput. Sci. Commun. 2022, 15, 443–455. [CrossRef]

135. Kozik, R.; Choraś, M.; Ficco, M.; Palmieri, F. A scalable distributed machine learning approach for attack detection in edge
computing environments. J. Parallel Distrib. Comput. 2018, 119, 18–26. [CrossRef]

136. Kozik, R. Distributing extreme learning machines with Apache Spark for NetFlow-based malware activity detection.
Pattern Recognit. Lett. 2018, 101, 14–20. [CrossRef]

137. Oneto, L.; Fumeo, E.; Clerico, G.; Canepa, R.; Papa, F.; Dambra, C.; Mazzino, N.; Anguita, D. Dynamic Delay Predictions for
Large-Scale Railway Networks: Deep and Shallow Extreme Learning Machines Tuned via Thresholdout. IEEE Trans. Syst. Man
Cybern. Syst. 2017, 47, 2754–2767. [CrossRef]

138. Oneto, L.; Fumeo, E.; Clerico, G.; Canepa, R.; Papa, F.; Dambra, C.; Mazzino, N.; Anguita, D. Train Delay Prediction Systems: A
Big Data Analytics Perspective. Big Data Res. 2018, 11, 54–64. [CrossRef]

139. Duan, M.; Li, K.; Liao, X.; Li, K. A Parallel Multiclassification Algorithm for Big Data Using an Extreme Learning Machine.
IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 2337–2351. [CrossRef]

140. Liu, T.; Fang, Z.; Zhao, C.; Zhou, Y. Parallelization of a series of extreme learning machine algorithms based on Spark. In
Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), IEEE, Okayama,
Japan, 26–29 June 2016; pp. 1–5. [CrossRef]

141. Navarro, C.A.; Carrasco, R.; Barrientos, R.J.; Riquelme, J.A.; Vega, R. GPU Tensor cores for Fast Arithmetic Reductions. IEEE Trans.
Parallel Distrib. Syst. 2021, 32, 72–84. [CrossRef]

142. Hou, X.C.; Lai, X.P.; Cao, J.W. A Maximally Split Generalized ADMM for Regularized Extreme Learning Machines. Tien Tzu
Hsueh Pao/Acta Electron. Sin. 2021, 49, 625–630. [CrossRef]

143. El Zini, J.; Rizk, Y.; Awad, M. An optimized parallel implementation of non-iteratively trained recurrent neural networks. J. Artif.
Intell. Soft Comput. Res. 2021, 11, 33–50. [CrossRef]

144. Li, S.; Niu, X.; Dou, Y.; Lv, Q.; Wang, Y. Heterogeneous blocked CPU-GPU accelerate scheme for large scale extreme learning
machine. Neurocomputing 2017, 261, 153–163. [CrossRef]

145. Chen, C.; Li, K.; Ouyang, A.; Tang, Z.; Li, K. GPU-Accelerated Parallel Hierarchical Extreme Learning Machine on Flink for Big
Data. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 2740–2753. [CrossRef]

146. Lam, D.; Wunsch, D. Unsupervised Feature Learning Classification With Radial Basis Function Extreme Learning Machine Using
Graphic Processors. IEEE Trans. Cybern. 2016, 47, 224–231. [CrossRef]

147. Van Heeswijk, M.; Miche, Y.; Oja, E.; Lendasse, A. GPU-accelerated and parallelized ELM ensembles for large-scale regression.
Neurocomputing 2011, 74, 2430–2437. [CrossRef]

http://dx.doi.org/10.1016/j.engappai.2019.03.011
http://dx.doi.org/10.1109/CSE-EUC.2017.65
http://dx.doi.org/10.1016/j.neucom.2016.03.111
http://dx.doi.org/10.1016/j.neucom.2017.09.090
http://dx.doi.org/10.1016/j.neucom.2015.04.105
http://dx.doi.org/10.1016/j.neucom.2014.03.076
http://dx.doi.org/10.1016/j.neucom.2014.01.070
http://dx.doi.org/10.1007/s11390-015-1566-6
http://dx.doi.org/10.1145/2666652.2666664
http://dx.doi.org/10.1007/s11280-013-0236-2
http://dx.doi.org/10.1016/j.neucom.2012.01.040
http://dx.doi.org/10.5555/1863103.1863113
http://dx.doi.org/10.2174/2666255813999200904163404
http://dx.doi.org/10.1016/j.jpdc.2018.03.006
http://dx.doi.org/10.1016/j.patrec.2017.11.004
http://dx.doi.org/10.1109/TSMC.2017.2693209
http://dx.doi.org/10.1016/j.bdr.2017.05.002
http://dx.doi.org/10.1109/TNNLS.2017.2654357
http://dx.doi.org/10.1109/ICIS.2016.7550906
http://dx.doi.org/10.1109/TPDS.2020.3011893
http://dx.doi.org/10.12263/DZXB.20200310
http://dx.doi.org/10.2478/jaiscr-2021-0003
http://dx.doi.org/10.1016/j.neucom.2016.05.112
http://dx.doi.org/10.1109/TSMC.2017.2690673
http://dx.doi.org/10.1109/TCYB.2015.2511149
http://dx.doi.org/10.1016/j.neucom.2010.11.034

Math. Comput. Appl. 2024, 29, 40 33 of 33

148. Jezowicz, T.; Gajdo, P.; Uher, V.; Snáel, V. Classification with extreme learning machine on GPU. In Proceedings of the 2015
International Conference on Intelligent Networking and Collaborative Systems, Taipei, Taiwan, 2–4 September 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 116–122. [CrossRef]

149. Li, J.; Guo, B.; Shen, Y.; Li, D.; Wang, J.; Huang, Y.; Li, Q. GPU-memory coordinated energy saving approach based on extreme
learning machine. In Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing and
Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems, New York, NY, USA, 24–26 August 2015; IEEE: Piscataway, NJ, USA, 2015;
pp. 827–830. [CrossRef]

150. Krawczyk, B. GPU-Accelerated Extreme Learning Machines for Imbalanced Data Streams with Concept Drift. Procedia Comput. Sci.
2016, 80, 1692–1701. [CrossRef]

151. Dwivedi, S.; Vardhan, M.; Tripathi, S. Multi-Parallel Adaptive Grasshopper Optimization Technique for Detecting Anonymous
Attacks in Wireless Networks. Wirel. Pers. Commun. 2021, 119, 2787–2816. [CrossRef]

152. Li, Y.; Zhang, S.; Yin, Y.; Xiao, W.; Zhang, J. Parallel one-class extreme learning machine for imbalance learning based on Bayesian
approach. J. Ambient. Intell. Humaniz. Comput. 2024, 15, 1745–1762. [CrossRef]

153. Ming, Y.; Zhu, E.; Wang, M.; Ye, Y.; Liu, X.; Yin, J. DMP-ELMs: Data and model parallel extreme learning machines for large-scale
learning tasks. Neurocomputing 2018, 320, 85–97. [CrossRef]

154. Henríquez, P.A.; Ruz, G.A. Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers.
Neurocomputing 2017, 226, 109–116. [CrossRef]

155. Luo, M.; Zhang, L.; Liu, J.; Guo, J.; Zheng, Q. Distributed extreme learning machine with alternating direction method of
multiplier. Neurocomputing 2017, 261, 164–170. [CrossRef]

156. Wang, Y.; Dou, Y.; Liu, X.; Lei, Y. PR-ELM: Parallel regularized extreme learning machine based on cluster. Neurocomputing 2016,
173, 1073–1081. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/INCoS.2015.30
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.214
http://dx.doi.org/10.1016/j.procs.2016.05.509
http://dx.doi.org/10.1007/s11277-021-08368-5
http://dx.doi.org/10.1007/s12652-018-0994-x
http://dx.doi.org/10.1016/j.neucom.2018.08.062
http://dx.doi.org/10.1016/j.neucom.2016.11.040
http://dx.doi.org/10.1016/j.neucom.2016.03.112
http://dx.doi.org/10.1016/j.neucom.2015.08.066

	Introduction
	Related Reviews about Extreme Learning Machine
	Background
	Moore–Penrose Generalized Inverse
	Standard Model of Extreme Learning Machine
	Randomized Feedforward Neural Networks and ELM's Origin
	ELM Variants Implemented by Using Distributed and Parallel Computing
	Other Variants

	Methods for Solving Linear Systems with Parallel and Distributed Computing
	Review of Distributed and Parallel Systems for Extreme Learning Machine
	MapReduce
	Spark
	Graphics Processing Unit
	Other Tools and Technologies for Distributed and Parallel Computing

	Discussion
	Conclusions
	References

