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Abstract: Coffee is rich in phenolic acids, such as caffeic acid and chlorogenic acid (CGA). Polyphenol-
rich diets were shown to reduce the risk of metabolic syndrome (MeTS). Background and Objectives:
This systematic review and meta-analysis discusses the effects of coffee consumption and its dose-
response on MeTS parameters. Materials and Methods: PubMed and Scopus® were searched for
relevant articles published between 2015 and 2020. This review focused on randomised controlled
trials (RCTs) investigating the effect of coffee consumption on anthropometric measurements, gly-
caemic indices, lipid profiles, and blood pressure. Data from relevant studies were extracted and
analysed using random, fixed, or pooled effects models with 95% confidence intervals (CIs). Re-
sults: Green coffee extract (GCE) supplementation (180 to 376 mg) was found to reduce waist
circumference (weighted mean difference (WMD) = −0.39; 95% CI: −0.68, −0.10), triglyceride levels
(WMD = −0.27; 95% CI: −0.43, −0.10), high−density lipoprotein−cholesterol levels (WMD = 0.62;
95% CI: 0.34, 0.90), systolic blood pressure (WMD = −0.44; 95% CI: −0.57, −0.32), and diastolic blood
pressure (WMD = −0.83; 95% CI: −1.40, −0.26). Decaffeinated coffee (510.6 mg) reduced fasting
blood glucose levels (WMD = −0.81; 95% CI: −1.65, 0.03). The meta-analysis showed that the intake
of GCE containing 180 to 376 mg of CGA (administered in a capsule) and liquid decaffeinated coffee
containing 510.6 mg of CGA improved the MeTS outcomes in study participants. Conclusions: The
findings of the review suggested that the effect of coffee on MeTS parameters varies depending on
the types and doses of coffee administered. A more detailed RCT on specific coffee doses (with
adjustment for energy and polyphenol intake) and physical activity is needed to further confirm the
observed outcomes.

Keywords: metabolic syndrome; caffeinated coffee; decaffeinated coffee; green coffee extract;
chlorogenic acid

1. Introduction

Metabolic syndrome (MeTS) is a cluster of complex metabolic disorders [1] charac-
terised by the presence of any three of the following five medical conditions: abdominal
obesity, high serum triglyceride (TG) levels, low high-density lipoprotein cholesterol (HDL-
c) levels, elevated blood pressure, and elevated fasting blood glucose (FBG) levels [2]. The
global prevalence of MeTS is approximately 3.3% (range, 0%–19.2%), with a prevalence
of 11.9% (range, 2.8%–29.3%) in children with obesity and 29.2% (range, 10%–66%) in
adults with obesity [3]. According to estimates, 12%–37% and 12%–26% of the population
in Asia and Europe, respectively, are affected by MeTS [4]. Genetic and lifestyle-related
factors, such as alcohol intake, smoking, sedentary habits, and poor dietary habits, such as
intake of sugar-sweetened beverages, were identified as risk factors in MeTS development.
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Dietary interventions have helped control and improve MeTS parameters and, hence, are
considered to be the most effective preventive strategy for MeTS [5].

Coffee (Coffea spp., Coffea arabica, Coffea robusta, and Coffea liberica) is one of the most
popular beverages worldwide, with an estimated consumption of 500 billion cups per
year [5]. Bioactive compounds in coffee, such as chlorogenic acid (CGA), caffeine, niacin,
and magnesium, may play a role in reducing the risk of type 2 diabetes mellitus (T2DM)
and liver disease [6]. A previous study suggested that CGA may improve the antioxidant
status and reduce low-density lipoprotein cholesterol oxidation, whereas caffeine may slow
the inflammation process, thereby providing protection against free radical formation and
preventing endothelial damage [7]. Meanwhile, a study showed inconsistent results on the
association between coffee consumption and the risk of MeTS. The study suggested that
CGA may increase the total plasma homocysteine content, whereas caffeine may increase
blood pressure by stimulating the sympathetic nervous system [8].

However, even though coffee consumption and chronic diseases (e.g., T2DM and
cardiovascular diseases) were investigated in several studies, the association between the in-
take of either caffeinated or decaffeinated coffee and MeTS remains inconclusive. Previous
studies showed that ground and instant caffeinated coffees significantly increased energy
expenditure (3 to 12 h post ingestion) compared with decaffeinated coffee or placebo [9,10].
Early studies showed that caffeine, ground caffeinated coffee, and instant caffeinated coffee
increased lipolysis compared with decaffeinated coffee [11–14]. Another study showed
that acute caffeine ingestion increased glucose tolerance, while regular decaffeinated coffee
decreased glucose tolerance compared with placebo (dextrose) [15]. However, there is
limited evidence to suggest a link between caffeinated and decaffeinated coffee intake and
disease outcomes in patients with MeTS in an experimental study design. This systematic
review investigated the dose-dependent effects of caffeinated and decaffeinated coffee
consumption on MeTS outcomes. The review will provide new empirical evidence on the
effect of regular caffeinated and decaffeinated coffee consumption on metabolic syndrome
parameters.

2. Materials and Methods
2.1. Eligibility Criteria

Free-living men and women (aged from 18 to 70 years) with MeTS, who did not take
any medications, vitamins, and/or supplements during the study period, were selected.
Participants with dietary restrictions or conditions other than MeTS and women who were
pregnant or lactating were excluded.

The data from randomised controlled trials (RCTs) that investigated the effects of
coffee consumption were reviewed. RCTs were chosen as they are considered to form
the foundation of clinical research on interventions. The outcomes measured were waist
circumference, FBG levels, TG levels, HDL-c levels, systolic blood pressure (SBP), and
diastolic blood pressure (DBP). Only studies published between 2015 and 2020 and full-text
articles published in English were included in this review. Studies that were published in
languages other than English were excluded to avoid potential bias resulting from the poor
translation of information. Animal and in vitro studies were also excluded.

2.2. Search Strategy

This review was performed in accordance to the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines. PubMed (U.S. National Library
of Medicine and National Institutes of Health) and Scopus® (Elsevier B.V., Amsterdam,
The Netherlands) were used for this systematic review. Boolean operators were included
in the keyword searches of the two electronic databases. The main keywords used were
“MeTS terminology” (keyword 1), “MeTS outcome” (keyword 2), and “type of coffees”
(keyword 3). The search strategy was based on two clusters: cluster 1—keyword 1 AND
keyword 3; and cluster 2—keyword 2 AND keyword 3. The key search terms for MeTS
terminology (keyword 1) were “metabolic syndrome”, “metabolic syndrome X”, “in-
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sulin resistance syndrome X”, “metabolic X syndrome”, “dysmetabolic syndrome X”, and
“metabolic cardiovascular syndrome”. The key search terms for MeTS outcomes (keyword
2) were “abdominal obesity OR visceral obesity OR central obesity OR abdominal fat”,
“blood lipid profiles OR triglycerides OR triacylglycerols OR HDL-c”, “high cholesterol OR
hypercholesterolemia OR hypercholesterolaemia OR elevated cholesterol OR dyslipidemia
OR dyslipidemia OR dyslipoproteinemia OR dyslipoproteinaemia OR hyperlipidemia OR
hyperlipidaemia”, “hypertension OR high blood pressure OR systolic and diastolic pres-
sure OR hypertensive”, and “hyperglycemia OR hyperglycaemia OR glucose intolerance
OR impaired glucose intolerance OR fasting blood glucose”. The key search terms for the
types of coffees (keyword 3) were “Arabica coffee OR Coffea arabica”, “Robusta coffee OR
Coffea robusta”, “caffeinated coffee”, “decaffeinated coffee”, “filtered coffee”, “unfiltered
coffee”, “espresso”, “americano”, “cappuccino”, “latte”, “macchiato”, and “mocha”.

2.3. Data Management and Analysis

All articles were uploaded in the Mendeley referencing software, and duplicate articles
were removed using the “remove duplicate” function. Two reviewers independently screened
the titles and abstracts based on the abovementioned predefined criteria. Full-text articles
were reviewed for eligibility, irrelevant publications were excluded, and only the studies that
met the inclusion criteria were included in the qualitative and quantitative analyses.

2.4. Evaluation of Studies and Data Synthesis

The mean intergroup differences and percentage reduction, which compared the
values in the intervention group to baseline, were calculated for waist circumference,
FBG levels, TG levels, HDL-c levels, SBP, and DBP. To calculate percentage reduction and
increment, the following formula was applied: percentage reduction or increment = [final
reading − baseline/baseline] × 100.

For the meta-analysis, an online calculator was used to calculate the effect size
(Cohen’s d) based on the mean differences and standard deviation (SD) for each MeTS
outcome between the intervention and control groups [16]. The effect size between groups
was considered small (0.2), medium (0.5), or large (0.8). The standard error of the mean (SE)
for each outcome measure was calculated using the following formula: SE = es/

√
(es×n),

where “es” represents the effect size. Studies for which the effect size or SD was not stated
or could not be calculated were excluded from the meta-analysis. Cochran’s Q and I2 were
calculated automatically using Excel worksheets [17] after inserting the effect size and SE
of the mean. Cochran’s Q was used to confirm heterogeneity among data, whereas the I2

statistic was used to measure the heterogeneity level. A negative I2 value was considered
equivalent to zero (indicating that the data were homogenous), whereas I2 values of 25%,
50%, and 75% were considered to correspond to low, medium, and high heterogeneity
levels, respectively [18]. The fixed effects model was selected for low I2 values (<50%),
whereas the random effects model was selected for high I2 values (>50%). The mean effect
size data were statistically pooled in the meta-analysis and presented in a forest plot.

The risk of bias in each study was assessed using the Jadad scale. The scale was
used to assess the studies on the basis of randomisation, double blinding, drop-out, and
withdrawals [19]. The highest possible score obtained with this scale is five, which indicates
a low potential for reporting bias.

3. Results
3.1. Study Selection

Figure 1 shows the study selection process based on the PRISMA search strategy. A
total of 4750 studies were identified through PubMed (n = 606) and Scopus® (n = 4144).
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Figure 1. PRISMA flowchart and search strategy.

3.2. Study Characteristics

Table 1 shows the procedure of the selection of 19 RCTs (14 articles) published between
2015 and 2020 [20–33]. The number of participants in each trial (sample size, n) ranged from
10 to 142, with a total study population of 821. Five studies were conducted on apparently
healthy and/or overweight individuals with obesity; other studies were conducted on
individuals who were overweight or had obesity, dyslipidaemia, hypertension, or insulin
resistance. Three types of coffees were used in the RCTs: caffeinated, decaffeinated,
and green coffee extract (GCE) (considered as a type of decaffeinated coffee) (Table 2).
Caffeinated coffee contains 5 mg of caffeine per kg body weight to 69.12 mg of caffeine
per person per day (CGA content of 45.4 mg) in powdered form and 80 mg of caffeine in
a volume of 250 mL. Decaffeinated coffee, with a volume of 180–400 mL, contains 369 to
780 mg of CGA per day. Green coffee extract (GCE), in a range from 10 to 1000 mg, contains
180 to 500 mg of CGA (either in capsule or tablet form).
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Table 1. Summary of randomised controlled controlled trials (RCTs) included in systematic review (n = 16).

Author and Country Study Overview
Change from Final vs. Baseline 1 Percent Reduction or Increment (%)

[ Final−Baseline
Baseline ×100] p-Value Calculated

Effect Size (ES)
Intervention Control Intervention Control

Green coffee extract (GCE) (all in capsule form)

Haidari et al., 2017 [20]
Country: Iran

Subject: F: 64 (20–45 years), intervention:
30, control: 34

Study design: randomised,
double-blinded, parallel
Study duration: 8 weeks
MeTS outcome: obesity

(FMI: ≥8.7 kg/m2)
Intervention: 400 mg/d GCE containing

180 mg CGA
Control: 400 mg starch

FBG: −0.05 ± 0.08 mmol/L FBG: −0.02 ± 0.07 mmol/L FBG: −1.1 FBG: −0.4 FBG: 0.8 # FBG: −0.07

TG: −0.04 ± 0.09 mmol/L
HDL-c: 0.03 ± 0.01 mmol/l

TG: −0.06 ± 0.07 mmol/L
HDL-c: −0.05 ± 0.004 mmol/L

TG: −2.2
HDL-c: 2.4

TG: −3.4
HDL-c: −3.9

TG: 0.07 #

HDL-c: 0.15 #
TG: −0.25

HDL-c: 1.40

Alhamhany et al., 2018 [21]
Country: Iraq

Subject: M/F: 35 (20–55 years)
Study design: randomised, crossover,

single-arm
Study duration: 6 weeks

MeTS outcome: overweight/obesity
(BMI: ≥25 kg/m2)

Intervention: 1000 mg GCE
Control: not available

FBG: −0.77 ± 0.27 mmol/L N/A * FBG: −14.8 N/A * 0.001 # −0.48

TG: −0.19 ± 0.17 mmol/L
HDL-c 0.14 ± 0.06 mmol/L N/A * TG: −10.7

HDL-c: 15.6 N/A * TG: 0.061 #

HDL-c: 0.03 #
TG: −0.27

HDL-c: 0.58

Roshan et al., 2018 [26]
Country: Iran

Subject: M/F: 43 (18–70 years),
intervention: 21, control: 22
Study design: randomised,

double-blinded, parallel
Study duration: 8 weeks

MeTS outcome: metabolic syndrome
(according to IDF 3 guidelines)
Intervention: 800 mg/d of GCE

containing 372 mg CGA
Control: 800 mg starch

WC: −2.40 ± 2.54 cm WC: −0.66 ± 1.17 cm WC: −2.3 WC: −0.6 WC: 0.009 * WC: −0.42

FBG: −0.28 ± 3.34 mmol/L FBG: 1.63 ± 2.22 mmol/L FBG: −3.3 FBG: 22.4 FBG: 0.036 * FBG: −0.28

TG: −0.07 ± 0.60 mmol/L
HDL-c: 0.05 ± 0.22 mmol/L

TG: –0.25 ± 0.87 mmol/L
HDL-c: 0.05 ± 0.09 mmol/L

TG: −10.6
HDL-c: 5.1

TG: −3.4
HDL-c: 5.3

TG: 0.439 *
HDL-c: 0.923 *

TG: −0.18
HDL-c: 0.19

SBP: −13.76 ± 8.48 mmHg
DBP: −3.78 ± 7.30 mmHg

SBP: −6.56 ± 9.58 mmHg
DBP: −6.13 ± 15.84 mmHg

SBP: −9.8
DBP: −4.7

SBP: −4.7
DBP: −6.9

SBP: 0.013 *
DBP: 0.534 *

SBP: −0.46
DBP: −0.66
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Table 1. Cont.

Author and Country Study Overview
Change from Final vs. Baseline 1 Percent Reduction or Increment (%)

[ Final−Baseline
Baseline ×100] p-Value Calculated

Effect Size (ES)
Intervention Control Intervention Control

Beam et al., 2015 [28]
Country: USA

Subject: M: 10 (19–34 years)
Study design: randomised,
double-blinded, crossover

Study duration: 60–120 min
MeTS outcome: healthy and

overweight/class I obesity (BMI:
19.6–34.5 kg/m2)

Intervention 1: 5 mg/kg BW of caffeine +
75 g dextrose

Intervention 2: 10 mg/kg BW of GCE
(5 mg/kg CGA) + 75 g dextrose

Control: 5 mg/kg BW of dextrose +
75 g dextrose

Intervention 1:
FBG: 0.60 ± 0.21 mmol/L

Intervention 2:
FBG: 0.40 ± 0.29 mmol/L

FBG: 0.90 ± 0.21 mmol/L
Intervention 1: FBG:

12.8,
Intervention 2: FBG: 8.3

FBG: 19.1 N.S *

Intervention 1: FBG:
0.38

Intervention 2: FBG:
0.40

Al-Dujaili et al., 2016 [27]
Country: Jordan

Subject: M/F: 16 (19–32 years)
Study design: randomised,
single-blinded, crossover
Study duration: 2 weeks

MeTS outcome: healthy and
overweight/class I obesity (BMI:

18–35 kg/m2)
Intervention: 1000 mg/d GCE containing

500 mg CGA and 25 mg caffeine
Control: 25 mg tablet of caffeine

SBP: −4.60 ± 3.95 mmHg
DBP: −4.30 ± 2.80 mmHg

SBP: −0.80 ± 4.09 mmHg
DBP: −0.40 ± 3.20 mmHg

SBP: −3.9
DBP: −5.6

SBP: −0.7
DBP: −0.5

SBP: 0.001 *
DBP: <0.001 *

SBP: −0.27
DBP: −0.38

Banitalebi et al., 2019 [29]
Country: Iran

Subject: F: 60 (30–50 years), intervention
1: 15, intervention 2: 15, intervention 3:

15, control: 15
Study design: randomised,

single-blinded, parallel
Study duration: 8 weeks

MeTS outcome: class I and II obesity
(BMI: 30–40 kg/m2)

Intervention: 1 = Placebo (500 mg starch)
+ ERBT,

Intervention 2 = 500 mg GCE (~250 mg
CGA) + ERBT,

Intervention 3 = 500 mg GCE (~250 mg
CGA)

Control: 500 mg starch

Intervention 1:
WC: −2.57 ± 2.82 cm

Intervention 2:
WC: −2.54 ± 2.85 cm

Intervention 3:
WC: −3.10 ± 2.43 cm

WC: −1.00 ± 2.65 cm

Intervention 1: WC:
−2.6

Intervention 2: WC:
−2.5

Intervention 3: WC:
−3.0

WC: −1.0

Intervention 1:
WC: 0.001 #

Intervention 2:
WC: 0.001 #

Intervention 3:
WC: 0.001 #

Intervention 1:
WC: −0.60

Intervention 2:
WC: −0.45

Intervention 3:
WC: −0.07
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Table 1. Cont.

Author and Country Study Overview
Change from Final vs. Baseline 1 Percent Reduction or Increment (%)

[ Final−Baseline
Baseline ×100] p-Value Calculated

Effect Size (ES)
Intervention Control Intervention Control

Decaffeinated coffee

Intervention 1:
FBG: −0.31 ± 0.18 mmol/L

Intervention 2:
FBG: −0.55 ± 0.23 mmol/L

Intervention 3:
FBG: −0.13 ± 0.17 mmol/L

FBG: 0.47 ± 0.34 mmol/L

Intervention 1:
−5.9

Intervention 2:
−10.5

Intervention 3:
−2.5

9.3

Intervention 1:
FBG: 0.001 #

Intervention 2:
FBG: 0.001 #

Intervention 3:
FBG: 0.071 #

Intervention 1:
FBG: −0.69

Intervention 2:
FBG: −0.95

Intervention 3:
FBG: −0.54

Intervention 1:
TG: −0.10 ± 0.18 mmol/L

HDL-c: 0.07 ± 0.04 mmol/L
Intervention 2:

TG: −0.14 ± 0.15 mmol/L
HDL-c: 0.08 ± 0.07 mmol/L

Intervention 3:
TG: −0.06 ± 0.16 mmol/L

HDL-c: 0.03 ± 0.05 mmol/L

TG: −0.01 ± 0.17 mmol/L
HDL-c: 0.01 ± 0.08 mmol/L

Intervention 1:
TG: −5.6

HDL-c: 5.6
Intervention 2:

TG: −7.7
HDL-c: 6.4

Intervention 3:
TG: −3.6

HDL-c: 2.7

TG: −0.60
HDL-c: 0.80

Intervention 1:
TG: 0.012 #

HDL-c: 0.007 #

Intervention 2:
TG: 0.003 #

HDL-c: 0.010 #

Intervention 3:
TG: 0.071 #

HDL-c: 0.356 #

Intervention 1:
TG: −0.00

HDL-c: 0.55
Intervention 2:

TG: −0.05
HDL-c: 0.50

Intervention 3:
TG: −0.00

HDL-c: 0.49

Fasihi et al., 2019 [30]
Country: Iran

Subject: M/F: 43 (25–50 years),
intervention: 22, control: 21
Study design: randomised,

double-blinded, parallel
Study duration: 8 weeks

MeTS outcome: metabolic syndrome
(according to NCEP-ATP III 2 guidelines)
Intervention: 800 mg/d GCE containing

376 mg CGA (capsule form)
Control: 800 mg cellulose

WC: −1.40 ± 2.63 cm WC: −0.60 ± 2.97 cm WC: −1.3 WC: −0.5 WC: 0.14 * WC: −0.65

FBG: −0.73 ± 0.68 mmol/L FBG: 0.20 ± 0.57 mmol/L FBG: −8.4 FBG: 2.0 FBG: 0.25 * FBG: −0.48

TG: −0.27 ± 0.08 mmol/L
HDL-c: 0.09 ± 0.06 mmol/L

TG: −0.12 ± 0.06 mmol/L
HDL-c: −0.02 ± 0.06 mmol/L

TG: −11.3
HDL-c: 8.2

TG: −5.0
HDL-c: −1.9

TG: 0.09 *
HDL-c: 0.02 *

TG: −0.74
HDL-c: 0.66

SBP: −2.80 ± 2.02 mmHg
DBP: −6.40 ± 1.96 mmHg

SBP: −1.20 ± 1.86 mmHg
DBP: 2.00 ± 2.53 mmHg

SBP: −2.1
DBP: −6.7

SBP: −0.9
DBP: 2.1

SBP: 0.01 *
DBP: 0 *

SBP: −0.55
DBP: −1.50

Watanabe et al., 2019 [31]
Country: Japan

Subject: M/F: 142 (20–64 years),
intervention: 72, control: 70
Study design: randomised,

double-blinded, parallel
Study duration: 12 weeks

MeTS condition: overweight (BMI:
25–29 kg/m2)

Intervention: instant regular coffee
containing 369 mg CGA

Control: instant regular coffee containing
35 mg CGA (liquid form)

Volume: 180 mL

WC: −0.40 ± 0.85 cm WC: −0.10 ±0.79 cm WC: −0.4 WC: −0.1 WC: 0.012 * WC: −0.08

FBG: −0.04 ± 0.09 mmol/L FBG: 0.09 ± 0.07 mmol/L FBG: −0.8 FBG: 1.8 0.545* −0.06

TG: −0.06 ± 0.12 mmol/L
HDL-c: 0.01 ± 0.06 mmol/L

TG: 0.19 ± 0.17 mmol/L
HDL-c: 0.01 ± 0.06 mmol/L

TG: −4.3
HDL-c: 0.7

TG: −0.5
HDL-c: 0.7

TG: 0.965 *
HDL-c: 0.666 *

TG: −0.48
HDL-c: 0.12

SBP: –6.7 ± 2.17
DBP: −5.2 ± 1.64

SBP: –3.9 ± 2.30
DBP: −3.8 ± 1.70

SBP: −5.1
DBP: −6.4

SBP: −2.9
DBP: −4.6

SBP: 0.812 *
DBP: 0.395 *

SBP: −0.31
DBP: −0.33
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Table 1. Cont.

Author and Country Study Overview
Change from Final vs. Baseline 1 Percent Reduction or Increment (%)

[ Final−Baseline
Baseline ×100] p-Value Calculated

Effect Size (ES)
Intervention Control Intervention Control

Katada et al., 2018 [32]
Country: Japan

Subject: M: 15 (20–60 years)
Study design: randomised,
double-blinded, crossover
Study duration: 4 weeks

MeTS outcome: healthy and overweight
(BMI: 20.0–29.9 kg/m2)

Intervention 1: CGA-enriched and
HHQ-reduced coffee (CGA-HHQ (−):
428 mg CGA, 67 mg caffeine, 0.08 mg

HHQ) (liquid form)
Intervention 2: CGA-enriched and HHQ

non-reduced coffee (CGA-HHQ (+):
382 mg CGA, 66 mg caffeine, 0.57 mg

HHQ) (liquid form)
Control: not available

Volume: 185 mL

Intervention 1:
TG: −0.03 ± 0.15 mmol/L

HDL-c: 0.07 ± 0.13 mmol/L
Intervention 2:

TG: 0.08 ± 0.15 mmol/L
HDL-c: −0.05 ± 0.12 mmol/L

N/A *

Intervention 1:
TG: −2.8

HDL-c: 4.7
Intervention 2:

TG: 7.5
HDL-c: −3.3

N/A * N.S * TG: −0.18
HDL-c: 0.20

Agudelo-ochoa et al.,
2016 [33]

Country: Colombia

Subject: M/F: 74 (20–60 years),
intervention 1: 25, intervention 2: 24,

control: 25
Study design: randomised,

single-blinded, parallel
Study duration: 8 weeks

MeTS outcome: healthy and overweight
(BMI: 18.5–29.9 kg/m2)

Intervention 1: 420 mg CGA (MCCGA)
(liquid form)

Intervention 2: 780 mg CGA (HCCGA)
(liquid form)

Control: no coffee, no placebo
Volume: 400 mL/d

Intervention 1:
TG: 0.18 ± 0.20 mmol/L

HDL-c: 0.01 ± 0.10 mmol/L
Intervention 2:

TG: 0.01 ± 0.17 mmol/L
HDL-c: 0.01 ± 0.08 mmol/L

TG: 0.12 ± 0.26 mmol/L
HDL-c: 0.05 ± 0.09 mmol/L

Intervention 1:
TG: 13.5

HDL-c: 0.7
Intervention 2:

TG: 0.7
HDL-c: 0.8

TG: 9.3
HDL-c: 3.8

TG: 0.09#

HDL-c: 0.16#

Intervention 1:
TG: 0.10

HDL-c: 0.06
Intervention 2:

TG: 0.03
HDL-c: 0.13

Intervention 1:
SBP: 1.00 ± 2.90 mmHg
DBP: 1.00 ± 2.02 mmHg

Intervention 2:
SBP: −1.00 ± 2.67 mmHg
DBP: 1.00 ± 2.09 mmHg

SBP: −2.00 ± 2.02 mmHg
DBP: 0.0 ± 1.92 mmHg

Intervention 1:
SBP: 0.9
DBP: 1.4

Intervention 2:
SBP: −0.9
DBP: 1.3

SBP: −1.9
DBP: N.C N.S #

Intervention 1:
SBP: 0.33
DBP: 0.00

Intervention 2:
SBP: −0.40
DBP: 0.18
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Table 1. Cont.

Author and Country Study Overview
Change from Final vs. Baseline 1 Percent Reduction or Increment (%)

[ Final−Baseline
Baseline ×100] p-Value Calculated

Effect Size (ES)
Intervention Control Intervention Control

Sarria et al., 2018 [22]
Country: Spain

Subject: M/F: 52 (18–45 years)
Study design: randomised,
single-blinded, crossover
Study duration: 8 weeks

MeTS outcome: normocholesterolemic
(n = 25) (TC <200 mg/dL),

hypercholesterolemia (n = 27) (TC >
200–240 mg/dL)

Intervention: green/roasted coffee
beverage containing 510.6 mg CGA/d

(liquid form)
Control: control drink (water/isotonic
caffeine- and polyphenol-free drinks)

Normocholesterolemic:
WC: 0.50 ± 0.40 cm

Hypercholesterolemic:
WC: −1.20 ± 0.69 cm

Normocholesterolemic:
WC: 0.20 ± 0.40 cm

Hypercholesterolemic:
WC: −0.20 ± 0.69 cm

Normocholesterolemic:
WC: 0.7

Hypercholesterolemic:
WC: −1.6

Normocholesterolemic:
WC: 0.3

Hypercholesterolemic:
WC: −0.3

N.S *

Normocholesterolemic:
0.15

Hypercholesterolemic:
−0.28

Normocholesterolemic:
FBG: −0.17 ± 0.03 mmol/L

Hypercholesterolemic:
FBG: −2.1 ± 0.03 mmol/L

Normocholesterolemic:
FBG: 0.05 ± 0.03 mmol/L

Hypercholesterolemic:
FBG: −0.13 ± 0.03 mmol/L

Normocholesterolemic:
FBG: −4.1

Hypercholesterolemic:
FBG: −4.9

Normocholesterolemic:
FBG: 1.2

Hypercholesterolemic:
FBG: −3.0

FBG: 0.030 *

Normocholesterolemic:
FBG: −1.83

Hypercholesterolemic:
FBG: −0.66

Normocholesterolemic:
TG: −0.01 ± 0.02 mmol/L

Hypercholesterolemic:
TG: −0.04 ± 0.02 mmol/L

Normocholesterolemic:
TG: −0.02 ± 0.02 mmol/L

Hypercholesterolemic:
TG: −0.03 ± 0.02 mmol/L

Normocholesterolemic:
TG: −1.2

Hypercholesterolemic:
TG: −4.6

Normocholesterolemic:
TG: −2.5

Hypercholesterolemic:
TG: −3.4

TG: 0.017 *
*

Normocholesterolemic:
TG: −0.12

Hypercholesterolemic:
TG: −0.35

Normocholesterolemic:
SBP: −3.40 ± 0.61 mmHg
DBP: −2.30 ± 0.34 mmHg

Hypercholesterolemic:
SBP: −5.20 ± 0.83 mmHg
DBP: −5.60 ± 0.61 mmHg

Normocholesterolemic:
SBP: −0.70 ± 0.59 mmHg
DBP: −0.30 ± 0.31 mmHg

Hypercholesterolemic:
SBP: −3.60 ± 0.75 mmHg
DBP: −3.50 ± 0.57 mmHg

Normocholesterolemic:
SBP: −3.0, DBP: −3.3
Hypercholesterolemic:
SBP: −4.4, DBP: −7.3

Normocholesterolemic:
SBP: −0.6, DBP: −0.4
Hypercholesterolemic:
SBP: −3.0, DBP: −4.6

SBP: 0.001 *
DBP <0.001 *

Normocholesterolemic:
SBP: −0.93, DBP:

−1.28
Hypercholesterolemic:

SBP: −0.40, DBP:
−0.72
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Table 1. Cont.

Author and Country Study Overview
Change from Final vs. Baseline 1 Percent Reduction or Increment (%)

[ Final−Baseline
Baseline ×100] p-Value Calculated

Effect Size (ES)
Intervention Control Intervention Control

Kajikawa et al., 2018 [23]
Country: Japan

Subject: M/F: 37 years
Study 1: intervention 1: 10, intervention

2: 9 (53 ± 19 years)
Study 2: intervention 1: 9, control: 9

(56 ± 15 years)
Study design: randomised,
single-blinded, crossover

Study duration: 60–120 min
MeTS outcome: borderline (SBP:

130–139 mmHg or DBP: 85–89 mmHg) or
stage 1 hypertension (SBP: 140–159

mmHg or DBP: 90–99 mmHg)
Study 1: Intervention 1: beverage A (CGA:

412 mg, HHQ: 0.11 mg, CAF: 69 mg),
Intervention 2: beverage B (CGA: 373 mg,

HHQ: 0.76 mg, CAF: 75 mg)Study 2:
beverage

AControl: beverage C (CGA: 0 mg, HHQ:
0.1 mg, CAF: 59 mg) (liquid form)

Volume: 185 mL

Study 1:
Intervention 1:
TG: 60 min:

0.40 ± 0.26 mmol/L, 120 min:
0.65 ± 0.29 mmol/L

Intervention 2:
TG: 60 min:

0.30 ± 0.25 mmol/L, 120 min:
0.80 ± 0.33 mmol/L

Study 2:
Intervention 1:
TG: 60 min:

0.21 ± 5.51 mmol/L, 120 min:
0.60 ± 5.53 mmol/L

TG:
60 min: 0.24 ± 1.01 mmol/L

120 min: 0.64 ± 1.19 mmol/L

Study 1:
Intervention 1:

TG: 60 min: 28.6, 120
min: 46.4

Intervention 2:
TG: 60 min: 22.7, 120

min: 60.6
Study 2:

Intervention 1:
TG: 60 min: 15.3, 120

min: 43.8

TG:
60 min: 19.2

120 min: 51.2

Study 1:
TG: N.S #

Study 2:
TG: N. S #

Study 1:
60 min: 0.15

120 min: 0.05
Study 2:

60 min: 0.10
120 min: 0.07

Study 1:
Intervention 1:

SBP: 60 min: 1.00 ± 4.02 mmHg,
120 min: 0.0 ± 3.84

Intervention 2:
SBP: 60 min: −3.00 ± 3.66

mmHg, 120 min: −2.00 ± 4.02
mmHg
Study 2:

Intervention 1: SBP: 60 min: 1.00
± 4.30 mmHg, 120 min: 0.0 ±

5.00 mmHg

SBP:
60 min: 2.00 ± 5.16 mmHg

120 min: −1.00 ± 5.16 mmHg

Study 1:
Intervention 1: SBP: 60
min: 0.8, 120 min: N.C

Intervention 2: SBP:
60 min: −2.3,
120 min: −1.5

Study 2:
Intervention 1:

SBP: 60 min: 0.8,
120 min: N.C

SBP:
60 min: 1.5

120 min: −0.8

Study 1: SBP: N.S #

Study 2: SBP: N.S #

Study 1:
60 min: 0.18

120 min: 0.06
Study 2:

60 min: 0.15
120 min: 0.04
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Table 1. Cont.

Author and Country Study Overview
Change from Final vs. Baseline 1 Percent Reduction or Increment (%)

[ Final−Baseline
Baseline ×100] p-Value Calculated

Effect Size (ES)
Intervention Control Intervention Control

Caffeinated coffee (all in liquid form)

Teng et al., 2016 [24]
Country: Malaysia

Subject: M/F: 104 (19–26 years),
intervention: 53, control: 51
Study design: randomised,

double-blinded, parallel
Study duration: 60 min

MeTS outcome: healthy and
overweight/obesity (BMI ≥ 25 kg/m2)
Intervention: instant coffee containing

82.2 mg caffeine
Control: instant coffee containing
undetectable decaffeinated coffee

Volume: 250 mL

SBP: 0.65 ± 7.81 mmHg
DBP: 0.62 ± 6.46 mmHg

SBP: −2.12 ± 6.28 mmHg
DBP: −1.49 ± 4.91 mmHg

SBP: 0.6
DBP: 1.0

SBP: −1.8
DBP: −2.2

SBP: 0.05 *
DBP: 0.64 *

SBP: 0.08
DBP: 0.07

Alperet et al., 2019 [25]
Country: Switzerland

Subject: M/F: 126 (36–67 years),
intervention: 62, control: 64
Study design: randomised,

double-blinded, parallel
Study duration: 24 weeks

MeTS condition: overweight (BMI:
22.5–35.4 kg/m2) and non-insulin

sensitive (HOMA-IR ≥ 1.30)
Intervention: 100% instant Robusta
coffee + 73.7% non-diary creamer

(69.12 mg caffeine/d and
45.4 mg CGA/d)

Control: 32.5% coloured non-dairy
creamer + 67.5% non-dairy creamer

(0 mg caffeine and CGA)

WC: −2.76 ± 0.14 cm WC: 0.58 ± 0.13 cm WC: −3.0 WC: 0.6 WC: 0.39 # WC: −0.70

FBG: 0.30 ± 0.18 mmol/L FBG: 0.11 ± 0.18 mmol/L FBG: 6.3 FBG: 2.3 FBG: 0.09 # FBG: 0.16

TG: −0.03 ± 0.19 mmol/L
HDL-c: 0.04 ± 0.18 mmol/L

TG: 0.09 ± 0.18 mmol/L
HDL-c: 0.00 ± 0.18 mmol/L

TG: −2.2
HDL-c: 3.4

TG: 7.5
HDL-c: N.C

TG: 0.69 #

HDL-c: 0.18 #
TG: −0.03

HDL-c: 0.01

SBP: 1.36 ± 0.18 mmHg
DBP: −0.01 ± 0.18 mmHg

SBP: −1.66 ± 0.18 mmHg
DBP: −1.01 ± 0.18 mmHg

SBP: 1.1
DBP: −0.01

SBP: −1.3
DBP: −1.3

SBP: 0.33 #

DBP: 0.16#
SBP: 2.56

DBP: −1.13

1 Values are mean + SD; N/A, not available; N.S, non-significance; N.C, no change; M, male; F, female; CAF, caffeine; DC, decaffeinated coffee; HHQ, hydroxyhydroquinone; CGA, chlorogenic acid; GCE, green
coffee extract; MCCGA, medium chlorogenic acid content; HCCGA, high chlorogenic acid content; ERBT, elastic resistance band training; WC, waist circumference; FBS, fasting blood sugar; TG, triglyceride;
HDL-c, high density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure. 2 NCEP-ATP III, National Cholesterol Education Program (Adult Treatment Panel III) guidelines (MeTS
should have three of the following five features: waist circumference >102 cm for men and >88 cm for women, triglyceride >150 mg/dL, HDL-c <40 mg/dL for men or <50 mg/dL for women, blood pressure
>130/85 mmHg or fasting blood glucose >100 mg/dL). 3 IDF, International Diabetes Federation guidelines (having central obesity (waist circumference >102 cm for men and >88 cm in women) with two of the
following risk factors: triglyceride >150 mg/dL, HDL-c <40 mg/dL for men and <50 mg/dL for women, blood pressure >130/85 mmHg or fasting blood glucose >100 mg/dL). Effect size of ± 0.2, ± 0.5, and
± 0.8 represent small, medium, and large effect size, respectively. * p-value of treatment vs. control; # p-value of treatment vs. baseline.
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Table 2. Summary findings on coffee types and doses used in RCTs.

Type of Coffee No. of Study Mode of Delivery Dose

Caffeinated n = 6
Powder 5 mg/kg BW–69.12 mg caffeine *

Liquid 80 mg caffeine *, volume: 250 mL

Decaffeinated (including
green coffee extract, GCE)

n = 11 Liquid 369–780 mg CGA *, volume: 180–400 mL

n = 9 Capsule/tablet 10 mg/kg BW–1000 mg GC * containing
180–500 mg CGA

* dose used was based on per person/day.

3.3. Risk of Biased Based on Jadad Scale

Table 3 shows the risks of bias based on randomisation, double blinding, and drop-
outs in the RCTs [19]. Most studies showed a low risk of bias, with a score of 3 or greater.
Two studies scored less than 2.5, indicating a high risk of bias.

Table 3. Jadad scores of RCTs (n = 14).

Studies

Score Descriptions

Randomisation
(Yes/No)

Appropriateness
of Randomisation

(Detail)

Blinding
(Yes/No) a

Appropriateness
of Blinding

An Account of
All Participants

or Description of
Withdrawal or

Dropouts

Total Score

Haidari et al., 2017 [20] 1 1 1 N/A N/A 3.0
Alhamhany et al., 2018 [21] 1 N/A N/A N/A N/A 1.0

Roshan et al., 2018 [26] 1 1 1 1 1 5.0
Al-Dujaili et al., 2016 [27] 1 1 0.5 N/A 1 3.5

Beam et al., 2015 [28] 1 N/A 1 N/A 1 3.0
Banitalebi et al., 2019 [29] 1 1 1 1 1 5.0

Fasihi et al., 2019 [30] 1 1 1 N/A 1 4.0
Watanabe et al., 2019 [31] 1 1 1 1 1 5.0

Katada et al., 2018 [32] 1 N/A 1 1 1 4.0
Agudelo-ochoa et al., 2016 [33] 1 N/A 0.5 N/A 1 2.5

Sarria et al., 2016 [22] 1 N/A 1 N/A 1 3.0
Kajikawa et al., 2018 [23] 1 N/A 0.5 1 1 3.5

Teng et al., 2016 [24] 1 1 1 1 1 5.0
Alperet et al., 2019 [25] 1 1 1 1 1 5.0

a double blinded = 1 point; single blinded = 0.5 point; N/A: not available.

3.4. Summary of Systematic Review and Meta-Analysis

The outcomes evaluated in this review were waist circumference, FBG levels, TG
levels, HDL-c levels, SBP, and DBP. Fourteen RCTs with 821 participants were included
in the meta-analysis. Three studies investigated two interventions each (with different
doses of coffee) and were considered separately in the analyses [23,29,33]. Sarria et al.
investigated two groups (normocholesterolaemia and hypercholesterolaemia), and the data
from the two groups were treated as findings from two different studies [22].

3.4.1. Effect of Coffee on Waist Circumference

Eight studies investigated the effect of caffeinated coffee (n = 1), decaffeinated coffee
(n = 3), and GCE (n = 4) on waist circumference (Table 1). GCE intake significantly reduced
waist circumference by 1.3% to 3.0%, whereas caffeinated and decaffeinated coffee reduced
the waist circumference by 0.3% and 0.4% to 1.6%, respectively. However, as shown
by Sarria et al., decaffeinated coffee increased the mean waist circumference by 0.7% in
normocholesterolaemic participants [22].

Two studies with three trials were included in the meta-analysis investigating the
effect of decaffeinated coffee intake on waist circumference. The data from these stud-
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ies showed a high level of heterogeneity (I2 = 83.6%) and, hence, were analysed using
random effects analysis. Decaffeinated coffee showed a small effect size on mean waist
circumference reduction, with d ranging from −0.08 to −0.28 (Figure 2). Two out of three
decaffeinated coffee interventions led to body weight reduction (treatment group favoured).
Decaffeinated coffee containing 510.6 mg of CGA showed the greatest effect size in hyperc-
holesterolaemic participants (d = −0.28, 95% CI: −0.48, −0.08), followed by that containing
369 mg of CGA (d = −0.08, 95% CI: −0.12, −0.04). However, Sarria et al. showed that
the mean waist circumference increased (d = 0.15, 95% CI: −0.01, 0.31) after decaffeinated
coffee intake (favoured control group) [22]. The pooled effect size from the meta-analysis
was d = −0.06 (95% CI: −0.25, 0.12) (Figure 2).
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Figure 2. Forest plot showing the effect of decaffeinated coffee and GCE on waist circumference, expressed as mean
differences between the values obtained from the intervention and control groups. A negative effect size indicates that
decaffeinated coffee and GCE supplements reduce waist circumference. Meanwhile, a positive effect size indicates that
decaffeinated coffee increases waist circumference. Horizontal lines represent 95% CIs. Diamonds represent the pooled effect
size from the random effect analysis. CGA: chlorogenic acid, CI: confidence interval, ERBT: elastic resistance band training,
GCE: green coffee extract. The values ± 0.2, ± 0.5 and ± 0.8 represent small, medium, and large effect sizes [22,26,29–31].

GCE supplementation tended to reduce waist circumference with a small (d = −0.07)
to moderate effect size (d = −0.65) (Figure 2) and reduced the waist circumference of
participants in all interventions (treatment group favoured). GCE containing 376 mg of
CGA (d = −0.65, 95% CI −0.89, −0.41) showed the greatest effect size, followed by that
containing 250 mg of CGA (administered along with elastic resistance band training (ERBT))
(d = −0.45, 95% CI: −0.63, −0.27), 372 mg of CGA (d = −0.42, 95% CI: −0.62, −0.22), and
250 mg of CGA (d =−0.07, 95% CI:−0.13,−0.01). The data from the studies showed a high
level of heterogeneity (I2 = 93%) and, hence, were analysed using random effects analysis.
The meta−analysed pooled effect size of GCE supplementation was d = −0.39 (95% CI:
−0.68, −0.10) (Figure 2).

3.4.2. Effect of Coffee on FBG Levels

Twelve interventions investigated the effect of caffeinated coffee (n = 2), decaffeinated
coffee (n = 3), and GCE (n = 7) on FBG levels. GCE induced the highest percentage FBG
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reduction (1.1% to 14.8%), followed by decaffeinated coffee (0.8% to 4.9%). In contrast,
Beam et al. showed that GCE supplementation increased the FBG levels by 8.3% compared
with baseline, although not significantly [28] (Table 1).

Nine studies with 12 trials investigating the effects of caffeinated and decaffeinated
coffee on FBG levels were included in the meta-analysis. Caffeinated and decaffeinated
coffee showed a small effect size by increasing the mean FBG levels, with d = 0.16 and 0.38,
respectively (Figure 3). Caffeinated coffee intake (n = 2) increased the FBG levels (control
group favoured). The greatest effect size was observed at a caffeine intake of 5 mg/kg body
weight (approximately 332 to 554 mg) (d = 0.38, 95% CI: 0.01, 0.75), followed by 69.12 mg of
caffeine intake (d = 0.16, 95% CI: 0.08, 0.24). The data showed low levels of heterogeneity
(I2 = 22.1%) and, hence, were subjected to fixed effects analysis. The meta-analysed pooled
effect size of caffeinated coffee was d = 0.17 (95% CI: 0.09, 0.25) (Figure 3).
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Figure 3. Forest plot showing the effect of caffeinated coffee, decaffeinated coffee, and GCE on FBG levels, expressed as
mean differences between the values obtained from the intervention and control groups. A negative effect size indicates that
decaffeinated coffee and GCE supplements reduce FBG levels. Meanwhile, a positive effect size indicates that caffeinated
coffee and GCE supplements increase FBG levels. Horizontal lines represent 95% CIs. Diamonds represent the pooled effect
size from random effects analysis. CAF: caffeine, CGA: chlorogenic acid, CI: confidence interval, ERBT: elastic resistance
band training, FBG: fasting blood glucose, GCE: green coffee extract. The values ± 0.2, ± 0.5 and ± 0.8 represent small,
medium, and large effect sizes. * CGA dose not specified, ** CGA content: 332–554 mg [20–22,25,26,28–31].

Figure 3 shows the effect size of decaffeinated coffee intake on the reduction of FBG
levels; small to very large effect sizes were observed (d = −0.06 and d = −1.83). All studies
showed that the treatment group was favoured (reduced FBG levels). After the intake of
decaffeinated coffee (containing 510.6 mg of CGA), normocholesterolaemic participants
showed a considerably larger effect size than hypercholesterolaemic participants, with d
equal to −1.83 (95% CI: −2.36, −1.30) and −0.66 (95% CI: −0.97, −0.35), respectively. A
lower dose of decaffeinated coffee containing 369 mg of CGA in overweight participants
led to a smaller effect size, with d = −0.06 (95% CI: −0.10, −0.02). The data showed a
high level of heterogeneity, with I2 = 96.4%, and, hence, were subjected to random effects
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analysis. The meta-analysed pooled effect size of decaffeinated coffee was d = −0.81 (95%
CI: −1.65, 0.03) (Figure 3).

Six studies with seven trials were included in the meta-analysis to investigate the
effect of GCE supplementation on FBG levels. Figure 3 shows the effect size on mean
FBG level reduction with small to large effect sizes (d = −0.07 and −0.95). Six out of
seven interventions with GCE reduced the FBG levels compared with the baseline. GCE
containing 250 mg of CGA combined with ERBT showed the greatest effect size (d = −0.95,
95% CI: −1.62, −0.28), followed by GCE containing 250 mg of CGA (GCE intake only),
GCE containing 376 mg of CGA, 1000 mg of GCE (CGA dose unspecified), GCE containing
372 mg of CGA, and GCE containing 180 mg of CGA (d = −0.54, 95% CI: −1.19, 0.11;
d = −0.48, 95% CI: −1.85, 0.89; d = −0.48, 95% CI: −1.01, 0.05; d = −0.28, 95% CI: −2.02,
1.46; and d = −0.07, 95% CI: −0.23, 0.09, respectively). One trial reported a null effect on
FBG level reduction (favoured control group). Beam et al. showed that CGA supplemen-
tation (at 332 to 554 mg/person/day) increased the mean FBG levels, with d = 0.40 (95%
CI: −0.27, 1.07) [28]. The meta-analysed pooled effect size of GCE supplementation was
d = −0.30 (95% CI: −0.62, 0.03), with moderate heterogeneity of I2 = 51.1% (random effects
analysis) (Figure 3).

3.4.3. Effect of Coffee on TG Levels

The effect of coffee intake on TG levels was evaluated on short-term (60–120 min)
and long-term (8–24 weeks) bases. Data from three short-term interventions on the effects
of decaffeinated coffee on TG levels were analysed. Additionally, data from fourteen
long-term interventions on the effect of coffee on TG levels (caffeinated coffee (n = 1),
decaffeinated coffee (n = 7), and GCE (n = 6)) were analysed. Decaffeinated coffee intake
increased the mean TG levels, with the increase ranging from 43.8% to 60.6%. GCE was the
most effective in reducing TG levels compared to baseline, with a percentage reduction
ranging from 2.2% to 11.3% (Table 1).

Overall, five studies with eight trials were included in the meta-analysis (Figure 4).
Mean TG level reduction showed a small effect size with the d value ranging from 0.03
to −0.48 (Figure 4). Four out of eight decaffeinated coffee interventions showed the
reduction of TG levels (treatment group favoured). Decaffeinated coffee containing 369 mg
of CGA showed the greatest effect size (d = −0.48, 95% CI: −0.60, −0.36), followed by
that containing 510.6 mg of CGA (in hypercholesterolaemic participants), 428 mg of CGA,
and 510.6 mg of CGA (normocholesterolaemic participants) (d = −0.35, 95% CI: −0.57;
−0.13, d = −0.18, 95% CI: −0.40, 0.04; and d = −0.12, 95% CI: −0.26, 0.02, respectively).
Four trials showed a null effect on the mean TG level reduction (favoured control group).
Decaffeinated coffee with CGA content ranging from 412 to 780 mg showed an effect size
ranging from d = 0.03 (95% CI:−0.01, 0.07) to d = 0.10 (95% CI: 0.02, 0.18). The data showed
a high level of heterogeneity with I2 = 92.3% and, hence, were subjected to random effects
analysis. Decaffeinated coffee showed small pooled effect size on TG levels, with d = −0.10
(95% CI: −0.22, 0.03) (Figure 4).

GCE intake (in five trials) showed small to large effect sizes on TG levels, with
d = −0.05 and d = −0.74, respectively (Figure 4). All GCE interventions reduced the TG
levels (treatment group favoured). GCE containing 376 mg of CGA showed the greatest
effect size (d = −0.74, 95% CI: −0.99, −0.49), followed by 1000 mg of GCE (CGA dose not
specified) (d = −0.27, 95% CI: −0.45, −0.09), and GCE containing 180, 372, and 250 mg of
CGA (CGA + ERBT) (d = −0.25, 95% CI: −0.37, −0.13; d = −0.18, 95% CI: −0.30, −0.06;
d = −0.05, 95% CI: −0.11, 0.01; respectively). Overall, the meta−analysis showed that GCE
supplementation had a small pooled effect size with a high level of heterogeneity on the
mean reduction in TG levels (pooled effect size of −0.27, 95% CI: −0.43, −0.10; I2 = 88.9%)
(Figure 4).
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Figure 4. Forest plot showing the effect of decaffeinated coffee and GCE on TG levels, expressed as mean differences
between the values obtained in the intervention and control groups. A negative effect size indicates that decaffeinated coffee
and GCE supplements reduce TG levels. Meanwhile, a positive effect size indicates that decaffeinated coffee increases TG
levels. Horizontal lines represent the 95% CIs. Diamonds represent the pooled effect size from the random effect analysis.
CGA: chlorogenic acid, CI: confidence interval, ERBT: elastic resistance band training, GCE: green coffee extract, HCCGA:
high CGA content, MCCGA: medium CGA content, TG: triglyceride. The values ± 0.2, ± 0.5, and ± 0.8, represent small,
medium, and large effect sizes, respectively. * CGA dose not specified [21–23,26,29–34].

3.4.4. Effect of Coffee on HDL-c Levels

Fourteen interventions reported the effect of coffee (caffeinated coffee (n = 1), decaf-
feinated coffee (n = 7), and GCE (n = 6)) on HDL-c levels. GCE caused the greatest increase
in HDL-c levels, with the percentage of increase ranging from 2.4% to 15.6% (Table 1).

Four studies with six trials were included in the meta-analysis to investigate the effect
of decaffeinated coffee on serum HDL-c levels. The effect size of mean increases on HDL-c
levels (with small to large effect size; d = 0.06 and d = −0.80) is shown in Figure 5. Five out
of six types of decaffeinated coffees increased the HDL-c levels (treatment group favoured).
The greatest effect size was observed with decaffeinated coffee containing 510.6 mg of CGA
(normocholesterolaemic participants), with d = 0.43 (95% CI: 0.18, 0.68), followed by that
observed with decaffeinated coffee containing 428, 780 (high CGA content, HCCGA), 369,
and 420 mg of CGA (medium CGA content, MCCGA), with d = 0.20 (95% CI: −0.04, 0.44),
0.13 (95% CI: 0.05, 0.21), 0.12 (95% CI: 0.06, 0.18), and 0.06 (95% CI: 0.00, 0.12), respectively.
Meanwhile, one trial showed a null effect of decaffeinated coffee on HDL-c levels (favoured
control group). Decaffeinated coffee containing 510.6 mg of CGA (hypercholesterolaemic
participants) showed an effect size of d = −0.80 (95% CI: −1.13, −0.47). The data showed
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a high level of heterogeneity, with I2 = 86.8%, and, hence, were analysed using random
effects analysis. The meta-analysed pooled effect size of decaffeinated coffee was d = 0.08
(95% CI: −0.05, 0.20) (Figure 5).
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Figure 5. Forest plot showing the effect of decaffeinated coffee and GCE supplements on HDL-c levels, expressed as
mean differences between the values obtained in the intervention and control groups. A positive effect size indicates that
decaffeinated coffee and GCE supplements increased the HDL-c levels. Meanwhile, a negative effect size indicates that
decaffeinated coffee reduced the HDL-c levels. Horizontal lines represent the 95% CIs. Diamonds represent the pooled effect
size from the random effect analysis. CGA: chlorogenic acid, CI: confidence interval, GCE: green coffee extract, HCCGA:
high CGA content, HDL-c: high-density lipoprotein-cholesterol, MCCGA: medium CGA content. The values ± 0.2, ± 0.5
and ± 0.8, represent small, medium, and large effect sizes, respectively. * CGA dose not specified [21,22,26,29–34].

Five studies with six trials that investigated the effect of GCE on HDL-c levels were
included in the meta-analysis (Figure 5). GCE showed a small-to-large effect size on
mean HDL-c levels, with d = 0.19 and 1.40. All GCE interventions increased the serum
HDL-c levels (treatment group favoured). GCE containing 180 mg of CGA showed the
greatest effect size (d = 1.40, 95% CI: 1.11, 1.69), followed by that containing 376 mg of
CGA, 1000 mg of CGE (CGA dose not specified), 250 mg of CGA (administered along with
ERBT), 250 mg of CGA, and 372 mg of CGA (with d = 0.66, 95% CI: 0.42, 0.90; d = 0.58, 95%
CI: 0.33, 0.83; d = 0.50, 95% CI: 0.32, 0.68; d = 0.49, 95% CI: 0.31, 0.37; and d = 0.19, 95% CI:
0.05, 0.33, respectively). A high level of heterogeneity (I2 = 91.3%) was observed in these
data; hence, they were analysed using random effects analysis. GCE showed a moderate
pooled effect size with d = 0.62 (95% CI: 0.34, 0.90) (Figure 5).

3.4.5. Effect of Coffee on SBP

The effect of coffee consumption on SBP was evaluated on a short-term (60–120 min)
and long-term (8–24 weeks) basis. Three short-term intervention studies investigated
the effect of coffee (caffeinated coffee (n = 1) and decaffeinated coffee (n = 2)) on SBP.
Decaffeinated coffee was more effective than caffeinated coffee in reducing SBP, with a mean
percentage reduction of 1.5% and 0.6%, respectively. Nine long-term trials investigated
the effect of coffee on SBP (caffeinated coffee (n = 1), decaffeinated coffee (n = 5), and GCE
(n = 3)). Among the different types of coffee, GCE was the most effective in reducing SBP,
with a percentage reduction ranging from 2.1% to 9.8% (Table 1).

Figure 6 shows the meta-analysis of the effects of caffeinated coffee on SBP. Caffeinated
coffee showed a small to very large effect size on mean SBP, with d ranging from 0.08 to
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2.56. Caffeinated coffee increased SBP (favoured control group) compared to that in the
control group. Caffeinated coffee containing 69.12 mg of caffeine showed the highest effect
size (d = 2.56, 95% CI: 2.29, 2.83), followed by that containing 80 mg of caffeine (d = 0.08,
95% CI: 0.02, 0.14). A high level of heterogeneity (I2 = 99.7%) was observed in the data;
hence, the data were analysed using random effects analysis. A large pooled effect size
was reported for this meta-analysis, with d = 1.32 (95% CI: −1.11 to 3.75) (Figure 6).
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Figure 6. Forest plot showing the effect of caffeinated coffee, decaffeinated coffee, and GCE supplements on SBP, expressed
as mean differences between the values obtained from the intervention and control groups. A negative effect size indicates
that decaffeinated coffee and GCE supplements reduce SBP. Meanwhile, a positive effect size indicates that caffeinated and
decaffeinated coffee increase SBP. Horizontal lines represent 95% CIs. Diamonds (I2 < 50%) represent the pooled effect
size from fixed effects analysis. I2 >50% represents the pooled effect size from random effects analysis. CGA: chlorogenic
acid, CI: confidence interval, GCE: green coffee extract, HCCGA: high CGA content, MCCGA: medium CGA content, SBP:
systolic blood pressure. The values ± 0.2, ± 0.5 and ± 0.8 represent small, medium, and large effect sizes [22–27,30,31,33].

Four studies with seven trials were included in the meta-analysis for investigating
the effect of decaffeinated coffee on SBP. Decaffeinated coffee showed a small to large
effect size on SBP reduction, with d values of 0.04 and -0.93 (Figure 6). In five out of seven
interventions with decaffeinated coffee, SBP was reduced (treatment group favoured).
Decaffeinated coffee containing 510.6 mg of CGA showed the greatest effect size (in nor-
mocholesterolaemic participants) (d = −0.93, 95% CI: −1.30, −0.53), followed by that
containing 780 mg of CGA (HCCGA), 510.6 mg of CGA (in hypercholesterolaemic partici-
pants), 369 mg of CGA, and 412 mg of CGA (d = −0.40, 95% CI: −0.54, −0.26; d = −0.40,
95% CI: −0.64, −0.16; d = −0.31, 95% CI: −0.41, −0.21; and d = −0.06, 95% CI: −0.18, 0.06;
respectively). Two trials showed a null effect on SBP reduction (favoured control group).
Decaffeinated coffee containing 412 mg of CGA and 420 mg of MCCGA showed effect
sizes with d values of 0.04 (95% CI: −0.06, 0.14) and 0.33 (95% CI: 0.19, 0.47), respectively.
A high heterogeneity level of I2 = 94.4% was observed in the data; hence, the data were
analysed using random effects analysis. Decaffeinated coffee showed a small pooled effect
size on SBP with d = −0.22 (95% CI: −0.43, −0.21) (Figure 6).

GCE supplementation showed a small to moderate effect size in mean SBP reduction
with d ranging from −0.27 to −0.55 (Figure 6). All GCE interventions reduced the SBP
(treatment group favoured). GCE containing 376 mg of CGA showed the greatest effect
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size (d = −0.55, 95% CI: −0.77, −0.33), followed by that containing 372 and 500 mg of CGA
(d = −0.46, 95% CI: −0.66, −0.26 and d = −0.27, 95% CI: −0.52, −0.02, respectively). A
low level of heterogeneity (I2 = 27.2%) was observed in this meta-analysis and, hence, data
were analysed using fixed effects analysis. The meta-analysis of GCE supplementation
data showed a small pooled effect size with d = −0.44 (95% CI: −0.57, −0.32) (Figure 6).

3.4.6. Effect of Coffee on DBP

The effect of coffee intake on DBP was evaluated on short-term (60–120 min) and long-
term (8–24 weeks) bases, with the effect of caffeinated coffee investigated only on a short-
term basis. Caffeinated coffee increased the DBP by 1.1% compared to the baseline (Table 1).
Eight studies investigated the long-term effect of the consumption of coffee (caffeinated
coffee (n = 1), decaffeinated coffee (n = 4), and GCE (n = 3)) on DBP. Decaffeinated coffee
reduced the DBP by 7.3% to 3.3% compared to the baseline; however, in some studies,
decaffeinated coffee also increased the DBP by 1.3% to 1.4% compared to the baseline
(Table 1).

Data from only two trials on caffeinated coffee were included in the meta-analysis
(Figure 7). Caffeinated coffee containing 69.12 mg of caffeine reduced DBP (treatment group
favoured) with an effect size of d = −1.13 (95% CI: −1.31, −0.95). Teng et al. showed that
caffeinated coffee containing 80 mg of caffeine increased the DBP with an effect size of d = 0.07
(95% CI: 0.01, 0.13) [24]. A high level of heterogeneity (I2 = 99.4%) was observed in the data
and, hence, the data were analysed using random effects analysis. The meta-analysis showed
a moderate pooled effect size with d = −0.53 (95% CI: −1.70, 0.65) (Figure 7).
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Figure 7. Forest plot showing the effect of caffeinated coffee, decaffeinated coffee, and GCE supplements on DBP, expressed
as mean differences between the values obtained in the intervention and control groups. A negative effect size indicates that
caffeinated coffee, decaffeinated coffee, and GCE supplements reduce DBP. Meanwhile, a positive effect size indicates that
caffeinated and decaffeinated coffee increase DBP. Horizontal lines represent 95% CIs. Diamonds represent the pooled effect
size from random effects analysis. CGA: chlorogenic acid, CI: confidence interval, GCE: green coffee extract, DBP: diastolic
blood pressure, HCCGA: high CGA content, MCCGA: medium CGA content. The values ± 0.2, ± 0.5 and ± 0.8 represent
small, medium, and large effect sizes [22,24–27,30,31,33].

Three studies with four trials were included in the meta-analysis to investigate the
effect of decaffeinated coffee on DBP. The effect size on mean DBP reduction ranged
from small to very large, with d ranging from 0.18 to −1.28 (Figure 7). In three out of
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four trials on decaffeinated coffee, the mean DBP value was reduced (treatment group
favoured). Decaffeinated coffee containing 510.6 mg of CGA (in normocholesterolaemic
participants) showed the greatest effect size (d = −1.28, 95% CI: −1.73, −0.83), followed
by that containing 510.6 mg of CGA (in hypercholesterolaemic participants) (d = −0.72,
95% CI: −1.03, −0.41) and 369 mg of CGA (d = −0.33, 95% CI: −0.43, −0.23). One trial
showed a null effect on mean DBP reduction (favoured control group). Decaffeinated
coffee containing 780 mg of CGA (HCCGA) showed an effect size of d = 0.18 (95% CI: 0.08,
0.28) [33]. The data from these studies showed a high level of heterogeneity (I2 = 96.8%)
and, hence, were analysed using random effects analysis. Decaffeinated coffee showed a
moderate pooled effect size on DBP (d = −0.49, 95% CI: −0.93, −0.05) (Figure 7).

Three intervention studies were included in the meta-analysis to investigate the effect
of GCE supplementation on DBP. GCE showed a small to large effect size on DBP, with
d = −0.38 and−1.50 (Figure 7). All interventions reduced DBP (treatment group favoured).
GCE containing 376 mg of CGA showed the greatest effect size (d = −1.50, 95% CI: −1.87,
−1.13), followed by that containing 372 and 500 mg of CGA (d = −0.66, 95% CI: −0.90,
−0.42 and d = −0.38, 95% CI: −0.67, −0.09, respectively). The data showed a high level
of heterogeneity (I2 = 91.0%); hence, they were analysed using random effects analysis. A
large pooled effect size was observed with d = −0.83 (95% CI: −1.40, −0.26) (Figure 7).

4. Discussion

Caffeinated and decaffeinated coffees were the primary types of coffee used in
the studies identified in this meta-analysis. Decaffeinated coffee contains 369–780 mg
of CGA [22,23,30–33]. Only one study reported the CGA content of caffeinated coffee
(45.4 mg) [28]. GCE is made from decaffeinated and unroasted coffee beans and, therefore,
is classified as decaffeinated coffee [35]. GCE contains 180 to 500 mg CGA [20,21,26–29].
Fourteen studies showed an average risk of bias (score of 3 or above), whereas the remain-
ing two studies showed a high risk of bias (score less than 3). GCE was administered
to the participants as an extract. GCE supplementation effectively suppressed the MeTS
parameters, namely waist circumference, TG and HDL-c levels, SBP, and DBP. Beverages
containing decaffeinated coffee effectively reduced the FBG levels compared with the
baseline. However, caffeinated coffee did not effectively improve the MeTS parameters,
except for in terms of waist circumference, TG and HDL-c levels, and DBP.

This meta-analysis showed that GCE supplementation effectively improved anthro-
pometric parameters, such as waist circumference. The pooled random effects analysis
showed the small reducing effect on waist circumference (d = −0.39, 95% CI: −0.68, 0.10),
albeit with a high level of heterogeneity (I2 = 93.0%) (Figure 2). Nevertheless, Fasihi et al.
showed that supplementation with GCE containing 376 mg of CGA in capsule form for
8 weeks moderately reduced the waist circumference of participants, with d = −0.65 (95%
CI: −0.89, −0.41) [30]. A recent review by Asbaghi et al. showed that, compared to the
consumption of high-dose GCE for a short duration, the consumption of low-dose GCE
(<400 mg of CGA/day) for 8 weeks effectively reduced body weight, waist circumference,
and body mass index [36]. Green coffee beans are rich in CGAs such as 5-caffeoylquinic
acid, one of the primary components of CGA that was shown to attenuate diet-induced obe-
sity in mice [35]. The effect is modulated through the suppression of TG accumulation in
the liver and the alteration of plasma adipokine levels, which subsequently downregulate
adipogenesis-related genes and upregulate fatty acid oxidation-related genes [35,37].

A combination of resistance exercise and GCE supplementation was shown to con-
siderably reduce the anthropometric parameters [38]. The findings of this meta-analysis
showed that compared to only GCE supplementation (d = −0.07), the combination of
supplementation with GCE (containing 250 mg of CGA) at a low dose and ERBT signifi-
cantly reduced the waist circumference of participants (d = −0.45) [29]. Moghadam and
Ganji showed that, compared to only GCE intake or concurrent training (CT), the ingestion
of GCE (containing 420 mg of CGA) with CT (comprising of stretching and warm-up
exercises, aerobic training, resistance training, and cool-down/running and stretching
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exercises) reduced the body weight and body mass index of women with obesity or women
who are overweight [39].

Decaffeinated coffee intake reduced waist circumference, but less markedly than GCE
supplementation. This could be attributed to the higher CGA content in GCE supplements
than in decaffeinated coffee (liquid). The CGA content in coffee varies according to the
food matrix; for instance, unroasted green coffee (capsule) has a higher CGA content than
roasted coffee (10.2–21.1 g of CGA/100 g dry weight vs. 0.7–9.0 g of CGA/100 g dry weight,
respectively) [40]. Reduced waist circumference was shown to be associated with improved
glycaemic response [41]. A slight reduction in waist circumference (approximately 10%
relative reduction) was associated with the reduction of FBG levels by 10 mg/dL. The
findings of this review suggest that GCE and decaffeinated coffee help reduce waist
circumference and may improve the glycaemic response.

Decaffeinated coffee containing 369 to 510.6 mg of CGA reduced the FBG levels to
a greater extent than caffeinated coffee and GCE. Decaffeinated coffee showed a greater
pooled random effect on FBG levels, with d = −0.81 (I2 = 96.4%), than caffeinated cof-
fee and GCE (d = 0.17 and −0.30, respectively) (Figure 3). Decaffeinated coffee (liquid)
containing 510.6 mg of CGA led to a greater effect size (d = −1.83) than decaffeinated
coffee containing 369 mg of CGA (d = −0.06) [22,31]. This effect might be attributed to
the different quantities of coffee in the two studies. In the first study, the participants
consumed only one cup of coffee (containing 369 mg of CGA) per day, whereas in the
second study, the participants consumed three cups of decaffeinated coffee (170.2 mg of
CGA per cup) (breakfast, mid-day, and post-lunch) [22,31]. A previous study showed that
phenolic metabolites, such as hydroxycinnamic acid, derived from CGA, are present in
the bloodstream at relatively high concentrations for a longer period of time than caffeine,
methylxanthines, and methylurics [42,43]. The intestinal absorption rate for CGA (33%)
was lower than that for caffeic acid (95%) [44]. However, the mechanisms underlying the
observed effects remain unclear. Hence, an understanding of how these metabolites affect
FBG levels at the cellular level is warranted.

GCE reduced the FBG levels with an effect size of −0.30 (95% CI: −0.62, 0.03). How-
ever, it was less effective than decaffeinated coffee (Figure 3). This might be attributed
to the different GCE doses (180–554 mg of CGA) and supplementation duration. Caf-
feinated coffee containing 69.12 to 554 mg of caffeine increased the FBG levels with an
effect size of 0.17 (95% CI: 0.09, 0.25). The increase in the FBG levels caused by caffeinated
coffee might be attributed to the varying caffeine contents in coffee. The findings of the
study suggested that the reduction of glucose tolerance may have occurred in response
to the increase in epinephrine levels after caffeine consumption. Desensitisation to the
effects of epinephrine (via the downregulation of β-adrenergic receptors or the absence of
epinephrine expression) could weaken the mechanism by which caffeine reduces glucose
disposal [15]. GCE supplementation effectively reduced the TG levels and increased the
HDL-c levels. The pooled random effects analysis showed the small and moderate effect
sizes of the interventions on TG and HDL-c levels (d = −0.27, 95% CI: −0.43, −0.10 and
d = 0.62, 95% CI: 0.34, 0.90, respectively). However, in individual studies, supplementation
with GCE containing 180 to 376 mg of CGA in the capsule considerably reduced the TG
level and considerably increased the HDL−c level, with d = −0.74 (95% CI: −0.99, −0.49)
and d = 1.40 (95% CI: 1.11, 1.69), respectively. Mechanistically, this could be attributed to
the stimulation of the hepatic peroxisomal proliferation-activated receptor-alpha (PPAR-α)
by CGA present in the GCE. A previous study showed that activated PPAR-α plays a
vital role in improving insulin sensitivity and inhibiting lipid synthesis in the liver [45].
Furthermore, CGA stimulates hepatic enzymes, such as fatty acid 3-hydroxy−3-methyl-
glutaryl coenzyme A reductase, acyl-coenzyme A, and cholesterol acyltransferase, which
subsequently increase the TG levels and promote cholesterol homeostasis [46].

This review also showed that GCE supplementation effectively reduced SBP and
DBP. CGA was shown to reduce blood pressure and body weight by inhibiting 11β–
hydroxysteroid dehydrogenase type 1 found in adipose tissues and the liver [47]. This
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enzyme is involved in the conversion of hormonally inactive cortisone into active cortisol,
which reduces blood pressure and enhances weight loss.

GCE showed small and large pooled effect sizes on SBP and DBP, with d = −0.44
(95% CI: −0.57, −0.32; I2 = 27.2%) and d = −0.83 (95% CI: −1.40, −0.26; I2 = 91.0%),
respectively (Figures 6 and 7). However, in individual studies, supplementation with GCE
containing 376 mg of CGA for 8 weeks exerted the strongest suppressive effect on both
SBP and DBP, with d = −0.55 (95% CI: −0.77, −0.33) and d = −1.50 (95% CI: −1.87, −1.13),
respectively. The effect was less pronounced after the short-term (2 weeks) consumption of
GCE containing 500 mg of CGA. The short-term administration of GCE supplements, even
at a high dose, may have been inadequate for reducing the SBP and DBP.

A high level of heterogeneity was observed among the study data; hence, the results
should be interpreted with caution. Additionally, subgroup and sensitivity analyses were
not performed to identify the confounding factors that contributed to the MeTS outcomes.

5. Conclusions

Fourteen high-quality RCTs were included in this review, and the observation period
in the studies ranged from 60 min to 24 weeks; the longer study periods were adequate for
evaluating substantial changes in the MeTS parameters. The findings of this meta-analysis
suggested that supplementation with GCE containing 180 to 376 mg of CGA for more
than 4 weeks effectively reduced MeTS parameters, namely waist circumference (0.4%
to 3.0%), FBG levels (0.8% to 14.8%), TG levels (2.2% to 11.3%), HDL-c levels (0.7% to
15.6%), SBP (2.1% to 9.8%), and DBP (4.7% to 6.7%). Supplementation with decaffeinated
coffee containing 510.6 mg of CGA for more than 4 weeks effectively reduced the waist
circumference (1.6%), FBG levels (4.1% to 4.9%), TG levels (1.2% to 4.6%), SBP (3.0% to
4.4%), and DBP (3.3% to 7.3%). GCE supplementation along with resistance exercise (i.e.,
ERBT) further enhanced the suppressive effect of GCE on MeTS parameters. However,
the effects of GCE supplementation and decaffeinated coffee intake on MeTS outcomes
varied depending on the dose administered and were independent of the intervention
duration (60 min to 24 weeks). A more detailed intervention with a specific dose and a
well-planned study design, with adjustment for dietary intake, physical activity, and other
health outcomes, are needed to further confirm the outcomes reported in this review.
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