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Abstract: Osteoarthritis (OA) is the most prevalent degenerative joint disease and the main cause of
pain and disability in elderly people. OA currently represents a significant social health problem,
since it affects 250 million individuals worldwide, mainly adults aged over 65. Although OA is a
multifactorial disease, depending on both genetic and environmental factors, it is reported that joint
degeneration has a higher prevalence in former athletes. Repetitive impact and loading, joint overuse
and recurrent injuries followed by a rapid return to the sport might explain athletes’ predisposition
to joint articular degeneration. In recent years, however, big efforts have been made to improve
the prevention and management of sports injuries and to speed up the athletes’ return-to-sport.
Biophysics is the study of biological processes and systems using physics-based methods or based on
physical principles. Clinical biophysics has recently evolved as a medical branch that investigates the
relationship between the human body and non-ionizing physical energy. A physical stimulus triggers
a biological response by regulating specific intracellular pathways, thus acting as a drug. Preclinical
and clinical trials have shown positive effects of biophysical stimulation on articular cartilage,
subchondral bone and synovia. This review aims to assess the role of pulsed electromagnetic fields
(PEMFs) and extracorporeal shockwave therapy (ESWT) in the prevention and treatment of joint
degeneration in athletes.

Keywords: PEMF; ESWT; biophysical stimulation; extracorporeal shock wave therapy; cartilage;
bone; osteoarthritis; athletes

1. Introduction

Athletes, due to the physical demands necessary for chasing sporting results, put
significant stress on their joints and it is usual for them to suffer from articular cartilage
defects. Chondral defects are linked to discomfort and physical weakness, the limiting of
athletic activity and have been implicated as a potential risk factor in the development of
early-onset osteoarthritis (OA).

However, cartilage pathology is not always symptomatic: more than half of the
asymptomatic athletes have a full-thickness defect [1].

Chondral injuries are often present in sports subjects; the incidence rate in the knee is
36% compared to 16% in the general population [2].

Concomitant ligament instability, misalignment, and previous injury may facilitate
chondral lesions.
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Chondral damage can lead to an excessive load on the subchondral bone and therefore to
bone edema, which can manifest itself with painful symptoms and limit sports participation.

Over time, bone edema can resolve if adequately treated or can evolve towards bone
necrosis (spontaneous osteonecrosis of the knee, SONK), which, however, can also be
secondary to vascular pathologies, or towards arthritic evolution.

Non-operative strategies aim to improve effective hyaline cartilage regeneration by
delivering growth factors or reducing inflammation [3].

Many conservative therapies are available, such as chondroprotective drugs and
nonsteroidal anti-inflammatory drugs (NSAID), Hyaluronic-acid or Platelet Rich Plasma
(PRP) or staminal cells’ injection or biophysical stimulation.

Biophysical stimulation is a non-invasive therapy currently employed in orthopaedics
and traumatology practice to enhance the reparative abilities of the musculoskeletal system.
Biophysical stimulation refers to the application of physical energy to a biological system
to increase and facilitate tissue regeneration and anabolic activity [4].

Biophysical stimulations act mainly at the level of the cell membrane. It plays a
fundamental role in recognizing and transferring the physical stimulus to the various
intracellular signalling pathways.

Several types of non-invasive electrical stimulation devices have received US FDA
approval for orthopaedic application and are classified into: electrical energy applied
directly to the tissue by adhesive electrodes (capacitively coupled electric field, CCEF),
ultrasound energy (low-intensity pulsed ultrasound system LIPUS) and electromagnetic
energy applied by coils (pulsed electromagnetic fields, PEMFs) or extracorporeal shock
wave therapy (ESWT) or Low-Level Laser Therapy (LLLT) [5].

Pulsed electromagnetic fields and extracorporeal shockwave therapy have strong
evidence in the literature, so this narrative review aims to assess the role of PEMFs and
ESWT in the prevention and treatment of joint degeneration in athletes.

2. PEMF

Several preclinical and clinical trials of PEMFs have shown positive effects of biophys-
ical stimulation on articular cartilage, subchondral bone and synovia. After initial studies
performed on animal cartilage cells, such as bovine or equine or guinea pigs’ cells [6–8],
studies were conducted on human mesenchymal cells (MSCs): it was found that chondro-
genic differentiation of MSCs is facilitated when exposed to PEMFs’ magnetic fields of
varying amplitude and intensity [9].

The transmembrane signal recognition processes of PEMF were reported for the first
time by Varani et al. [10]. They discovered that Adenosine Receptors (AR) were the primary
target of PEMF stimulation in inflammatory cells; ARs play an important role in the control
of inflammatory processes, with both pro-inflammatory and anti-inflammatory effects.
PEMF exposure has been shown to increase the density of A2A and A3AR on the cell
membranes of osteoblasts, chondrocytes and synoviocytes [11], and inhibited cytokine IL-6
and IL-8 while stimulating the release of the anti-inflammatory cytokine IL-10 and inhibited
Prostaglandin E2 (PGE2) production with an upregulation of A (2A) receptors [12]. IL-1β
is a pro-inflammatory cytokine that promotes ECM cartilage degradation in healthy and
osteoarthritic-joint-derived cells. It is reported that PEMFs inhibit the negative effect of the
cytokine IL-1β in a study on cartilage explants [13].

PEMF stimulation increased chondrocytes’ proliferation in patients without OA [14],
and increased the expression of growth factors and cytokines, ECM component synthesis,
such as collagen II (COLL II), glycosaminoglycan (Gags) and proteoglycans (PGs) [15–18].

Furthermore, some authors evaluated how PEMFs could influence the replication of
chondrocytes cultured from subjects with OA. Stolfa and colleagues conducted three exper-
iments with different PEMF signal parameters and different concentrations of chondrocytes
and showed that this type of PEMF stimulated the metabolic activity of chondrocytes but
there were no significant effects on cell proliferation. These results were not achieved in all
experiments [19]; Schmidt-Rohlfing and colleagues do not suggest any effect of PEMF and
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sinusoidal magnetic fields on the cellular metabolism of human osteoarthritic chondrocytes
cultivated in a collagen gel in vitro [20].

The sound frequency of PEMF is also debated; frequencies of 37 and 75 Hz were able
to preserve the structural parameters of both cartilage and bone in the advanced phase of
knee osteoarthritis. However, PEMF stimulation at 75 Hz compared to 37 Hz significantly
improved cartilage preservation [21].

The combined effect of PEMF and bone marrow concentrate (BMC) in the healing
of osteochondral defects treated with a scaffold has been assessed in animal models by
different authors. Both cellular and cartilage matrix parameters improved with the addition
of PEMF stimulation compared to using the scaffold alone—the combination with BMC
also facilitated osteochondral regeneration [22].

In clinical practice, biophysical stimulation can be used proactively as: (i) a post-
surgical treatment to quickly control local inflammation of the joint, and, over the long
term, to maintain the mechanical and biological properties of the cartilage or engineered
tissue, which can be used after arthroplasty to attenuate inflammatory processes involving
periarticular tissues and reduce the chances of developing chronic pain or functional limi-
tations [23,24]; (ii) a conservative treatment to limit the progression of the osteoarthritis
degenerative process or the development of bone edema, or in association with surgery for
risk fractures, delayed union and non-unions.

Damage to articular cartilage is increasingly identified as a source of joint limitation
and reduced athletic performance in athletes, whether isolated or in conjunction with
ligament or meniscal or tendon tears [25]; therefore, surgical treatment must be supported
by biophysical therapy to facilitate functional recovery and achieve better outcomes.

Few authors have evaluated the role of PEMFs in chondral and osteochondral damage
in athletes; for example, van Bergen and colleagues in a double-blind, randomized con-
trolled trial of 68 young and athletic patients evaluated the effectiveness of PEMFs used for
sixty days in the management of osteochondral ankle lesions after arthroscopy, considering
the simple technology and ease of use and for the high potential to provide a safe and
effective adjunct treatment option for talus osteochondral defects [26].

In the literature, in studies that evaluate the PEMFs’ efficacy in patients with os-
teochondral lesions, it is not specified whether the sample under examination is from
athletes [27].

Initially, in 2009, Vavken et al. in a meta-analysis evaluated the positive effects of
PEMF associated with some conservative therapies on the quality of life in patients with
osteoarthritis of the knee [28].

Later, Gobbi and colleagues also evaluated their use in the treatment of early os-
teoarthritis (Kellgren Lawrence < 2) and age < 60 for 2 years; the results were mixed as
they showed an improvement in pain symptoms and KOOS and Tegner scores after one
year of treatment and a worsening, instead, at two years [29]. The author concluded that
an annual repetition of the treatment may result in sustained symptomatic improvement
for the patient.

The same author in a prospective level IV study enrolling 22 patients with a mean age
of 48.4 years and with early OA, found at 1 year follow up a statistical improvement of
KOOS, EQ-5D, Tegner score and IKDC after PEMF treatment for 45 days [30].

Satisfactory results were also highlighted by Iammarrone and colleagues despite
the small sample examined from young patients with patellofemoral pain syndrome
(PFPS) [31].

Marchegiani Muccioli et al., in a study on 28 patients with spontaneous osteonecrosis
of the knee (SONK), assessed the clinical MRI effectiveness of PEMF therapy performed 6
h daily for 90 days. At 6-month follow up, a clinical improvement and a reduction of the
SONK area were detected with MRI [32].

PEMF therapy, with the same treatment protocol in 31 patients with focal knee chon-
dral tears who were undergoing arthroscopy with chondroabrasion and/or perforations,
involved a reduction from 75% to 26% with the use of NSAIDs, a higher KOOS at 90 days
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and a large number of patients that returned to normal daily sports activity at 3 years
follow up [33].

Collarile et al., in a prospective comparative study recruiting thirty patients, affected
by grade III and IV International Cartilage Repair Society chondral lesions of the Knee
treated with matrix-assisted autologous chondrocyte implantation (MACI), reported the
patients who randomly received postoperative stimulation with PEMFs had a better clin-
ical outcome both in the short- and long-term follow-up [34]. These findings suggest
biophysical stimulation is an effective tool, able to ameliorate clinical results of regenerative
medicine [34].

Similar results have been also reported by Cadossi et al., in a prospective comparative
study recruiting thirty patients with grade III and IV Outerbridge osteochondral lesions
of the talus (OLT) managed with a collagen scaffold seeded with bone marrow-derived
cells (BMDCs), showed the patients who randomly received postoperative biophysical
stimulation with PEMFs revealed a better clinical outcome–assessed using the American
Orthopaedic Foot and Ankle Society (AOFAS) score; Visual Analog Scale (VAS) and Short
Form-36 (SF-36)- at 12-months after surgery [35]. Therefore, the authors concluded stating
PEMFs are useful in fastening the patient’s recovery after BMDCs transplantation [35].

Benazzo and colleagues also showed a reduction in the use of NSAIDs and faster
functional recovery compared to the control group in patients who, after cruciate recon-
struction, had been treated with a pulsed magnetic field; however, there was no statistical
improvement in IKDC and SF-36 [36].

Some authors, such as Gremion et al. and Ozgüçlü et al., found that a different
pulsed signal therapy improved the clinical state of treated patients but there was no
significant statistical difference to other conservative treatments such as physiotherapy and
therapeutic ultrasound [37,38].

Nelson et al. and Bagnato et al., in a double-blind pilot clinical study with respectively
34 and 60 patients with OA treated with PEMF, showed that the VAS pain score decreased
versus baseline and a reduction in the intake of NSAIDs [39,40]. Bagnato’s treatment
scheme consisted of 12 h daily treatment for 1 month.

Wuschech, after a twice a day treatment for 5 min over a period of 18 days in patients
with OA, found a significant reduction in stiffness (p = 0.032) and a significant reduction
in disability in daily activities according to the WOMAC score, compared to the placebo
group [41].

Biophysical therapy, with specific and tested parameters of PEMF, must be considered
a valid aid to arthroscopic surgical treatment considering the role of cell stimulation and
the reduction of inflammation and pain after treatment. Its use would allow the athlete a
more rapid functional recovery and therefore an early return to sporting activity. However,
unlike the bone edematous pathology, in which it occupies a prominent place in association
or not with bisphosphonates and load reduction, there are no studies in the literature on
sportsmen that evaluate whether biophysical therapy alone can replace surgical treatment
in the case of mild/moderate chondral damage.

3. ESWT

For more than 25 years, extracorporeal shockwave therapy (ESWT) has been routinely
utilized to treat soft tissue and bone-related musculoskeletal diseases and has been mani-
fested clinically to be effective in plantar fasciitis [42], lateral epicondylitis of the elbow [43],
calcific tendonitis of the shoulder [44], and nonunion or delayed fracture healing [45].
Shock waves, which are used in ESWT, are acoustic waves produced from different sources
such as electro-hydraulic, electromagnetic, piezoelectric, or pneumatic generators. This
pressure disturbance propagates in space, and the progression of the wave can be described
by a positive phase showing a rapid increase in pressure followed by a negative phase of
a slow return to starting levels [46,47]. Concerning medical applications, many authors
talk about low energy ESWT with an energy dose, expressed in EFD (Energy Flux Density),
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equal to or less than 0.28 mL/mm2, and high energy when EFD is equal to or more than
0.6 mL/mm2 [48].

The exact mechanism by which cells recognize an acoustic wave, converting it into
biological responses, is currently largely unknown. According to the mechano-transduction
theory, shockwaves induce the cellular mechano-transduction process, through which
cells convert the shockwave mechanical signals into biochemical responses; mechanical
stimulation of the cell membrane induces a conformational change of membrane proteins
including integrins and ion channels. The activation of pathways, such as MAPKs and PI3K-
Akt-eNOS, influences the transcription and expression of the genome [49–51]. Activation
of the Akt-eNOS pathway caused by exposure to ESWT determines an increase in the
release of NO and VEGF at the bone tendon junction, improving vascularization and tissue
healing [52].

Human osteoblasts exposed to shock waves show a dose-dependent increase in differ-
entiation and growth secondary to the increased expression of the Transforming Growth
Factor β1 (TGF-β1), which plays a fundamental role in osteogenesis and osteoblastic lin-
eage differentiation [53–55]; similarly, Hausdorf et al. demonstrated an increase in FGF-2
in human osteoblasts and fibroblasts. Lyon et al. showed a response to ESWT on a rab-
bit’s knee with smaller denudation on cartilage and enhanced density and chondrocytes
formation; a decreased level of TNF-α on chondrocytes after shockwave application may
partially explain the mechanism by which ESWT improves cartilage repair and chondropro-
tection [56]. Another investigation by Moretti et al. confirmed the chondroprotective effects
of shock waves stimulation by restoring normal levels of Il-10 and TNF-α [57]. Wang et al.,
in a series of studies on osteoarthritic knees in rats, confirmed the effect on cartilage through
histochemical examinations with Hematoxylin-eosin and Safranin-O stains, showing less
cartilage fissuring and better chondrocyte vitality and concentration in the ESWT group
compared with the untreated ones [58].

Similar results were also found in rabbit models with osteochondral defects after
ESWT showed improvements in the macroscopic characteristics of hyaline cartilage [59].
The application of ESWT to knee OA in rats results in the decline of urinary levels of
cartilage degradation markers such as CTX and MMP [58–60]. Several studies focused on
the effect of ESWT on MSCs; all of them have shown that shockwaves improve stem cell
recruitment and differentiation into chondrocytes in mouse models [61]; an augmented
proliferation rate was also observed in equine ASCs treated with ESWT [62,63].

The role of subchondral bone throughout the early stages of OA showed that sub-
chondral bone alteration might be a therapeutic focus in OA therapy [64,65]. Wang C.
et al. observed improved tissue distributions, including cortical bone, cancellous bone,
and fibrous tissue, in many studies using extracorporeal shockwaves to the subchondral
bone of the medium tibia condyle. ESWT increased BMP-2 and osteocalcin expression in
OA rats, which is usually linked with cell proliferation and extracellular matrix synthesis
in healthy osteoblasts [66]. The immunohistochemical examination revealed that the ex-
pression of Dickkopf-related protein 1 (DKK-1)—a regulator of osteoblast activity—was
considerably greater in OA and significantly decreased after ESWT therapy; these findings
show that shock wave stimulation can boost subchondral bone anabolism and improve
trabecular microarchitecture. Iannone et al. tests the effects of ESWT on subchondral
osteoblasts in vitro and found a significant increase of IL-10 intracellular levels both in OA
and healthy osteoblasts [67], in contrast to Moretti et al. who observed downregulation
of IL-10 expression in human chondrocytes by applying the identical protocol of ESWT.
The dissimilar responses of cartilage and subchondral bone in IL-10 expression after ESWT
suggest that IL-10 may play a different role in each component of the OA joint. In a rat
model, Hashimoto et al. proposed that ESWT might expedite the repair of meniscal injuries
in avascular areas, which may contribute to OA development.

ESWT improved the healing of avascular tears by promoting meniscal cell prolifera-
tion and the upregulation of cartilage-repairing factors, such as CCN2, SOX9, aggrecan,
and Col2a1, resulting in enhanced synthesis of a cartilage-specific extracellular matrix [68].



Medicina 2021, 57, 1206 6 of 9

Liu et al. experimented with the combined use of ESWT and intra-articular hyaluronic
acid in the early stages of OA; the analysis of functional evaluation scores, such as VAS
WOMAC and KOOS, showed a superiority of the combined treatment compared to the use
of hyaluronic acid alone. These results can be attributed to the ability of ESWT to increase
the expression of hyaluronan cellular receptors CD44, which would lead to increased
production of type 2A collagen, favouring the repair of cartilage lesions [69].

The efficacy of ESWT in human and animal models with OA has also been demon-
strated in several clinical trials in which improvements were observed in functional out-
comes and pain relief with a reduction of VAS and WOMAC scores [44,70–72]. In a
retrospective study, ESWT outperformed laser therapy in terms of symptom reduction as
measured by the WOMAC and Numeric Rating Scale (NRS) [73].

The beneficial effect on OA pain could be explained by nerve fibre responses to ESWT
treatment. Ohtori et al. showed that ESWT caused nerve fibre degeneration and reduced the
expression of calcitonin gene-related peptide (CGRP) in dorsal root ganglia (DGR) neurons.
The analgesic effect and the functional ability enhancement may be time-limited because
of nerve regeneration that occurs in fibres 14 days after ESWT [74,75]. The time limits of
the benefits of ESWT were studied by Ochiai in rat models, showing an improvement in
functional performance between 4 and 14 days after treatment; however, between 21 and
28 days, there were no differences compared to the placebo group [76].

Extracorporeal shock waves, used routinely for various musculoskeletal diseases,
represent a valid therapeutic option for the treatment of the early stages of OA, resulting in
an improvement in functional scores and pain; however, the benefits appear to be limited
in time.

4. Conclusions

Biophysical therapies with PEMF or ESWT can act to improve the symptoms and
function of joints, such as the knee in patients with non-advanced OA or those who have
suffered a trauma that has led to cartilage damage or subchondral edema. This can be very
useful in athletes for an early return to sport and, above all, for preventing this damage
from causing an arthritic evolution of the joint. However, in the literature, few studies
use exclusively sportsmen or athletes as a sample to study. Particularly concerning the
treatment with ESWT, studies that evaluate the effectiveness of the treatment are mainly
on animal models while studies on human models focus on musculotendinous pathology.

Further high-quality studies on athletes are needed to draw stronger conclusions.
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