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Abstract: Background and Objectives: Patients presenting with ST Elevation Myocardial Infarction
(STEMI) due to occlusive coronary arteries remain at a higher risk of excess morbidity and mortality
despite being treated with primary percutaneous coronary intervention (PPCI). Identifying high-risk
patients is prudent so that close monitoring and timely interventions can improve outcomes. Materials
and Methods: A cohort of 605 STEMI patients [64.2 ± 13.2 years, 432 (71.41%) males] treated with
PPCI were recruited. Their arterial pressure (AP) wave recorded throughout the PPCI procedure was
analyzed to extract features to predict 1-year mortality. After denoising and extracting features, we
developed two distinct feature selection strategies. The first strategy uses linear discriminant analysis
(LDA), and the second employs principal component analysis (PCA), with each method selecting the
top five features. Then, three machine learning algorithms were employed: LDA, K-nearest neighbor
(KNN), and support vector machine (SVM). Results: The performance of these algorithms, measured
by the area under the curve (AUC), ranged from 0.73 to 0.77, with accuracy, specificity, and sensitivity
ranging between 68% and 73%. Moreover, we extended the analysis by incorporating demographics,
risk factors, and catheterization information. This significantly improved the overall accuracy and
specificity to more than 76% while maintaining the same level of sensitivity. This resulted in an AUC
greater than 0.80 for most models. Conclusions: Machine learning algorithms analyzing hemodynamic
traces in STEMI patients identify high-risk patients at risk of mortality.

Keywords: ST elevation myocardial infarction (STEMI); mortality; arterial pressure; machine learning;
classification

1. Introduction

Myocardial infarction (MI), or a heart attack, is one of the leading causes of death
worldwide [1,2]. It is estimated to result in over 4 million deaths in Europe and northern
Asia and 2.4 million deaths in the United States each year [3]. In 2022, heart disease
ranked as the second leading cause of death in Canada [4]. Moreover, in the USA alone,
approximately USD 29.8 billion was spent on the direct management of MI in 2016 [5].

In current medical practice, MI is identified based on clinical presentation, dynamic
electrocardiogram (ECG) changes, and a rise in troponin, a cardiac-specific biomarker.
Patients exhibiting ST-segment elevation with reciprocal changes in ECG are diagnosed
with ST elevation myocardial infarction (STEMI) [6]; that is typically because of complete
occlusion of coronary arteries [7]. In comparison, patients with chest pain, a rise in troponin
levels, and ECG changes other than STEMI are defined as having non-STEMI (NSTEMI).
Primary percutaneous coronary intervention (PPCI) is the gold-standard care for patients
with STEMI. However, this procedure is time sensitive. Hence, patients who cannot be
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brought to a cardiac catheter laboratory within 120 min of their first contact with medical
personnel are treated with thrombolytic therapy aiming at dissolving intracoronary clots,
restoring flow, and transferring them to the nearby cardiac center for further care.

Mortality and morbidity among MI patients have markedly improved over the
last four decades, primarily due to proactive detection and management of cardiovascular
risk factors [8], along with timely myocardial salvage by coronary revascularization [9].
Despite such success, 30-day mortality among patients admitted with MI remains between
6.5–9.3% across the European countries [10]. Data from Denmark, where all STEMI patients
are treated with PPCI, demonstrated a 1-year mortality reduction from 10.8% (2003–2006)
to 7.7% (2015–2018); the majority of this mortality reduction was observed within the
first 30 days [11]. In addition to higher mortality, these patients may also experience com-
plications, including life-threatening arrhythmias, heart failure, a prolonged in-hospital
stay, and various mechanical complications despite successful PPCI [12–14]. Hence, it is
prudent to identify high-risk patients who may benefit from close monitoring and timely
intervention that may plausibly improve their outcomes.

Various risk assessments in the context of myocardial infarction (MI) have been devel-
oped. The Global Registry of Acute Coronary Events (GRACE) [15], the most widely used
source that is recommended by the European Society of Cardiology STEMI guidelines [16],
estimates the mortality risk in hospital, at 6 months, 1 year, and 3 years. The thrombolysis
in myocardial infarction (TIMI) [17] risk score was initially developed for 30-day mortality
in patients after thrombolysis and then validated for patients with STEMI [18]. Based on
clinical and electrocardiographic characteristics, the primary angioplasty in myocardial
infarction (PAMI) score is used to predict late mortality in patients with STEMI treated
by PPCI [19]. The controlled used of abciximab and the investigation of device usage to
lower late angioplasty complications (CADILLAC) considers the initial measurement of
left ventricular function and predicts 1-year mortality [20]. Finally, the Zwolle [21] score
was developed for 30-day mortality prediction.

These traditional methods for determining cardiovascular disease (CVD) risk typically
presuppose a linear relationship between risk factors and clinical outcomes. However, such
a linear approach might be oversimplifying their relationship. Cardiovascular diseases
are inherently complex and diverse, influenced by genetic predispositions, environmental
conditions, and lifestyle choices [16,22]. These approaches primarily focus on conventional
prognostic factors [23], limiting their effectiveness due to the emerging need to incorporate
and examine various information sources, including those describing MI-related patho-
physiology. Moreover, these scoring systems are routinely not utilized in the current era of
prompt coronary revascularization. Aortic pulse wave is a physiological marker describ-
ing cardiovascular health [24,25] that may provide valuable information about changing
physiological status among patients undergoing PPCI.

Machine learning (ML) has the potential to bypass the restrictions of the approaches
mentioned above [26]. Static assumptions about data behavior do not constrain ML data
analysis and can train models to uncover patterns within the data. The application of
ML, especially in predicting in-hospital mortality [27], 30-day mortality [28], short- and
long-term mortality [29], arrhythmia [30], and readmission [31] has seen rapid growth.
ML has been widely compared with traditional methods such as TIMI and GRACE. ML
has demonstrated superior performance to traditional risk-scoring methods in mortality
prediction [32–36]. ML outperformed the TIMI score in predicting both short- and long-
term mortality [33]. Additionally, it demonstrated better outcomes for 30-day [35] and
1-year [32,34,36] mortality predictions compared to the GRACE score for patients with
STEMI. Most ML algorithms have primarily employed continuous and categorical data
from patients’ records during angioplasty. To the best of our knowledge, none of the
previous ML research has focused on extracting features from hemodynamic traces, such
as the arterial pressure (AP) signal obtained throughout the PPCI procedure.
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2. Materials and Methods
2.1. Study Population and Data Acquisition

This retrospective study included 800 consecutive patients suspected to have STEMI
who were referred to the St Boniface General Hospital, Winnipeg, MB, Canada, for consid-
eration of PPCI between January 2020 and October 2021.

Patients’ demographics, cardiovascular risk factors, catheterization data and outcomes
were collected by reviewing individual electronic patient records (EPRs). The arterial
pressure (AP) wave tracings throughout the PPCI procedure were obtained through the
MacLab system database (GE Healthcare; Milwaukee, WI, USA). Given these retrospective
data analyses, individual patient consent was not obtained. This study was approved by
the local Research and Ethics Board, University of Manitoba [REB: HS25542 (H2022: 196)].

During catheterization, specifically the pullback of a catheter from the left ventricle (LV)
back to the ascending aorta (AO) across the aortic valve, the MacLab software calculates the
ejection systolic period (ESP), which is the duration of ejection in seconds/minute that can
be converted to left ventricular ejection systolic time (EST) measured in seconds/heartbeat.

2.2. Statistical Analysis

Statistical analysis was performed using MATLAB software 9.13. The mean values
were compared using the Mann–Whitney U test for continuous variables. In contrast,
categorical variables were analyzed using the χ2 (chi-square) test. A two-tailed p-value of
less than 0.05 was considered statistically significant. Effect size was calculated using the
phi coefficient (φ) for categorical variables and Cohen’s d for continuous variables. Effect
size measures the strength and practical significance of a relationship or difference between
variables, showing the extent of this variation or association in real-world contexts. Effect
sizes of 0.10, 0.30, and 0.50 indicate small, medium, and large effects, respectively [37].

2.3. Pre-Processing and Denoising of Data

Our primary objective is to derive features from aortic pulse wave tracing obtained
throughout the PPCI procedure. However, such AP signals can be affected by different
types of noise. This includes motion artifacts (resulting from the movement of the catheter,
transducer, or patient), electrode polarization, and electrical interference. Figure 1a illus-
trates an AP signal captured using MacLab that requires noise reduction. Figure 2 displays
different parts of a typical recorded AP signal. As can be seen in Figure 1b, the selected part
is noisy and should be excluded from the analysis. On the other hand, Figure 1c illustrates
a part of the signal suitable for further analysis and feature extraction. This shows the
importance of having a denoising strategy to extract the high-quality part of the AP signal.

The block diagram of the denoising procedure is shown in Figure 2. It can generally be
summarized as windowing the AP signal and discarding the noisy windows. We extracted
the heartbeat (HB) from lead II ECG (also recorded by MacLab) to achieve an adaptive
window size. We considered the window size to be six times the heart cycle length of
each individual’s data. We extracted the heart rate using the Pan–Tompkins algorithm [38].
This algorithm employs band-pass filtering to enhance the signal-to-noise ratio (SNR) and
eliminate low-frequency artifacts. A derivative operation is used to diminish the P and
T waves, thus highlighting the QRS complex. This is followed by a squaring operation
that amplifies the high-frequency elements. Subsequently, moving window integration is
applied to create a smooth pulse corresponding to each QRS complex. Finally, the R peaks
in QRS complexes are identified through adaptive thresholding, as depicted in Figure 3.

After extracting the HB, we windowed the high-pass-filtered AP signal (with a cutoff
frequency of 0.4 Hz) using a 50% overlap and a duration of six heart cycles. Following the
windowing of the AP signal, we computed the fractal dimension (FD), mean, and standard
deviation (SD). In this research, we used one of the most commonly used algorithms to
estimate the fractal dimension: the Katz fractal dimension (KFD) [39]. The comprehensive
set of features derived from each window of the AP signal includes:
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1. Mean values: Each window was segmented into three equal parts. For each segment,
the mean value of the AP signal was calculated, resulting in three values.

2. SD analysis: This involves calculating four SD values. The SD was computed for the
entire window, and then the window was divided into three equal parts to determine
the SD for each segment.

3. FD Calculation: Each window was divided into three segments, and the FD was
computed for each segment.

These characteristics were calculated for every AO window. To eliminate noisy win-
dows, we applied thresholds to each characteristic, which were determined based on the
physiological properties of the AO signal.
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2.4. Feature Extraction

We separated each AP waveform after denoising the AP signal and discarding the
noisy AP windows. From each waveform, we extracted a total of 18 features, as detailed in
Table 1. The first 14 features relate to the time aspect, whereas spectral entropy (SE) and
average power (Pave) are associated with frequency. We have tried to capture every aspect
of the AP that might be useful for prediction. In the table below, skewness quantifies the
asymmetry in a data set, while kurtosis evaluates whether the data have heavier or lighter
tails compared to a normal distribution. SE measures the irregularity or complexity of digi-
tal signals within the frequency domain, and Pave indicates the mean energy transmission
of a signal over a certain period.

Table 1. The extracted 18 features.

Feature Abbreviation Definition
p-Value

(Death < 1 Year
vs. No Death)

1 Heartbeat HB 60/(t @ end) <0.01

2 Diastolic blood
pressure DBP Min (p ) <0.01

3 Systolic blood
pressure SBP Max (p ) <0.01

4 Pulse pressure PP SBP—DBP <0.01

5 Mean arterial
pressure MAP (2 × DBP + SBP/3 <0.01

6 Overall time OT Whole time of the surgery <0.01

7 Ascending time AT t @ systolic peak <0.01

8 Descending time DT (t @ end)—AT <0.01

9 Total area under
the curve AOC

∫
p <0.01

10 Ascending area UA
∫

p (Ascending portion) <0.01

11 Descending area DA AOC—UA <0.01

12 Area Ratio AR DA/UA <0.01

13 Maximum slope MS Max (p′) <0.01

14 Fractal dimension FD Kats FD method <0.01

15 Skewness SK E(p − µ)3/σ3 <0.01

16 Kurtosis KU E(p − µ)4/σ4 <0.01

17 Spectral Entropy SE −Sum (PSD × log2(PSD)) <0.01

18 Average power Pave Sum (PSD)/n <0.01
p-value derived from Mann–Whitney U test. p is a single AP waveform, p′ is the first derivation of the waveform,
t is time, n is the number of samples in the waveform, µ is the mean of samples of the waveform, σ is the standard
deviation, and PSD is power spectral density.
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Except for the overall time (OT) feature, which refers to the entire duration of the
surgery, all other extracted features have multiple values per subject. This is because
they are extracted from each AP waveform, and we have multiple waveforms for each
subject’s AP signal. We applied a 20% trimmed mean for multi-value features to derive a
single representative value for each characteristic per subject. The trimmed mean method
excludes a specified percentage of the extreme values, both largest and smallest, before the
mean calculation. This technique is beneficial in reducing the impact of outliers that could
potentially bias the traditional mean.

2.5. Feature Selection

We also implemented feature selection methods to reduce the number of variables
further, thereby shortening training time and enhancing model performance. We em-
ployed two feature-reduction methods: principal component analysis (PCA) [40] and linear
discriminant analysis (LDA) [41]. In both approaches, we selected the top five features.

2.5.1. LDA-Based Feature Selection (LBFS)

LDA, a supervised learning algorithm, was used for the feature selection in machine
learning. As described in Figure 4, for each feature we utilized an individual LDA classifier
to determine the power of each feature in distinguishing two classes. We divided our
dataset into two sections (70% for training and 30% for validation) and classified patients
into two groups: survivors and non-survivors at one year after admission. After training,
we evaluated the sensitivity of each classifier, focusing on the top five features with the
highest sensitivity. This emphasis on sensitivity is crucial for accurately predicting the
non-surviving group, a key concern in our research.
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This procedure was iterated 1000 times, with the training and validation sets being
reshuffled each time. To tackle issues related to class imbalance, we employed the technique
of down sampling (we randomly selected from class 1 (survived) to attain a more balanced
number of patients across both classes).

2.5.2. PCA-Based Feature Selection (PBFS)

PCA is a widely recognized technique used for extracting features and reducing
dimensionality. PCA aims to project data that initially existed in a d-dimensional space
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into a space of lower dimensions. In PCA, the process begins with calculating the dataset’s
mean vector and covariance matrix. Then, eigenvectors and eigenvalues are computed
and sorted by the eigenvalues’ magnitude. The largest k eigenvectors are selected, often
based on an eigenvector spectrum analysis. The PCA output is a k-vector that prioritizes
significance, with the first few principal components usually representing most of the
dataset’s variability.

To employ PCA for feature selection, we initially calculated PCA using all features.
Subsequently, we focused on the first four eigenvectors (PCA 1–PCA 4), which together
represent nearly 80 percent of the variability in the dataset. A limitation of these PCAs is
their lack of clarity regarding which specific features contribute most significantly to their
formation, thereby not clearly indicating the most important features. To address this, we
calculated the correlation between each feature and these four PCA vectors (Figure 5). We
then computed the average of the values in each column, resulting in a single vector. The
next step was to identify the feature corresponding to the highest value in this vector. We
selected the five top features with higher correlation as the features selected by this method.
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Like the previous feature selection method, we addressed the imbalance issue by using
the down-sampling method and repeating the process 1000 times to avoid bias towards a
particular class. Additionally, we performed scaling before conducting the PCA. The block
diagram of the implemented PBFS is shown in Figure 5.

2.6. Data Imbalance and Separation of Data into Training and Testing

The effectiveness of many standard binary classification algorithms in machine learn-
ing is higher with balanced datasets, as highlighted in [42]. However, the true challenge
arises with imbalanced datasets, where these algorithms often struggle, especially since the
consequences of misclassifying the minority class tend to be significantly more severe than
those of misclassifying the majority class. Numerous strategies have been developed to
manage imbalanced datasets. However, these methods have been criticized for changing
the dataset’s original class distribution by generating new data (over-sampling), which
may lead to overfitting, or by removing valuable data (under-sampling).
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Our proposed ensemble-based methods will try to tackle the possible problems of
the conventional methods mentioned above for handling class imbalance problems by
converting an imbalanced dataset into several balanced datasets that do not suffer anymore
from the challenge of an imbalanced dataset without creating new extra data or discarding
potentially useful original data. As depicted in Figure 6, our method utilized a 10-fold
cross-validation technique for the entire dataset. This ensured that the distribution of the
whole data set was maintained for our test set.
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We used an ensemble method for the training part of the study: We created ‘n’ balanced
sub-datasets from the imbalanced training dataset. To form these sub-datasets, we included
all subjects from the minority class and randomly selected an equal number from the
majority class. After selection, these subjects were removed from the majority dataset.
Each sub-dataset, starting with the first, was used to train a model (referred to as ‘algo 1’
in Figure 6). We repeated this process across the entire majority dataset, resulting in ‘n’
distinct models. This approach ensured that no subjects were discarded, thus preserving
essential information. Due to the disparity in the number of subjects between the minority
and majority classes, our finally created sub-dataset might be slightly imbalanced. After
training the models, we used the test set and evaluated each model’s performance and
averaged the results of all the trained models. Eventually, because we implemented the
10-fold technique, we achieved the performance of that fold each time. In the end, we also
averaged the test results from all of the folds and reported this value.

2.7. ML Predictive Models

The predictive models for 1-year mortality were developed using three different
machine learning techniques: K-nearest neighbor (KNN) [43], LDA [41], and support
vector machine (SVM) [44]. The KNN classifier, used for multiclass classification, identifies
the nearest neighbors by calculating distances between a test sample and training data.
KNN determines the nearest neighbors and uses a majority vote among them to classify
the new sample. SVM, notable in biomedical fields for its precision and handling of
multiple predictors [45], works by finding an optimal hyperplane for linear separation
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between classes. It categorizes data using this hyperplane, and it is effective in linear
and nonlinear contexts. LDA combines features into a new variable to distinguish classes
in a dataset. It reduces multi-dimensional data to one dimension, aiming for distinct
class separation based on the discriminant score. This simplifies analysis and highlights
differences between classes.

These models were trained and tested using two different strategies. Initially, we
trained and tested the three models mentioned above using the top five features selected by
each of our proposed feature selection methods. This evaluated the impact of considering
only the top five features derived from the AP signal. In the second part, we explored the
potential of enhancing model performance by incorporating demographic, risk factor, and
catheterization data. These additional features were added to the top five AP curve features
that were selected based on their p-value and effect size.

2.8. Models’ Evaluation

Evaluating the effectiveness of machine learning algorithms is crucial for determining
their performance. We assessed our proposed machine learning approaches using accuracy,
specificity, sensitivity (recall), and precision measures. Additionally, we plotted the ROC
(receiver operating characteristic) curve to demonstrate the performance of our binary
classification model at various thresholds. Subsequently, we computed the AUC (area
under the ROC curve), a singular metric summarizing the overall effectiveness of the binary
classification model.

3. Results
3.1. Patients’ Characteristics

Out of 800 patients, data from 605 patients [age: 64.2 + 13.2 years; 432 (71.41%) males]
with STEMI were selected for analysis. In total, 195 patients were excluded due to lacking
adequate AP signals (n = 17), having poor-quality signals (n = 14), having an alternative
diagnosis other than STEMI (n = 118), or not having catheterization data (n = 46). Figure 7
shows this exclusion schematically. The included patients were identified as having STEMI
through ERP. This study reports 1-year mortality, defined as the period starting from
admission, with patient follow-ups confirming the outcomes.
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Figure 7. Data collection flowchart.

Among these patients, STEMI localization was inferior [313 (51.74%)], anterior [230
(38.02%)], lateral [43 (7.11%)] and posterior [19 (3.14%)]. We investigated how the site of
STEMI impacted patient survival, differentiating between survivors and non-survivors.
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Our research found no significant connection between survival rates and the STEMI’s
location (inferior, anterior, lateral, or posterior), supported by non-significant p-values and
effect sizes under 0.1. At 1-year follow-up, 554 (91.6%) patients survived and 51 (8.4%)
died. Their demographic, risk factors, and catheterization data are described in Table 2.

Table 2. Demographic, risk factors, and catheterization data for STEMI patients of this study.

Characteristics Total No. Death Death < 1 Year p-Value
(Death < 1 Year vs. No. Death) Effect Size

No. of Patients 605 554 (91.57%) 51 (8.43%)

Demographics
Age, years 64.19 ± 13.18 63.56 ± 12.10 70.96 ± 13.38 <0.001 0.57
Male, no. (%) 432 (71.41%) 405 (73.10%) 27 (52.94%) 0.007 0.13
Weight, kg 171.65 ± 10.76 171.93 ± 10.68 168.73 ± 11.27 0.016 0.30
Height, cm 85.64 ± 20.13 86.24 ± 19.99 79.15 ± 20.69 0.043 0.35
BMI, kg/m2 29.14 ± 8.58 29.27 ± 8.76 27.7 ± 6.29 0.12 0.18

Risk Factors, no. (%)
Hypertension 349 (57.67%) 314 (56.68%) 35 (68.63%) 0.098 0.07
DM 156 (25.79%) 139 (25.09%) 17 (33.33%) 0.19 0.05
Dyslipidemia 246 (40.66%) 230 (41.52%) 16 (31.37%) 0.16 0.06
Stroke or TIA 28 (4.63%) 21 (3.79%) 7 (13.72%) 0.001 0.13
PVD 19 (3.14%) 15 (2.71%) 4 (7.84%) 0.044 0.08
RD 38 (6.28%) 24 (4.33%) 14 (27.45%) <0.001 0.26
Dialysis 5 (0.83%) 1 (0.18%) 4 (7.84%) <0.001 0.24
History of IHD 116 (19.17%) 108 (19.49%) 8 (15.68%) 0.51 0.03
PCI or CABG 90 (14.88%) 85 (15.34%) 5 (9.8%) 0.29 0.04

Catheterization Data
ESP, s/min 19.11 ± 3.29 19.19 ± 3.23 18.31 ± 3.82 0.042 0.27
EST, s/beat 0.24 ± 0.04 0.24 ± 0.04 0.22 ± 0.05 0.002 0.46

Continuous variables are shown as mean ± SD. Categorical variables are shown as portions of the group.
p-values were derived from Mann–Whitney U and χ2 (chi-square) tests for continuous and categorical variables,
respectively. BMI—body mass index, DM—diabetes mellitus, TIA—transient ischemic attack, PVD—peripheral
vascular disease, RD—renal dysfunction, IHD—ischemic heart disease, PCI—percutaneous coronary intervention,
CABG—coronary artery bypass graft, ESP—ejection systolic period, and EST—ejection systolic time.

3.2. Denoised AP Signal

After implementing the proposed denoising method, we successfully extracted the
clean segments of the AP signal. Figure 8 illustrates that the segments highlighted in red
are the clearer, less noisy parts of the AP signal. These segments were then used to extract
key features.
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3.3. Extracted Features

A major challenge with the 18 features extracted initially (Table 1) was their high
correlation. To address this, we calculated the correlation coefficient for each feature pair.
We eliminated those with a correlation of more than 0.7, ensuring a more independent and
effective set of features for our analysis. Without this correlation step, our feature selection
methods might pick similar features and miss out on important different ones. The final set
of features is nine in total, as shown in Table 3.

Table 3. The extracted features after removal of highly correlated features.

Feature Abbreviation Definition
p-Value

(Death < 1 Year vs.
No. Death)

1 Heartbeat HB 60/(t @ end) <0.001

2 Diastolic blood
pressure DBP min (p ) <0.001

3 Systolic blood
pressure SBP max (p ) <0.001

4 Overall time OT Whole time of the surgery <0.001

5 Ascending time AT t @ systolic peak <0.001

6 Total area under
the curve AOC

∫
p <0.001

7 Fractal
dimension FD Kats FD method <0.001

8 Skewness SK E(p − µ)3/σ3 <0.001

9 Kurtosis KU E(p − µ)4/σ4 <0.001
p-value derived from Mann–Whitney U test. p is a single AP waveform, t is time, µ is the mean of samples of the
waveform, σ is the standard deviation, and PSD is power spectral density.

3.4. Feature Selection Results
3.4.1. LBFS

After running our first feature selection method, which uses LDA 1000 times, based
on how often each feature was chosen as the most sensitive one, we made a bar graph
(Figure 9) to show how important each feature is. As illustrated in Figure 9, features like
diastolic blood pressure (DBP), area under the curve (AOC), HB, skewness, and systolic
blood pressure (SBP) consistently emerged as the top five selections in this method.

In a two-class problem with a single feature, LDA simplifies to a process of threshold
determination. It starts by calculating the mean of each class’s single feature and then
computes between-class and within-class variances. The main objective is to find an optimal
threshold that maximizes the between-class variance relative to the within-class variance,
effectively creating a decision boundary. This threshold helps classify new instances.

3.4.2. PBFS

Using PCA as the foundation for our feature selection method, we generated a
bar graph that highlights the most significant features identified through this approach.
Figure 10 is the result of repeating the selection process 1000 times, showing which features
are most important. The top five selected features were HB, SBP, FD, ascending time (AT),
and skewness.

3.5. Results on ML Models (Hemodynamic Trace Features)

Table 4 shows mortality prediction using the five selected features from the AP signal.
The performance of the predictions differs based on the classifier and the method used for
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selecting features. The accuracy of these predictions falls between 69% and 72%, while the
AUC values range from 0.73 to 0.77.
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Table 4. Prediction results using three different classifiers with features selected by PBFS and
LBFS methods.

PBFS LBFS

Classifier KNN LDA SVM KNN LDA SVM

Accuracy (%) 70 71 70 69 72 72
Specificity (%) 70 71 70 69 72 73
Sensitivity (%) 69 70 72 73 73 68
Precision (%) 18 18 18 18 19 19
AUC 0.73 0.77 0.76 0.73 0.77 0.74

The SVM classifier, employing PBFS, achieved the same levels of accuracy and speci-
ficity as the KNN classifier but showed a higher sensitivity. In comparison, the LDA
classifier, utilizing PBFS features, achieved the best overall prediction, slightly outperform-
ing both the KNN and SVM classifiers in AUC. When we used LBFS, the KNN classifier’s
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accuracy was lower, while LDA and SVM classifiers showed improved accuracy. The
sensitivity and specificity across these classifiers also varied slightly. The most effective
model among those tested was the LDA classifier.

Our method’s approach to handling data imbalance, which maintained the dataset’s
distribution in our test set, resulted in an imbalanced test set. This led to a higher incidence
of false positives compared to the use of a balanced test set, consequently yielding a lower
precision value. Additionally, it is noteworthy that three out of the five features selected
by each feature selection method remained the same, demonstrating consistency across
different techniques.

3.6. Results from ML Models (Adding Demographics, Risk Factors, and Catheterization Data)

In addition to classification using features extracted only from the AP signal, we
investigated whether adding extra information such as demographics, risk factors, and
catheterization information to the top five features from the AP signal would improve
the prediction accuracy. We chose these additional variables based on two criteria: their
p-values and the sizes of their effects (details shown in Table 2). We selected variables with
a p-value < 0.01 and an effect size > 0.2. The variables selected were age, renal dysfunction
(RD), dialysis, and EST, with effect sizes of 0.57, 0.26, 0.24, and 0.46, respectively; all had a
p-value < 0.01.

Table 5 shows the results of mortality prediction accuracy with the new variables
added to the AP-driven features. By including these new features, we were able to keep the
same level of sensitivity but we improved the accuracy, specificity, and AUC, particularly
for the LDA classifier. Figure 11 displays the ROC curves for every trained model outlined
in Table 5. The ROC curve and AUC values represent the average calculated across all folds.

Table 5. Prediction results after adding demographic, risk factors, and catheterization information.

PBFS LBFS

Classifier KNN LDA SVM KNN LDA SVM

Accuracy (%) 78 78 77 79 76 77
Specificity (%) 79 80 77 80 76 78
Sensitivity (%) 73 71 73 71 67 68
Precision (%) 23 24 23 25 21 22
AUC 0.76 0.82 0.81 0.81 0.81 0.81
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Figure 11. ROC curves of all the trained models: KNN, LDA, and SVM classifiers trained with PCA
and LDA selected features, incorporating demographics, risk factors, and catheterization information.
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4. Discussion

Using three supervised machine learning approaches (KNN, LDA, and SVM) for
the first time, this study demonstrates that the AP-derived features can be effective in
developing a risk-predictive model for 1-year outcome in patients with STEMI. When age,
RD, dialysis, and EST information were also included, the accuracy and sensitivity of our
best model (LDA with PBFS) improved by 7% and 9%, respectively, while maintaining
almost the same specificity. For the same model, the AUC also improved from 0.77 to 0.82.

For denoising of the AP signal, we extracted characteristics primarily based on mean,
SD, and FD. The mean and SD are utilized to establish a threshold for identifying and
removing data segments with abnormally high or low AP waveform values. To the best of
our knowledge, we are the first group to investigate the application of FD in the denoising
of the AP signal. FD is a nonlinear metric that measures complexity and irregularity in time-
domain signals. We used this feature to discard abnormally complex AP waveforms. In an
existing study [46], researchers examined the influences of various signal properties such as
amplitude, frequency, harmonics, noise power, and bandwidth on FD. They concluded that
FD is effective for identifying structural changes in signals, providing a rapid and efficient
way to assess variations in signal complexity.

We chose to use PBFS and LBFS methods to further reduce the number of features,
allowing us to interpret the model better and enhance its predictive accuracy. Each method
selected the top five features, providing more precise insights into the AP waveform
characteristics associated with mortality. Figures 9 and 10 display the ranked importance of
each AP feature as determined by the LBFS and PBFS methods, respectively. We categorize
important AP features into two groups. The first group of features are the overlapping
features identified by both methods: skewness, HB, and SBP. The second group is the
remaining two unique features selected by each method: DBP and AOC, chosen by LBFS,
and AT and FD, selected by PBFS.

The features selected by our feature selection methods are supported by other studies
which show their importance. In [47], entropy, skewness, and kurtosis values derived
from ECG signals were fed into a least squares SVM classifier for MI detection. This
research marks the first instance of calculating kurtosis and skewness from ECG signals
specifically for mortality prediction, demonstrating their pivotal role in such predictive
analysis. Similarly, previous research highlighted a positive correlation between elevated
HB and mortality [48,49]. Lower SBP and DBP were also shown to be predictors for in-
hospital, 30-day, and 1-year mortality in patients with STEMI [29]. Moreover, FD has been
previously employed in the analysis of AP signals for various purposes, and it has an
intricate association with arterial stiffness [50]; arterial stiffness is correlated with the risk
of cardiovascular mortality and morbidity [51]. Abrupt myocardial damage due to STEMI
compromises the myocardial ability to maintain adequate stroke volume or the amount of
blood ejected per heartbeat. Many of these patients with low stroke volume are noted to
have narrow pulse pressure (SBP–DBP, mmHg), slow uprise of the AP tracing (smaller AT),
or smaller AOC [52,53].

In general, all classifiers, along with the selected features, yielded similar results. These
results highlight the effectiveness of our method, utilizing only five features extracted from
the AP signal. Notably, the LDA model with LBFS outperformed the others, achieving
the highest accuracy, specificity, sensitivity, and AUC. Typically, machine learning models
exhibit a slight decrease in performance on validation data (unseen data) compared to
training data (seen data), as they are optimized based on the training dataset. In our study,
this was true as well; the performance of the ML models on the validation dataset was
slightly lower than on the training dataset, but it did not result in overfitting.

Incorporating demographics, risk factors, and catheterization information such as age,
RD, dialysis, and EST into the selected features led to improvements across various metrics.
The most effective model, which demonstrated a slightly better AUC, was the LDA trained
with PBFS. Both selected risk factors are related to abnormal kidney function, emphasizing
its crucial role. The relationship between renal dysfunction and cardiovascular outcomes



Medicina 2024, 60, 558 15 of 19

in the general population [54], and STEMI patients [55] is well established. Age has been
widely used as a predictor for mortality, especially in-hospital [29,56], 30-day [29], and
1-year mortality [29,57,58]. Similarly, EST is also independently linked to a higher risk of
cardiovascular disease and related death [53].

Different studies have previously focused on mortality prediction in patients with
STEMI using different methodologies. Oliveira et al. [27] conducted a study employing
ML algorithms to predict in-hospital mortality in acute MI patients, including STEMI cases.
Their research involved three distinct experiments, each utilizing varying feature sets. The
first two experiments used 1179 discharge episodes, initially focusing on admission vari-
ables and adding laboratory data, comorbidities, and interventions. The third experiment,
using 445 episodes, included more specific pathology-related variables than the previously
added variables. The best performance was observed in the third experiment, without data
balancing and with all 44 variables, where the KNN algorithm achieved 87% accuracy, 36%
precision, 90% recall, and an AUC of 0.89. In another study [28] involving 3191 STEMI
patients, five different machine learning models were trained and tested using 31 candi-
date features, with the Extra-tree classifier proving to be the most effective for predicting
all-cause 30-day mortality following STEMI. This model achieved a sensitivity of 85%,
specificity of 74%, accuracy of 79%, and an AUC of 79.7%. In another study [29] using the
data from a registry of 27592 STEMI patients, researchers applied ML to predict and identify
factors associated with short- and long-term mortality in Asian patients with STEMI. These
models were developed for in-hospital (6299 patients), 30-day (3130 patients), and 1-year
(2939 patients) mortality. The analysis considered 50 variables (9 continuous, 41 categorical)
and three ML algorithms (RF, SVM, and Linear Regression). This study evaluated model
performance using both a complete and reduced set of variables, achieving an AUC ranging
from 0.73 to 0.90. SVM classifier (with feature selection) displayed the highest predictive
performance for in-hospital, 30-day, and 1-year models, achieving AUCs of 0.88, 0.90, and
0.84, respectively. Notably, for 1-year mortality prediction the same model achieved the
best results with an accuracy of 77%, specificity of 77%, and sensitivity of 75%.

Our study has several limitations. First, the patient data is collected from a single
institution, which may not be universally representative and could introduce bias in
outcome measurements. However, our hospital is the only cardiac center providing tertiary
cardiac care in the province of Manitoba. Second, not all potential risk factors leading to
STEMI were available or included in this study. Thirdly, the limited number of patients is a
major limitation and expanding the dataset could lead to an increased number of patients in
the non-survivor group, potentially enhancing prediction. Fourthly, we could not compare
our results with conventional scoring methods due to a lack of access to Killip class data
that is essential for conventional scoring methods [59]. Finally, another challenge was our
dataset’s highly imbalanced nature. We developed a method to address this imbalance
while retaining key features and preserving the dataset’s distribution. Although this
strategy improved our model training, the imbalance inevitably may affect the observed
predictions. One notable consequence is reduced precision, resulting from maintaining
class distribution in our final test set. This may have led to a higher representation of
patients in class 1 (survived) compared to class 2 (the non-survived group), resulting in an
increased number of false positives and a consequent significant decrease in precision.

In our future research, we plan to extract additional features from the AP signal to
develop more comprehensive models. The dicrotic notch is a key point in AP. It identifies
a specific point on the AP curve, allowing us to divide the waveform into systolic and
diastolic sections. This distinction is vital as it enables us to extract different features
from these two phases of heart function, compare them, and potentially utilize them in
training our advanced models. However, accurately identifying the dicrotic notch can be
challenging, as it may not be present in all waveforms and may require varied strategies
for different waveforms or patients. A more complex model we aim to develop involves
tree-based methods, which have shown effectiveness in mortality prediction in other
studies [32,60,61]. These methods offer promising avenues for enhancing our predictive
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capabilities. While our primary focus in this study was on predicting mortality at 1-year
post-PPCI, future research could expand to include other complications, including but not
limited to prolonged in-hospital stays, identifying new diagnoses of heart failure, and more.
This broader scope could provide deeper insights into identifying high-risk patients, which
is important as careful monitoring and timely intervention can plausibly improve outcomes
and quality of life and reduce health-related expenditure.

5. Conclusions

Machine learning analyzing AP signal, incorporating other clinical parameters, can
predict 1-year mortality in STEMI patients treated with PPCI. Our work showed that such a
hemodynamic tracing has the potential to be a marker of clinical significance in identifying
patients at risk for adverse outcomes. We identified skewness, HB, and SBP as the most
significant AP features for our prediction. Our findings should be validated in a larger,
prospective, multi-center study.
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