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Abstract: Background and Objectives: This three-year clinical trial aimed to demonstrate that only
the signaling vesicles produced by ADSCa, containing mRNA, microRNA, growth factors (GFs),
and bioactive peptides, provide an advantage over classical therapy with adipose disaggregate to
make the tissue regeneration technique safer due to the absence of interfering materials and cells,
while being extremely minimally invasive. The infiltration of disaggregated adipose nanofat, defined
by the Tonnard method, for the regeneration of the dermis and epidermis during physiological
or pathological aging continues to be successfully used for the presence of numerous adult stem
cells in suspension (ADSCa). An improvement in this method is the exclusion of fibrous shots and
cellular debris from the nanofat to avoid inflammatory phenomena by microfiltration. Materials and
Methods: A small amount of adipose tissue was extracted after surface anesthesia and disaggregated
according to the Tonnard method. An initial microfiltration at 20/40 microns was performed to
remove fibrous shots and cellular debris. The microfiltration was stabilized with a sterile solution
containing hyaluronic acid and immediately ultrafiltered to a final size of 0.20 microns to exclude the
cellular component and hyaluronic acid chains of different molecular weights. The suspension was
then injected into the dermis using a mesotherapy technique with microinjections. Results: This study
found that it is possible to extract signaling microvesicles using a simple ultrafiltration system. The
Berardesca Scale, Numeric Rating Scale (NRS), and Modified Vancouver Scale (MVS) showed that
it is possible to obtain excellent results with this technique. The ultrafiltrate can validly be used in
a therapy involving injection into target tissues affected by chronic and photoaging with excellent
results. Conclusions: This retrospective clinical evaluation study allowed us to consider the results
obtained with this method for the treatment of dermal wrinkles and facial tissue furrows as excellent.
The method is safe and an innovative regenerative therapy as a powerful and viable alternative to

Medicina 2024, 60, 670. https://doi.org/10.3390/medicina60040670 https://www.mdpi.com/journal/medicina

https://doi.org/10.3390/medicina60040670
https://doi.org/10.3390/medicina60040670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/medicina
https://www.mdpi.com
https://orcid.org/0000-0002-0522-7584
https://orcid.org/0000-0003-0304-6867
https://orcid.org/0000-0001-5540-0712
https://orcid.org/0000-0002-6661-7164
https://orcid.org/0000-0003-1951-9403
https://orcid.org/0000-0002-7420-4706
https://orcid.org/0000-0002-7419-8780
https://orcid.org/0000-0003-2156-4553
https://doi.org/10.3390/medicina60040670
https://www.mdpi.com/journal/medicina
https://www.mdpi.com/article/10.3390/medicina60040670?type=check_update&version=1


Medicina 2024, 60, 670 2 of 13

skin regeneration therapies, antiaging therapies, and chronic inflammatory diseases because it lacks
the inflammatory component produced by cellular debris and fibrous sprouts and because it can
exclude the mesenchymal cellular component by reducing multiple inflammatory cytokine levels.

Keywords: tissue regeneration; nanovesicles; exosomes; micro RNA; Jaluexos

1. Introduction

Skin tissue harvested and processed at different sizes between 50 and 100 microns can
be used effectively on scars due to the presence of tissue progenitors [1]. Adipose tissue can
provide more viable tissue progenitors for micrografts between 50 and 100 microns through
a simple procedure [2]. From 1 mL of lipoaspirate, approximately 2.0 to 6.0 × 107 cells
can be obtained with a cell viability of 90% [3], and, from one gram of the same tissue,
5 × 104 progenitor cells can be isolated, although with debris in the suspension [4]. The
uniqueness of adipose tissue is that it is possessed by every individual and is easily
accessible for sampling, even with simple instruments such as a syringe and a needle of
adequate size. The procedure for obtaining progenitors, which is the fraction of adult
mesenchymal stem cells from adipose tissue without vital adipocytes, involves extraction
and disaggregation according to the method of Tonnard et al. [5]. However, to obtain
progenitor cells in a suspension without inflammatory components such as fibrous shots
and cellular debris, which are responsible for the activation of the Toll-like (TL) system [4],
the adipose tissue must be subjected to microfiltration after disaggregation [6,7]. The
progenitor cells have to undergo cytofluorometry [8] to acquire the characteristics of adult
stem cells. Through the phenomenon of plasticity, progenitor cells can induce the formation
of new tissues via the formation of new cells that improve the characteristics of the receiving
tissue [7].

The phases of tissue regeneration take place through a series of interactions between
progenitors and newly formed cells immersed in the extracellular matrix, blood vessels,
signals mediated by signaling proteins, and some regenerative microRNAs produced by
the progenitors [9]. The method used in this study makes it possible to induce the same
tissue regeneration mechanisms, with greater biological safety, using only the signaling
of microvesicles produced by the progenitors, since these are the cells that transmit the
signaling proteins [10]. These microvesicles, called exosomes, are capable of transmitting
information to cells, having therapeutic effects through proteins and mRNAs and the
microRNAs they contain [10].

Exosomes, by definition, are spherical or elliptical vesicles with a size varying between
50 and 200 nanometers (0.05–0.2 µm). They are mediators of all the cellular activities that
produce them [10], which is achieved by releasing their information inside the target cells,
as reported in the ARVO conference [11], with therapeutic activity on the cells of tissues
different from them [12]. When exosomes are released from adult stem cells, they remain
active even in the absence of the cells that produced them, activating the tissue regeneration
process [10]. Exosomes can maintain the functional therapeutic phenotype of the adult
stem cells that produced them by influencing tissue responses to lesions and positively
interacting with cell metabolism [13].

When derived from healthy tissues, they induce risk-free regeneration [14], where
bioactive lipids, nucleic acids, mRNAs, and microRNAs induce a regenerative biological
response in the recipient cells. Exosomes can induce and activate biological functions
even in senescent or dysfunctional cells, limiting the acquired expression of the senescent
phenotype and preventing the expression of MMPs [15]. They can inactivate the TL4/NF-
κB inflammatory cascade by reducing TLR4 levels [16]; they can reduce IFN-γ, TNF-α,
and IL-1β levels, reducing local inflammatory phenomena [17]; and they can increase
the expressions of TGF-β1 and IL-10 [18]. The exosomes derived from viable precursors
of adipose micrografts induce a noninflammatory phenotype in macrophages toward
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the M2 phenotype [19], and they regulate autophagy [20]. In lesions of the dermis and
epidermis, they allow more rapid physiological healing through the transfer of their
microRNAs [21]. They promote endothelial formation, reduce oxidative stress damage, and
improve nitric oxide synthesis [22]. The viable precursors of adipose tissue micrografts can
release exosomes with the presence of microRNA-126. This microRNA can protect cells from
acute events typical of hypoxia–reperfusion pathology by regulating neo-angiogenesis and
endothelial cells [22,23]. They can restore the efficiency of the connection of the membrane
potential of superoxide dismutase (SOD1) [24] and can inhibit elastase through the release
of alpha-1-antitrypsin (AAT) [25] in the tissues, which results in a wide limitation of
tissue aging phenomena. Exosomes induce plasticity in dermal fibroblasts [26] and allow
physiological neo-collagenogenesis [27].

The exclusive use of exosomes makes it possible to design therapy that excludes the
cells that have secreted them, thus allowing low immunogenicity [28]. Exosomes express
the Alix protein on their surface [29], which is an adaptor protein associated with the
cytoskeleton that regulates the function of tyrosine kinase (TK) and CD63, which play
fundamental roles in cells by regulating development, activation, growth, and motility.
Endothelial cell lines defined as HUVECs are activated by exosomes, suggesting that they
promote angiogenesis in vitro and in vivo [30,31]. They reduce tissue degeneration by
reducing apoptosis [32]. They improve the outcome of wounds and scars by increasing
fibroblast proliferation and migration [33] and Wnt/β-catenin signaling [34] and by up-
regulating gene expression in the recipient tissues [35]. They allow over-regulation in the
cells of proliferative markers such as cyclin D1, cyclin D2, cyclin A1, and cyclin A2; and
growth factors such as VEGFA, PDGFA, EGF, and FGF2; and they stimulate and activate
the AKT and ERK pathways, leading to a significant increase in re-epithelialization, physio-
logical collagen deposition, and neovascularization in dermal lesions [36]. Adipose-derived
adult stem cells are capable of producing a significant amount of exosomes [37], and this
phenomenon occurs in both normoxic and hypoxic environments [33,38], with a positive
functional impact on the receiving cells [38]. By using ADSCa-derived exosomes, it is
possible to transfer a large amount of information into tissues [38], but ADSCa-derived
exosomes must be separated from interfering components such as cellular debris and
fibrous processes [39].

Exosomes from ADSCs can be obtained by extraction using filters of the appropriate
size [40,41]. Specifically, exosomes derived from hypoxic ADSCs have a size that can
vary from 20 to 300 nanometers (0.02–0.3 microns), with an average size of 90 nanometers
(0.09 microns) [42]. ADSCa can be preconditioned without any manipulation to modulate
the composition of the exosomes they secrete [43,44], from which the profiles of 148 microR-
NAs have been isolated [45]. Proteomic analysis has identified 1466 proteins that positively
interfere with cellular functions [46]. The exosomes released by the previously conditioned
adult stem cells allow a greater therapeutic effect [47], and preconditioning without manip-
ulation is emerging as a key strategy to improve the functions of ADSCa to obtain exosomes
that improve their efficacy in regenerative medicine [48,49]. This three-year clinical trial
aimed to demonstrate that the signaling vesicles produced by ADSCa, containing mRNAs,
microRNAs, GFs, and bioactive peptides in the phenomena of chrono- and photoaging of
facial tissues, have an advantage over therapy with disaggregated adipose defined nanofat
to make the tissue regeneration technique safer and minimally invasive. This study’s objec-
tive was to apply and evaluate the feasibility of a specific protocol rather than comparing
control groups undergoing different procedures. This approach utilized established and
validated methods to assess, through cytofluorometry, the presence, quality, and quantity
of signaling vesicles released by adipose-derived adult stem cells.

2. Material and Methods

A total of 72 female patients aged between 34 and 68 years (mean age 48 years) were
studied. They signed an informed consent for the use of lipoaspirate for the procedures
described. This study was approved by the local ethics committee under protocol number
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367/2021 and was conducted in accordance with the tenets of the Declaration of Helsinki.
Skin-B® 5 mL sterile solution containing amino acids and nonviscoelastic macromolecular
hyaluronic acid was from Italfarmacia (Rome, Italy).

None of the patients had inflammatory pathologies of the dermis or epidermis, except
for the presence of age-dependent phenomena and photoaging. No unapproved substances
such as proprietary products or drugs were used in this study under conditions other
than those approved. The presence of nanovescicles was determined by positive selection
using an EV Isolation Kit Pan, Human of Milteniy Biotec Company, Bergisch Gladbach,
North Rhine-Westphalia, Germany. The EV Isolation Kit Pan for humans facilitates the
isolation of intact exosomes or extracellular vesicles (EVs) from cell culture supernatant,
plasma, urine, or ascites. The isolation is performed by positive selection using MicroBeads
recognizing the tetraspanin proteins CD9, CD63, and CD81. The isolation protocol is
based on the renowned MACS technology, which enables fast isolation of high-purity and
high-yield EV. The Visual Analogue Scale (VAS), NRS, and Berardesca Scale were used
for data collection [50]. In addition, the MVS was used to document changes in scarring
outcomes over time; in our study, it was used to assess the overall improvement in skin
appearance, taking into account the three parameters mentioned above (stability, softness,
and hydration).

3. Results

After identification of the donor area, adipose tissue extraction and local infiltration
with Klein’s solution were carried out as a method of anesthesia, and, after waiting for
the whitening of the area induced by the presence of adrenaline in the solution contained
therein, a total of 3.5 mL of adipose tissue was extracted using a 10 mL luer-lock syringe
and a 16 G needle or with a multiport small-hole cannula (Figure 1). The tissue sample was
decanted for 15 min to remove the anesthetic fluids, yielding 3 mL of adipose tissue, which
was immediately disaggregated using the classic Tonnard method [5].
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Figure 1. Extraction of adipose tissue.

During the disaggregation between the two syringes and employing a three-way tap,
simultaneous filtration was carried out through a filter at 20/40 microns connected to one
end (Figure 2). The filtration at 20/40 microns during the disaggregation of the tissues
made it possible to eliminate the fibrous shots and the larger cellular debris protecting the
side population in the harvesting syringe [5].
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Figure 2. Fragmentation and simultaneous filtration at 20/40 microns.

A vial of Skin-B® 5 mL sterile solution containing amino acids and nonviscoelastic
macromolecular hyaluronic acid was added to the tissue thus obtained to condition the
ADSCa and then was ultrafiltered to the final dimensions of 0.20 microns (200 nanome-
ters) with an appropriately sized filter (Figure 3). The 200-nanometer ultrafiltration also
guaranteed the exclusion of hyaluronic acid chains of different molecular weights from the
final suspension to avoid influencing the clinical results of hyaluronic acid on the skin. The
exosomes were isolated using only a size-based ultrafiltration technique [42,43].
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This ultrafiltration technique made it possible to obtain microvesicles that did not
contain almost any of the components of the interfering adipose disaggregate [27,38]. The
large number of exosomes that may be lost during the ultrafiltration process is compensated
for by an extremely fast, reproducible, painless, and minimally invasive technique since it
involves the extraction of only 3.5 mL of adipose tissue, which can provide approximately
6.0 × 107 cells with a cell viability of 90% [3,4]. Confirmation of the presence of exosomes
in the microfiltrate was obtained by testing the procedure using an EV Isolation Kit, which
allows the specific isolation of intact exosomes or EVs from cell culture supernatant, plasma,
urine, or ascites. Isolation is performed by positive selection using microbeads that rec-
ognize tetraspanin proteins. The isolation protocol is based on MACS technology, which
enables the rapid isolation of high-purity and high-yield EVs. Through this procedure, it
was verified that, despite the final filtration procedure at 0.2 microns (200 nanometers),
there were still particles covering part of the characterization signal, but we could see
the presence of numerous vesicles using exosomal marker CD81, typical of regenerative
functions [51], and the mesenchymal/endothelial marker CD146, specific for ADSCa after
stabilization [52] (Figure 4).
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However, the dilution of a fat disaggregate is always necessary because of the possible
contraindications that a final filter of 0.20 microns may have for lipid emulsions. The
final suspension containing the microinjections was, by convention, sterile since it was
obtained at values around 0.2 microns. This procedure resulted in a final suspension of
3 mL (Figure 5). Once the suspension was obtained, it was injected with the same syringe
and a 30 G 6 mm needle using the mesotherapy microinjection technique over the whole
face, with the needle inclined at 45◦, releasing a minimum amount of suspension when
the needle was withdrawn until the formation of a visible wheal. However, this is not
considered a drug, so we did not know the dosage or quantification. Additionally, it was
not possible to know a priori the number of exosomes produced by the adult mesenchymal
cells contained in each adipose tissue sample before treatment. We can state that, in the
standardized sampling from each patient and examined by flow cytometry, we highlighted
450 million secretory vesicles with the CD81 marker. The procedure lasted about 30/40 min
for each patient.
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After the first clinical results on the use of 0.20-micron ultrafiltration [41] using only a
physiological saline solution as mechanical support for the 0.2-micron filters, additional
patients were enrolled and subjected to a clinical study and using an even higher-purity
ultrafiltrate with a solution containing a vial of Skin-B® 5 mL sterile solution containing
amino acids and nonviscoelastic macromolecular hyaluronic acid. This procedure was
called Jaluexos, both as filter support and as preconditioning, to modulate the composition
of microvesicles produced by ADSCa [43,44] and the CD44 expressed on them to have a
greater number of mRNAs and microRNAs to address regenerative simulation using a
solution of Dulbecco’s modified Eagle medium [8].

A significant improvement in skin parameters was observed using this method. Com-
pared to D0 (pretreatment), at a follow-up of 15 and 30 days after a single treatment,
patients assessed their satisfaction with the treatment received by assigning scores for fine
lines and wrinkles using a scale of 0 to 4 for each criterion (0 = unsatisfactory; 4 = satisfac-
tory), as suggested by Berardesca et al. [53]. In addition, the individual signs of wrinkles
and defect severity obtained for each treatment and each area were objectively assessed
using a 10–0 NRS with separate scores for each area (10 = signs of high wrinkle severity
or signs of high defect severity; 5 = signs of medium wrinkle severity or average defect
severity; 0 = signs of low wrinkle severity or average defect severity) This scale provided
a numerical measure of the severity of a general facial defect and, more specifically, the
severity of wrinkles before the start of treatment (D0) (Figure 5A) and during follow-up
(D30 in Figure 5B).

The results presented in Figures 6 and 7 show that treatment with exosomes induced
a reduction in the signs of tissue aging in all patients.
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Figure 7. Numeric Rating Scale (NRS) evaluating defect severity and wrinkles: 10–0 scale with
separate scores for each site (10 = wrinkle or defect severity; 5 = medium wrinkle signs or medium
defect severity; 0 = low wrinkle signs or medium defect severity); p < 0.05. **** p < 0.0001.

The MVS was also used for follow-up evaluation, and the parameters analyzed were
stability, softness, and hydration, as shown in Figure 8. The treatment was found to be
extremely safe with the method used, and no adverse effects were recorded.
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Figure 8. Modified Vancouver Scale used for the evaluation of stability, softness, and hydration. The
Modified Vancouver Scale was used to estimate the improvement in skin appearance 15 days and
30 days after treatment in comparison to D0 (before treatment). The parameters considered were
stability, softness, and hydration. **** p < 0.0001 (one-way ANOVA).

4. Discussion

It was hypothesized that ADSCa-derived signaling vesicles and exosomes could be
extracted from adipose tissue disaggregated according to the method described by Ton-
nard et al. [5], microfiltered at 20/40 microns, conditioned with Skin-B®, and nanofiltrated.
The stages of tissue regeneration take place through a series of interactions between newly
formed cells immersed in the extracellular matrix, blood vessels, signals mediated by
signaling proteins, and the microRNAs produced by them. It was hypothesized that tissue-
regeneration mechanisms could be induced using only signaling microvesicles produced
by tissue progenitors with greater biological safety and that microvesicles would be able to
transfer information employing proteins, mRNAs, and the microRNAs contained in them
to cells, having a therapeutic effect. We aimed to clinically demonstrate that there was
an improvement in the skin and to verify the presence of exosomes in the 200-nanometer
nanofiltrate by flow cytometry. We used the Berardesca Scale, NRS and VAS. All three
scales are valid, reliable, and appropriate for use in clinical practice, although the VAS is
more difficult to use than the others. For general purposes, the NRS has good sensitivity
and generates data that can be analyzed for various purposes. The exosomes from ADSCs
can be obtained by extraction using filters of the appropriate size, and those derived from
normoxic ADSCs and those derived from hypoxic ADSCs have a size that can vary from 20
to 300 nanometers (0.02–0.3 microns), with an average size of 90 nanometers (0.09 microns).
ADSCs can be preconditioned without any manipulation to modulate the composition
of the exosomes they secrete. Preconditioning facilitates the hypoxia of ADSCa, and the
secretome of hypoxia-preconditioned ADSCa plays an important role in promoting cell
proliferation and migration, improving angiogenesis, and inhibiting apoptosis and inflam-
mation. The exosomes released by the previously conditioned adult stem cells produce
a greater therapeutic effect, and preconditioning without manipulation is emerging as a
key strategy for improving the functions of ADSCa to obtain exosomes with improved
efficacy in regenerative medicine. All patients were satisfied with the treatment. The
physical examination that the patients underwent during the follow-up was in line with
their self-assessment.
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5. Conclusions

It is now known that cell-based communication, even at a distance, occurs through
signaling microvesicles, defined as exosomes. There are no other clinical studies on skin
chrono- and photoaging using signaling microvesicles obtained by extraction from adipose
tissue using a simple nanofiltration technique from preconditioned ADSCa, diluted in
suspension but without any manipulation. Stabilization by the binding of hyaluronic acid
to the CD44 of ADSCa positively affects the quality and number of microvesicles in the
suspension. This clinical study showed that it is possible to extract signaling microvesicles
with the typical markers CD81 and CD146 using a simple ultrafiltration system. The
extraction of exosomes by ultrafiltration through a 0.20-micron filter eliminated the cellular
components as well as sterilized the solution [54]. The method proved to be safe and fits
into the field of innovative regenerative therapies as a powerful and viable alternative to
epidermal regeneration therapies.
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