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Abstract: In this study, we focused on obtaining polysulfone-polyurethane (PSF-PUR) blend partly
degradable hollow fiber membranes (HFMs) with different compositions while maintaining a con-
stant PSF:PUR = 8:2 weight ratio. It was carried out through hydrolysis, and evaluation of the
properties and morphology before and after the hydrolysis process while maintaining a constant
cut-off. The obtained membranes were examined for changes in ultrafiltration coefficient (UFC),
retention, weight loss, morphology assessment using scanning electron microscopy (SEM) and MeM-
oExplorer™ Software, as well as using the Fourier-transform infrared spectroscopy (FT-IR) method.
The results of the study showed an increase in the UFC value after the hydrolysis process, changes
in retention, mass loss, and FT-IR spectra. The evaluation in MeMoExplorer™ Software showed
the changes in membranes’ morphology. It was confirmed that polyurethane (PUR) was partially
degraded, the percentage of ester bonds has an influence on the degradation process, and PUR can
be used as a pore precursor instead of superbly known polymers.

Keywords: partly degradable hollow fiber membranes; hydrolysis process; PSF-PUR membranes;
PUR degradation

1. Introduction

Membranes are widely used in various branches of science and technology. Depend-
ing on the properties of membranes, they can be used, among others, to separate molecules
of different sizes [1–7], culture [4,8–11], or even in a drug delivery system (DDS) [12–14].
They are increasingly used in medicine, including tissue engineering, the main objective
of which is the regeneration or even transplanting of damaged tissues or organs whose
function can hardly be restored by conventional treatments [15]. They can occur in various
forms, including as 2D membranes, among other uses for skin regeneration [16], in 3D
form as scaffolds as a cell support during cultivation [8,17,18], encapsulation of active sub-
stances/cells in DDS [12–14], and even in the form of HFMs, for examples in dialysis [6,19]
in bioreactors among others for cell culture [4,9–11,20]. A feature of the mentioned above
membranes is their semipermeable structure.

The production method of HFMs is spinning, which can be divided into four general
types. For medical purposes the most common is the wet phase inversion spinning
method [4]. In this technique, the polymer membrane solution is extruded directly into
a coagulant bath, mainly water with detergent, where phase separation occurs [4,21].
The phase inversion process is also used for the production of 2D membranes, scaffolds,
or capsules.

The HFMs are mainly made of synthetic, hydrophobic polymers such as polysulfone
(PSF), polypropylene (PP), polyvinylidene fluoride (PVDF), polyethersulfone (PES), polyte-
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trafluoroethylene (PTFE), or cellulose acetate (CA) [4,22–25]. The degradable polyesters
such as poly (lactic acid) (PLA), poly (ε-caprolactone) (PCL), poly (lactic-co-glycolic acid
(PLGA), or PUR are also used as a material [4,21,26]. Moreover, the above materials could
be used for HFMs alone or in blends. The blending of polymers is a simple method to
overcome some limitations of single materials, such as inadequate or no degradation,
poor mechanical properties. It is possible to provide also adjustment specific qualities like
tunable hydrophilicity, elasticity, and even selective permeability [2,4,21,23,24,26–31]. Ob-
taining material from a few polymers is also possible by copolymerization technique, but it
is a more complicated method and requires appropriate laboratory facilities. A cheaper
and simpler method than copolymerization is the blending technique. This method is
increasingly used in the production of HFMs for bioartificial organs or tissue engineer-
ing applications [4,31,32]. For instance, to reduce the stiffness of a degradable material
it is possible to blend it with a more elastic polymer, like PCL. Such treatment will re-
duce degradation rates and will provide better mechanical resistance of the polymeric
scaffold [4,33].

The effect of blended HFMs also helps to reduce or eliminate the fouling resistance that
occurs by the presence of biological macromolecules that adhere very strongly to hydropho-
bic surfaces of membranes. This is particularly desirable for membranes in biotechnological
applications, especially in contact with proteins and microorganisms [4,31]. For example,
obtaining blended HFMs from stable and (bio)degradable polymers affects the gradual
removal of decomposition material that increases porosity which in turnaffects permeabil-
ity and delimits the effects of the fouling process. This occurrence should influence good
efficiency of membrane processes even over long periods of usage [21,26,28].

Furthermore, helpful methods to eliminate fouling can be, for example, heat and
plasma treatment [4,34–37], coating or grafting of hydrophilic polymers onto membranes’
surfaces [33,35,38–43], or through the addition of hydrophilic pore precursors to a polymer
solution or other admixture like nanoparticles [6,19,25,44–48]. The modification could
be influenced by an increase of the hydraulic permeability and/or the hydrophilicity of
membranes. This will improve membrane compatibility and fouling resistance. Such
HFMs could be potentially used in tissue engineering as membrane bioreactors or as
scaffolds [4,22,23,40].

The aim of this study was to obtain semipermeable HFMs using a polymer blend of
PSF and synthesized PUR and evaluate the possibility of partial degradation of obtained
membranes by assessing changes in transport-separation properties and morphology after
the hydrolysis process while maintaining a constant membrane cut-off point. Additionally,
in some cases, the addition of a pore precursor to membrane forming solution was used.
Potentially, partial degradation would extend the useful life of the membranes. Received
PURs, in their structure, contain ester bonds that potentially undergo degradation pro-
cesses. The membranes were received in constant PSF:PUR weight ratio 8:2, however, there
were changes in used solution, type of PUR, or PVP addition. The degradation of PUR in
HFMs was carried out using the flowing method with 1M NaOH solution. The obtained
membranes before and after hydrolysis were characterized using UFC for pure water, reten-
tion coefficient for selected markers, the weight loss measurement, and FT-IR spectroscopy.
The observation of membranes’ morphology was achieved by using the SEM. Furthermore,
the structure of pores was evaluated using the MeMoExplorer™, an advanced software
designed for computer analysis of the SEM photomicrographs [26,49,50]. The evaluation
of the effect of the pore precursor or the type of the used solvent was compared by the
MeMoExplorer™ Software. The results of the obtained blended HFMs before and after
hydrolysis were compared and presented in this paper.
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2. Experimental
2.1. Material
2.1.1. PUR Synthesis

Dimethyl carbonate (DMC) from Carl Roth (Karlsruhe, Germany) 1,4-butanediol
from Sigma-Aldrich (St. Louis, MS, USA), 1,5-pentanediol from Sigma-Aldrich, titanium
(IV) butoxide (Ti(OBu)4) from Sigma-Aldrich, dimethyl succinate (BDM) from Carl Roth,
isophorone diisocyanate from Sigma-Aldrich, dichloromethane from Sigma-Aldrich, hy-
drochloric acid (HCl) from Chempur (Plymouth, UK), water 18.2 MΩ from MiliQ installa-
tion (DI) were used for PURs synthesis.

2.1.2. HFMs Preparation and Characterization

N,N-Dimethylformamide (DMF) from Chempur; N-methyl-2-pyrrolidone (NMP) from
Fluka (Charlotte, NC, USA); polyvinylpyrrolidone (PVP) from Sigma-Aldrich; sodium
hydroxide (NaOH) from POCH; water 18.2 MΩcm from MiliQ installation, PSF 1700 NT
LCD from Dow Corning, M.W. 70 kD, polyvinylpyrrolidone (PVP) from Sigma-Aldrich,
polyethylene glycols (PEG) M.W. 4, 15, and 35 kD from Fluka, chicken egg albumin (CEA)
M.W. 45 kD from Sigma-Aldrich, bovine serum albumin (BSA) M.W. 67 kD from Fluka
were used for obtaining, hydrolyzing, and characterization of the HFMs.

2.2. PUR Synthesis

PURs were synthesized using methods presented in [51,52]. Finally, two polymers
with different percentages of ester bonds (marked as PUR 1 with ≈80% molar content
of ester bonds, and PUR 2 with ≈90% molar content of ester bonds) with the structure
presented in Figure 1 were obtained in five steps of the synthesis:

(1) Synthesis of tetramethylene bis(methyl carbonate)
(2) Glycolysis;
(3) Polycondensation;
(4) Reaction with an excess of diisocyanate;
(5) Synthesis of poly(ester-carbonate-urea-urethane).
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2.3. HFMs Preparation

HFMs were obtained using the dry/wet-spinning, phase inversion technique through
extrusion of polymeric solution. PSF* and PUR were mixed with solvent (NMP or DMF)
in different flasks and in the next step received solutions were mixed together for 24 h.
Finally, eight different HFMs marked as PSF-PUR-1, PSF-PUR-2, PSF-PUR-3, PSF-PUR-4,
PSF-PUR-5, PSF-PUR-6, PSF-PUR-7, PSF-PUR-8 (differences in used solvent or PUR) were
obtained. Differences between the membranes are presented in Table 1. The PSF:PUR
weight ratio was constant: 8:2.

For PSF-PUR-4,5,6,8 PVP was added after complete PSF dissolution.

Table 1. Compositions of the membrane casting solutions.

Membrane PUR Solvent PVP Addition

PSF-PUR-1
PUR 1

NMP

-
PSF-PUR-2 DMF

PSF-PUR-3
PUR 2

NMP

PSF-PUR-4 DMF

PSF-PUR-5
PUR 1

NMP

50% of PSF weight
PSF-PUR-6 DMF

PSF-PUR-7
PUR 2

NMP

PSF-PUR-8 DMF

The membranes and modules were obtained in similar conditions to ensure repeata-
bility of the process (obtaining and modules preparation were presented in previous
works: [26,28].

2.4. Membranes Hydrolysis

The membranes were treated with a 1M NaOH solution using the flowing method.
First, 1 dm3 of the NaOH solution was passed through the module from 1 to 3 days. After
the hydrolysis process the membranes were treated with demineralized water in order to
remove the NaOH solution.

2.5. Membranes Characterization

The membranes were characterized twice—before and after the hydrolysis process
due to comparison of changes in membranes properties after the hydrolysis process.

2.5.1. Ultrafiltration Coefficient

The ultrafiltration coefficient (UFC) was calculated according to the formula:

UFC =
v

p·t·a (1)

where: v—the volume of pure water (cm3); p—transmembrane pressure (hPa); t—the time
of measure (min); a—nominal membrane’s area in a module (m2).

The hydraulic permeability was measured as a volume of pure water passed through
the membrane’s walls during the period of established time under 200 hPa transmembrane
pressure.

2.5.2. Cut-Off Evaluation via Retention Measurements

The membrane retention (%) was defined as:

R =

{
1−

(
CP
CF

)}
·100% (2)
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where: R—retention coefficient; CP—concentration of marker in permeate (g/dm3); CF—
concentration of marker in the feed (g/dm3).

The concentrations of markers (1 g/dm3) were evaluated by a UV-spectrophotometer
(HITACHI U-3010, Tokyo, Japan) at 190 nm wavelength for PEGs: 4, 15, and 35 kD and
280 nm for CEA 45 kD and BSA 67 kD.

2.5.3. Mass Measurements

The dry modules of membranes were weighted before and after hydrolysis in order to
evaluatechanges in masses to estimate partial PUR degradation.

2.5.4. SEM Analysis

SEM (a Hitachi TM-1000 microscope) was used to characterize morphology of the
membranes before and after the hydrolysis process. The membranes were cut in liquid
nitrogen for avoiding deformation during fracture and coated with a 10 nm gold layer,
using a sputtering device (EMITECH K 550 X, Al Twar, Dubai).

2.5.5. MeMo Explorer™Analysis

The evaluation of SEM images analyzed on the basis of comparison of two images with
the human eye is not a precise method, because it is impossible to determine exactly what
numerical changes occur in the pore size. In order to more precisely assess morphology
changes (in pore size), selected samples were analyzed with the MeMoExplorer™ Software.
This program proposes the adoption of images obtained during the SEM analysis of
membranes for the analysis of binary time series as well as extension to images of larger
dimensions and/or image sequences. In the former paper [53] results of the evaluation of
the influence of:

(1) hydrolysis;
(2) different solvents;
(3) pore precursor addition;

On the porosity in various types of membranes, as well as:

(4) porosity parameters’ stability in the series of samples drawn from various membranes
were described.

In the experiments, eight types of membranes before hydrolysis (denoted by #1,#2, #3,
#4, #5, #6, #7, #8) and eight types after hydrolysis (denoted by #1h, #2h, #3h, #4h, #5h, #6h,
#7h, #8h) were taken into consideration.

Besides, the results of evaluation of the above-mentioned factors’ influence on the
stability of porosity parameters in eight size-classes of pores will be described.

Size-classes, denoted by j∈{1, 2, 3, 4, 5, 6, 7, 8}, were established according to practical
reasons, as described in Table 2.

Table 2. Size-classes of pores.

j 1 2 3 4 5 6 7 8

Size µm2 0–3 3–8 8–20 20–80 80–100 100–150 150–300 >300

In each original SEM image of a membrane section about 20 image-segments were
selected, all being of the same surface S.

Based on the above-mentioned results the following basic statistical parameters were
calculated:

• mean values of the pore areas in given classes of membranes obtained by using given
technologies, covered by pores of given size-classes:

• standard deviations of the above-mentioned variables.

The results were used for calculation of the following porosity characteristics:
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(a) porosity factors (PFt
i,j,k) for given technology (t), type of membrane (i), and size-class of

pores (j):

PFt
i,j,k =

st
i,j,k

S
·100%; (3)

(b) instability coefficient (dt
i,j,k) of general porosity factors, for given technology t, type of

membrane i, and size-class of pores j, calculated within the sets of image segments:

dt
i,j,k =

Std
(

PFt
i,j,k

)
Av
(

PFt
i,j,k

) ·100%. (4)

2.5.6. Fourier-Transform Infrared Spectroscopy Analysis

FT-IR spectra were recorded on a Nicolet iS5 Mid Infrared FT-IR spectrometer equipped
with iD7 Attenuated Total Reflectance (ATR) Optical Base.

3. Results and Discussion
3.1. UFC

UFC was evaluated for the membranes according to Equation (1) in two steps: before
(marked as UFC) and after the hydrolysis process (marked as UFCH). The values of the
UFCs with standard deviations are presented in Table 3.

Table 3. Ultrafiltration coefficients before and after the hydrolysis process.

Membrane UFC
[

cm3

min·m2·hPa

]
UFCH

[
cm3

min·m2·hPa

] UFCH
UFC

PSF-PUR-1 0.0870 ± 0.0170 2.00 ± 0.02 23

PSF-PUR-2 1.14 ± 0.08 1.94 ± 0.17 1.7

PSF-PUR-3 2.76 ± 0.03 4.30 ± 0.34 1.6

PSF-PUR-4 0.0610 ± 0.0070 0.108 ± 0.002 1.8

PSF-PUR-5 0.0380 ± 0.0030 0.0830 ± 0.0350 2.2

PSF-PUR-6 0.141 ± 0.008 0.332 ± 0.097 2.4

PSF-PUR-7 0.929 ± 0.100 26.3 ± 0.2 28

PSF-PUR-8 0.125 ± 0.010 0.432 ± 0.049 3.5

The increase of the UFC after the hydrolysis process is observed for all of the mem-
branes. The UFC before the hydrolysis increased from 0.0380 ± 0.0030 cm3

min·m2·hPa for the

PSF-PUR-5 membrane to 2.76 ± 0.03 cm3

min·m2·hPa . for the PSF-PUR-3 membrane. After the

hydrolysis process the UFC values were in the range from 0.0830 ± 0.0350 cm3

min·m2·hPa . for

the PSF-PUR-5 membrane to 26.3 ± 0.2 cm3

min·m2·hPa . for the PSF-PUR-7 membrane. The
highest increase between UFC and UFCH is observed for the PSF-PUR-7 membrane (28)
and the lower increase between UFC and UFCH for the PSF-PUR-3 membrane (1.6). The
PSF-PUR-3 and PSF-PUR-7 membranes were obtained from the same PUR and solvent
(NMP), but in PSF-PUR-7 membranes the PVP addition was used.

3.2. Molecular Weight Cut-Off Measurements

As in the case of UFC evaluation, also during retention measurements all modules
were tested before and after the hydrolysis process. Figures 2–5 of the relationship between
the degree of retention and the molar mass of the marker are presented below.



Membranes 2021, 11, 51 7 of 18Membranes 2021, 11, 51 7 of 18 
 

 

 
Figure 2. Retention coefficient values for different markers for PSF-PUR-1 and PSF-PUR-2 membranes before (PSF-PUR-
1, PSF-PUR-2) and after (PSF-PUR-1H, PSF-PUR-2H) hydrolysis. 

 
Figure 3. Retention coefficient values for different markers for PSF-PUR-3 and PSF-PUR-4 membranes before (PSF-PUR-
3, PSF-PUR-4) and after (PSF-PUR-3H, PSF-PUR-4H) hydrolysis. 

0

10

20

30

40

50

60

70

80

90

100

4 9 14 19 24 29 34 39 44 49

R [%]

MM [kD]

PSF-PUR-1

PSF-PUR-1H

PSF-PUR-2

PSF-PUR-2H

0

10

20

30

40

50

60

70

80

90

100

4 9 14 19 24 29 34 39 44 49 54 59 64 69

R [%]

MM [kD]

PSF-PUR-3

PSF-PUR-3H

PSF-PUR-4

PSF-PUR-4H

Figure 2. Retention coefficient values for different markers for PSF-PUR-1 and PSF-PUR-2 membranes before (PSF-PUR-1,
PSF-PUR-2) and after (PSF-PUR-1H, PSF-PUR-2H) hydrolysis.
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PSF-PUR-4) and after (PSF-PUR-3H, PSF-PUR-4H) hydrolysis.
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Figure 4. Retention coefficient values for different markers for PSF-PUR-5 and PSF-PUR-6 membranes before (PSF-PUR-5,
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PSF-PUR-8) and after (PSF-PUR-7H, PSF-PUR-8H) hydrolysis.

For the membranes without the addition of a PVP (PSF-PUR-1, PSF-PUR-2, PSF-PUR-3
and PSF-PUR-4), the tendency to increase the percentage retention of individual markers
after hydrolysis is maintained. The largest differences were obtained for the membranes
PSF-PUR-1 and PSF-PUR-3. The smallest changes were obtained for PSF-PUR-4.

On the other hand, membranes obtained with the addition of PVP showed a reverse
tendency after hydrolysis. Here, the percentage retention of individual markers was
lower after the hydrolysis process (the only exception is the percentage retention for the
CEA marker in the PSF-PUR-8 membrane, where a higher result was obtained than before
hydrolysis). The dependence of very high retention percentages for PEG 4 is also noticeable.

The degree of marker retention presumably may be affected by the following factors:
(a) percentage of hydrolyzed polymer—in the works cited from the literature, the

degradable polymers were almost completely degraded, which was not achieved in this
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work—the cause may be too small volume of NaOH solution passed through the mem-
branes;

(b) size of pores formed after degradation—the amount of hydrolyzed polymer af-
fects the size of the pores obtained after the hydrolysis process (the greater the loss of
polymer, the greater the probability of obtaining larger pores, which allows the passage of
compounds with higher molecular weights);

(c) partially degraded polymer may cause the formation of polarized bonds—the ester
groups present in the structure of the degradable polymer, activated during the hydrolysis
process, may affect formation of hydrogen and ionic bonds between polymer molecules
and marker molecules, thus retaining them on the membrane;

(d) the effect of solvation causing the swelling of the polymer—ions formed during
the hydrolysis can interact with the molecules of the marker solvent (water), leading to the
formation of the so-called solvates which in the next step would cause the PUR to swell
and block the pores.

Due to the partial loss of PUR in the hydrolyzed membranes, the most likely scenario is
the scenario “c” + “d”, because the partial degradation of PUR could result in the formation
of hydrogen bonds between hydrogen atoms from marker molecules and oxygen atoms in
the carboxyl groups formed after the degradation of –COOH. The resulting hydrogen or
ionic bonds could have a stronger effect on the retention percentage than the size of the
pores obtained after the hydrolysis process. On the other hand, the swelling of the polymers
due to solvation could effectively block the pores, making the marker molecules less freely
permeable through the membrane wall. In the case of PUR swelling, an additional factor
influencing this phenomenon is the location of PUR polymer chains in the membrane
structure (the more PUR polymer chains at the membrane wall surface, the greater the
likelihood of an increased retention factor for markers, especially CEA and BSA, due to
their nonlinear structure).

3.3. Mass Measurement

Percentage weight loss of PUR after the hydrolysis process is presented in Table 4.
Due to the partial removal of PVP, no weight loss measurements were made for PSF-PUR-5,
PSF-PUR-6, PSF-PUR-7, PSF-PUR-8 membranes.

Table 4. The results of PUR’s mass changes.

Membrane
Membrane’s Mass
before Hydrolysis

(g)

PUR’s Mass before
Hydrolysis

(g)

PUR’s Mass Loss after
Hydrolysis

(g)

PUR’s Mass Loss after
Hydrolysis

(%)

PSF-PUR-1 0.0890 ± 0.0026 0.0178 0.0082 ± 0.0003 46

PSF-PUR-2 0.100 ± 0.001 0.0200 0.0068 ±0.0023 34

PSF-PUR-3 0.0534 ± 0.0005 0.0107 0.010 ± 0.001 97

PSF-PUR-4 0.0946 ± 0.0027 0.0189 0.014 ± 0.001 75

The percentage removal of PUR is in the range from 34% for PSF-PUR-2 to 97% for
the PSF-PUR-3. The percent of the removal is related to the differences in the retention
coefficients: the smallest changes in retention coefficients after the hydrolysis process and
PUR removal for PSF-PUR-2 and the largest changes in retention coefficients after the
hydrolysis process and PUR removal for the PSF-PUR-3 is observed. It can be observed
that PUR-2 is a better hydrolyzing polymer under the same conditions of the hydrolysis
process since for both membranes (PSF-PUR-3 and PSF-PUR-4) the percentage of PUR’s
mass loss after hydrolysis is greater than for membranes obtained from PUR-1.

3.4. Scanning Electron Microscopy Analysis

The membranes after preparation were subjected to analysis using SEM. Crosssection
images and their parts were taken at several magnifications to assess the morphology and
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changes occurring after the hydrolysis process. The part of crosssections of the membranes
before and after the hydrolysis process are presented in Figures 6–9 (comparison of cross
sections and part of cross sections for all membranes is presented in Supplementary
Material–Figures S1–S8).
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SEM analysis showed that the obtained membranes have an asymmetric structure, in
most cases with a clear epidermal layer. No skin layer is seen for the membranes PSF-PUR-2
and PSF-PUR-4 and it can be caused by using DMF as a solvent. All membranes in the sup-
porting layer had pores with the structure of holes (smaller or larger) maintaining similar
morphology among the series of obtained membranes. When assessing the morphology
of membranes before and after hydrolysis, a difference in pore size is noticeable. The
hydrolysis process influenced their enlargement, also causing the formation of macropores.

3.5. MeMoExplorer™ Software Evaluation

The results of the statistics are shown in Figures 10–12.

(a) Figure 10 presents the influence of hydrolysis on the instability of membranes’ porosity
in different types and size-classes of pores. The data are presented in groups, each
group containing the data corresponding to the eight size-classes of pores. On the
other hand, the groups are presented in pairs corresponding to a given technology
before and after hydrolysis.
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Figure 10. Influence of hydrolysis on the instability of membranes’ porosity in different types of membranes (horizontal
axis) and size-classes of pores (groups of data).

Analysis of the corresponding data in pairs shows that, except for the type i = 7 of
membrane, a total instability of porosity (yellow scores) decreased due to hydrolysis.

However, this effect in different size-classes of pores occurs with different intensities,
as illustrated in Table 5. In the table + means increasing, ++ means high increasing, – means
decreasing, and 0 means not observable influence of hydrolysis on the instability of porosity
in the given size-class of pores and type of the membrane under examination.
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Table 5. Results of hydrolysis influence on the instability of porosity.

i
j 1 2 3 4 5 6 7 8

1 + – + + + + + +

2 + – – + + ++ ++ ++

3 + – + – + ++ ++ ++

4 – – 0 0 + + ++ ++

5 + – 0 – – + – +

6 – + – 0 – + + ++

7 – + – + + + ++ ++

8 – – + – + + + ++

It is remarkable that:

i. The highest influence of hydrolysis on the reduction of the instability level occurs
in the j = 5, 6, and 8 size-classes, while the lowest is in the j = 1 size-class of pores.

ii. The highest influence of membranes of hydrolysis on the reduction of the instability
level can be observed in the i = 2 type of membrane, while the worse ones occurred
the I = 6, 7, and 8 types of membranes.

(b) The results of the assessment of the influence of using a solvent on the instability of
the membranes’ porosity are shown in Figure 11. The instability dt

i,j,k is presented
in groups of scores corresponding to different size-classes of pores (j); the groups
are arranged in four triplets, each triplet consisting of a pair of compared types of
membranes (i) and their difference. The pairs that were taken into consideration are
(1, 2), (3, 4), (5, 6), and (7, 8). The types of membranes not subjected to hydrolysis were
compared. It is remarkable that the highest differences (the highest positive influence
of using DMF as a solvent) occurred in the pairs of membranes (3, 4) and (7, 8), but in
all compared membrane pairs the advantage of DMF over NMP in affecting the pore
size is noticeable.
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(c) The influence of the addition of pore precursor on the instability of membranes’
porosity in different types and size-classes of pores is illustrated in Figure 12. In this
case, the following four pairs of types of membranes (1, 5), (2, 6), (3, 7), and (4, 8) were
examined.

It is remarkable that the highest (positive) total influence occurs in the pair (3, 7) of
membranes. However, the highest partial influence on the reduction of the instability
occurs in the 7th size-class of pores in the pairs (1, 5), (2, 6), and (4, 8) of membranes.
Moreover, in allpairs of compared membranes negative partial influence in some classes of
pores also occurred.
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Referring to Figures 11 and 12, the evaluation of SEM images using MeMoExplorer™
Software showed that the type of solvent used has an influence on the porosity of the mem-
branes. Regardless of the pore class, the advantage of DMF over NMP was noticeable. The
addition of PVP does not have such a significant effect on the porosity of the membranes,
therefore, due to the fact that the deterioration of mechanical properties after hydrolysis
was observed for membranes with PVP addition, PUR could be used as a pore precursor
that would improve the useful life of membranes.

3.6. FT-IR Analysis

Comparative FT-IR spectra were performed to illustrate changes occurring in the
membrane after the hydrolysis process. Fragments of the recorded spectra are listed
in Table S1 in supplementary material. For all spectra, the peak fading is noticeable at
the wavenumber around 1760–1730 and 1700–1630 cm−1. The 1760–1730 cm−1 peak is
assigned to the C=O functional group derived from ester bonds, while 1700–1630 cm−1 can
be attributed to the amine and carbamate groups. Although the FT-IR technique is not a
method for quantification, it perfectly illustrates the changes that occur in the membrane
after the hydrolysis process and proves that during hydrolysis, the ester or carbamate
bonds contained in the PUR structure are broken down. The disappearance of the peaks
for both functional groups leads to the conclusion that PUR hydrolysis takes place through
several mechanisms simultaneously: the breakdown of ester bonds or carbamates. The
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advantage of one of the proposed mechanisms will be influenced by the arrangement of
the PUR polymer chain in the membrane structure. Rather, it is a statistically dependent
relationship on the position of the functional groups in the membrane.

4. Conclusions

The target of this study was to obtain a partly degradable PSF-PUR blend HFMs with
constant PSF:PUR weight ratio. All received membranes were treated with the 1M NaOH
solution and PUR was partially removed during the hydrolysis process, however PUR-2
with higher molar percentage of ester bonds was hydrolyzed with greater efficiency. A
number of studies, experiments, and calculations show marked changes in morphology
and membrane properties after the hydrolysis process. According to the assumptions of
this study, hydrolysis process causes partial degradation of the membrane by hydrolysis of
ester bonds contained in the PUR structure. Partial degradation of PUR in the membranes
was confirmed by changes in the retention profiles of individual markers, increase in the
UFC values after hydrolysis, structural changes imaged using SEM and evaluated using
MeMoExplorer™ Software, and the disappearance of vibrations for the C=O, amine and
carbamates functional groups. In this case PUR was used as a long-lived acting pore former
and the degradation should have caused the increase of the porosity, UFC, and changes
in retention without changes in the molecular weight cut-off. The authors hope that the
obtained properties of the membranes have a chance to compensate for fouling (due to
possibility of degradation) in biotechnological processes, especially in medical implants
and the PUR is an alternative that can be used as a pore precursor instead of PVP or
PEG. The higher UFC, porosity, and changes in retention may affect the duration of the
membrane process in such cases when regeneration or replacement of membranes during
the process is often impossible or very complicated. Potentially, such membranes may
be used for macroencapsulation of biologically active agents, for example intended for a
temporary implantation of several weeks.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-0
375/11/1/51/s1, Table S1: Comparison of FT-IR spectra of membranes before and after hydrolysis.
Figure S1: The cross-section and part of the cross-section of the PSF-PUR-1 membrane before (a)
and after hydrolysis (b); Figure S2. The cross-section and part of the cross-section of the PSF-PUR-2
membrane before (a) and after hydrolysis (b); Figure S3. The cross-section and part of the cross-section
of the PSF-PUR-3 membrane before (a) and after hydrolysis (b); Figure S4. The cross-section and
part of the cross-section of the PSF-PUR-4 membrane before (a) and after hydrolysis (b); Figure S5.
The cross-section and part of the cross-section of the PSF-PUR-5 membrane before (a) and after
hydrolysis (b); Figure S6. The cross-section and part of the cross-section of the PSF-PUR-6 membrane
before (a) and after hydrolysis (b); Figure S7. The cross-section and part of the cross-section of the
PSF-PUR-7 membrane before (a) and after hydrolysis (b); Figure S8. The cross-section and part of the
cross-section of the PSF-PUR-8 membrane before (a) and after hydrolysis (b).
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