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Abstract: In any membrane filtration, the prediction of permeate flux is critical to calculate the
membrane surface required, which is an essential parameter for scaling-up, equipment sizing, and
cost determination. For this reason, several models based on phenomenological or theoretical
derivation (such as gel-polarization, osmotic pressure, resistance-in-series, and fouling models)
and non-phenomenological models have been developed and widely used to describe the limiting
phenomena as well as to predict the permeate flux. In general, the development of models or
their modifications is done for a particular synthetic model solution and membrane system that
shows a good capacity of prediction. However, in more complex matrices, such as fruit juices, those
models might not have the same performance. In this context, the present work shows a review
of different phenomenological and non-phenomenological models for permeate flux prediction in
UF, and a comparison, between selected models, of the permeate flux predictive capacity. Selected
models were tested with data from our previous work reported for three fruit juices (bergamot,
kiwi, and pomegranate) processed in a cross-flow system for 10 h. The validation of each selected
model’s capacity of prediction was performed through a robust statistical examination, including
a residual analysis. The results obtained, within the statistically validated models, showed that
phenomenological models present a high variability of prediction (values of R-square in the range
of 75.91–99.78%), Mean Absolute Percentage Error (MAPE) in the range of 3.14–51.69, and Root
Mean Square Error (RMSE) in the range of 0.22–2.01 among the investigated juices. The non-
phenomenological models showed a great capacity to predict permeate flux with R-squares higher
than 97% and lower MAPE (0.25–2.03) and RMSE (3.74–28.91). Even though the estimated parameters
have no physical meaning and do not shed light into the fundamental mechanistic principles that
govern these processes, these results suggest that non-phenomenological models are a useful tool
from a practical point of view to predict the permeate flux, under defined operating conditions, in
membrane separation processes. However, the phenomenological models are still a proper tool for
scaling-up and for an understanding the UF process.

Keywords: ultrafiltration; phenomenological models; non-phenomenological models; permeate
flux prediction

1. Introduction

Membrane processes have become major techniques in the food industry over the
last few decades, thanks to their ability to provide gentle treatment of products at low-to-
moderate temperatures.
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Membrane applications in the food industry have focused on separation, fractionation,
purification, clarification, and concentration of several food products and by-products
such as whey, milk, wine, beer, vinegar fruit, and vegetable juices [1]. Typical advan-
tages over conventional separation systems include high separation precision, better se-
lectivity, operation at room temperature, no chemical damage, high automation, easy
operation, energy saving, reduced cost, comprehensive utilization of resources, and re-
duced pollution. For these reasons, membrane processes are often recognized as the best
available technology (BAT) in the food industry [2–4]. Among pressure-driven mem-
brane processes, ultrafiltration (UF) has been extensively applied in the treatment of
industrial effluents [5–10], oil-based emulsions [11–14], biological macromolecules [15–17],
milk [18–20], sugar cane [21,22], extracts of soybean flour [23], clay suspensions [24], black
kraft liquor [25], and fruit juices [26–37] among others. Within the fruit juice industry,
bergamot, kiwifruit, and pomegranate have great importance in the market, not only for
their volume of production, but also because they are characterized by a high concentration
of phytochemicals which are recognized to be associated with antioxidant activities within
others. Bergamot (Citrus bergamia, Risso) is an evergreen tree almost exclusively grown
on the Ionian and Tyrrhenian Coast of Reggio Calabria Province (South Italy) with a pro-
duction of 18,750 tons in 2017 [38], representing a significant economic benefit. Bergamot
has been mainly cultivated to extract essential oils with applications in food, cosmetic and
pharmaceutical industries [39] because of their high content of phytochemicals such as fla-
vanone glycosides, limonoids, and quaternary ammonium compounds, all health-beneficial
biomolecules [40,41]. On the other hand, Bergamot juice is considered a residue for its bitter
taste; however, this juice is characterized by a large quantity and variety of nutraceuticals
such as naringin, neoeriocitrin, neohesperidin, rutin, neodesmin, rhoifolin, and poncirin
with demonstrated health implications [26]. Kiwifruit is another fruit with a high content
of phytonutrients, including carotenoids, lutein, phenolics, flavonoids, vitamin C, and
chlorophyll, all of them with strong antioxidant activity [31–33,42]; therefore, it offers bene-
fits for specific health conditions and, consequently, it has a great potential for industrial
exploitation. Italy, as the major producer worldwide, has a production of 330,000 tons/year
(corresponding to 33% of the world production) principally in the regions of Latium, Emilia-
Romagna, Piedmont, and Apulia [32]. Pomegranate (Punica granatum L.) is located in many
different geographical regions, including tropical and subtropical regions. The leading
producer locations include Mediterranean countries, India, Iran, and California [43]. Since
several authors reported the therapeutic benefits of its consumation including antioxidant,
antimicrobial, anti-carcinogenic, and anti-inflammatory properties, increased interest has
been garnered for this fruit [44]. Polyphenolic compounds, including ellagotanins, antho-
cyanins, ellagic acid, and minerals, potassium, magnesium, and copper, are associated
with a beneficial effect on health. The global pomegranate market was valued at USD
8.2 billion in 2018 and is expected to reach USD 23.14 billion by 2026 at a Compound
Annual Growth Rate (CAGR) of 14.0 percent. Its widespread popularity drives increasing
demand for pomegranate and its derivatives (such as pomegranate powder, pomegranate
juice, functional beverages) as well as other pomegranate-derived products as a functional
food and a source of nutraceuticals [43].

Regarding membrane processes, permeate flux in UF is one of the most critical pa-
rameters for evaluating membrane performance. Indeed, the evaluation of permeate flux,
usually expressed as volume (or weight) per unit membrane area per unit time, is a critical
issue in the projection of scaling-up from experience at the laboratory scale to pilot or
industrial plants for a specific volume treatment requirement [45]. Thus, it is a crucial task
to forecast permeate flux in long-term operations.

In this context, it is known that permeate flux is affected by several factors, including
feed characteristics, membrane materials and properties, and operating conditions as
well [46]. The reduction in membrane flux below that of the corresponding pure solvent
flow over time promoted by membrane fouling leads to losses in productivity and higher
operating costs as a result of higher energy cost, and maintenance [47,48]. In some cases,
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severe permeate flux reductions have been one of the main drawbacks for wide applications
on an industrial scale [46,49–51].

Membrane lifetime and permeate flux are affected by the phenomena named con-
centration polarization (i.e., solute build-up) and fouling (e.g., microbial adhesion, gel
layer formation, and solute adhesion) at the membrane surface [52,53]. Concentration
polarization (CP), produced by the accumulation of soluts on the membrane surface, causes
an increased resistance to solvent transport and possibly a change in the separation charac-
teristics of the membrane. CP is considered as a reversible phenomena and is the primary
reason of flux decline during the initial period of operation. Even though CP is consid-
ered reversible, it can lead to irreversible phenomena such as solute adsorption, solute
precipitation, and gel layer formation as well [54]. On the other hand, irreversible fouling
is caused by adsorption and obstruction phenomena inside the membrane pores [52]. The
understanding of membrane fouling allows the limit or avoid its generation or reduce its
effects by an adequate selection of membrane characteristics and the system’s operational
conditions [55].

Transport mechanisms in the UF process are usually described by phenomenological
models [56]. In the literature, more than 2840 articles have been published on the modeling
of UF systems in the 1961–2019 period (data obtained in Google Scholar in July 2020 with
the following keywords: ultrafiltration membrane, permeate flux, and modeling). This
considerable number of articles includes phenomenological and non-phenomenological
models, as well as the development of new models or modification of the traditional ones
applied for a particular matrix. Despite the high quantity of articles related to modeling
in UF until now, there is not an available review that summarizes all of them, or the most
relevant ones. Moreover, it is necessary to address not only the description of the different
models, but also to analyze and validate the capacity of permeate the flux prediction
of selected models. This is done with the purpose of developing new models in which
more realistic assumptions can be incorporated in phenomenological models for complex
matrices such as fruit juices. This would improve the prediction capacity which will directly
impact the use of these models for the scaling-up of processes from laboratory to pilot or
industrial dimensions.

Published models to predict the permeate flux decline can be grouped into phe-
nomenological [57,58], empirical [59], and semi-empirical [60] models. In the majority of
cases, these models are based on convective transport under a pressure gradient and sepa-
ration by size exclusion [61], diffusive transport through the cake layer [62–64], and fouling
mechanisms [60,65–67] as well. Other models, unrelated to the phenomenological aspects,
are based on statistical tools such as artificial neural networks, data mining, computational
models of system dynamics, and principal component analysis (PCA) [8,12,15,68,69].

Even though there are some phenomenological [6,9,11,68,70,71] and non-phenomeno-
logical models [12,15,72,73] with applications at the pilot scale, the majority of developed
models have been tested with ideal matrices (e.g., PEG, BSA, Dextran), and their predictions
have been validated at the laboratory scale for short-term operations [69]. In this regard,
Chew et al. [74] mentioned that, commonly, rigorous pilot-scale studies are not usually
performed in the industrial practice due to the urgency of production and insufficient
allocation for pilot studies. Thus, the natural question for people working in the field of
membrane technology is related to the efficiency of these models in terms of permeate
flux prediction, with more complex matrices such as fruit juices, dairy products, and
by-products, oil derived effluents, and wastewaters in long-term operations.

In this context, this work aims to provide an extensive review illustrating the models
considered as the foundation of the analysis of phenomenology in membrane separation
(e.g., Carman–Kozeny equation, film theory, Darcy law) and relate them to how modeling
continuously became more accurate in order to improve the capacity of explaining the
complexity of membrane separation. This work reviews a series of models developed
for permeate flux prediction in UF, including phenomenological models (concentration
polarization, osmotic pressure, resistance in series models) and non-phenomenological
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models. In addition, the advantages and disadvantages of these models are analyzed and
discussed. Finally, an analysis of the capacity to predict permeate flux was developed for
selected models (based on the criteria of a number of citations and validation within others)
and tested for data related to the clarification of bergamot, kiwi, and pomegranate juices
with UF membranes in long-term operations, as reported in previous studies [69].

2. Theory

Regarding filtration, Carman [75,76] was the first one to propose a relationship for an
aggregate cake, where the prediction of permeate flux is related to the structure parameters
of the cake layer, including mean particle size and thickness [77]. This relationship is
known as the Carman–Kozeny equation.

In a pressure-driven filtration process such as UF, the pure solvent flux (commonly
water) through a porous membrane is directly proportional to the applied hydrostatic
pressure, according to:

Jw = Lp∆P =
∆P

µwRm
(1)

where Jw is the solvent permeate flux, ∆P is the transmembrane pressure, Lp is the mem-
brane permeability, µw is the solvent viscosity, and Rm is the intrinsic membrane resistance.
However, when solutes are added to the solvent, the behavior is entirely different [78].
This means that the flux would increase up to a certain limit. In this regard, Field et al. [65]
introduced the concept of critical flux for microfiltration, stating that there is a permeate
flux below which fouling is not observed. For operational curves of permeate flux versus
transmembrane pressure, three areas or zones related with membrane fouling were de-
scribed: a subcritical zone (Zone 1), where the transmembrane pressure is low, in which
only the concentration polarization phenomenon exists and the permeate flux is lower
than the critical flux; a Zone 2, characterized by the formation and consolidation of the
cake layer, where pore blocking or particle adsorption can also occur; a Zone 3 due to the
compaction of the cake, which is undesirable because it represents irreversible fouling,
which is difficult to remove even using chemical membrane cleaning. The critical point, or
critical transmembrane pressure, and the limiting point, which is the maximum permeate
flux where the increase of permeate flux is not possible after a certain point, can be distin-
guished in the critical flux theory [18]. The limiting flux is affected by shear stress applied
to the system as well as by the feed and module characteristics.

Despite the importance of the critical flux theory as an operational parameter, the
majority of the models developed for UF addressed in this review are focused on the pre-
diction of permeate flux over operating time, but they are not focused on the determination
of the limiting point or maximum permeate flux. In this regard, from the Carman-Kozeny
equation until these days, several models have been developed as a tool to both describe
the reduction in flux and to understand different phenomena involved in membrane fil-
tration, since the understanding of how these factors affect membrane performance is
crucial for equipment design [79,80]. Ohanessian et al. [81] mentioned that membrane
models available in the literature could be classified into two categories: the end-use, such
as permeate flux prediction, and the understanding of the fouling phenomenon. Some
authors [1,80,82–84] have said that the models applied in UF for flux prediction can be
grouped into five categories: (i) concentration polarization models; (ii) osmotic pressure
models; (iii) resistance-in-series models; (iv) fouling models, based on the classical film the-
ory model; and (v) non-phenomenological models. Figure 1 summarizes these categories,
including models used to predict permeate flux in both MF and UF processes.
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2.1. Concentration Polarization Models

This category includes all the models used to predict permeate flux, in which the
concept of concentration polarization is the core of the model structure. In particular, it
should be mentioned that film theory, applied to describe the mass transfer in systems
in which fluid phases are present, was the first model to consider a resistance, such as
concentration polarization, to the mass transfer, as shown in Equation (2):

J = k
(

Cg − Cp

Cb − Cp

)
; k =

D
δ

(2)

where J is the flux through the membrane, Cp is the permeate concentration, Cb is the
bulk stream concentration, Cg is the gel concentration at the membrane surface, D is the
diffusivity coefficient, δ is the boundary layer thickness, and k is the mass transfer coeffi-
cient. This relationship includes phenomena occurring in UF processes, where solutes as
macromolecules or colloids are conveyed by permeate flux to the membrane surface, and a
portion of them is rejected by the membrane and diffused back into the bulk. In this regard,
Aimar and Sanchez (1986) [85] have shown that the subsequent decrease in mass transfer
coefficient can explain a limiting flux. They used the theories developed and quantified
for heat transfer to membrane processes. In particular, the heat transfer work on transfer
coefficient variations, theoretically established by Field (1990) [86], was combined with a
mass transfer film theory in order to examine the limiting-flux phenomenon. In this context,
the rejected solutes tend to form a gel layer on the membrane surface, which acts as an
additional resistance [83]. This model assumes that Cg is constant, and the flux of solvent
is dependent only on the characteristics of D, Cg, and δ. Fane et al. [87] have applied a
correction based on the effective free area correction modifying the assumption in the con-
ventional model for concentration polarization that implies a homogeneously permeable
membrane surface. These authors described the membrane surface as a mosaic of regions
of different solvent permeabilities depending on the manufacturing process and the struc-
tural changes caused by usage, damage to the membrane surface, and plugging of pores,
among others. Blatt et al. [2], said that the hydraulic permeability of a gel or concentrated
dispersion of submicroscopic particles is a complex function of the solid’s concentration
and such variables as the size, shape, resistance, and state of aggregation of particles or
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molecules comprising the solid phase. In turn, Jonsson [88] indicated that even though
polarization phenomena at the membrane–solute interface are usually characterized by the
film-theory where the longitudinal mass transport within the boundary layer is assumed
negligible, the effect of pressure impacts the permeate flux. This author established that
it had been observed that as pressure is increased, permeate flux first increases and then
remains more or less pressure independent (phenomena first explained by Blatt et al. [2]).
It should be pointed out that the effect of ∆P was not considered by film theory; therefore,
models including it can improve the capacity of prediction. Bacchin et al. [24] proposed a
model which combined a contribution of both cake filtration and deposition kinetics on
fouling. In this regard, the cake filtration law describes the fouling resistance as the sum of
the membrane hydraulic resistance (Rm) and cake resistance (Rc). The latter resistance is as-
sumed proportional to the amount deposited on the membrane (Md) and the cake-specific
resistance (α). The deposition rate to the interface is expressed as the amount brought by
convection (Jc), minus a back flux (n). Considering the complexity of phenomena involved
in membrane filtration, as well as the drawbacks reported in the literature for film theory, a
series of modifications to the original model have been developed to date. Table 1 depicts a
compilation of the classical and most-used models (considering the number of citations
and validations), including the concentration polarization phenomena in the equation.
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Table 1. Summary of the relevant models for the concentration polarization category, including the Boundary layer, polarized concentration, and gel models.

No. Model Authors Ref. Validation Matrix Main Transport
Mechanism Configuration Module Type Number of

Citations
Model Validation

in Publications

(1.1) J = D
δ ln

Cg
Cb

= k ln
Cg
Cb

Film theory [46] - Diffusive Cross-flow - - [14,89]

(1.2) J = (D/πt)1/2 ln
[

cg−cp
co−cp

]
Trettin and Doshi (1980) [62] BSA Diffusive Dead-end Unstirred cell 76 -

(1.3) J = x1k ln
(

Cg
Cb

)
+ (1− x1) k ln

(
Cg
Cb

) Modified gel-polarization
Fane et al. (1981) [87] Gamma Globulin BSA Diffusive-

Convective - - 164 -

(1.4) J =0.078
(

rp
L

4
)1/3

γ ln
(

Cg
Cb

)
Zydney and Colton (1986) [63] Blood Diffusive Cross-flow - 274 -

(1.5)

J =
∆P

µRm

1+2β

t−
D
(

Cgv−Cov−Cov ln
(

Cg
Co

))
(

∆P
µRm

)2


Cg−Co

Co

dh
2

∆P
µRm

Shear-induced diffusion
Davis (1992) [57] PEG Diffusive-

Convective Cross-flow Tubular 158 [70]

(1.6) J = ∆P
Lβv(L)2

[
1− Lp

∆P v(L)
]

Song and Elimelech (1995) [90] - Diffusive-
Convective Cross-flow Rectangular

channel 246 [91]

(1.7) J·6πµ0·
∞
∑

i=0
fi∅i = −kT (1−∅)3

(∅−∅p)
(1 +

∞
∑

i=2
Ai∅i−1) d∅

dx
Jonsson and Jonsson (1996) [92] Silica sol Diffusive-

Convective Cross-flow - 71 -

(1.8) J =
2π
∫ b

0 Vf (r) r dr

πb2
Saksena and Zydney (1997) [93] BSA and IgG Diffusive-

Convective Dead-end Stirred cell 51 -

(1.9) JH/Do = −
[
(1−bco∅)6.5

∅−∅p
∂∅
∅η

]
η=0

Bhattacharjee and Datta
(1991) [94] PEG-6000 Diffusive-

Convective Dead-end Unstirred cell 9 -

(1.10) Jt(t) = (J0 − J∞)e
− t

t0 + J∞
The relaxation model

Konieczny (2002) [95] Water potable Diffusive-
Convective Cross-flow Tubular 22 [96]

(1.11) J = 0.807
(

γw
L

(
KT

3πµDm

)2
)1/3

ln cg
co

Model parameter: γw

Neggaz et al. (2007) [97] Pectin Albumin Diffusive-
Convective Cross-flow Hollow fiber 6 -

(1.12)

J = ∆P−2502 Co
1.79 × 1013µ+9.327x1014Cor2/3

p
; Brownian diffusion

J = ∆P−2502 Co
1.79 × 1013µ+62.73 Co

rp
4
3

; Shear induced diffusion

J = ∆P−2502 Co
1.79 × 1013µ+ 340Co[

12.639r2
p+

2.204×10−19
a

]2
; Combined diffusion

Singh et al. (2013) [64] Synthetic Fruit juice Diffusive-
Convective

Cross-flow Spiral-wound 10 -

BSA: Bovine serum albumin; PEG: Polyethylene glycol; IgG: Immunoglobulin G.
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In order to overcome the drawbacks associated with film theory, several authors
started to analyze and develop new models of concentration polarization phenomena.
Michaels [98] and Blatt et al. [2] presented models for the concentration polarization of
macrosolutes and colloids, in which the back-transport rate of concentrated solute controls
the permeate flux. On the other hand, Porter [99] reported that the mass transfer from
the membrane surface into the bulk stream is influenced by some forces other than the
concentration gradient. This author described the so-called tubular pinch effect (effect
appreciated in many colloidal suspensions in which a lesser frictional pressure drop
would be expected from the fluid viscosity) is responsible for the increase in the mass
transfer [99]. In this regard, other authors have also reported that film theory is not suitable
for permeate flux prediction. Shen and Probstein [100] and Probstein et al. [101,102]
reported modifications to film theory, including some transport properties such as viscosity
and diffusion coefficient, in order to improve its prediction capacity. In particular, these
authors successfully evaluated the diffusion coefficient with the gel layer in steady-state
using parallel plate laminar UF [62].

Furthermore, Zydney and Colton [63] proposed a modification through the addition
of the shear-enhanced diffusivity of large particles, which arises from mutually induced
velocity fields in the shear flow of the concentrated suspension. The model was validated
using a complex matrix such as blood solution in a cross-flow system with a tubular
membrane. In comparison, Blatt [2] and Shen and Probstein [100] worked with a solution
of BSA under ideal conditions where the models showed good predictions [103,104].

Although the film theory is the basis for understanding mass transport in a membrane,
a series of modifications have been made to increase the prediction capacity [62]. Trettin
and Doshi developed a model based on film theory in which the diffusivity of the system
was included [62,83,105]. This model assumes that a gel concentration is reached instan-
taneously, and the diffusion coefficient is constant. The authors compared their model
performance with film theory in a dead-end system with a stirred cell module using a BSA
model solution. As expected, they found that film theory had a lower capacity of prediction
in comparison to their model. Subsequently, Davis and Leighton [106] showed a model
that described particle transport when there is a concentration polarization on the mem-
brane surface under laminar flow. They established that the shear-induced concept (i.e.,
associated with a diffusion mechanism) could describe the lateral migration of particles
from the porous wall [57,106,107]. In this regard, Romero and Davis [107] explained that
the concentration profile could be determined by a differential mass balance, including con-
vective transport near the membrane surface, whereas the diffusion transport is considered
in bulk. In 1992, Davis [57] mentioned that the steady-state cake thickness and permeate
flux are governed by the concentration polarization layer adjacent to the cake of rejected
particles on the membrane surface. Depending on the characteristic particle size and the
tangential shear rate, Brownian diffusion, shear-induced diffusion, or inertial lift can be
considered the dominant mechanism for particle back-transport in the polarization layer.
For typical shear rates, Brownian diffusion is important for submicron particles, the inertial
lift is important for particles larger than approximately 10 microns, and shear-induced
diffusion is dominant for intermediate-sized particles. In this regard, Davis [57] has simpli-
fied the previously published model [107], developing a shear-induced diffusion model,
which can be used for permeate flux prediction based on the gel layer concept. On the one
hand, Song and Elimelec [90] developed a model based on the concentration polarization
phenomena for non-interacting particles in crossflow filtration. According to this model,
a polarization layer exists directly over the membrane surface when the dimensionless
filtration number defined in the model is lower than a critical value. In these conditions,
pressure and temperature determine the wall particle concentration. On the other hand,
when the filtration number is higher than the critical value, a gel layer of retained particles
is formed between the polarization and membrane surfaces. The grade of polarization
could be thus easily determined using this model. After that, Song (1998) [108] developed
a model in which fouling is perceived as a dynamic process from a non-equilibrium stage
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to an equilibrium one. Under the influence of the boundary condition, equilibrium is
firstly reached at the initial section of the crossflow filter, and the front of the equilibrium
region progresses with time towards the end of the filter [108]. Other authors tested this
model with PEG [45,55,109] and silica colloids (P50 and P0L) [110], highlighting a low
capacity of prediction at the beginning of the process. Consequently, Singh et al. [64]
analyzed the permeate flux in the clarification of synthetic fruit juice with a spiral-wound
UF membrane module on the basis of Brownian diffusion, shear-induced, and combined
diffusion models. They observed that the Brownian diffusion model was the best to predict
experimental data.

All the models mentioned until now, based on concentration polarization, have a
series of assumptions that limit the prediction capacity in complex matrices, such as
those containing different components as in fruit juices. Some of these models base their
performance on hydrodynamic diffusion, assuming that the tangential flow compensates
for the convective transport on the membrane surface; therefore, the gel layer growth is
controlled until it reaches a constant value [70]. The mathematical structure of these models
is based on the quantification of the stationary gel layer [57]. However, this assumption has
been questioned because the gel layer is variable during filtration [61,111]. Accordingly,
another questioned assumption is the period in which the gel layer is formed. Some models
assume that the formation is instantaneous; therefore, flux decay must be attributed only
to this effect.

There are few recently published models in which concentration polarization is in-
cluded. New theories have been developed thanks to improvements in the modeling field,
since they consider the drawbacks mentioned inside the series of assumptions considered
in this kind of model.

2.2. Osmotic Pressure Models

In cases where the solute concentration at the membrane surface is higher than the bulk
concentration, the osmotic pressure of the feed solution at the membrane surface cannot
be negligible. At this point, any increase in the pressure is partly canceled by the osmotic
pressure increase. Osmotic pressure at a high concentration of solutes sharply increases due
to strong solute–solute interactions [50]. The quantification of osmotic pressure for many
macromolecular (polymers) solutions can be expressed in the form of a virial expansion:

π = B1Cp + B2C2
p + B3C3

p (3)

where B1, B2, and B3 are the osmotic virial coefficients, and Cp is the concentration of the
macromolecular solution (g L−1). The B1 coefficient describes the so-called van’t Hoff’s
limiting law for osmotic pressure, which is applicable at very dilute concentrations [50].
The osmotic pressure models consider that the flux is limited by the high osmotic pressure
arising in the concentration-polarized layer in the membrane interface. Once the gel layer
is formed on the membrane surface, the osmotic pressure plays a key role in permeate
flux decay [83]. In this regard, Kedem and Katchalsky [112] were the first authors to
develop a model including the osmotic pressure for the permeate flux prediction (shown
in Equation (4)).

J =
|∆P| − |∆π|

µRm
(4)

where ∆π is the osmotic pressure difference, ∆P is the transmembrane pressure, µ is the
viscosity, and Rm is the membrane resistance. From the model developed by Kedem and
Katchalsky [112], several publications and models have been developed in which osmotic
pressure is integrated directly in the equation or is related to other parameters included in
the model. Table 2 summarizes the models with major number of citations and validated,
which includes, directly or indirectly, osmotic pressure.
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Table 2. Summary of developed models for permeate flux prediction in which osmotic pressure is considered.

No. Model Authors Ref. Validation Matrix Main Transport
Mechanism Configuration Module Type

Number
of

Citations

Model
Validation in
Publications

(2.1) J = |∆P|−|∆π|
µRm

Osmotic pressure Keden
and Katchalsky (1958) [112] Water Convective Dead-end - 442 [113–117]

(2.2) J = A(∆P− ∆π) Goldsmith (1971) [118] Dextran fractions
(polysaccharides) - Cross-flow

Dead-end
Tubular

Stirred cell 138 -

(2.3) J =
∆P−acn

b exp(nJ/k)
Rm

Model parameters: a, n
Wijmans et al. (1984) [111] - - - - 201 [80,119]

(2.4) RP(t) = Rma
1− σ∆πm

∆P
− Rma = Rma

(
Jw
υw
− 1
) Bhattacharjee and

Bhattacharya (1992) [58] BSA Convective Dead-end Unstirred cell 36 [17]

(2.5)
J = ∆P−∆π

[Rm+(V/A−J∗ t)α(cb−cp)]µ
Model parameter: α

Bhattacharjee and
Bhattacharya (1992) [25] PEG Convective Dead-end Unstirred cell 50 -

(2.6)
J =

υo
p

1+R∗ps

[
1−e(−K1 t)

]
Model parameters: R∗ps, K1

Bhattacharya et al. (2001) [21] Sugar cane Convective Dead-end Stirred cell 42 [120]

(2.7)
J = ∆P−∆πi−1

Rm i−1+

(
R∗m∆t

tR

)
+

(
mi−∆t

Ji−1

)
Model parameters: tR, mi

Kanani and Ghosh (2007) [121] HSA Convective Dead-end Stirred cell 28 -

(2.8) J =
∆P+ σRT

V1

[
ln
(

ρpol−Cm
ρpol−Cp

)
+

{
(1− 1

n )+X12
Cm+Cp

ρpol

}
Cm−Cp

ρpol

]
µRm

Model parameters: α, n, X12

Sarkar et al. (2010) [122] PEG-6000 Diffusive-
Convective Dead-end Stirred cell 2 -

(2.9) J = ko

(
µb
µo

)1/3 ∫ Cw
Cb

(
µo
µ

)(
Mp
RT

)(
dΠ
dC

)
dC
C

Binabaji et al. (2015) [123] Protein solution Diffusive Cross-flow
Tangential

flow filtration
(TFF) Cassette

6 -

HSA: Human serum albumin solution; BSA: Bovine serum albumin; PEG: Polyethylene glycol.
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Goldsmith [118] mentioned that based on molecular weight consideration, the osmotic pres-
sure of macromolecular solutions would appear to be insignificant. However, this author showed
that polymer solutions such as dextran and polyethylene glycol fractions with concentrations
over 1% w/w showed osmotic pressure exceeding 10 to 50 psi. Other authors mentioned that in
cases where a consolidated gel layer exists, the rejection of low molecular weight molecules is
observed, and, therefore, osmotic pressure cannot be negligible [83,118,124]. This behavior can
be appreciated in clarifying fruit juices, where monosaccharides, like glucose and fructose, are
present. In this regard, Wijmans et al. [111] determined that osmotic pressure limitation is more
likely than gel layer limitation in molecular weight solutes in the range of 10–100 kDa. These
authors remark that the osmotic pressure model does not predict a fully limiting flux, and contrary
to the gel layer model, the osmotic pressure model explains the deviation of the permeate flux
from the pure solvent flux at low pressures. At high-pressure differences, the dependency of the
permeate flux on the pressure difference decreases gradually [61,111]. It should be mentioned
that it has been demonstrated that osmotic pressure has a significant effect on permeate flux
decay [2,98]. However, this conclusion contradicts what is reported in film theory, where osmotic
pressure is considered insignificant. Therefore, the inclusion of osmotic pressure in the predictive
models of UF processes requires a good knowledge of the matrix to be processed, particularly the
presence of low molecular weight components and the selected membrane. Wijmans et al. [111]
suggested that there is a point in which ∆P does not produce a significant effect on permeate
flux because the permeate flux is limited by the osmotic pressure, which exerts a contrary in-
fluence, decreasing it [111,119]. Bhattacharjee et al. [58] tested the effect of osmotic pressure in
permeate flux drop using solutions of PEG in a UF system. In this work, the authors developed
an integrated model, including osmotic pressure and gel layer. They demonstrated that the
use of gel layer models previously developed [105] for the prediction of permeate flux in low
molecular weight solutions is not the correct path, and osmotic pressure must be considered. In
this regard, Bhattacharya et al. [21] also proposed a model for sugar filtration in a stirred-cell in
which the prediction of permeate flux is based on two equations, which include both the steady
and non-steady states. The authors highlighted the difficulty of predicting the permeate flux
in a steady-state in which osmotic pressure is mainly responsible for the permeate flux drop.
Alternatively, Sarkar et al. [122] developed a sophisticated model based on osmotic pressure and
tested it in a stirred-cell in which osmotic pressure can be related to the solute concentration.

2.3. Resistance-in-Series Models

The resistance-in-series models are based on the prediction of the permeate flux as a function
of different resistances affecting membrane filtration. All these models use the concept developed
by the Darcy law. This category of models is similar to those of osmotic pressure in which other
phenomena such as absorption, blocking pores, and gel formation are included [125,126].

Permeate flux is usually written in terms of ∆P and total resistance as follows:

J =
∆P− ∆π

µRt
(5)

Rt is the total resistance given by:

Rt = Rm + Rcp + R f + Rg (6)

where Rm the membrane resistance, Rcp the concentration polarization resistance, Rf is the
irreversible resistance, and Rg is the gel layer resistance. Viscosity is explicitly presented in
Darcy’s law. Here, it increases with solute concentration and decreases with temperature. At
the same time, if the membrane is sensitive to temperature changes, this must be considered
in Darcy’s law’s membrane resistance term [127]. According to our literature review, these
models are the most used and reported. The main differences among them are the form in
which the different resistances are analyzed and quantified for the prediction of permeate
flux [1,46,83]. Table 3 shows the most relevant predictive models (based on number of citations
and validations) published in the literature based on the resistance in series.
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Table 3. Summary of resistance-in-series models developed for permeate flux prediction.

No. Model Authors Ref. Validation Matrix Main Transport
Mechanism Configuration Module

Type
Number of
Citations

Model Validation
in Publications

(3.1) J =
|∆P|
µRt

Resistance
Darcy’s law - - Convective Dead-end

Cross-flow Tubular - [12,23,128–131]

(3.2) J =
εd2

p∆P
32∆xµ

Hagen-Poiseuille - Solvent Convective Dead-end
Cross-flow Tubular - [71,132–134]

(3.3)

1
A

dV
dt

=
∆P

[Rm + (V/A− Jsst)αCb]η
Jss = k ln

(
Cg/Cb

)
Model parameters: Jss, α

Agitation resistance
Chudacek and Fane

(1984)
[135] Silica sol Albumin

Dextran Convective Dead-end
Cross-flow Unstirred cell 167 -

(3.5)

J =
∆P− ∆Π

µ
(

Rm + Rg
)

Rm = ∆P/Jo
R∗ac =

(
Jo/J f

)
− 1

Rm + Rad = ∆P/J f

Adsorption resistance
Gekas et al. (1993) [136] BSA Convective Cross-flow Plate type 44 -

(3.6)

J =
∆P− ∆Π

µ
(

Rm + Rg
)

Rg = α
(
1− εg

)
ρg L

α = 180

(
1− εg

)
ε3d2

pρg

De and Bhattacharya
(1997) [137]

Mixture of sucrose
and poly(vinyl

alcohol)

Diffusive-
Convective Cross-flow Stirred cell 66 [61,131,138–141]

(3.7)
J =

1
µ
(

RM + Rcp(z)
) (P(z)− Pp

)
P(z) =

Pi − P(z)
z

=
16
Re

ρu2
0

R

Paris et al. (2002) [142] Dextran T500 Diffusive-
Convective Cross-flow Tubular 45 [143]

(3.8)
1
J
=

µRm

∆P
+

µ

Pm∆P

[
V
A

(
cb − cp

cg − cb

)
− kb

A
cg

cg − cb
ωt
]

Model parameters: Pm, kb, ω

Bhattacharjee and
Datta (2003) [144] PEG-6000 Diffusive-

Convective Dead-end Stirred cell 31 -

(3.9) Jm f (z, t) =
∆P(z, t)

µ
(

Rm f + Rc(z, t)
) =

−pi(z, t)
µ
(

Rm f + Rc(z, t)
) Chang et al. (2005) [145] Polystyrene latex Convective Dead-end Hollow fiber 54 -

(3.10)
J =

∆PAβ

µ

1

(V−Vc)
1
α−1

+ γ

Model parameters: A, β, γ

Mohammadi et al.
(2005) [146] Emulsion of oil

and gelatin
Diffusive-

Convective Cross-flow Plate and
frame 26 -
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Table 3. Cont.

No. Model Authors Ref. Validation Matrix Main Transport
Mechanism Configuration Module

Type
Number of
Citations

Model Validation
in Publications

(3.11) J(z) =
∆P(z)

Rm + R f + φ∆P(z)
Yeh and Chen (2005) [147] Dextran T500 Convective Cross-flow Tubular 6 -

(3.12) 1−
(

J
Jlim

)
= e−(∆P)exp/(RJlim) Yeh (2008) [148] Dextran T500 Convective Cross-flow Hollow fiber 8 -

(3.13)

J =
PTM

ηperm(Rm + Rc)

Rc = α
mc

X
A

α = α0

(
PTM

PTM,0

)n

Model parameters: PTM, α, α0

Cuellar et al. (2009) [149] E. coli cells Convective Cross-flow Hollow fiber 7 -

(3.14) J =
∫ 1

0
−∆Pidε

Aε2 + Bε + C
+
∫ 1

0

(
mQi − nJ

)
ε dε

Aε2 + Bε + C
Model parameters: E , A, B, C, n

Yeh et al. (2010) [150] Dextran T500 Convective Cross-flow Tubular 1 -

(3.15)

JD =
1(

Rs +
RmRp

Rm + Rp

)
Rs = ks

rs

rp
exp(1− β)

Rm = km

(µ

α

)
Rp = kp

(
rs

rp

)2

µ

Marchetti et al. (2012) [133]

Water
Ethanol
Acetone

DMF

Convective Cross-flow Tubular 37 -

(3.16)
J =

∆P

µ
[

Rm +
(

Rad,ss + Rcp, ss
)(

1− e−bt
)
+
(

mp
A

)
α
]

Model parameters: σ, b

Corbatón-Báguena
et al. (2018) [151] Whey model

solution
Diffusive-

Convective Cross-flow Tubular
Flat sheet 6 -

DNA: Deoxyribonucleic acid; DMF: N, N-dimethylformamide; BSA: Bovine serum albumin; PEG: Polyethylene glycol.
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Chudacek and Fane [135] were the first authors in publishing a model related to resistance-
in-series to predict permeate flux in a stirred-cell, considering a back-diffusion constant and a
convective transport tested with colloid matrices such as silica sol and dextran albumin. This
model was the origin of several investigations in stirred systems [122,147,152,153].

Conversely, it should be mentioned the role of the Hagen–Poiseuille equation to
calculate the permeate flux, which is a physical law that describes the pressure drop in an
incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical
pipe of constant cross-section. Namely, this equation illustrates how the permeate flux,
through a microporous membrane, can be related to the number, diameter, and length of
the pores, the pressure difference exerted across the membrane and the viscosity of the
fluid [71]. The Hagen–Poiseuille model can be obtained from the integration of the Navier–
Stokes equation [46,133], and it has been used for the modeling of the UF process with
different matrices [71,132–134]. Gekas et al. [136] used this model to study the interaction
of proteins and their absorption on the surface of polyacrylonitrile (PAN) UF membranes
using BSA at constant pressure [121]. These authors found that the resistance attributed to
the concentration polarization was responsible for the permeate flux drop reaching values
two times higher than the hydraulic membrane resistance.

In 1997, De et al. [137] proposed a model that describes fouling as a boundary layer
(based on film theory) composed of low molecular weight particles and a gel layer com-
prising the high molecular weight particles. The gel layer acts as a porous barrier, and
it is considered a resistance in this model [154–156]. The model has been validated with
different matrices such as orange juice [61], sucrose [137], stevia extract [157], and industrial
wastewater [141]. Subsequently, Paris et al. [142] reported that models based on osmotic
pressure and concentration polarization do not predict the permeate flux drop well since
the permeate flux and concentration of molecules on the membrane surface vary along the
membrane length, which is not considered in the mentioned models. Therefore, they pro-
pose a new model based on resistances, which included diffusive and convective transports
in the equation [142]. Mohammadi et al. [146] carried out a new resistance model applied
for oily wastewater emulsions as a modified version of the cake layer filtration model
developed by Huang et al. [158] A good agreement between the model predictions and
experimental data was found, especially at lower concentrations and lower transmembrane
pressures. However, the model was not able to predict flux decline during the UF of
gelatin suspensions.

In 2014, Sarkar et al. [159] published a semi-empirical model for a new cross-flow
membrane module, named a radial flow membrane (RFM) module, which was tested in
the UF of BSA with a flat disk polyethersulfone (PES) membrane having an MWCO of
30 kDa. The module was designed to ensure a smooth radial flow of the feed over the flat
circular membrane. The module had a great fitting capacity in simulating the steady-state
performance of the RFM module. However, it has a complex mathematical structure with
just one parameter of adjustment.

The resistance-in-series models have been widely used, probably because the re-
sistance concept is quickly understood when the membrane, acting as a barrier, rejects
molecules with a higher molecular weight than the membrane pore size, creating an addi-
tional resistance on the membrane surface. Models included in Table 3 present the original
and modified version of these models to improve the prediction capacity. Most of them
showed a great ability to predict the permeate flux when tested with synthetic solutions.
Nevertheless, the application to more complex matrices has not yet been investigated.

2.4. Fouling Models

These models have been mainly used for the identification of the type of fouling
occurring in membrane filtration. However, these models can be used for the prediction
of permeate flux. Based on cleaning techniques applied in membranes, fouling can be
classified as reversible, i.e., the hydraulic permeability of the membrane can be recovered
after a cleaning procedure; and irreversible, i.e., which is intended as the loss in the
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hydraulic membrane permeability [46,160]. Reversible fouling primarily occurs due to the
loose bound external material placed on the membrane surface, which causes cake layer
formation. In contrast, irreversible fouling may be caused due to strongly attached foulant
components and pore-blocking of the membrane during membrane filtration. Membrane
fouling has been recognized as one of the main drawbacks in membrane filtration; therefore,
its minimization is crucial in any membrane application. Hermia [60] was the first one to
develop a model describing the fouling mechanism in porous membranes for dead-end
filtration. Hermia reformulated all models of blocking mechanism to a common power–law
equation, as shown in Equation (7):

d2t
dV2 = k

(
dt
dV

)n
(7)

where t is the filtration time, V is the permeate volume, k is a phenomenological coeffi-
cient for dead-end filtration, and n is a general index which, depending on the fouling
mechanism, assumes different values. In complete pore blocking (n = 2), the particle size
is larger than the membrane pore size; thus, pores are completely blocked. In standard
pore blocking (n = 1.5), particles are much smaller than the membrane pore diameter, so
they can enter the pores and settle inside the pore walls, which may lead to pore blocking
and pore volume reduction. In the intermediate blocking mechanism (n = 1), the particle
size in the feed is the same as the membrane pore size; however, the membrane pore is
not necessarily plugged by particles, and some particles may deposit on each other. Both
large and small particles can accumulate on the membrane surface to form the cake layer
in the cake formation mechanism (n = 0). This layer grows with time and causes future
flux decline [5,14,46,161]. It should be noted that Hermia models have long been used to
describe membrane filtration and fouling in constant transmembrane pressure. However,
few studies have applied them to constant flux in a dead-end and cross-flow system, de-
spite their frequent use of this mode of membrane operation in practical applications. Next,
Field et al. [65] have discussed the relationship between constant-flux behavior and mem-
brane fouling. They presented the concept of critical-flux, defined as the flux level where
no fouling occurs. These authors mentioned that constant-flux filtration was obtained by
moderately increasing transmembrane pressure. This operation method showed some
advantages over normal constant-pressure filtration because it provides the possibility of
avoiding over-fouling and reduces the severity of fouling. Even though Field et al. [65]
were the first ones to present the critical flux concept, other authors previously mentioned
a possible threshold flux when filtering a colloidal suspension [162]. These authors noted
that permeate flux was higher compared with the expected flux from a balance between
convection and classical dispersive forces (including diffusion, lateral migration, and shear-
induced diffusion) in reverse osmosis experiments with ferric hydroxide. This behavior,
attributed to surface interaction between colloidal particles, was called the colloid flux
paradox. Field et al. [65] have indeed re-examined the Hermia model: they developed it for
dead-end filtration, including a cross-flow mechanism. Later, Kirschner et al. [163] worked
on a combined intermediate pore blocking and cake filtration model to describe fouling of
a poly (ether sulfone) ultrafiltration with soybean oil emulsion.

New models that correlate the type of fouling with membrane performance in terms
of permeate flux have been developed from Hermia’s model. Table 4 summarizes the most
important models (based on the number of citations and validations) in the category of
fouling and adsorption.
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Table 4. Summary of models developed for permeate flux prediction based on fouling and adsorption mechanisms.

No. Model Authors Ref. Validation Matrix Main Transport
Mechanism Configuration Module

Type
Number of
Citations

Model Validation
in Publications

(4.1)

1/J2 = 1/J2
o + kckc f t; n = 0

1/J = 1/Jo + kit; n = 1
1√

J = 1√
Jo
+ Kst; n = 1.5

ln J = lnJo − kct; n = 2

Hermia (1982) [60] - Convective Dead-end - - [13,14,164,165]

(4.2) ln
[

1−Robs
Robs

]
= ln

[
1−Rm

Rm

]
+ J

k
Nakao and Kinura

(1981) [114] PEG Convective Dead-end Tubular 32 [166]

(4.3)

Jp= Jpss +
(

Jo−Jpss

)
e−kc Jo t; Complete blocking

Jp =
Jo Jpss

(
eki Jpss t

)
Jpss+Jo

(
eki Jpss t−1

) ; Intermediate blocking

Jp = Jo(
Jo+J

1
2
o ks t

)2 ; Standard blocking

t = 1
kgl J2

pss
ln
[(

Jp
Jo

Jo−Jpss
Jp−Jpss

)
−Jpss( 1

Jp −
1
Jo )

]
; Gel layer

formation

Cros-flow
HermianField et al.

(1995)
[65] Dodecane-water

emulsion Convective Cross-flow Flat-sheet 945 [9,167–169]

(4.4) Sh =
1

(Wd − 1)e−Pe +
1
Pe

(1− e−Pe )
Bacchin et al. (1996) [24] Clay suspensions Diffusive Cross-flow Hollow fiber 88 [6]

(4.5)

J = 1
L

[∫ x(t)
0 veq(x)dx + (L− X(t))v(t)

]
When t < tss

J = 1.31
(

D2γ/L
)1/3(cg/c0 − 1

)1/3

When t > tss

Dynamic model
Song (1998) [108] - Diffusive-

Convective Cross-flow - 253 [45,55]

Wang and Song (1999) [170] Silica colloids Diffusive-
Convective Cross-flow Tubular 62 -

(4.6) J = Jo

e
(− α∆Pcb

µRm t)+ Rm
Rm+Rp (1−e

(− α∆Pcb
µRm

t)
)

 Ho and Zydney (2000) [66] BSA Convective Cross-flow Stirred cell 434 [10,171–173]

(4.7) J = D f (∂)SD(∂)
Ak
∆x ∆Cs + JCsg(∂)SF(∂)

Model parameters: ∂, SD, SF
Darnon et al. (2002) [172] B-Lactoglobulin

and yeast extract
Diffusive-

Convective Cross-flow Tubular 12 -
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Table 4. Cont.

No. Model Authors Ref. Validation Matrix Main Transport
Mechanism Configuration Module

Type
Number of
Citations

Model Validation
in Publications

(4.8)

V =
JO

kb

(
1− e

(
−kb
kc J2

o
(
√

1+2kc J2
o t−1))

)
Cake-complete

V =
1
ki

ln
(

1+
ki

kc Jo

((
1 + 2kc J2

o t
)1/2−1

))
Cake-intermediate V =

Jo

kb

(
1− e(

−2kb t
2+ks Jo t )

)
Complete-standard V =

1
ki

ln
(

1+
2ki Jot

2 + ks Jot

)
Intermediate-standard

V =
2
ks

(
β cos

(
2π

3
− 1

3
arccos(α)

)
+

1
3

)
Cake-standard

Model parameters: Kb, kc, ki, ks, α, β

Bolton et al. (2004) [173] IgG BSA Convective Cross-flow Tubular 201 -

(4.9)

Q
Qo

= 1
(1+βQoCb t)2 e

(− αCb Jo t
1+βQo Cbt ) +∫ t

0

(
αCb Jo /(1+βQoCb tp)

2)
e(−(αCb Jo tp/(1+βQo Cbtp )))√[

(Rpo /Rm)+(1+βQoCb tp)
2]2

+2( f ′R′∆pCb/µR2
m(t−tp)

dtp

Model parameters: α, β, tp, f′, R′

Duclos-Orsello et al.
(2006) [174] BSA Convective Dead-end Stirred cell 152 -

(4.10)

dJ
dt= −a Cb

Cbo
(J − J∗)J2

J∗= J∗(Cbo)

(
Cb

Cbo

)−n Furukawa et al. (2008) [67] Soy less Diffusive-
Convective

Dead-end
Cross-flow Tubular 27 -

(4.11) J(t)= J(t→ ∞)+ke(−bt)

Model parameter: b
Lin et al. (2008) [175] BSA

Hemoglobin
Diffusive-

Convective Dead-end Stirred glass
cell 21 -

(4.12)
J = J0

1+R∗CPB
Jt1 = J

1+R∗CPBt1
Model parameter: R∗CPB

Mondal and De (2009) [176] Pineapple juice Convective Cross-flow Hollow fiber 29 [177]

(4.13) ∆P = J
k

k
ko

=
(1− σ

εo )
3

[1+σ/(1−εo)]
2

Model parameter: σ
Wang et al. (2017) [178] Aqueous solutions Diffusive-

Convective Cross-flow Hollow fiber 1 -

BSA: Bovine serum albumin; PEG: Polyethylene glycol; IgG: Immunoglobulin G.
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Ho and Zydney [66] developed a model capable of explaining filtrate flux data over the
entire filtration process, accounting for both pore blockage and cake filtration. The model
was verified using experimental data obtained during the constant pressure filtration
of BSA through track-etched polycarbonate membranes over a range of bulk protein
concentrations and transmembrane pressures. It was assumed that initial fouling was
produced at the beginning of the filtration due to a pore-blocking phenomenon followed
by a gel layer formation because of the growth of a protein cake or deposit over these
initially blocked regions. Several authors have reported that the model developed by Ho
and Zydney [66] showed a lower capacity of prediction in comparison with Hermia’s
model. However, the model developed by Ho and Zydney [66] allows to determine the
type of fouling using only one equation in comparison to Hermia’s model based on the use
of four different equations (changing the n value of the constant) [66,176]. Alternatively,
Mondal et al. [176] developed a model similar to that reported by Ho and Zydney [66], in
which non-dimensional parameters are included for explaining the underlying principles
of membrane fouling in the tested matrices, such as pineapple juice and deliming-bating of
tannery effluents [176,177].

Fouling models have a similar structure to that of concentration polarization or re-
sistance in series models. In addition, they have been mainly applied to determine the
fouling mechanism occurring under defined operating conditions. Hermia’s and other
models refer to only one type of fouling; however, in complex systems, more than one type
of fouling can co-occur.

2.5. Non-Phenomenological Models

Non-phenomenological models comprise those entirely empirical, semi-empirical,
and statistical in nature. Even though these kinds of models do not allow us to understand
the different phenomena occurring in the membrane during filtration and relate them
with operational parameters, in some cases, these models produced better results in terms
of prediction capacity when compared to phenomenological models. In this context,
Koltuniewicz et al. [179] indicated that the application of film theory is limited in cases
where the wall region takes a predominant role in mass transport. In comparison, the
semiempirical surface renewal model does not involve any particular interpretation of
permeate flow resistance. Consequently, flux decline resulting from solute accumulation
at the membrane surface, and therefore, the surface renewal rate, should be determined
from the experiment on cross-flow UF. The authors mentioned that the use of the surface
renewal model has advantages such as avoiding problems related to the diffusive or
non-diffusive nature of the solute, osmotic, gel or some other factor or phenomenon that
hinders the flux. Furthermore, the membrane or layer plays a predominant role in flow
resistance. This model was experimentally validated using BSA solutions and kaolin
suspension [179]. Finally, other applications of semi-empirical models have been used to
understand the blocking mechanism in membrane filtration [59,68]. Regarding empirical
models, the terms included in the equations do not have a physical meaning. Therefore, the
relationship between operating parameters or membrane characteristics with membrane
fouling cannot be deduced. However, the majority of these models guarantee a high
capacity of permeate flux prediction [5,68,178]. Recently, Ohanessian et al. [81] proposed
hybrid models to evaluate the performances of UF for the treatment of CMP effluents
where the models were able to predict the filtration number of cycles adjustable according
to the permeability recovery rate after physical washes of the membrane, the duration of
physical and chemical washes and many operating parameters such as the transmembrane
pressure, the nanoparticles concentration, the temperature, and the tangential velocity
(for crossflow mode) [81]. Additionally, several efforts have been made in the modeling
of permeate flux based on the analysis of phenomenological data [7,15,73,180] obtained
experimentally, avoiding the use of specific transport mechanisms [69]. Among them,
artificial neural networks (ANNs) have been applied in the field of membrane science and
in other areas, including marketing, accounting, finance, health and medicine, engineering,
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and manufacturing [181–183]. One of the significant advantages of ANNs is their ability
to learn and correlate input (operating conditions or membrane characteristics) to output
(variables used to determine the membrane performance as permeate flux) data by pattern
recognition of data without the necessity of understanding the process phenomena [184].
In this regard, specific applications have compared ANNs with a modified Hermia’s model
to predict the permeate flux [72], the use of ANNs for predicting permeate flux and solute
rejection in optimized polymers membranes [185], and the optimization and permeate
flux control in wastewater treatment using a modification of Darcy law combined with
ANNs [12].

Other strategies, such as the use of Response Surface Methodology (RSM), have been
tested. In particular, the identification of the optimal operating conditions to simultaneously
maximize the permeate flux and minimize the fouling index during the clarification of
orange press liquor by UF has been applied [186]. Another example is the use of the
Partial Least Square regression (PLSR) model to study the relationship among membrane
characteristics, operating conditions, and membrane performance in terms of permeate flux
and membrane rejection towards hesperidin and sugars (glucose, fructose, and sucrose)
during the UF of orange press liquor [187]. PLSR has also been applied to investigate flux
decline in a multi-stage ultrafiltration process [188]. Other authors have used Box-Jenkins
Autoregressive Integrated Moving Average (ARIMA) modeling to forecast permeate flux in
UF of fruit juices [69]. ARIMA models are essentially an exploratory data-oriented approach
that has the flexibility of fitting an appropriate model, which is adapted from the structure
of the data itself. With the aid of autocorrelation functions and partial autocorrelation
functions, the time series’s stochastic nature can be approximately modeled, from which
information such as trend, random variations, periodic component, cyclic patterns, and
serial correlation can be discovered. As a result, forecasts of the series’s future values,
with some degree of accuracy, can be readily obtained. This model is well established in
the statistical literature with applications in several fields, such as economic forecasting,
sales forecasting, budgetary analysis, stock market analysis, yield projections, process
and quality control, inventory studies, workload projections, utility studies, and census
analysis, with successful results. ARIMA forecasts the permeate flux with a prediction
higher than 99.14% for the studied fruit juices [69]. Table 5 depicts a summary of non-
phenomenological models (based on the number of citations and validations) reported in
the literature for the prediction of permeate flux.

The quantity and description of all the model’s categories (phenomenological, empiri-
cal, and semi-empirical models) could lead the reader to two big questions: First, which
model is convenient for a particular application? And second, what kind of models have
a better performance for permeate flux prediction? A comparison between the models’
performance could contribute to identifying specific advantages and drawbacks for each
model category to answer these questions.
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Table 5. Summary of non-phenomenological models used for the prediction of permeate flux.

No. Model Authors Ref. Validation
Matrix

Main Transport
Mechanism Configuration Module

Type
Number of
Citations

Model Validation in
Publications

(5.1)
J =

(Jo − Jo)(Jlim − Jo)

Jo + Jlim − Jo

Model parameter: J0

Surface renovation theory
Koltuniewicz (1992) [179] BSA Diffusive-

Convective Cross-flow - 44 -

(5.2)
J(t)= Jp,o−at J(t) ≤ Jth

J(t) =
(

Jp,o−Jth
)
e−b′t+Jth−at J(t) ≥ Jth

Threshold model
Ochando-Pulido et al. (2015) [6] - Diffusive-

Convective Cross-flow - 192 [59,189]

(5.3) J =
es

1− e−tp∗
√

πS∗
[
erf
(√

S∗+tp∗
)
−erf

(√
S∗
)]

Model parameters: S*, tp

Surface renovation theory
Hasan et al. (2013) [190] Fermentation

broths
Diffusive-

Convective Cross-flow Unstirred
cell 16 [120]

(5.4)
ln(J − J∞)= ln k f +b f t

J = Jssk f e−b f t Yee et al. (2009) [191] PEG Diffusive-
Convective Cross-flow Tubular 30 [171]

(5.5)
J( f )= Jo exp

{
−t
f (t)

}
f (t)= A1+A2t

Model parameter: A1, A2

Empirical model
Mallubhotla and Belfort (1996) [59] Yeast - Dead-end Unstirred

cell 29 [68]

(5.6)

J( f )= Jo exp
{
−t
f (t)

}
f (t)= B1+B2t + B3t2

Modified Mallubhotla
and Belfort

Modification empirical model
Soler-Cabezas et al. (2015) [68] Waster water - Cross-flow Hollow

fiber 11 -

J(t)= C1 +
C2

tan(C3t + C4)
Inverse Tangential

J(t)= Jpss+(J o−Jpss)e
−(D1 t+D2 t2) Exponential quadratic

J(t)= E1 +
E2

ln(E3t + E4)
Inverse logarithmic

J(t)= F1

(
F2+eF3 t

)(
F4+eF5 t

) Exponential double

Model parameters:
B, C, D, E, F

(5.7) Computational model of system dynamics (SD) Zhu et al. (2016) [8] Raw water - Cross-flow Stirred cell 0 -

(5.8) Adaptive neuro-diffusive inference system model (ANFIS) Salahi et al. (2015) [7] Wastewater - Cross-flow Hollow
fiber - -

(5.9) PCA model of simultaneous multilevel analysis of components with
invariant patterns (MSCA-P)

Modeling for Data Mining
Klimkiewicz et al. (2016) [15] Enzymes - - - 1 -

(5.10) Neural network (ANN’s) per layer Corbatón-Báguena et al. (2016) [72] PEG - Cross-flow Tubular 6 -

(5.11) Neural network (ANN’s) per layer Díaz et al. (2017) [12] Water - Cross-flow Tubular 0 -

(5.12)
Yt = φ1Yt−1 + φ2Yt−2+ . . .+φpYt−p+εt AR ARIMA

Ruby-Figueroa et al. (2017) [69] Fruit juices - Cross-flow
Tubular
Hollow

fiber
6 -∆Yt= Yt−Yt−1 I

Yt= εt+θ1εt−1+θ2εt−2+ . . . + θqεt−q MA

BSA: Bovine serum albumin; PEG: Polyethylene glycol.
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3. Analysis of Model Goodness-of-Fit

The categories described previously comprised phenomenological, empirical, semi-
empirical, and non-phenomenological models (e.g., statistical tools) developed between
1961 and 2019. In order to compare the capacity of permeate flux prediction, some models
for each category were selected and tested with data of three fruit juices clarified by UF.
The criteria used for the model selection include a series of items in the following order
of importance:

(i) Type of configuration: models tested or developed for cross-flow filtration of fruit
juices were selected.

(ii) Validation: models with more than one validation were considered.
(iii) The number of citations: models with a high number of citations were selected in

order to take into account the scientific impact of each model.
(iv) Membrane module: models tested or developed in fruit juice processing with hollow

fiber and tubular membranes were selected.
(v) Mathematical complexity: Considering the easy application of the models, the most

straightforward models were preferred.

Based on these criteria, the models selected were: Shear-induced diffusion by Davis [57]
for concentration polarization category; models described by Keden and Katchalsky [112]
and Wijmans et al. [111] were selected for osmotic pressure; Hagen-Poiseuille and Bound-
ary gel law described by De et al. [137] were selected for the resistance-in-series category;
models described by Ho and Zydney [66], Mondal et al. [176] and the dynamic model by
Song [108] were chosen for the fouling category; and models described by Yee et al. [191]
and Ruby-Figueroa et al. [69] were selected within the non-phenomenological category.
Simulations were performed using experimental data obtained in the UF of three different
fruit juices processed for 10 h, as reported by Ruby-Figueroa et al. [69] In Table 6, charac-
teristics of the juices, membrane types, and operating conditions are reported. Variables
such as viscosity, bulk concentration, permeate volume, osmotic pressure, the resistance of
the polarized layer, gel concentration, and gel thickness were obtained using a series of
correlations available in the literature.

The determination of the quality of fit for the selected models was performed using
the root mean square error (RMSE), the mean absolute percentage error (MAPE), and the
percentage of variability explained (R2) at 95% confidence level. In addition, a validation
procedure was carried out using residual analysis. The analysis of residuals, intended as
the difference between the observed and predicted value, is fundamental for validating any
model. The residuals represent the prediction error: they must have a random distribution
and they must be unpredictable, which means that they must follow a normal distribution.
In cases where the residuals do not have a normal distribution, the constants and predictors
included in the model are intended not to be enough to predict the response. In this sense,
two statistics, such as the Shapiro–Wilks (S-W) and Kolmogorov–Smirnov tests (KS), were
used for determining the normal distribution of the residues for the analyzed models. Thus,
it is expected that a valid model must demonstrate a normal distribution in at least one of
the statistics used. All the computations were performed in Statgraphics Centurion XVI
(Statgraphics Technologies, The Plains, VA, USA) and Excel 2010 (Microsoft, Redmond,
WA, USA).
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Table 6. Description of the UF membrane, operating conditions, and physicochemical characteristics of the fruit juices
analyzed in this work *.

Bergamot Kiwi Fruit Pomegranate
Reference

DCQ II-006C Koch Series-Cor TM HFM 251 FUC 1582

Membrane characteristics and operation
Membrane material Polysulfone (PS) Polyvinylidene fluoride (PVDF) Triacetate cellulose (CTA) -

Configuration Hollow Fiber Tubular Hollow Fiber -
Area (m2) 0.16 0.23 0.26 -

MWCO (kDa) 100 100 150 -
∆P (bar) 1 0.85 0.6 -

Temperature (◦C) 20 25 25 -
Flow (Lh−1) 114 800 400 -

Porosity (dimensionless) 0.0057 1.1 0.0007
Tortuosity (dimensionless) 3 3 0.03 -
Membrane thickness (m) 4.7 × 10−7 2.0 × 10−6 0.00023 [34]

Pore density, N
(number of pores m−1) 6.0 × 1012 4.0 × 1016 1.0 × 1013 [46]

Module length, L (mm) 330 406 136 [61]
Module diameter (m) 0.0021 0.025 0.0008 [30,46,192]

Hydraulic resistance (m−1) 3.6 × 1012 1.6 × 1012 2.1 × 1012 -
Hydraulic permeability (mPa−1s−1) 2.7 × 10−10 5.9 × 10−10 4.6 × 10−10 -

Fruit juices characteristics
Total soluble solids (◦Brix) 9.4 12.6 18.7 [30,38,43,193]

Titratable Acidity 53.86 (gL−1) - 1.04 (% citric acid) [30,38,43,193]
pH 2.40 3.19 3.61 [30,38,43,193]

Total phenolic compounds 660 (mg/L) 421.6 (mg/L) 1930 (mg GAE/100 L) [30,38,43,193]
Turbidity (%) 33.67 - [30,38,43,193]

Feed density, ρ (kgm−3) 1091 1070 1131 [194,195]
Feed viscosity, µ (Pa s) 0.0019 0.0014 0.0017 [31,196]

Concentration in food (%) 12 10.08 4.9 [27,33,36]

(*) The Supplementary Material includes the equations of density and viscosity as function of the concentration, used for the batch
concentration analysis.

4. Results and Discussion of Selected Models’ Performance

Results obtained from the simulation of the models selected for each category are
divided into three different sections according to the different juices studied (bergamot, ki-
wifruit, and pomegranate). In each section, a comparison between the models’ performance
is specifically addressed.

4.1. Models’ Performance in Bergamot Juice Clarification

Figure 2a shows the time evolution of the permeate flux for bergamot juice clarification
with respect to the predicted values of selected models. The flux-time curve is characterized
by a rapid drop of the permeate flux from the initial value of 13.5 kg/m2h in the first 10 min
of operation, followed by a long period of gradual flux decrease (until 190 min of operation)
that ended with a steady-state flux of about 4 kg/m2h. Table 7 shows the results obtained
for the statistical validation, in which more than one model was validated with p-values
higher than 0.05 in at least one of the statistics used. According to Conidi et al. [27], the
rapid decline of permeate flux in the UF of bergamot juice was attributed to gel-layer
formation phenomena. This is confirmed by the results obtained in this work where the
shear-induced model [57] showed 91.08% in the R-squared and lowered RMSE and MAPE
(Table 7). Thus, it is evident that for bergamot juice, the gel-layer formation is confirmed.
Based on the shear-induced model results, it can be deduced that the hydrodynamic
diffusion of these particles occurs because they, individually, move randomly thanks to
the current caused by the cut-off of the flow. Thus, the shear-induced model [57] assumes
that after some time, the tangential flow compensates the convective transport of solutes
on the surface of the membrane, preventing the growth of the gel-layer, and leading to a
stationary value, as illustrated in Figure 2a. It should be mentioned that the shear-induced
model assumes that the predominant mechanism is gel-layer formation, neglecting the
existence of pore blockage. This may explain the goodness-of-fit obtained for this model:
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91.08% (R-square), but not higher. Vincent Vela et al. [70] reported that the shear-induced
model loses capacity of prediction at high cross-flow velocity (>2 m/s) and ∆P higher than
1 bar, a fact that was not corroborated in this work since the operating conditions were
lower than the limits reported by Vincent Vela et al.
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Table 7. Results of the simulation for selected models of bergamot juice clarification in terms of RMSE, MAPE, R2, and
Shapiro–Wilk (S-W) and Kruskal–Wallis (K-W) residual analysis tests. Statistically validated models are in bold.

Models RMSE MAPE R2 S-W K-W

Concentration
polarization model Davis (1992)/Shear-Induced Diffusion 0.80 11.76 91.08 0.00 0.10365

Osmotic pressure models Keden & Katchalsky (1958) 0.25 5.70 99.17 0.0117 0.05
Wijmanset al. (1984) 0.49 11.70 99.22 0.6855 0.0004

Resistance in
series models

Hagen-Poiseuille (1839) 0.22 3.99 99.78 0.00034 0.8364
De et al. (1997) 0.36 4.81 97.47 0.00 0.8692

Fouling and
adsorption models

Ho and Zydney (2000) 1.64 31.52 90.25 1.554 × 10−15 0.00
Song (1998)/Dynamic model 1.51 35.90 97.56 0.00 0.00

Mondal et al (2009) 1.76 18.23 87.01 0.0 0.00002

Non-Phenomenological
models

Yee et al. (2009) 2.03 28.91 84.91 0.000088 0.1038
Ruby-Figueroa et al. (2017)/ARIMA models 0.40 8.24 97.92 2.99 × 10−15 0.056

Even though concentration polarization models were developed to quantify the cake
layer on the membrane surface and not for the direct quantification of permeate flux, the
shear-induced model [57] is suitable for permeate flux prediction operated at low velocities
and ∆P.

Besides, models in the osmotic pressure category, generally neglected in UF filtrations,
such as the models developed by Keden and Katchalsky [112] and Wijmans et al. [111],
were statistically validated. They showed a high capacity of prediction, which were higher
than 99.17% in the R-square, and had lower values of RMSE and MAPE (Table 7). These
models demonstrate that, in the case of bergamot juice, osmotic pressure should not be
neglected. In this case, osmotic pressure was calculated, obtaining values in the range
of 0.867–0.975, 0.674–0.724, and 0.300–0.584 bar for bergamot, kiwi, and pomegranate,
respectively. The above confirms the impact on the permeate flux drop, which agrees with
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some authors who mentioned that in solutions with high concentrations, as in the case of
bergamot juice, the osmotic pressure increases exponentially [124]. In addition, it has been
reported that osmotic pressure limits permeate flux in membranes with a MWCO between
10 and 100 kDa [90]; however, osmotic pressure could be high for membranes retaining
solutes smaller than 1 kDa [51]. Therefore, in membranes with MWCO of 100 kDa, as those
used in the clarification of bergamot juice, osmotic pressure could have a considerable
impact. Although osmotic pressure was not higher than ∆P, it cannot be neglected. Indeed,
the osmotic pressure effect depends on the formation of the CP layer on the membrane,
which increases the intrinsic concentration on the membrane surface. Thus, the assump-
tions related to whether the osmotic pressure is significant or not will depend on the type of
matrix and operating conditions rather than on the membrane pore size. In particular, the
empirical model tested by Keden and Katchalsky [112] showed an adequate capacity of pre-
diction for the permeate flux (99.17% in R2 and lower RMSE and MAPE). This model is one
of the most widely cited models and it has been the basis for many other models [113–117].
In this context, Matos et al. (2016) used it successfully to purify oil–water emulsions with a
ceramic tubular membrane, having an active layer outside the membrane [116]. Similar
to the model of Keden and Katchalsky [112], the boundary layer resistance (BLR) model
developed by Wijmans et al. [111] showed better goodness-of-fit for the bergamot juice
(99.22% in R2 and lower RMSE and MAPE). This model particularly integrates osmotic
pressure with the concept of a boundary layer resistance [80]. In this regard, and in cases
where the process operates at high ∆P, the existence of a gel layer and the formation of
a new secondary dynamic membrane on the first structure can certainly occur [2]. Thus,
when there is an increase in the concentration (e.g., in batch concentration mode processes),
the boundary layer becomes a hydrodynamic resistance for solute permeation [119]. The
Wijmans et al. (1984) model [111] was validated by Cheng et al. [80], using a hollow fiber
membrane with Dextran T500 in aqueous solution. This model showed better goodness-of-
fit in comparison to Keden and Katchalsky’s model in permeate flux prediction of bergamot
juice. This can be attributed to the fact that Wijmans et al. (1984) model is semi-empirical
compared to the model by Keden and Katchalsky, which is entirely empirical.

Although both models were developed and validated with model solutions as BSA
and PEG, osmotic pressure correlation is also available in the literature. However, a good
performance was observed for a complex matrix such as in the bergamot juice.

Non-phenomenological models, such as those by Yee et al. [191] and Ruby-Figueroa et al. [69],
were statistically validated and showed an adequate capacity of prediction. In particular,
the ARIMA model showed an R2 of 97.92 and lower values of RMSE and MAPE.

In contrast, models developed by Ho and Zydney [66], Mondal et al. [176] and the
dynamic model [108] also included in the fouling model category, were not statistically
validated. This means that the constant and variables involved in both models are not
enough to predict the permeate flux in the bergamot juice filtration by UF.

4.2. Models’ Performance in Kiwifruit Juice Clarification

Figure 2b shows the permeate flux evolution, as well as the simulation results of
the selected models for the prediction of permeate flux, in the clarification of kiwi juice.
Permeate flux decreased 61% after 600 min of operation. The decline in flux after the first
100 min of operation is less pronounced until ~300 min; after that, a drastic decline is
observed. This variability of the permeate flux with time is a tough challenge for modeling.
Table 8 shows the simulation results for the selected models in which the categories such as
osmotic pressure, resistance-in-series, fouling and adsorption, and non-film theory models
showed an adequate capacity of permeate flux prediction.

In this case, the concentration polarization model was not validated and showed lower
values for prediction capacity (R2 ≤ 52.86). Concentration polarization models assume that
the cake layer, once it is formed, remains constant. In this case, this is not appreciated since
the drop in permeate flux was observed along the whole process.
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Table 8. Results of the simulation for selected models of kiwi juice clarification in terms of RMSE, MAPE, R2, and residual
analysis tests Shapiro–Wilk (S-W) and Kruskal–Wallis (K-W). Statistically validated models are in bold.

Models RMSE MAPE R2 S-W K-W

Concentration
polarization models Davis (1992)/Shear-Induced Diffusion 2.91 22.35 52.86 0.00 1.213 × 10−10

Osmotic pressure models Keden and Katchalsky (1958) 9.51 115.03 97.76 0.002 0.00
Wijmanset al. (1984) 0.33 3.14 97.98 0.075 0.45

Resistance in
series models

Hagen-Poiseuille (1839) 0.64 8.21 98.45 0.00 0.0032
De et al. (1997) 0.48 5.46 97.43 0.0012 0.2238

Fouling and
adsorption models

Ho and Zydney (2000) 1.07 8.92 95.95 4.152 × 10−12 0.1015
Song (1998)/Dynamic model 3.94 43.51 67.94 0.00 0.00

Mondal et al (2009) 0.96 11.17 93.18 0.0 0.058

Non-Phenomenological
models

Yee et al. (2009) 0.64 7.16 97.67 1.438 × 10−13 0.2047
Ruby-Figueroa et al. (2017)/

ARIMA models 0.33 3.74 98.98 0.0250 0.3801

In particular, the resistance-in-series models developed by De et al. [137] showed a
good capacity of prediction with high R2 (97.43%) and lower values of RMSE and MAPE, as
shown in Table 8. This model is based on a convective transport with respect to the driving
force in a porous medium in which separation occurs by size exclusion [4,46,197,198].
Despite the high capacity of fit for this model, R-square could be higher if some changes
are made in the equation, such as some modifications in the Leveque relationship (used for
the determination of mass-transfer coefficient) [100,199–201], which includes the gel-layer
growing [202,203] or the viscous effect, and modification in the Sherwood correlation to
improve the capacity to determine the mass-transfer and the thickness of the gel layer with
a higher precision [61,204].

The Hagen–Poiseuille model has been applied to predict permeate flux in the treatment
of oil industry wastewater at a pilot scale [71] and solvents such as water and ethanol in
ceramic membranes by MF and UF [133], showing a good prediction capacity. However,
for the kiwifruit juice, the model was not validated statistically. This result can be attributed
to some factors not included in the Hagen-Poiseuille model, such as capillarity or dipole,
which could affect kiwifruit juice’s prediction capacity.

Models in the category of fouling and adsorption, such as the one developed by Ho
and Zydney [66], showed a good prediction capacity for kiwifruit juice with high R2 and
lower values of RMSE and MAPE (Table 8). This model assumes that an initial blocking
step exists on the membrane surface, followed by the development of a gel layer in a
steady-state [66,176]. The model has also been validated with a BSA solution [66], protein
solution [205], wastewater containing oil [206], and concentrated protein solution [207]
with good goodness-of-fit.

Regarding the category of non-phenomenological models, the two tested models
showed great goodness-of-fit (Table 8). In particular, the model developed by Yee et al. [191],
which was validated with milk whey, showed a great goodness-of-fit during the first 2.5 h
of operation. Similar results were obtained in the present work, where the capacity of fit
was lower after 300 min of operation. Thus, the use of this model for a long-term forecast
is questionable. Alternatively, the ARIMA model [69] showed the highest values of R2

(98.98%) and lower values of RMSE and MAPE. Thus, non-phenomenological models
appear to be the most adequate for permeate flux curves with high variability.

4.3. Models’ Performance in Pomegranate Juice Clarification

The time evolution of permeate flux for pomegranate juice is shown in Figure 2c; in
this case, a continuous drop of permeate flux from 13.38 kg m−2h−1 to 1.81 kg m−2h−1 after
600 min of operation can be observed. The absence of a stationary point implies difficulty
for modeling. In addition, the filtration of pomegranate juice was carried out at low ∆P
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and a high cross-flow velocity. According to several authors, these conditions lead to a loss
in the capacity of prediction of some models [58,61,168,203]. The validation of the selected
models for pomegranate juice in terms of permeate flux prediction is shown in Table 9.

Table 9. Results of the simulation for selected models of pomegranate juice clarification in terms of RMSE, MAPE, R2, and
residual analysis tests Shapiro–Wilk (S-W) and Kruskal–Wallis (K-W). Statistically validated models are in bold.

Models RMSE MAPE R2 S-W K-W

Concentration
polarization models

Davis (1992)/Shear-Induced
Diffusion 1.64 27.56 85.58 2.22 × 10−9 0.8234

Osmotic pressure models Keden and Katchalsky (1958) 4.89 67.03 98.92 0.0001 3.581 × 10−9

Wijmanset al. (1984) 0.49 7.85 98.91 0.00 0.964

Resistance in
series models

Hagen-Poiseuille (1839) 0.81 21.00 98.28 0.00 0.1974
De et al. (1997) 0.72 16.64 96.73 2.33× 10−13 0.37255

Fouling and
adsorption models

Ho & Zydney (2000) 2.01 51.69 75.91 2.93× 10−12 0.088
Song (1998)/Dynamic model 3.41 50.78 80.64 1.154 × 10−14 0.00

Mondal et al (2009) 1.60 17.45 92.40 0.0 0.3804

Non-Phenomenological
models

Yee et al. (2009) 0.46 11.09 99.20 2.991× 10−12 0.2262
Ruby-Figueroa et al. (2017)/

ARIMA models 0.25 4.08 99.70 0.00 0.6320

The model developed by Ho and Zydney [66], included in the category of fouling and
adsorption, had the lowest R-square (75.91%) within the validated statistical models. Some
phenomenological models were validated from a statistical point of view; however, they
showed a lower capacity of prediction in comparison to non-phenomenological models
(Table 9). In particular, the model developed by Davis [57] showed limitations in the
prediction after 240 min of the process with an R-square of 85.58% and a high value
of MAPE. The non-phenomenological models showed the highest prediction capacity for
the permeate flux in the UF of pomegranate juice, with R-squares higher than 99.20% and
lower values of RMSE and MAPE. Thus, similar to kiwifruit and bergamot juice, these
kinds of models appear to be adequate for the prediction of permeate flux. However, it is
worth noticing that these kinds of models do not allow the understanding of the mechanism
of fouling or the identification of the effect of some operating conditions on the permeate
flux. In particular, the ARIMA model is characterized by high adaptability to different data
structures through autocorrelation and partial autocorrelation [208], which were ratified
with the highest R-squares (99.70%) within the validated models for pomegranate juice
filtration. On the contrary, the model developed by Yee et al. [191] showed a good capacity
for prediction (R2 99.2%). It is particularly interesting that the ARIMA model and the one
reported by Yee et al. [191] have been validated for more than 10 h of operation with a
great capacity of forecast [171,191,209,210]. Thus, both models appear to be adequate for
the long-term prediction of permeate flux.

5. Conclusions

Permeate flux prediction is an essential parameter in membrane performance evalua-
tion and the projections for scaling-up from laboratory to the pilot plant or the industrial
scale. This work includes a critical review and analysis of the most cited and validated
models for predicting permeate flux in UF for the 1961–2019 period. These models were
grouped into two categories: phenomenological (comprising four types of models such
as gel-polarization, osmotic pressure, resistance-in-series, and fouling models) and non-
phenomenological models. Ten models (two for each type of model) were selected for a
careful comparison, including statistical tools, of the prediction capacity. The capacity of
prediction was validated by comparing the predicted values of each model with experi-
mental data of three fruit juices: bergamot, kiwi, and pomegranate. Results of statistically
validated models showed high variability in the prediction capacity by phenomenological
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models for the studied juices. In particular, phenomenological models present a capacity of
prediction ranging from 75.91 to 99.78% (R-squares), whereas the Mean Absolute Percent-
age Error (MAPE) ranged from 3.14 to 51.69, and Root Mean Square Error (RMSE) from
0.22 to 2.01. Non-phenomenological models showed a better prediction of permeate flux
with R-squares higher than 97% and lowered MAPE (0.25–2.03) and RMSE (3.74–28.91)
in comparison with phenomenological models. The majority of the phenomenological
models were developed and validated with model solutions such as BSA, PEG, and dextran.
However, some of them lost prediction capacity in complex matrices where the model’s
assumption appeared not to be enough. Despite this situation, some phenomenological
models such as those developed by Wijmans et al. (1984) and De et al. (1997), as well as
non-phenomenological models such as Yee et al.’s (2009) and Ruby-Figueroa et al.’s (2017),
showed a good capacity of prediction and lower values of RMSE and MAPE for the three
investigated fruit juices. Considering that non-phenomenological models showed better
results in terms of prediction, the reader may tend to choose these models; however, they
do not give any information related to the effect of different parameters on the permeate
flux, a crucial point for the system scaling-up. In this regard, the non-phenomenological
models are an excellent prediction tool of permeate in well-established operations with
limited variability in the feed matrix characteristics. On the contrary, phenomenologi-
cal models are still a proper method for scaling-up purposes, mainly for research in the
understanding of the UF process. Therefore, the challenge herein is the development of
new phenomenological models with assumptions that include the different phenomena
occurring in the filtration of complex matrices in order to improve the capacity of prediction
of permeate flux in long-term operation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11050368/s1, Table S1: Description of equations used for performance analysis of
selected models to predict permeate flux in ultrafiltration processes.

Author Contributions: Conceptualization, E.T. and R.R.-F.; methodology, E.T., R.R.-F., and H.E.;
software, C.Q., H.E., and R.R.-F.; validation, E.T., R.R.-F., and H.E., and A.C.; formal analysis, C.Q.,
R.R.-F., and H.E.; investigation, C.Q.; data curation, E.T., R.R.-F.; writing—original draft preparation,
C.Q., R.R.-F.; writing—review and editing, C.Q., E.T., R.R.-F., H.E., A.C.; supervision, E.T., R.R.-F.;
project administration, R.R.-F.; funding acquisition, R.R-F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Commission for Scientific and Technological
Research (CONICYT Chile), FONDECYT grant number 11160131 (PI: Ruby-Figueroa) and CONICYT-
PIA Project AFB180004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors (Elizabeth Troncoso, René Ruby-Figueroa).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A Membrane area: m2 Sh Sherwood number, dimensionless
Ad Membrane area in cell, m2 Sc Schmidt number, dimensionless
Cb Bulk concentration, kgm−3 Pe Peclet number, dimensionless
CCL Boundary layer concentration, kgm−3 Wd Stability factor with respect to deposition (parameter

in No. 4.4, Table 4)
Cg Gel concentration, kgm−3 s Sedimentation coefficient
Cgv Concentration gel layer in volume, m3 t Time, s
Cm Intrinsic concentration, kgm−3 tR Fouling phase time, s
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https://www.mdpi.com/article/10.3390/membranes11050368/s1


Membranes 2021, 11, 368 29 of 37

Cp Permeated concentration, kgm−3 τ Tortuosity, dimensionless
C0v Feed concentration, kgm−3 T Temperature, ◦C
Dm Equivalent diffusion diameter of U Flow velocity, ms−1

macromolecules (parameter in No. 1.11), m
D Diffusivity, m2s−1 U0 Initial flow velocity, ms−1

d Diameter of the module, m v(L) Average permeate velocity on the length of the
filter channel, ms−1

dh Hydraulic diameter, m vf Local filtrate velocity (parameter No. 1.8), ms−1

dp Pore diameter, m X(t) Position change of the equilibrium zone
(parameter in No. 4.5)

F Intermolecular interactions b Radius of the stirred cell (parameter of No. 1.8)
fc Marchetti correction factor V Permeate volume (parameter in No. 3.10), L
fcp Capilar effect Vc Permeate volume at the reference time point

(parameter in No. 3.10), L
b Inverse of the solute density (parameter of V Permeate volume, m3

No. 1.9)
H Height of liquid over membrane (parameter V0 Initial permeate volume, m3

of No. 1.9), m
η Non-dimensional distance (parameter v Specific partial volume, kgm3

of No. 1.9) = x/H
φ Non-dimensional concentration (parameter v0 Specific partial initial volume, kgm3

of No. 1.9) = c/co
fd Dipole effect VRF Volume reduction factor, dimensionless
fe Steric effect v Kinematic viscosity, m2s−1

H Thickness of the gel layer, m xi Proportional parameter of permeability in No. 1.3
J Permeate flux, ms−1 ∆x Membrane thickness, m
Jf Final permeate flux, ms−1 X12 Flory-Huggins parameter
Jlim Limit permeate flux, ms−1 z* Axial position for osmotic pressure, m
J∞ Saturation (equilibrium) volumetric permeate

flux, m3m−2s−1

Jss Steady-state permeate flux, ms−1 Greek symbols
JW Flux of pure water permeate, ms−1 δ Thickness of the boundary layer, m
J* Hydraulic lifting speed, ms−1 ∆π Osmotic pressure, Pa
Jo Balance between solute input and output, γ Shear rate, ms−1

k Mass transfer coefficient, ms−1 γm Shear rate at the wall (parameter in No. 1.11), s−1

ko Ideal mass transfer coefficient, ms−1
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g Solidity of the gel layer, %
∆P Transmembrane pressure, Pa εst Steady-state value of the average solidity, %
Q Flow rate, m3s−1 µ0 Initial viscosity, Pa s
Rm Membrane resistance, m−1 µb Viscosity in the bulk, Pa s
RM Fouled membrane resistance, m−1 µ Viscosity, Pa s
Rad,ss Adsorption resistance, m−1 ρ Feed density, kgm−3

Rcp Concentration polarization resistance, m−1 ρpol Membrane polymer density, kgm−3

Rcp,ss Steady-state concentration polarization γa Axial speed, ms−1

resistance, m−1

Re Reynolds number, dimensionless υp
o Osmotic pressure limiting flux (m3 m−2 s−1)

Rf Irreversible resistance, m−1 X12 Flory–Huggins interaction parameter
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Rg Gel resistance, m−1 φ Volume fraction of particles at the distance x
from the membrane surface

Rm Hydraulic resistance, m−1 φ 1/Jlim (parameter of No. 3.11), m2sm−3

R∗m Experimental resistance (constant ∆P), m−1

Rm i−1 Accumulated resistance at ti−1,
R∗ps Concentration polarization differential

resistance, dimensionless
Rt Total resistance, m−1

rCL Specific resistance of the boundary layer, m−1

ri Cell radius, m
ro Initial cell radius, m
rp Particle radius, m
rpp Membrane pore radius, m
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