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Abstract: A novel cellulose acetate-based monophasic hybrid skinned amine-functionalized CA-
SiO2-(CH2)3NH2 membrane was synthesized using an innovative method which combines the
phase inversion and sol-gel techniques. Morphological characterization was performed by scanning
electron microscopy (SEM), and the chemical composition was analyzed by Fourier transform
infrared spectroscopy in attenuated total reflection mode (ATR-FTIR). The characterization of the
monophasic hybrid CA-SiO2-(CH2)3NH2 membrane in terms of permeation properties was carried
out in an in-house-built single hemodialysis membrane module (SHDMM) under dynamic conditions.
Permeation experiments were performed to determine the hydraulic permeability (Lp), molecular
weight cut-off (MWCO) and the rejection coefficients to urea, creatinine, uric acid, and albumin.
SEM confirmed the existence of a very thin (<1 µm) top dense layer and a much thicker bottom
porous surface, and ATR-FTIR showed the main bands belonging to the CA-based membranes.
Permeation studies revealed that the Lp and MWCO of the CA-SiO2-(CH2)3NH2 membrane were
66.61 kg·h−1·m−2·bar−1 and 24.5 kDa, respectively, and that the Lp was 1.8 times higher compared
to a pure CA membrane. Furthermore, the CA-SiO2-(CH2)3NH2 membrane fully permeated urea,
creatinine, and uric acid while completely retaining albumin. Long-term filtration studies of albumin
solutions indicated that fouling does not occur at the surface of the CA-SiO2-(CH2)3NH2 membrane.

Keywords: monophasic hybrid membrane; sol-gel; phase inversion; blood purification; ultrafiltration;
crossflow filtration; convection; hemodialysis

1. Introduction

Chronic kidney disease, a growing public health concern affecting 11–13% of the global
population [1], is defined by an irreversible worsening of renal function which can lead
to end-stage renal disease (ESRD). Currently, about 3 million ESRD patients receive renal
replacement therapies to survive, and the number is likely to reach 10 million by 2030 [1].
The progressive loss of kidney function is linked to the retention of metabolic waste prod-
ucts, also known as retention solutes or uremic toxins (UTs), which are normally excreted
by healthy kidneys. UTs are classified based on their molecular weight (MW), removal
pattern during hemodialysis (HD), and relative affinity for protein binding, and are divided
into three major groups: (1) small water-soluble compounds (MW < 500 Da); (2) middle
molecules (MW ≥ 500 Da); and (3) protein-bound uremic toxins (PBUTs; MW < 500 Da
when free, >66.5 kDa when bound to albumin (MW 66.5 kDa)) [2].

Hemodialysis is the renal replacement therapy most widely used to purify the blood
of ESRD patients. The hemodialyzer is the key component of the extracorporeal blood
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circulation circuit, as it is responsible for removing accumulated UTs and water while
simultaneously retaining vital blood components, such as proteins, through a bundle of
semi-permeable membranes [3]. The main mass separation mechanisms used to remove
water and UTs from the blood of ESRD patients through semi-permeable membranes are
diffusion, convection, and adsorption.

Although different classification schemes for HD membranes have been proposed [4],
they are traditionally classified according to water flux—a term also referred to as water
permeability. The clinical parameter used to characterize the water permeability of a
dialyzer is the ultrafiltration coefficient, KUF, expressed in mL/h/mmHg units. The water
permeability of a hemodialyzer is found by in vitro ultrafiltration experiments, in which
bovine blood is ultrafiltered at varying transmembrane pressures (TMPs). At low TMPs, the
ultrafiltration rate (QUF) varies linearly with TMP and then reaches a plateau at relatively
high TMP values [5]. The slope of the linear portion of the QUF versus the TMP curve
defines the dialyzer KUF. The membrane pore size is the membrane property with the
largest impact on water permeability, whereas the ultrafiltrate flux (JUF) is approximately
proportional to the fourth power of the mean membrane pore radius [6]. As such, small
changes in pore size have an exceptionally large effect on water permeability. KUF is the
most-used parameter for classification purposes; according to the United States Food and
Drug Administration, a value of 12 mL/h/mmHg differentiates low-permeability and
high-permeability dialyzers [7].

Traditionally, dialysis membranes have been broadly classified on the basis of their
composition as cellulosic or synthetic [8]. The earliest hemodialysis membranes con-
sisted of regenerated cellulose, which rendered small pore sizes—enabling the clearance
of molecules smaller than 5000 Daltons into the dialysate, and were associated with an
inflammatory response [8]. In the early 1970s, in an attempt to enhance the hemocom-
patibility of regenerated cellulose membranes, researchers turned to modified cellulose
materials, such as cellulose acetate (CA) and cellulose triacetate, where a large percentage
of the hydroxyl groups is replaced with an acetate radical, eliminating the active surface
sites for complement protein interaction. This modification also led to the improvement of
solute mass transfer [9]. This decade also witnessed the development of synthetic mem-
branes, such as polyacrylonitrile (PAN) and polysulfone (PS) [6]. These latter membranes
differed fundamentally from cellulosic materials not only in their polymeric composition,
but also in a number of other features including larger pore size, decreased thickness,
and hydrophobicity.

Due to their hydrophobicity, synthetic HD membranes must be rendered hydrophilic
before they can be used in HD, thus adding an extra step to the preparation process.
Furthermore, their final hemocompatibility and filtration performance depends on the
hydrophilization processes they are subjected to [10]. In terms of pore size, they are
generally larger in synthetic membranes than in cellulosic membranes [8], allowing for
a faster extraction of water and potential removal of middle-sized and protein-bound
retention solutes [11].

The evolution of biomaterials and improved membrane synthesis technology during
the 1990s resulted in new cellulosic and synthetic membranes with specific characteristics
and refined properties. The development of integral asymmetric CA membranes [12] by
means of the wet-phase inversion technique paved the way to the synthesis of integrally
skinned asymmetric membranes with a multitude of structures covering a wide range of
membrane processes, from ultrafiltration (UF) [13] to reverse osmosis [14]. CA membranes
were used to develop low-flux hemodialyzers [15], high-flux hemodialyzers [16] and even
low-flux hemodialyzers with efficient β2-microglobulin (β2m) removal [17]—a marker for
middle-sized molecules.

Due to the higher water permeability and efficiency in the removal of UTs of larger
molecular weight, the majority of HD membranes on the market today are made from
synthetic polymers [18]. Nevertheless, the highly porous structure of synthetic membranes
has disadvantages: studies focused on the dialysate/ultrafiltrate removed from patients
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subjected to high-flux HD identified the convective removal of useful and even vital com-
pounds found in blood [11,18], such as albumin and vitamin D-transporting protein [19]. At
a much smaller scale, melt-spun CA membranes are being successfully used in HD [20,21],
with studies reporting their low toxicity and reduced complement activation [22].

Cellulose is the most abundant and available biorenewable polymer on Earth’s crust.
Furthermore, the long chain biopolymeric carbohydrate molecules primarily composed
of monosaccharide units (which compose cellulosic materials) can be easily functional-
ized, making it a versatile material with immense potential in biomedical applications.
Nevertheless, CA membranes exhibit some drawbacks—namely, limited chemical resis-
tance, low mechanical strength, low shelf life, and small pore size [23]. To overcome these
limitations, our research group has focused on the development of novel monophasic
hybrid CA-based membranes, which combine the high mechanical and thermal stability
of the inorganic material with the flexibility, ductility, and processability of CA [24–28].
In a recent study [27], a modified version of the phase inversion technique [13] coupled
with the sol-gel method [29,30] was used to synthesize novel monophasic hybrid skinned
amine-functionalized CA-SiO2-(CH2)3NH2 membranes.

It is envisioned that the incorporation of NH2 groups into cellulosic membranes
may translate into preferential interactions with proteins present in the blood—especially
albumin (that may or may not be bound to PBUTs). The monophasic hybrid membranes are
fabricated under acidic conditions, giving rise to the protonation of NH2 groups. Therefore,
when the hybrid membranes are in close contact with albumin, a strong electrostatic
interaction between the positively charged −NH+

3 group (from the hybrid membrane) and
the −COOH or −NH (from albumin) occurs. This electrostatic interaction may allow the
displacement of PBUTs from albumin.

The mechanical properties of the CA-SiO2-(CH2)3NH2 membranes were enhanced
and permeation studies revealed that the introduction of propyl-amine groups increased
the hydraulic permeability by a factor of three when compared to pure CA membranes [27].

The aim of this study is to evaluate the potential of monophasic hybrid CA-SiO2-
(CH2)3NH2 membranes for application in blood purification devices such as HD, where
the preferential permeation of uremic toxins and the retention of vital blood components
such as albumin are a mandate. For this, a monophasic hybrid CA-SiO2-(CH2)3NH2 mem-
brane containing 95 wt% CA and 5 wt% SiO2 + SiO2-(CH2)3NH2 was synthesized and
characterized in an in-house-built single hemodialysis membrane module (SHDMM) under
dynamic conditions. For comparison purposes, a pure CA membrane was also synthe-
sized and characterized. The surface and cross-section morphologies of the membranes
were characterized by scanning electron microscopy (SEM) and the chemical composition
was analyzed by Fourier transform infrared spectroscopy in attenuated total reflection
mode (ATR-FTIR). Permeation experiments were carried out to evaluate the membranes’
performance in terms of hydraulic permeability (Lp), molecular weight cut-off (MWCO),
and rejection coefficients to a group of small water-soluble compounds and bovine serum
albumin (BSA).

2. Materials and Methods
2.1. Materials

Membranes were synthesized with cellulose acetate from Sigma-Aldrich (Steinheim,
Germany) (CA; (C6H7O2(OH)3, ~30,000 g/mol, reagent grade ≥ 97%, esterification degree
~40%), tetraethyl orthosilicate (TEOS; Si(OC2H5)4, 208.33 g/mol, reagent grade 98%), pur-
chased from Alfa Aesar (Karlsruhe, Germany), 3-(triethoxysilyl)–propylamine (APTES;
C9H23NO3Si, 221.37 g/mol, reagent grade ≥ 98%) purchased from Sigma-Aldrich (Stein-
heim, Germany), formamide (CH3NO, 45.02 g/mol, ≥99.5%) purchased from Carlo Erba
(Val-de-Reuil, France), acetone (C3H6O, 58.08 g/mol, ≥99.6%) purchased from Labsolve
(Zedelgem, Belgium), and nitric acid (HNO3, 63.01 g/mol, 1.39 g/mL at 20 ◦C, 65% v/v)
purchased from LabSolve (Zedelgem, Belgium).



Membranes 2021, 11, 825 4 of 21

Membrane drying was performed with isopropanol (≥99.8%) from Honeywell
(Seelze, Germany) and n-hexane (≥95%) from Carlo Erba (Val-de-Reuil, France).

Permeation experiments were carried out with urea (MW 60.06 g/mol) purchased
from Merck (Darmstadt, Germany), creatinine (MW 113.12 g/mol) purchased from Sigma-
Aldrich (Steinheim, Germany), uric acid (MW 168.11 g/mol) purchased from Alfa Aesar
(Kandel, Germany) and bovine serum albumin (BSA; MW 66.5 g/mol) purchased from
Sigma-Aldrich (Steinheim, Germany).

MWCO was studied using polyethylene glycol (PEG) 400 (MW 400 g/mol) purchased
from Sigma-Aldrich (Steinheim, Germany), PEG 3000 (MW 3000 g/mol), PEG 6000 (MW
6000 g/mol), PEG 10,000 (MW 10,000 g/mol) purchased from Merck (Hohenbrunn, Germany),
PEG 20,000 (MW 20,000 g/mol) purchased from Sigma-Aldrich (Steinheim, Germany) and
PEG 35,000 (MW 35,000 g/mol) purchased from Merck (Hohenbrunn, Germany).

To dissolve BSA, phosphate buffer saline (PBS) was prepared using sodium chloride
(NaCl, 58.44 g/mol, ≥99.5%) purchased from Merck (Darmstadt, Germany), potassium
chloride (KCl, 74.56 g/mol, ≥99.5%) purchased from Panreac (Barcelona, Spain), potas-
sium dihydrogen phosphate (KH2PO4, 136.09 g/mol, ≥99.5%) purchased from Merck
(Darmstadt, Germany) and disodium hydrogen phosphate dihydrate (Na2HPO4·2H2O,
177.99 g/mol, ≥99.5%) purchased from Merck (Darmstadt, Germany).

The quantification of BSA was carried out according to the Bradford protein assay.
Bradford reagent was prepared using Coomassie Brilliant Blue G-250 (C47H48N3NaO7S2,
854.04 g/mol) purchased from Panreac (Barcelona, Spain), ethanol (C2H6O, 46.07 g/mol,
96% v/v) purchased from Manuel Vieira & Cª (Torres Novas, Portugal) and phosphoric acid
(H3PO4, 98.00 g/mol, 1.71 g/mL at 20 ◦C, reagent grade 85%) purchased from Honeywell
(Seelze, Germany).

All chemicals used in the synthesis, drying and characterization of the monophasic
membranes were used without further purification.

2.2. Membrane Fabrication

The monophasic hybrid integrally skinned asymmetric CA-SiO2-(CH2)3NH2 mem-
brane was prepared by coupling the phase inversion method with the sol-gel technique.

The casting solution of the monophasic hybrid CA-SiO2-(CH2)3NH2 membrane was
prepared in two steps. First, 16.4 g of cellulose acetate, 29.0 g of formamide and 51.1 g
of acetone were mixed in a reaction vessel to allow the complete dissolution of cellulose
acetate. After 5 h of mixing, 2.4 g of TEOS, 0.6 g of APTES (to uphold amine in situ
functionalization) and 12 drops of nitric acid were added to the mixture, promoting
hydrolysis and hetero-condensation during the casting solution homogenization step.
The final solution was placed on an agitation plate for another 19 h, resulting in a total
homogenization time of 24 h for CA.

A reference casting solution of the pure CA membrane was prepared by mixing 17.0 g
of cellulose acetate, 30.0 g of formamide and 53.0 g of acetone for 24 h.

The pure CA and CA-SiO2-(CH2)3NH2 casting solutions were cast on glass plates
with a 250 µm Gardner knife at room temperature and a solvent evaporation time of 30 s,
after which they were quenched into a gelation bath containing water at a temperature of
4 ± 1 ◦C, rendering the pure CA and monophasic hybrid CA-SiO2-(CH2)3NH2 membranes.
After a residence time of approximately 3 h in the coagulation bath, the CA and CA-
SiO2-(CH2)3NH2 membranes were detached from the glass plate and stored separately in
deionized water at 4 ± 1 ◦C.

The sol-gel reactions which occur during the hybrid membranes’ casting solution
step have been previously described [27]. Briefly, after the sol-gel hydrolysis reactions,
the silanol groups from the inorganic (TEOS) and hybrid (APTES) monomers hetero-
condensate with the C–OH groups from the CA polymer, forming a new Si–O–C covalent
bond. The sol-gel process was developed under acid catalysis. The new hybrid casting
solution is then cast to form a monophasic hybrid membrane, based on carbon, silica, and
amine chemical species, originating complex carbon-silica networks.
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2.3. Membrane Characterization
2.3.1. Scanning Electron Microscopy (SEM)

Prior to being imaged by scanning electron microscopy (SEM), the CA and CA-SiO2-
(CH2)3NH2 membranes were submitted to the drying process described by Lui et al. [31].
Samples of both membranes were then fractured in liquid nitrogen, mounted on a stub and
sputter-coated with gold. Micrographs of the top dense surface (magnification: 1000×),
cross-sections (magnification: 700×) and the porous bottom layer (magnification: 4000×)
were obtained. The active layer and total thickness of the membranes were calculated using
ImageJ software (version 1.53 k, from National Institutes of Health). For each membrane,
three randomly selected zones from the images depicting the cross section of the CA and
CA-SiO2-(CH2)3NH2 membranes were measured, and the mean thickness and standard
deviation of the entire membrane and active layer were calculated. In order to determine the
average pore size of the porous bottom layer, the images were binarized using a threshold
adjustment and subsequently analyzed via the Measure tool of the ImageJ software.

2.3.2. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was
used to analyze the chemical composition of the active layer surfaces of dried CA and CA-
SiO2-(CH2)3NH2 membranes. Infrared spectra of the samples with the active layer facing
upwards were obtained with a PerkinElmer Frontier FT-IR spectrometer (940 Winter Street,
Waltham, MA 02451, USA), using a Pike Miracle Single Reflection ATR sampling accessory
from Pike Technologies, with a Ge crystal (Graseby Specac, Smyrna; sampling depth:
0.2–1.1 µm at 4000–650 cm−1). Each spectrum was obtained by averaging 256 scans
with a resolution of 4 cm−1. The infrared spectra were reported as transmittance
versus wavenumber.

2.4. Experimental Setup
2.4.1. Single Hemodialysis Membrane Module (SHDMM)

A single hemodialysis membrane module was custom-made by micromachining of
acrylic plates. Figure 1 shows the schematic representation and dimensions of the five units
which compose the SHDMM. Unit II defines the feed flow chamber, while the purpose of
the perforated piece, Unit III, is to support the membrane. Unit IV defines the chamber
in which the permeate is collected and Units I and V seal the top feed flow and bottom
permeate collecting chambers, respectively. The membrane is placed with its active layer
facing upwards on top of Unit III, with a filter paper beneath it to prevent damage to
the membrane when all units are sealed together by using stainless-steel screws. Because
of the large thickness of Unit III (1 cm), on top of which the membrane is placed, the
solutions in the feed flow channel and the permeate compartment do not interact closely
enough to establish a concentration gradient. Therefore, the solute diffusion between
the compartments is negligible and it is assumed that fluid and solute removal occur
exclusively by convection. The feed flow and permeate collecting chambers were designed
to be slit-like microchannels, where the channel height (2B) is much smaller than the other
two dimensions: width (W) and length (L). As such, the dimensions of the microchannels
are 2B = 0.3 cm, W = 3.0 cm, and H = 25.0 cm (2B � W and L). The effective membrane
surface area is defined by the area of the membrane clamped between the O-ring which
seals Units I and II and is 105 cm2.
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Figure 1. Schematic representation of the single hemodialysis membrane module. Unit I seals the
feed flow chamber, represented by Unit II, while Unit V seals the permeate collecting chamber,
represented by Unit IV. Unit III is the supporting surface for the membrane to be tested.

2.4.2. Feed Circulation Circuit

Figure 2 represents the circuit which simulates the extracorporeal blood circulation
circuit found in HD machines. The feed reservoir, a 500 mL glass Kitasato, is placed in a ther-
mostatically controlled water bath (model CORIO C, from JULABO, Seelbach, Germany)
to maintain the feed solution at the average normal body temperature, 37 ◦C. The feed
solution is pumped from the reservoir and through the circuit by a peristaltic pump similar
to the ones used in extracorporeal circulation such as dialysis (model ECOLINE VC-360,
from ISMATEC, Wertheim, Germany), and its pulsation effect is attenuated by a damper,
allowing the feed fluid to enter the SHDMM at a constant pressure. The ultrafiltrate is
collected in the permeate collecting chamber, and the fraction of the feed solution which
has not been permeated is recirculated back to the feed reservoir. A three-way valve
placed midway between the outlet and the reservoir enables the collection of feed samples.
Throughout the entire circuit, polyvinyl chloride (PVC) tubing (Tygon Saint-Gobain, La
Defense, Courbevoie, France) with an inner diameter of 3 mm and a Shore hardness of
55 A was used to ensure that the shedding of particles from the interior of the tubing—a
phenomenon known as spallation [32,33]—is low.

Four medical grade pressure sensors (Deltran® Utah Medical Products, Inc., Midvale,
UT, USA)—P1, P2, P3, and P4—register the pressure at crucial points of the circuit. P1
and P2 register the pressure at the inlet and outlet of the feed flow chamber, respectively,
whereas P3 and P4 register the pressure at the inlet and outlet of the permeate collecting
chamber, respectively. The pressure sensors are connected to a data acquisition card
(National Instruments cDAQ-9172, USA) which records the pressure variations throughout
time via a LabView module (National Instruments, 9237, Austin, TX, USA). The cross to
the left of the sensor represented by P3 indicates that the tube is clamped, and therefore the
ultrafiltrate is collected by the tube placed after P4.
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Figure 2. Schematic representation of the experimental setup used for permeation experiments under
dynamic conditions.

2.4.3. Characterization of the SHDMM: Pressure Profile, Pressure Drop, Transmembrane
Pressure, Microchannel Height, Shear Rate and Shear Stress at the Wall

To characterize the SHDMM, a permeation experiment was performed to obtain a
typical pressure profile for the flow of deionized (DI) water at different feed volumetric
flow rates (QF) through the SHDMM: 49 mL/min, 66 mL/min, 82 mL/min, 99 mL/min,
115 mL/min, 132 mL/min, and 148 mL/min. Figure 3 shows the pressure profile of
the system registered continuously throughout the experiment. Each plateau represents
the pressure registered for each pressure sensor resulting from the QF imposed by the
peristaltic pump.
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The pressure drop (∆P) across the feed flow channel is defined by:

∆P = P1 − P2 (1)

The transmembrane pressure is the hydrostatic pressure difference between the feed
flow chamber and permeate collecting compartment, acting as the driving force for solute
removal, and has unique values along the length of the membrane [5]. Assuming a linear
variation of fluid pressure with axial distance along the channel, TMP is defined by:

TMP =
P1 + P2

2
− P3 + P4

2
(2)

As mentioned in Section 2.4.1, the feed flow microchannel has a slit-like geometry
where the channel height (2B = 0.3 cm) is much smaller than the other two dimensions:
width (W = 3.0 cm) and length (L = 25.0 cm). When the membrane is placed inside
the SHDMM, the height of the feed flow microchannel is no longer 0.3 cm and must be
accurately calculated.

The half-height of the microchannel (B) is obtained by an equation analogous to the
Hagen–Poiseuille law for circular tubes and describes the fully-developed laminar flow of
a Newtonian fluid in a narrow slit [34]:

B =
3

√
3
2
µL
W

QF
∆P

(3)

where µ is the viscosity of the fluid, L is the length of the microchannel, QF is the feed
flow rate, W is the width of the microchannel and ∆P is the pressure drop across the
microchannel.

The shear stress exerted at the flow boundaries, or walls of the microchannel, τ, can
be calculated by balancing the shear force at the wall against the pressure gradient for a
slit channel [34]:

τ =
3µQF

2B2W
(4)

Shear rates, γ, at the wall are found by dividing the shear stress by the viscosity:

γ =
τ

µ
=

3µQF

2B2W
(5)

Shear rates and shear stress in the device were varied from 4000 to 11,800 s−1, and
from 3 to 8 Pa, respectively.

2.5. Permeation Experiments under Dynamic Conditions
2.5.1. Water Permeability

Permeation experiments were performed in the circuit containing the SHDMM to
characterize the monophasic hybrid CA-SiO2-(CH2)3NH2 and pure CA membranes in
terms of pure water permeability.

Ultrafiltration flux, J, is defined as the amount of permeate produced per unit area of
membrane surface per unit time:

J =
V

A × t
(6)

where V is the volume of permeate, A is the membrane permeation area, and t is the
measuring time.

The water permeability, LP, is obtained by the slope of the straight line obtained when
J is represented as a function of TMP:

LP =
J

TMP
(7)
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The range of the TMP used was 0.0591, 0.0708, 0.0819, 0.0943, 0.107, 0.120 and 0.132 bar
(45, 53, 61, 71, 80, 90 and 100 mm Hg), corresponding to QF values of 49, 66, 82, 99, 115, 132,
and 148 mL/min, respectively.

The feed temperature was kept at 37 ◦C, equivalent to the normal body temperature
of a healthy adult, for all the permeation experiments. For comparison purposes with
other membranes on the market, the water permeability found at 37 ◦C for the CA-SiO2-
(CH2)3NH2 and pure CA membranes was standardized for a temperature of 25 ◦C by
Equations (8)–(11) [35,36]:

lnµ = −6.78 +
1983

T
(r = 0 .99923) (8)

Equation (8) can be written in terms of mass flux and assumes the following form,
when solved for Jm:

Jm = ρ
LP

µ
∆P (9)

As neither LP nor ∆P are temperature-dependent, the previous expression can be
rewritten as:

Jm(T) µ(T)
ρ(T)

= LP∆P (10)

Ultimately, the relationship between two fluxes, Jm,1 and Jm,2, at different temperatures,
T1 and T2, respectively, is given by:

Jm,1µ1

ρ1
=

Jm,2µ2

ρ2
(11)

2.5.2. Molecular Weight Cut-Off

The molecular weight cut-off (MWCO) of a membrane is defined as the molecular
weight at which 90% of the solute is rejected by the membrane [37]. To determine the
MWCO of each membrane, a retention curve was constructed by measuring the rejection
coefficient, f, of various polyethylene glycols (PEGs) with increasing molecular weights
(MWs) of 400 Da, 3000 Da, 6000 Da, 10,000 Da, 20,000 Da, and 35,000 Da, respectively. The
rejection coefficient, R, is defined by:

R =
CF − CP

CF
(12)

where CP corresponds to the concentration of the permeate at t = 60 min and CF corresponds
to the initial feed solution concentration. The initial concentration of the feed solutions
of each PEG was 485 ± 76 mg/L and the permeation studies were performed for 1 h at
a QF of 100 ± 5 mL/min and a TMP of 0.1 bar (76 ± 1 mmHg). Solute concentrations
were determined in the permeate, initial feed, and final feed samples using a total organic
carbon analyzer (TOC-VCPH/CPN, Shimadzu, Japan).

For the CA-SiO2-(CH2)3NH2 and pure CA membranes, two plots were made on the
same graph: (1) R as a function of the solute MW with the intersection of the horizontal
line at R = 90%, and (2) a plot of the linearization of R, log( R

1 − R

)
, as a function of solute

MW with the intersection of the horizontal (dashed) line at log
(

R
1 − R

)
= 0.95.

2.5.3. Rejection Coefficients to Low-Molecular Weight Water-Soluble Uremic Toxins

The rejection coefficients, R, of the CA-SiO2-(CH2)3NH2 and pure CA membranes
to markers for low-molecular weight water-soluble UTs: urea, creatinine, and uric acid,
were determined by Equation (12). The initial feed solutions of each solute were prepared
according to the highest reported concentrations of urea [38], creatinine [38], and uric
acid [39]: 4.6 g/L, 240 mg/L, and 83 mg/L, respectively. The permeation studies were
performed for 1.5 h at a QF of 100 ± 5 mL/min and TMP of 0.06 bar (44 ± 1 mmHg).
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Solute concentrations were determined in the permeate and feed samples using a UV-Vis
spectrophotometer (UV-1700 PharmaSpec, Shimadzu, Japan), according to each toxin’s
wavelength of maximum absorbance, λmax: 200, 230, and 293 nm for urea [40], creati-
nine [41], and uric acid [42], respectively.

2.5.4. Bovine Serum Albumin Filtration

The rejection coefficients, R, of the CA-SiO2-(CH2)3NH2 and pure CA membranes to
bovine serum albumin (BSA) were determined by Equation (8). The initial concentration
of the feed solutions was 884 ± 4 mg/L, and the permeation studies were performed
for 465 min at a QF of 100 ± 5 mL/min and TMP of 0.07 bar (52 ± 5 mmHg). Solute
concentrations were determined in the permeate, initial feed, and final feed samples
through the Bradford assay using a UV-Vis spectrophotometer (UV-1700 PharmaSpec,
Shimadzu, Japan). Specifically, the absorbance of feed samples was measured at 595 nm,
following the Bradford assay [43], whereas the absorbance of permeate samples was simul-
taneously measured at 590 nm and 450 nm according to a modified Bradford assay [44],
allowing the determination of lower BSA concentrations.

3. Results and Discussion
3.1. Membrane Chacracterization
3.1.1. Scanning Electron Microscopy (SEM)

Figure 4 shows the SEM micrographs obtained for the active layer surface, cross-
section, and bottom porous surface of the dried CA-SiO2-(CH2)3NH2 and CA membranes.
The active layer of the membranes (Figure 4A,B) is responsible for the membrane selectivity,
and both membranes exhibited completely dense active layers with no visible pores at a
magnification of 1000×. The cross-section images (Figure 4C,D) confirmed the presence
of a very thin skin layer of <1 µm for both membranes, outlining a much thicker, porous
substructure. The overall thickness of the membranes was obtained from the cross-section
images, yielding 103 ± 1 µm and 53 ± 1 µm for the CA-SiO2-(CH2)3NH2 and CA mem-
branes, respectively. These results suggest that the introduction of silanol groups from the
inorganic (TEOS) and hybrid (APTES) monomers led to membranes with increased thick-
ness when compared to pristine CA membranes. This is in accordance with what has been
observed in previous studies [25,27]. The porous structure (Figure 4E,F) confers mechanical
strength to the monophasic hybrid membranes, while offering little or no resistance to the
permeation of water and solutes. The average pore diameter in the porous surface for the
monophasic hybrid and pristine CA membranes was 113 nm and 84 nm, respectively.
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(C,D): cross-section (700×) where the red lines indicate the membranes’ thickness. (E,F): bottom porous surface (4000×).

3.1.2. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The ATR-FTIR spectra of the CA-SiO2-(CH2)3NH2 and CA membranes’ active layer
are compared in Figure 5.

The broad band centered at ~3360 cm−1 was assigned to the OH stretching mode,
ν(OH), and contained contributions from the hydroxyl groups of non-esterified cellulose,
as well as from adsorbed water and hydrolyzed silica precursors (TEOS and APTES). More-
over, the bending fundamental, δ(OH), for the adsorbed water was located at ~1637 cm−1,
which has been previously described by other authors [45].

Similar to a previous work, [46], the strong carbonyl stretching mode, ν(C=O), appeared
at 1735 cm−1, while the antisymmetric, νas(C–O–C), and symmetric, νs(C–O–C), stretching
modes of the ester appeared as strong bands at 1238 cm−1 and 1049 cm−1, respectively.

There were no distinguishable CH stretching bands of cellulose acetate, which were
possibly hindered by the broad band assigned to adsorbed water. However, in the CH
deformation region, there was a medium band, typical of the methyl umbrella mode of
acetate groups, at 1371 cm−1.
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Figure 5. Wide-range ATR-FTIR spectra (4000–650 cm−1) of the CA-SiO2-(CH2)3NH2 and
CA membranes.

Amine functionalization of CA-SiO2-(CH2)3NH2 membranes with the same composi-
tion has been previously proven [27], despite there being no evident band of the NH bond
in Figure 5. In fact, primary aliphatic amine stretching mode was assigned in the region of
3330–3340 cm−1, for which the band may have overlapped with the broad band which was
assigned to ν(OH) [47].

Two important bands attributed to SiO2, namely ν(Si–O–Si) and ν(Si–O–C), occured
in the regions of 1055–1165 cm−1 and 1115–1175 cm−1, respectively. Similar to previous
studies [24], and due to the low silica content in the CA-SiO2-(CH2)3NH2 membrane, these
bands were overlaid by those attributed to the ester stretching modes.

3.2. Characterization of the SHDMM: Pressure Profile, Pressure Drop, Transmembrane Pressure,
Microchannel Height, Shear Rate and Shear Stress at the Wall

Figure 6 shows the values of ∆P and TMP obtained when DI water was circulated
through the SHDMM containing the CA-SiO2-(CH2)3NH2 membrane at different values of
QF. The values of ∆P were 0.072, 0.091, 0.11, 0.13, 0.15, 0.17, 0.19 bar (54, 68, 83, 99, 114, 128,
and 142 mmHg) for QF values of 49, 66, 82, 99, 115, 132, and 148 mL/min, respectively. The
values of TMP were 0.059, 0.071, 0.082, 0.094, 0.11, 0.12, and 0.13 bar (45, 53, 61, 71, 80, 90,
and 100 mmHg) for QF values of 49, 66, 82, 99, 115, 132, and 148 mL/min, respectively.
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SHDMM circuit at different values of QF, which are delimited by the dashed lines.

Typical values of QF under which commercial hemodialysis equipment operates
range from 250 to 400 mL/min [48,49] and TMP should not exceed 0.4 bar (300 mmHg),
according to the European Renal Best Practice (ERBP) [50]—with the latter being in the
same range as the operating conditions of the SHDMM circuit. The QF is, however, below
the typical values of hemodialysis equipment in order to avoid high values of sheer rate, as
described below.

Considering the viscosity of water at 37 ◦C, µwater = 0.6913 mPa.s [51], the height of
the feed microchannel, calculated by Equation (3), was 205 ± 3 µm and 255 ± 10 µm when
the CA-SiO2-(CH2)3NH2 and CA membranes were placed inside the SHDMM, respectively.
The difference in channel height of the SHDMM feed channel when it encased the CA
membrane was expected, as the total thickness of this membrane was approximately 50 µm
lower than the thickness of the CA-SiO2-(CH2)3NH2 membrane.

The shear rate for each of the QF values was calculated by Equation (5) and was
found to be 3887, 5235, 6504, 7852, 9122, 10,470, and 11,739 s−1 for QF values of 49, 66,
82, 99, 115, 132, and 148 mL/min, respectively. It is known that high fluid shear triggers
the activation of platelets and their subsequent aggregation [52]. An in vitro study by
Holme et al. showed that platelet activation and aggregation was observed at shear rates
of 10,500 s−1 and above [53]. Therefore, it is safe to use all the tested feed flow rates up
until 115 mL/min.

3.3. Permeation Experiments under Dynamic Conditions
3.3.1. Water Permeability

Figure 7 shows the results of ultrafiltration flux, J, as a function of TMP obtained
for the CA-SiO2-(CH2)3NH2 and pure CA membranes at 37 ◦C. The water permeability,
LP, of the CA-SiO2-(CH2)3NH2 and pure CA membranes was 66.61 kg·h−1·m−2·bar−1

and 37.09 kg·h−1·m−2·bar−1, respectively. For the sake of standardization, the ultrafiltra-
tion fluxes of both membranes were corrected to 25 ◦C through Equations (8)–(11) and
revealed LP values of 50.77 kg·h−1·m−2·bar−1 and 28.27 kg·h−1·m−2·bar−1 for the CA-
SiO2-(CH2)3NH2 and CA membranes, respectively. The introduction of silica followed
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by the presence of amine groups increased the hydraulic permeability of the monophasic
hybrid membrane by a factor of 1.8 when compared to the pure CA membrane.
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which enables the determination of each membrane Lp.

Current hemodialysis equipment should deliver ultrafiltration rates between
10–13 mL/(h·kg) [54], under an operating TMP of between 0.133 and 0.200 bar (100 and
150 mmHg). Hence, for a 70 kg adult, the expected ultrafiltration rate in a clinical sce-
nario should not be lower than 700 mL/h. Considering the estimated value of LP for the
CA-SiO2-(CH2)3NH2 membrane, 89.40 mL·h−1·m−2·mmHg−1, and for an average TMP
of 0.167 bar (125 mmHg) in order to achieve the 700 mL/h threshold, a total membrane
surface area of 0.06 m2 would be enough. This is a promising result, as the estimated
surface area is well below the effective permeation area of typical hemodialyzers, which
ranges from 0.8 to 2.2 m2 [55].

3.3.2. Molecular Weight Cut-Off

The MWCO was determined by two methods which are shown in Figure 8. The
upper part of the curve resembled a plateau, hindering an accurate determination of the
value corresponding to the intersection of the rejection coefficient curve with the horizontal
rejection line (R = 90%). Hence, to overcome this ambiguity, the higher range of rejection
coefficients was linearized, namely those corresponding to PEG 35,000, PEG 20,000, and
PEG 10,000—enabling a precise determination of the intersection point.
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The depicted values of MWCO corresponded to the intersection point of the plotted
rejection coefficient curve (MWCO1) and subsequent linearization (MWCO2) with the
respective horizontal rejection line. Hence, the MWCO was estimated to range between 22.2
and 26.7 kDa for the CA-SiO2-(CH2)3NH2 membrane, and between 17.6 and 18.6 kDa for
the CA membrane. With the understanding that both membranes reject solutes with MWs
greater than 20 kDa, it was predicted that vital blood components such as albumin, platelets,
and blood cells would be rejected by both membranes. Furthermore, it is envisioned that
molecules belonging to two different classes of uremic toxins proposed by the EUTox—
small water-soluble compounds and middle molecules—can be removed, as they are able to
cross the membrane. Prototypes to small water-soluble compounds and middle molecules
include urea and β2-microglobulin, with a respective MW of 60 Da and 11,818 Da [2]. The
third group of uremic toxins, PBUTs, remains a challenge: whilst the free fraction of these
molecules (MW < 500 Da) is able to cross the membrane and successfully be removed from
the blood circulation, the rejection of the bound fraction will be hindered by the large MW
associated with the complexes they form with albumin (>60 kDa).

3.3.3. Rejection Coefficients to Low-Molecular Weight Water-Soluble Uremic Toxins

Permeation experiments to prototype low-molecular weight water-soluble UTs (urea,
creatinine, and uric acid) were performed with consideration to the highest reported
concentrations found in uremic populations. Feed and permeate samples were collected at
times of 0, 15, 30, 45, 60, 75, 90, and 105 min, with the respective concentrations represented
in Figure 9.

The CA-SiO2-(CH2)3NH2 and CA membranes exhibited a similar behavior in terms of
permeation of urea, creatinine, and uric acid. The initial concentrations of the feed solutions
were defined according to the highest reported concentrations found in ESRD patients for
the three uremic toxins [38,39], and these were measured after they had been prepared and
before they were fed into the SHDMM system (t = 0 min). It should be noted that, while
the highest reported uremic concentration for uric acid was 83 mg/L, the solubility limit of
this toxin in water, at 20 ◦C, is 60 mg/L.
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and CA (B,D,F) membranes, regarding feed (�) and permeate (#) samples, for a total experiment
time of 90 min. The initial feed concentrations aim to represent those of uremic populations.

Prior to each experiment, the SHDMM system was primed with water so that there
are no air bubbles present in the system, as well as to prevent the CA and CA-SiO2-
(CH2)3NH2 membranes from becoming dry. The priming volume of the system was
approximately 130 mL and, when the initial feed solution containing each of the three
toxins was circulated into the SHDMM system, a dilution occurs. This explains the decrease
in the initial concentration of the primary feed solution at t = 0 min (measured after it was
prepared and before it was fed into the SHDMM system) and the moment it was collected
after 15 min of circulation in the system (t = 15 min).

In general, for both the CA and CA-SiO2-(CH2)3NH2 membranes, it was observed
that, between 15 and approximately 50 min, the concentration of the solutes in the feed
compartment increased, and this could be explained by the decrease of water in the system,
which was constantly being removed by convection from the feed compartment through
the membrane and into the permeate channel. Between ~50 and 105 min, the concentration
of the feed solution tended to stabilize at values close to the ones of the initial feed solution.
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To make this clear, the values of the initial and final concentrations of the feed solution are
shown in each graph of Figure 9.

Regarding the concentration of the permeate solution, at the beginning of the experi-
ment (t = 0), the collecting permeate chamber was filled with water, and as expected, the
solute concentration in the permeate chamber was 0. The concentrations of the permeate
solution increased considerably between 0 and approximately 50 min and, towards the end
of the experiment (t > 80 min), they approached concentration values similar to those of
the feed solution (at the corresponding time). This behaviour clearly demonstrates that the
membranes are permeable to the three low-molecular weight water-soluble uremic toxins
evaluated—creatinine, uric acid, and urea.

The rejection coefficients (Equation (8)) were calculated after 90 min of permeation.
The rejection coefficient of the CA-SiO2-(CH2)3NH2 and CA membranes towards uric acid
was 6% and 11%, respectively, while both membranes had a rejection factor of 4% towards
urea. The rejection coefficient of the CA-SiO2-(CH2)3NH2 and CA membranes towards
creatinine was 7% and 1%, respectively. These results are in agreement with what was
discussed before in terms of MWCO, given that urea (MW 60 Da), creatinine (113 Da),
and uric acid (168 Da) have much lower MWs than the CA-SiO2-(CH2)3NH2 and CA
membranes’ MWCO.

3.3.4. Bovine Serum Albumin Filtration

Figure 10 shows the concentration profiles of BSA in the feed and permeate channels
of the SHDMM equipped with the CA-SiO2-(CH2)3NH2 (Figure 10A) and CA (Figure 10B)
throughout the recirculation experiments lasting 465 min. The aim of this experiment was
to determine the rejection coefficients of the CA-SiO2-(CH2)3NH2 and CA membranes
towards BSA and to assess the potential fouling of the membrane, mostly attributed to
irreversible protein deposition and pore blockage.
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permeate (#) samples, for a total experiment time of 465 min.

As was described for the UT permeation experiments (Section 3.3.3), prior to initiating
the filtration of the BSA solution with initial concentrations of 884 ± 4 mg/L, the SHDMM
system was primed with water. The total priming volume for the permeation experiment
with the CA membrane was approximately 130 mL and for the experiment with the
CA-SiO2-(CH2)3NH2 membrane, it was reduced to 50 mL. This explains the decrease in
concentration of the initial feed solutions of BSA between 0 and 15 min. From 15 to 465 min,
the concentration of BSA in the feed solution of both permeation experiments through the
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CA and CA-SiO2-(CH2)3NH2 membranes increased steadily. This gives a clear indication
that both membranes fully rejected BSA.

At the beginning of each experiment (t = 0 min), the permeate chamber was filled
with water and therefore the permeate concentration was 0 mg/L. The permeation exper-
iments were carried out for over 7 h and, throughout the entire experiment, the highest
concentration of BSA detected in the permeate was 12 mg/L.

Furthermore, there seems to be no clear evidence of fouling events, as both the TMP
and the ∆P remained approximately constant throughout the experiment, at 0.076 bar
(57 ± 7 mmHg) and 0.12 bar (87 ± 3 mmHg) for the CA-SiO2-(CH2)3NH2 membrane, and
0.063 bar (47 ± 3 mmHg) and 0.077 bar (58 ± 2 mmHg) for the CA membrane, respectively.
The ultrafiltration rate did not change significantly for any of the two membranes through-
out the long-term filtration experiment, adding more evidence to support the absence of
membrane fouling. At the end of the experiment, the heights of the feed microchannel of the
SHDMM were 215 µm and 246 µm, when the SHDMM encased the CA-SiO2-(CH2)3NH2
and CA membranes, respectively. These values are very similar to those found using pure
water at a QF of 100 mL/min (Section 3.2): 205 µm and 255 µm, for the SHDMM with
the CA-SiO2-(CH2)3NH2 and CA membranes, respectively. This indicates that the protein
deposition and adhesion is negligible, as there is no evident narrowing of the microchannel
height even after 465 min of BSA filtration.

The rejection coefficient towards BSA was calculated with the BSA concentrations
measured at the end of the experiment (after 465 min of filtration) and was 99% for both
the CA-SiO2-(CH2)3NH2 and CA membranes. These results were expected given that
BSA has a MW of 66.5 kDa which is similar to human serum albumin (HSA) [56], and
the MWCO of the CA-SiO2-(CH2)3NH2 and CA membranes is approximately 27 kDa and
19 kDa, respectively.

4. Conclusions

A novel integrally skinned cellulose acetate-based monophasic hybrid amine-
functionalized membrane, CA-SiO2-(CH2)3NH2, was synthesized by an innovative method
which combines the phase inversion and sol-gel techniques.

SEM micrographs of the CA-SiO2-(CH2)3NH2 membrane cross-sections confirmed
the existence of a thin dense active layer and a much thicker, porous layer. SEM analysis
revealed that the total thickness of the CA-SiO2-(CH2)3NH2 membrane—103 µm—was
approximately two times higher than the thickness of the CA membrane—54 µm.

Permeation studies showed enhanced mass transfer properties for the monophasic
hybrid membrane when compared to the pure CA membrane, as evidenced by the increase
of hydraulic permeability, measured at 37◦C, from 37.09 kg·h−1·m−2·bar−1 for the CA
membrane, to 66.61 kg·h−1·m−2·bar−1 for the CA-SiO2-(CH2)3NH2 membrane. Further-
more, the MWCO also increased from 18.1 kDa for the CA membrane, to 24.5 kDa for
the CA-SiO2-(CH2)3NH2 membrane. Both membranes assured the permeation of water-
soluble toxins such as urea, creatinine, and uric acid. Long-term continuous studies of
BSA filtration revealed that both membranes completely reject albumin and that there is no
evidence of irreversible fouling or albumin leakage in the SHDMM.
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