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Abstract: A multitude of membrane active peptides exists that divides into subclasses, such as
cell penetrating peptides (CPPs) capable to enter eukaryotic cells or antimicrobial peptides (AMPs)
able to interact with prokaryotic cell envelops. Peptide membrane interactions arise from unique
sequence motifs of the peptides that account for particular physicochemical properties. Membrane
active peptides are mainly cationic, often primary or secondary amphipathic, and they interact with
membranes depending on the composition of the bilayer lipids. Sequences of these peptides consist
of short 5–30 amino acid sections derived from natural proteins or synthetic sources. Membrane
active peptides can be designed using computational methods or can be identified in screenings
of combinatorial libraries. This review focuses on strategies that were successfully applied to the
design and optimization of membrane active peptides with respect to the fact that diverse features
of successful peptide candidates are prerequisites for biomedical application. Not only membrane
activity but also degradation stability in biological environments, propensity to induce resistances,
and advantageous toxicological properties are crucial parameters that have to be considered in
attempts to design useful membrane active peptides. Reliable assay systems to access the different
biological characteristics of numerous membrane active peptides are essential tools for multi-objective
peptide optimization.

Keywords: membrane active peptide; peptide design; multi objective optimization; cell penetrating
peptide; antimicrobial peptide; membrane activity assay

1. Introduction

The smallest self-sustaining biological entities, colloquially simply called cells, divide
into procytes that constitute archaea or bacteria and eucytes that are found in fungi, plants,
and animals. Cells isolate their interior from the outside world by a protective cover, the
core unit of that shield consists of a lipid bilayer called a membrane. The integrity of the
membrane is an indispensable prerequisite for cellular function, biological cells ensure
thorough supervision of the transition of material that permeate through their membranes
by keeping them faultless.

In respect of this fact, an important feature of the cellular membrane is its semi-
permeability; the majority of molecules are unable to cross the membrane barrier but some
molecules are capable to enter or exit the cell. Basic mechanisms in membrane transport
events include passive transcellular diffusion processes and active transport events usually
mediated by carrier molecules [1,2]. Investigation of the molecular properties of compounds
able to percolate lipid bilayers show that molecular size and lipophilicity of the materials
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are key aspects in passive diffusion events [3,4]. Compounds which are small in molecular
size are able to surpass lipid bilayers via channels or diffusion, but the larger the molecules
the slower the uptake processes unless active transport is taking place.

The integrity of lipid membranes of eukaryotic cells can be affected by toxic pep-
tides produced by bacteria; contrariwise antimicrobial peptides produced by host cells
directly influence the stability of prokaryotic target membranes [5]. In many cases, the
surface charge of these membranes is decisive for sensitivity or resistance against the
respective peptides. Most bacteria are highly negatively charged due to lipopolysaccharide
(LPS) [6] structures in the outer leaflet of the outer membrane of Gram-negative bacteria.
Phosphatidylglycerol (PG) in the membrane of Gram-positive bacteria mediates similar
characteristics. However, more specific target structures for interaction with compounds
affecting bacterial membranes, such as lipid II [7] are well known.

Peptides that are able to interact with lipid membranes and to manipulate their in-
tegrity by translocating through, disrupting or binding to, and fusing with the bilayer
are called membrane active peptides [8]. In order to utilize these peptides in medical
application, it is necessary to optimize their membrane activity and to overcome unwanted
effects, such as toxicity or proteolytic degradability [9]. According to their mode of inter-
action, membrane active peptides can be divided into subclasses, such as CPPs that act
as membrane transporters while maintaining membrane integrity and AMPs that act as
membrane disruptors. Nevertheless, physicochemical and structural characteristics in both
of these classes of membrane active peptides are similar; therefore, AMPs in some cases
are active as CPPs as well and vice versa [10]. The membrane activity of both CPPs and
AMPs is affected by differences in the composition of procytic and eucytic membranes
and only to a lesser extent by the peptides structure. Sterols are missing in prokaryotic
cell envelops and the share of anionic lipids is higher in this kind of membrane. These
parameters directly influence membrane affinity and destabilization potential of membrane
active peptides. Discrimination of the classes of CPPs and AMPs is therefore founded on a
historical basis rather than on defined functional differences of peptides attributed to one
of the above classes [11].

2. Cell Penetrating Peptides

The translocation of larger biomolecules, such as peptides, proteins, or nucleic acids
through lipid membranes is limited. To overcome this limitation, a multitude of techniques
were elaborated to force cells to ingest macromolecular materials. Biological tools to achieve
this include the usage of viral vectors and physical methods to transfect cells range from
electroporation to microinjections. Chemical agents that facilitate cellular entry include
detergents or membrane active peptides. CPPs are a class of membrane active peptides that
were discovered in the late 1980s when it falls into place, that some particular proteins are able
to translocate through cellular membranes [12,13] and that this capability sometimes is induced
by short amino acid stretches present in their protein sequences [14]. More examples for this
phenomenon showed up [15–17] and it became clear that translocation through eukaryotic
cell membranes can be mediated by short cationic or amphipathic peptides [18]. Due to
that finding the rational design of CPPs was rendered possible [19], since some structure
activity relationships of successful CPPs were figured out [20]. These achievements led to the
development of chimeric CPPs consisting of sequence motifs derived from protein sources
combined with rationally designed sequence motifs as well as the creation of completely
artificial peptides [21], which proved to be membrane active [22]. CPPs, moreover, showed to
be able to efficiently carry molecular cargo [23,24] through cellular membranes, a finding that
established a practical relevance in biomedical applications for this class of molecules [25].
Cargo molecules selected from different entities, such as small probes [26], proteins [27,28],
oligonucleotides [29,30], or nanoparticles [31] proved to be transportable. CPPs were found to
be able to carry cargo that was larger in molecular size than the CPP itself into living cells.
An issue in these transport events can be unwanted entrapment of CPP/cargo complexes in
endosomes leading to lysosomal degradation rather than to delivery into the cytoplasm [32].
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Imaging techniques were successfully applied to the visualization of transport processes of
cargo molecules across multiple membranes in plant cells [33] and successful delivery of
macromolecular cargo [34].

3. Uptake Mechanisms of Cell Penetrating Peptides

Despite intense efforts being executed to evaluate the molecular mechanisms of the
internalization process [35], the mode of entry of CPPs into eukaryotic cells is still under dis-
cussion [36–38]. Structurally different CPPs are internalized via different mechanisms [39],
the peptide concentration outside the cell and the composition of the lipid membrane
are important parameters in these processes [40]. Translocation of CPPs into cells occurs
by endocytosis in many cases, which has been investigated by testing the influence of
endocytosis inhibitors, such as wortmannin on uptake efficiency [20]. Endocytic pathways
include clathrin/caveolae dependent/independent models as well as macropinocytosis.
These routes play major roles in many internalization processes [41], the rate of fluid phase
endocytosis, or macropinocytosis might be directly influenced by the uptake of CPPs [42].
Cationic arginine rich CPPs were found to be able to transport conjugated molecular cargo
by efficiently binding to proteoglycans on the cell surface [43]. This substantiates the
finding that the mode of entry depends on the structural characteristics of the peptides;
arginine rich peptides differ from amphipathic candidates [44]. Other mechanisms, such as
the uptake via extracellular heparin sulfates or direct translocation seem to be involved [35].
Endocytosis independent mechanisms include toroidal pore, barrel stave pore, inverted-
micelle, and carpet models. Beyond that, receptor mediated uptake is discussed, e.g., for
oligonucleotides conjugated to CPPs, in this case, scavenger receptor A conveys uptake
via endocytosis [45].

4. Antimicrobial Peptides

Natural AMPs are a relevant part of the innate immune system of multicellular
organisms and constitute an effective protection against pathogenic microbes. The vast
majority of AMPs are cationic, amphiphilic, or at least hydrophobic; the essential target
structure of their biological activity is the membrane of the pathogen [46]. The latter
property may explain why it is “surprisingly improbable” [46] that resistance to AMPs
occurs. Due to the emerging crisis of antibiotic resistance [47], AMPs are of particular
importance as a low-resistance alternative in therapy.

The class of cecropins presented by Bomann in 1981 [48] is considered the first de-
scription of AMPs isolated from nature. After a number of classes of natural AMPs were
identified and isolated in the 1980s, among them defensins [49] and magainins [50], AMPs
were categorized into different classes according to their molecular structure. The con-
ventional classification is based on the number of cysteines or disulfide bridges [51,52]:
Without bridges, the peptides are linear and often form α-helices, an example is cecropin.
With one disulfide bridge, a cyclic peptide exemplified, e.g., by bactenecin results [53]. If a
peptide has several disulfide bridges, a β-sheet structure is obtained, a prominent example
being the class of defensins. Linear peptides with an accumulation of certain amino acids,
for example proline or arginine, form another class [51]. Proline-rich AMPs (PrAMPs) are
membrane permeable peptides able to act on intracellular targets, such as chaperone protein
DnaK or the 70s ribosome [54]. Therefore, the essential target of this class of AMPs is not
the membrane itself, but membrane permeation is an inevitable feature of these peptides
to reach their actual target. The first member of the class of PrAMPs was the apidaecin
from the honeybee [55], many of these peptides contain a proline/arginine/proline (PRP)
motif in their amino acid sequence and consist of two sequence motifs, a conserved one for
antibacterial activity and a variable one for antibacterial specificity.

Intracellular target structures are addressed by plant defensins; additionally, they act,
e.g., by inhibiting α-amylase or other digestive enzymes [56]. Structurally, plant defensins
consist of a triple stranded β-sheet structure connected to a α-helical sequence motif via
conserved disulfide bridges. According to the connecting pattern of disulfide bridges, the
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class of defensins is divided into cis- and trans-defensins. The antifungal activity of AMPs
was found to be mediated by the interaction with intracellular target structures as well.
These interactions induce the generation of reactive oxygen species intracellularly leading
to apoptosis of fungal cells [57].

Today, there are more than 3100 known AMPs of natural origin [58,59]. In comparison,
there are more than 15,000 different synthetic peptides that show antimicrobial activity
and are therefore also referred to as AMPs. To distinguish synthetic AMPs from natural
AMPs the latter are also called host defense peptides (HDPs). The activity spectrum of
AMPs is targeted against bacteria, fungi, viruses, parasitic protozoa, or against cancer
cells [59,60]. The selectivity for distinguishing self- and non-self cells is mediated by
the lipid composition of cell membranes [61,62]. This selectivity has been systematically
overestimated for a long time due to different experimental conditions in determination
of hemolysis and minimal inhibitory concentration [63]. Ultimately, the selectivity of a
peptide is determined by its structure, which enables specific optimization towards distinct
target structures on respective cells [64–66].

Regarding the biomedical applicability of optimized AMPs, their therapeutic potential
in the body in particular is limited by their proteolytic degradability. Some pathogens even
produce proteases on purpose, optimizing their survival strategy by degrading AMPs [67].
Targeted replacement of L-amino acids with D-amino acids in the peptide sequence of
AMPs may lead to increased protease stability [68], since the presence of D-amino acids
at cleavage sites prevents degradation by proteases, as already reported by Fridkin in
1990 [69]. This phenomenon is observed in other classes of membrane active peptides as
well [70]. In addition to the need to increase in vivo stability, limitations in the difference
between bactericidal activity and cytotoxicity are the reason that large efforts are required
to bring peptides into clinical use via topical formulations [71]. Beside the antimicrobial
activity of the AMPs, a second beneficial effect has been described: binding of AMPs to
the LPS of gram-negative bacteria can lead to a neutralization of its endotoxic activity [72].
Classic topical formulations are creams [73] and droplets [74]. For systemic formulation of
AMPs, an effort is ongoing to encapsulate them into nanocarriers, such as liposomes [75].
Nebulization of encapsulated peptides [76] was also successfully established.

5. Membrane Interaction of Antimicrobial Peptides

The membrane interaction of AMPs is determined by the structure-mediated proper-
ties of the peptide [77] and is apparently individual and diverse. Initially, the association
and binding to the membrane occurs. In most cases, binding is mediated by nonspecific
electrostatic interaction, and more rarely by hydrophobic or receptor-mediated interac-
tion [78]. This is why local membrane properties, such as charge, curvature, membrane
tension, and membrane asymmetry are usually more significant than individual prop-
erties of the lipid molecules. Depending on their concentration, the aggregation of the
peptides [79] or insertion into the hydrophobic part of the membrane [80] may occur. The
consequence is a modification of membrane properties; most important is a change in
membrane permeability by pore formation or by interference with membrane integrity,
which results in the compromise or killing of pathogens [81].

In 1974, for alamethicin, Baumann and Mueller described the formation of pores
which were entirely lined by peptides oriented axially to the membrane surface [82]. This
supermolecular alignment was later referred to as barrel stave model, and it turned out to
be hardly transferable to any other peptide besides alamethicin [77,83]. In contrast to that,
the toroidal-pore model has been attributed to a series of peptides. This model is based
on a continuous curvature of the membrane surface, leading to an even lining of the pore
by peptides and by lipid headgroups [84]. In 1992, the carpet model was proposed for
dermaseptin S [85]: the peptides are aligned in parallel to the membrane surface, interact
with each other, and lead to membrane destabilization that can culminate in a detergent-like
breakdown of membrane integrity [86]. Based on these three prominent models, a variety
of other membrane interaction models have been described (Figure 1). One of these is the
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sinking raft model, which is characterized by an axially asymmetric coverage of a lipid
bilayer with peptides [87]. It builds on the carpet model and has been described for both
α-helical and β-sheet peptides [88]. The more precise the lateral and temporal resolution of
the membrane interaction of AMPs can be determined, the more doubt can be raised about
the assignment of peptides to archetypal modes of action. However, these models provide
useful ideas on real modes of action and can be used for their classification.
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Figure 1. Possible interaction mechanisms of membrane active peptides illustrated on the example of
the cell envelope of Gram-negative bacteria. The first barrier is the Outer Membrane. Peptides might
(a) permeate through bacterial proteins up to a molecular weight limit of 600 Da; (b) induce lesions
or pores allowing peptides to permeate through these self-formed apertures; (c) permeate directly
through the lipid bilayer; or (d) bind to the membrane inducing changes in membrane properties.
The second barrier is (e) the peptidoglycan layer and the last barrier is (f) the cytoplasmic membrane.
If the permeabilization of the Outer- and Inner Membrane is sufficient for degrading microorganisms
or if an Intracellular Target (g) needs to be attacked is still under debate. Since cell penetration
peptides (CPPs) and antimicrobial peptides (AMPs) both do not have a well-defined target structure,
optimization processes of these compounds are more complex on the one hand, but on the other
hand the risk of resistance induction is low.
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6. Optimization of Membrane Active Peptides
6.1. Computational Methods for Optimization of Membrane Active Peptides
6.1.1. Machine Learning (ML) and Empirical Methods

Computational design and optimization of membrane active peptides is executed
by various strategies [89]. These include pure in silico approaches, such as molecular
dynamics simulations [90,91] or ML procedures based on, quantitative structure–activity
relationship (QSAR) computational models [92] or support vector machines [93]. These
methods aim to predict the potential of candidate peptide sequences to act as membrane
active peptides before synthesis in order to save resources by preventing the synthesis of
less-promising candidates [94]. Prediction of the properties of candidate peptide sequences
in these approaches is based on information from databases or virtual libraries [95], such as
APD3 [59] or CAMP [96] for AMPs (Table 1).

Table 1. Databases (all accessed on 6 January 2022) containing information on antimicrobial
peptides (AMPs).

Database Number of Entries Content Hyperlink

LAMP2 23,253 AMPs, structure, collection,
composition, source, function

http://biotechlab.fudan.edu.cn/
database/lamp/index.php

DRAMP 22,259 AMPs, structure, activity
physicochemical-, patent-, clinical data http://dramp.cpu-bioinfor.org/

DBAASPv3.0 17,865 AMPs, structure, activity https://dbaasp.org/
CAMPR3 8164 AMPs, Structure, patents, signatures http://www.camp.bicnirrh.res.in/

Cybase 4012 Cyclic proteins,
antiviral, insecticidal, antibacterial http://www.cybase.org.au/

APD3 3324 AMPs, structure, activity https://aps.unmc.edu/
DAPD 2571 Structure, activity, host taxonomy http://split4.pmfst.hr/dadp/?

YADAMP 2525 Structure, activity http://yadamp.unisa.it/default.aspx

DAMPD 1232 taxonomy, species, AMP
family, citations http://apps.sanbi.ac.za/dampd/

AntiTbPdb 1010 Anti-mycobacterial peptides,
structure, activity

https://webs.iiitd.edu.in/raghava/
antitbpdb/

InverPep 702 Invertebrate AMPs, structure,
activity, target

https://ciencias.medellin.unal.edu.co/
gruposdeinvestigacion/

prospeccionydisenobiomoleculas/
InverPep/public/home_en

ANTISTAPYBASE 596 AMPs, structure, activity against MRSA https://www.antistaphybase.com/
Defensins 363 Structure, activity http://defensins.bii.a-star.edu.sg/

Peptaibols 317 Fungal AMPs, non-standard
amino acids

http://peptaibol.cryst.bbk.ac.uk/
home.shtml

PhytAMP 273 Plant AMPs http://phytamp.hammamilab.org/
main.php

BACTIBASE 230 Bacteriocins, structure, function http://bactibase.hammamilab.org/
about.php

BaAMPs 221 Biofilm active AMPs http://www.baamps.it/

THIOBASE 39 Thiopeptides, structure, activity https://bioinfo-mml.sjtu.edu.cn/
THIOBASE/index.php

EnzyBase N/A Encybiotics, lysins, lysocymes,
bacteriocins

http://biotechlab.fudan.edu.cn/
database/EnzyBase/home.php

MBPDB N/A Milk bioactive peptides,
function, species http://mbpdb.nws.oregonstate.edu/

These data can be used to predict the activity of peptide candidates in de novo design
strategies as well [97]. Structural parameters, such as sequence length, frequency of cer-
tain amino acid residues in the sequence, hydrophilicity, and overall charge of the peptides
are linked to antimicrobial activity and used for the prediction of promising candidate se-
quences [98,99]. The linguistic model, for the first time, considered the linear arrangement
of amino acid residues in a peptide sequence as some kind of language that follows physico-

http://biotechlab.fudan.edu.cn/database/lamp/index.php
http://biotechlab.fudan.edu.cn/database/lamp/index.php
http://dramp.cpu-bioinfor.org/
https://dbaasp.org/
http://www.camp.bicnirrh.res.in/
http://www.cybase.org.au/
https://aps.unmc.edu/
http://split4.pmfst.hr/dadp/?
http://yadamp.unisa.it/default.aspx
http://apps.sanbi.ac.za/dampd/
https://webs.iiitd.edu.in/raghava/antitbpdb/
https://webs.iiitd.edu.in/raghava/antitbpdb/
https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
https://www.antistaphybase.com/
http://defensins.bii.a-star.edu.sg/
http://peptaibol.cryst.bbk.ac.uk/home.shtml
http://peptaibol.cryst.bbk.ac.uk/home.shtml
http://phytamp.hammamilab.org/main.php
http://phytamp.hammamilab.org/main.php
http://bactibase.hammamilab.org/about.php
http://bactibase.hammamilab.org/about.php
http://www.baamps.it/
https://bioinfo-mml.sjtu.edu.cn/THIOBASE/index.php
https://bioinfo-mml.sjtu.edu.cn/THIOBASE/index.php
http://biotechlab.fudan.edu.cn/database/EnzyBase/home.php
http://biotechlab.fudan.edu.cn/database/EnzyBase/home.php
http://mbpdb.nws.oregonstate.edu/


Membranes 2022, 12, 180 7 of 16

chemical “grammar” rules. In that model, the properties of membrane active peptides are
described by patterns of succeeding amino acid residues [100]. Insertion of membrane active
patterns into amino acid sequences was successfully applied to the generation of peptides with
improved membrane activity [101]. This concept was advanced by using natural templates
of membrane active peptides for the generation of new artificial sequences with enhanced
characteristics [102]. Some of the above-mentioned algorithms are freely available web-based
applications that can be used in attempts to optimize AMPs based on QSAR criteria [103,104].
A combination of different algorithms allows the accurate identification of membrane active
peptides in chemical space [105] requiring basic input of sequence data in FASTA format only.
Beyond that, membrane active peptides selectively lysing the membranes of cancer cells are
designed using ML techniques in the same way [106].

6.1.2. Stochastic Methods

Another promising strategy for optimization of membrane active peptides is the use of
evolutionary or genetic algorithms (GA) [107] that mimic “Darwinian” evolution in silico.
Sequence information from lead peptides is recombined and point mutated according to
fitness functions in order to generate filial peptides with improved characteristics. These
algorithms are able to operate by using experimental data in their fitness functions. In
principle, GAs are also able to use “Lamarckian” input in the form of information from
databases or based on molecular descriptors [108] of a respective amino acid building block
that characterizes its influence on membrane activity of a peptide. A thorough evaluation of
the relevance of this information for particular optimization problems is mandatory [109],
a finding which is related to the fact that not all descriptors available are suitable for
delineation of the peptide membrane interaction under investigation. In particular, this
applies to the descriptor-based optimization of CPPs, because in this class of membrane
active peptides the relationship of sequence, structure, and function sometimes is difficult
to define and to specify in descriptors.

GAs driven by experimental data can be susceptible to the effects of labels and tags,
for example, penetratin is altered regarding its three-dimensional structure if labeled with
different fluorophores [110]. These structural alterations in most cases are not sufficiently
characterized regarding their influence on membrane activity. Therefore, within a few
rounds of evolutionary optimization, a label or tag might become part of the molecule’s
functionality. Here, a hardheaded view that a tag simply must remain a tag, thus different
from the molecule of interest, might not withstand reality testing. This issue might be
addressed by using different tags for labeling in parallel or testing the peptides function-
ality in label free assays. Another trap in GA-based optimization are mutually exclusive
demands. If, for example, membrane activity occurs at high toxicity levels only in a popu-
lation of lead peptides under investigation, optimizing for high membrane activity along
with low toxicity might lead to a dead end in optimization, but illustrates that toxicity
and transport activity are linked somehow. Successful convergence of a diverse set of
lead peptide sequences to a consensus motif that represents a local fitness optimum in a
reasonable number of generations requires a careful balance of mutation and recombination
rates [111]. The use of GAs allow the simultaneous optimization of different molecular
properties of membrane active peptides in parallel by considering multiple parameters for
molecular evolution [112].

6.1.3. Data Driven Algorithms vs. Stochastic Methods

Despite a diverse set of computational tools and algorithms applied to the design of
AMPs for clinical application, so far, no computationally designed peptide candidates have
reached advanced clinical trials, despite there being various AMPs derived from other
sources under investigation (Table 2). This might be related to the fact that computational
strategies used to optimize membrane active peptides rely on comprehensive training
datasets. These data have to be appropriate for a particular optimization problem in order
to yield meaningful optimization results. This finding applies to the design off CPPs as
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well, but in that case, the lack of knowledge regarding the mode of entry of these peptides
into cells limits the reliability of training data used for computational design.

Table 2. Membrane active peptides under investigation in clinical trials.

Name 1 Conditions Description

TAPS-18 Periodontitis Cathelicidin based synthetic peptide
LEAP2 Type 2 Diabetes 39-mer synthetic liver expressed amp
LEAP2 Obesity 39-mer synthetic liver expressed AMP

MSI78 Diabetic foot infection broad-spectrum synthetic analogue
of magainin

LTX109 Skin Infection, MRSA Inf. Synthetic peptidomimetic
LL37 Melanoma Cathelicidin based

hlf1-11 Bacterial Infections, Mycoses Lactoferrin derived
PLG0206 Joint Infection Engineered AMP

Pxl01 Surgical adhesions Lactoferrin derived
IB367 Pneumonia, mucositis synthetic analogue of Protegrin I

Pac113 Oral Candidiasis Histatin derived
MX-594AN catheter-related acne Indolicidin based

rBPI21 meningococcaemia human bactericidal permeability
protein derivative

ETD151 fungal infections 44 mer variant from lepidopteran
Heliothis virescens

HB-50 anti-infective synthetic natural peptide mimetic
of cecropin

HB-1345 broad-spectrum antibiotic Synthetic Lipohexapeptide

CZEN-002 vulvovaginal candidiasis synthetic 8-mer from
α-melanocyte-stimulating hormone

PTX005 antimicrobial Synthetic 12 mer
Glutoxim Tuberculosis, NSCL cancer thiopoietin
IMX942 Nosocomial infections Synthetic cationic host defense peptide

NP213 Fungal infections cyclic cationic peptide from NovaBiotics
arginine peptide platform

OP-145 Chronic bacterial middle ear infection Synthetic 24-mer peptide derived
from LL-37

CD-NP Organ failure Synthetic chimeric 37-mer
C16G2 Treatment of dental subjects synthetic AMP

Sifuvirtide HIV fusion inhibitor; AIDS designed based on the 3D structure of the
HIV-1 gp41

POL7080 nosocomial pneumonia synthetic by amino acid substitution
of protegrin I

Omiganan atopic dermatitis, rosacea Synthetic 12-mer cationic peptide derived
from indolicidin

1 Denomination of compound in clinical trial

The design of membrane active peptides, therefore, might be more straightforward
using methods that rely on trial and error based systems, such as GAs, rather than on data
driven methods as represented by the above-mentioned ML algorithms. At that point, the
validity of biological assay systems used to rank peptide candidates by fitness functions
in this kind of algorithms is crucial. In an attempt to optimize CPPs, a genetic algorithm
lacking any input from databases was applied [113]; only laboratory data from experiments
performed under strictly comparable conditions were used for the determination of the
fitness values of the different candidate CPPs. The fitness values of all lead peptides used
were obtained in the same way in order to ensure a reliable fitness ranking [114]. For that,
sequence information of roughly 500 peptides was extracted from a database [115], but
all peptides were again synthesized in parallel and tested in a cell-based assay (Figure 2).
All peptides were used in the same concentrations; the cells were incubated for the same
time with the candidate peptides and, importantly, cells from one and the same batch were
used in the experiments to ensure comparability [116]. On the contrary, in most databases,
literature data are collected that were generated under non-standardized conditions, an
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issue which prevents these datasets from being useful for ranking of peptide candidates for
optimization by computational methods, such as GAs.
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(b) Fam-WLRRIKAWLRRIKALNRQLGVAA; (c) Fam-RLWRALPRVLRRLLR. Assay system to test the
transfection efficiency of CPPs labeled n-terminally with 5-(6)-Carboxyfluorescein (Fam). Cells cul-
tivated in 96-well µ-plates (ibidi, Munich, Germany) were incubated for 90 min at 37 ◦C with
10 µM solutions of peptide in culture medium. Overlay of fluorescence- and bright field im-
ages, images were acquired using a 10×/0.45 objective (Zeiss, Jena, Germany), a FITC filterset
(ET480_40×/ET535_50 m/T510LPXRXT, Chroma, Rockingham, NC) and LED or oligochrome light
source (FEI). Bar: 50 µm.

6.2. Combinatorial Synthesis Methods to Optimize Membrane Active Peptides

Another way to identify membrane active peptides is to screen peptide libraries for
active candidates [117–120]. In these efforts, a large number of peptides need to be syn-
thesized in small amounts in order to investigate their membrane activity [121,122]. This
can be achieved by synthesizing nanomolar amounts of peptides on solid supports [123]
following a rational library design approach or in a combinatorial approach, as imple-
mented by split and mix synthesis of picomolar amounts of peptides [124,125]. Split-split
methods can be used to systematically shape the sequence space in one bead one compound
libraries [126], this way short AMPs were optimized regarding their hemolytic activity.
Rational combinatorial libraries are a compromise between the above-mentioned library
designs and were applied successfully to the identification of AMPs with pore forming
activity [88]. In these screening methods, a tradeoff between the detailed characterization
of peptide candidates in small libraries and a perfunctory inspection of putative membrane
active peptides in large combinatorial libraries has to be accepted.

6.3. Assay Systems for Characterization of Membane Active Peptides

The computational design of membrane active peptides demands a profound knowl-
edge of molecular properties that are required for biomedical applicability of the peptide
candidates. This conclusion leads to an awareness regarding the inalienability of reliable
assay systems that enable the characterization of membrane active peptides’ properties.
Any bias from these assays will hinder the multi-objective design of membrane active
peptides. This is due to the fact that the respective assay results act as optimization criteria
in design methods driven by experimental data. Therefore, any assay systems used have to
reflect the requirements of biomedical application at its best.

6.3.1. Membrane Activity Assays

Beyond several common pharmacological parameters, such as low toxicity, in vivo
stability, and adequate water solubility, in particular, the membrane activity of the candidate
peptides has to be investigated. Since there are no theoretical models that are able to predict
the membrane activity of all peptide sequences conceivable, biological assay systems are
required that enable the proper evaluation of the peptides’ activity. For optimization



Membranes 2022, 12, 180 10 of 16

purposes, all candidate peptides have to be evaluated in the same assay system, since
standardization of data from different assays is difficult.

Membrane activity of CPPs is usually analyzed in vitro (Figure 2). Cells are grown
in microtiter plates and transfection of cell monolayers is monitored via optical measures,
such as intracellular fluorescence [114] in parallel for multiple peptide candidates. It is
important to keep the parameters for uptake of different peptides into cells sufficiently
similar. The membrane activity quantified in these assays is influenced not only by defined
experimental conditions, such as temperature and peptide concentration, but also by
cell-specific factors, such as confluence level and growth characteristics of the cells used.
Moreover, as visualized in Figure 2, not all cells in a monolayer might be transfected
by a particular cell-penetrating peptide, this is an important observation and has to be
considered when analyzing data from cell-based assays. In vitro assay systems employed
in the literature to analyze the performance of CPPs and issues of these methods are
reviewed elsewhere [127].

Membrane activity of AMPs is characterized by assays that test the antimicrobial
susceptibility of the peptides. Classically, the concentration of an AMP is determined,
which inhibits bacterial growth. This minimum inhibitory concentration (MIC) is the most
important metric in the characterization of an AMP. Another important parameter that
describes the suitability of an AMP in biomedical application is its hemolytic activity [128].
Methods were established that aim to reflect clinically relevant parameters, such as the
influence of biological matrices on the efficacy of AMPs or deviations in antimicrobial
potential regarding different target microbes [129]. The interaction of AMPs with bacte-
ria can be measured in a high-throughput assay utilizing peptide arrays on membrane
supports [130] to be able to compare large numbers of peptide candidates.

6.3.2. Assays Quantifying other Optimization Criteria

Biomedical application of membrane active peptides requires a multi-objective opti-
mization of peptide candidates, because absorption, distribution, metabolism, and excretion
(ADME) criteria, among others, are important features in preclinical and clinical settings
beyond membrane activity. These parameters are monitored by assay systems because
computational determination of these features [131] is an important tool in preclinical
environments, but is to date not fully approved in clinical trials [132]. ADME criteria, such
as metabolic stability of therapeutic peptides, have to be optimized [133] since the in vivo
stability of membrane active peptides is a critical parameter regarding their biomedical ap-
plicability. Proteolytic cleavability of peptides can be assessed by mass spectrometry [134]
in serum or plasma samples or by ELISA-based methods [135] in mucosal secretions. These
kinds of assays are particularly susceptible to sample preparation issues since matrix effects
of bystander proteins may dampen the proteolytic degradation of the peptide of interest
drastically. This means that the in vivo situation is not always the worst case regarding
proteolysis but, for example, in a plasma sample a peptide might be more prone to digestion
than in whole blood [134]. Determination of half-live of therapeutic peptides in serum or
plasma might therefore be misleading with regard to the in vivo stability of the respective
peptide candidates. The proteolytic stability of peptides can be altered by incorporating
non-natural amino acid building blocks into the sequence or by grafting active peptides
onto molecular scaffolds [136].

7. Discussion

The design of membrane active peptides requires a multi-objective approach that
considers membrane activity on eukaryotic lipid membranes for CPP and activity on
bacterial envelopes for AMP candidates. In biomedical applications, the membrane activity
is a necessary but not a sufficient characteristic of a candidate peptide. ADME criteria, such
as toxicity, immunogenicity, and metabolic stability in vivo are equally important features
of a membrane active peptide that have to be considered in optimization attempts. In
particular, bacterial resistance is another important point to consider. On the one hand, the
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peptides must overcome naturally occurring resistances; on the other hand, new resistances
must be prevented. Depending on the formulation in which the peptides are to be used, as
a cream, tablet, injection, or coating of implants, optimization parameters must be adapted.

The computational design of membrane active peptides using ML methods driven by
information from databases is complicated by the fact that the interaction of membrane
active peptides with lipid membranes is not fully understood so far and seems to be
dependent on a wide range of parameters, such as temperature, peptide concentration,
and composition of the membrane. Therefore, stochastic approaches, for instance genetic
algorithms driven by information from customized biological assay systems, seem to be
even more promising tools to design novel membrane active peptides. These compounds
are urgently required in different biomedical applications, such as in drug delivery or as
novel antimicrobial agents.
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