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Abstract: Inorganic–organic composite membranes (IOCMs) are an alternative separation method
developed for their straightforward process, economic benefits, and ease of scaling up. The IOCMs
in this study were prepared from a biopolymer chitosan matrix and rice husk-based silica filler to
remove impurities from crude biodiesel. The IOCMs were prepared through phase inversions, in
which the priorly prepared silica particles were dispersed in the dope solution of chitosan. The
maximum loading of the silica particles was 60%, capable of reducing the soap level, free glycerol
level, and acid number from 547.9 to 12.2 mg/L, 54 to 0.041%, and 2.02 to 1.12 mgKOH/g. These
reduced impurity values have satisfied the standardized quality. The chemical composition and
morphology of the IOCM was characterized using Fourier-transform infrared spectroscopy and
scanning electron microscope–energy dispersive X-Ray spectroscopy. The IOCM water absorption-
based porosity and swelling degree were studied as well. Further investigation using isothermal
modeling revealed the adsorption dependency against the Sips model equation (R2 = 0.99 and root-
mean-square errors = 1.77 × 10−8). Even though regeneration is still a challenging factor in this
study, the IOCM prepared from chitosan and rice husk-derived silica particles could be used in crude
biodiesel purification.

Keywords: chitosan; crude biodiesel; inorganic–organic composite membrane; rice husk; silica

1. Introduction

Biodiesel is a product of methyl esters produced from transesterification reactions of
fatty acids or plant oils [1]. Biodiesel produced from the transesterification reaction still
contains these impurities and is not qualified according to the Indonesian National Standard
(SNI) or international standard ASTM D6751 (North America), EN14214 (Europe) [2,3]. The
small content of impurities in biodiesel might cause problems during its use in internal
combustion engines and storage [4,5]. The problems include engine oil degradation, water-
induced corrosion, blockage of fuel injectors due to soap, and engine leakage due to
alcohol. Moreover, the impurity could induce smoke containing acrolein, a hazardous
photochemical compound. Therefore, before being used as fuel, biodiesel must be purified
from free fatty acids, glycerol, soap, and the catalyst leftover [6,7].

A promising method for biodiesel purification is the utilization of inorganic–organic
composite membranes (IOCMs) for the filtration and adsorption processes [8]. Compared
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to the conventional ultrafiltration membrane for biodiesel purification, the novel membrane
application in this study is also known as a membrane adsorber because it is embedded with
adsorbent particles [3,9]. Recently, in renewable fuels, IOCMs have been developed using
different membrane matrices to remove water content such as polyethersulfone [10] and
polydimethylsiloxane [11]. Developed IOCMs have achieved a high removal of more than
90% of impurities, especially glycerol, during biodiesel production [12]. In comparison
to the conventional wet washing method, biodiesel purification using an IOCM could
practically avoid the excessive use of water and wastewater yield [1]. Nonetheless, the
previous reports often used commercial materials to construct the IOCM, resulting in
expensive and non-renewable materials.

Bio-based adsorbents, after the activation process, could be used for the removal of
water and organic and inorganic compounds; therefore, they are compatible with biodiesel
purification. A potential biomass-derived adsorbent is silica, which has been reported
to work on a wide spectrum of impurities [13]. Silica could be obtained either from the
synthesis process or through isolation from biomass such as rice husks. Silica derived
from rice husks could be obtained straightforwardly through the process of ignition and
extraction using alkalis. Silica itself has been famously applied in the purification of
biodiesel [14], attributed to its large surface area and inert properties [15]. Using the
agricultural biomass, rice husk, as a feed material for silica allows for an inexpensive
production cost and supports the circular economy.

To increase its practical aspect, the silica can be embedded into the chitosan mem-
brane matrix [8]. Chitosan can be obtained from chitin through a deacetylation reaction,
resulting in a multifunctional polymer with N- and O-containing functional groups. These
functional groups are responsible for the excellent performance of an adsorbent in the
separation process [16–18]. In multiple reports, chitosan has shown its ability to remove
heavy metals [17,19], biodiesel impurities [3], dyes [20], and pesticides [21]. Furthermore,
chitosan can easily dissolve in acetic acid, allowing a simple and eco-friendly process for
its membrane matrix preparation [22].

In this study, chitosan–silica-based IOCMs for biodiesel purification were developed,
indicated by the reduction of free glycerol and acid number. The combination of silica
and chitosan for biodiesel purification purposes has been scarcely reported. Granulated
commercially available chitosan–silica biosorbent has been investigated for its application in
biodiesel impurities removal [23]. The impurities contained in biodiesel upon its production
include salts, soaps, methanol, and residual fatty acids (or glycerol). Silica, however, could
be derived from rice husk waste. A study conducted in Indonesia suggested that rice
husk ash could yield silica of around 60% (w/w rice husk ash) through an extraction using
alkaline solvent [24]. The applications of silica deriving from rice husk have been reported
multiple times for the adsorptive entrapment of various compounds [25–27]. However, in
terms of biodiesel production, rice husk-derived silica has only been commonly applied as
the catalyst—not for the adsorption of biodiesel impurities [28,29]. In the present study,
sodium hydroxide was used to extract the silica from rice husk ash, which has been reported
to produce a silica adsorbent with a high microporosity and surface area [30]. Furthermore,
the silica was embedded in a polymeric membrane, allowing easier separation after the
batch purification and filtration process.

2. Materials and Methods
2.1. Materials

Chitosan was purchased from Fluka (Tokyo, Japan), with an average degree of acety-
lation of up to 94 mol%. Acetic acid 1% was used as a solvent and dimethyl formamide
was used as an additive. HCl and NaOH were used as a washing solution and extraction
solution of silica particles, respectively. KOH, ethanol, and pp indicators were used for acid
number analysis. Acetone and indicators of blue bromophenol were used for soap level
analysis. Chloroform, periodic acid, sodium thiosulfate, potassium iodide, and distilled
water were used in free glycerol analysis. Unless otherwise stated, all chemicals used were
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pro-analysis grade and purchased from Merck (Jakarta, Indonesia). Rice husk waste (silica
feed) was obtained from the rice mill in Aceh Besar, Indonesia. The crude biodiesel in this
study was prepared from used cooking oil (Banda Aceh, Indonesia).

2.2. Silica Preparation from Rice Husk

The silica extraction was carried out according to a previous procedure [31]. Briefly,
the rice husk ash was washed with distilled water and then soaked in HCl 1 N solution for
± 24 h in a closed container to remove impurities. Soaked rice husk ash was then filtered
and washed with boiling water to neutralize the pH. Thereafter, the rice husk was furnaced
at 700 ◦C for 4 h to vaporize the organic contents. The rice husk ash was then refluxed
using NaOH 1 N at 110 ◦C for 4 h to extract the silica. This step yielded a filtrate that was
left to cool to room temperature and neutralized with HCl 1 N solution. The formed gel
was filtered and oven-dried at 110 ◦C until the solid white silica particles were produced.
The procedure steps of rice husk-derived silica particles have been presented in Figure 1.
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Figure 1. Rice husk ash can be processed into silica particles. (A) Bulky rice husk ash, (B) rice husk
ash sample, (C) silica gel obtained from rice husk ash, (D) silica particle prepared from rice husk.

The crystallinity analysis using a Shimadzu X-ray diffractometer (XRD)-700 (Kyoto,
Japan) and functional group analysis using a Shimadzu 8400 Fourier transform infrared
(FTIR) spectroscope (Kyoto, Japan) were carried out on the prepared sample. Micro-surface
images of the silica particles were produced by scanning electron microscopy–electron
dispersive spectroscopy (SEM-EDS) using a JEOL JSM 6510 LA (Tokyo, Japan). Furthermore,
the surface area of the prepared silica was analyzed using Brunauer–Emmett–Teller (BET)
and Barrett–Joyner–Halenda (BJH) isotherm equations based on the nitrogen adsorption–
desorption at 77.3 K on QuadraSorb Station 1 (ver. 5.06).

2.3. Preparation of Inorganic–Organic Composite Membrane

Chitosan with a concentration of 3% (w/v) was added to a mixture of dimethylfor-
mamide 10% (v/v) and acetic acid 1% (w/v). The mixture was stirred in a tightly sealed



Membranes 2022, 12, 435 4 of 16

Erlenmeyer for ±24 h at room temperature and 250 rpm. Silica particles (varied from
10–60% w/w) were added to the previous mixture to obtain the IOCM. The doping solution
was then printed on a glass plate. The solvent was allowed to evaporate at room tempera-
ture for 24 h. The membrane obtained was washed with NaOH 1% (w/v) and rinsed with
distilled water, then air-dried at room temperature overnight. The membrane was cut to
2.5 cm2 for further use.

For the membrane samples, either IOCM or neat chitosan, the instrumental characteri-
zations were carried out using the Shimadzu 8400 FTIR spectroscope, JEOL JSM 6510 LA
for SEM-EDS (Tokyo, Japan), and Shimadzu XRD 7000 (Kyoto, Japan). Since the samples
were in a film shape, the sample preparation prior to the analysis followed our previously
published works [18,32].

2.4. Determination of Porosity and Swelling Degree

The porosity and swelling degree determinations were based on the absorption of
distilled water into the prepared membranes. The porosity (ε) and swelling degree (sd)
values were calculated using Equations (1) and (2), respectively.

ε(%) =
V wet − Vdry

Vwet
× 100 (1)

sd(%) =
Vwet − Vdry

Vdry
× 100 (2)

where Vdry is the volume of the dry membrane and Vwet is the wet volume membrane after
being immersed in a water bath for 24 h at room temperature.

2.5. Membrane Pure Water Flux

The clean water flux experiment was determined using a dead-end Amicon type
system filtration cell. The experiment was determined at room temperature. The device
was pressured at 1 bar so that the feed solution flowed through the membrane. The
reported flux values were measured at steady-state conditions and stirred under 200 rpm.
The average flux value was calculated using several membrane pieces. The membrane
water flux was calculated using the following equation:

Flux (J) =
Volume permeate

A × t
(3)

where J is the water flux (L/m2 h), V is the volume of the permeate (L), t is the time (h),
and A is the membrane surface area (m2).

2.6. Batch Adsorptive Purification

The performance of the prepared IOCM was evaluated toward biodiesel purification
employing a batch system. Three sheets of the membrane (2.5 cm2) were weighed and put
in an Erlenmeyer containing 25 mL crude biodiesel. The purification was carried out at
200 rpm using a rotary shaker at room temperature. The contact times of 10, 20, 30, 60,
and 120 min were used to obtain the optimum contact time carried out using IOCM with
a silica particle load of 10%. Afterward, the study was continued with the investigation
on the effect of particle loading employing the optimum contact time obtained previously.
The adsorption isotherm studies were carried out under the optimum contact time and
particle loading with glycerol concentrations of 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3%. Acid
number, soap level, and free glycerol content were calculated before and after the batch
purification treatment.

2.7. Biodiesel Filtration

The filtration performance of the flat sheet IOCM was measured at a constant perme-
ation rate using a pressurize stirred dead-end filtration cell. The experiment was carried
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out using a membrane area of 19.62 m2 at a pressure of 1.5 bar. The permeate was collected
and the free glycerol content, acid number, and soap concentration in the permeate samples
were analyzed by a standard method.

2.8. Determination of Acid Number, Soap Levels, and Free Glycerol Content
2.8.1. Acid Number

As much as 5 g of biodiesel was added to 10 mL of ethanol, followed by the addition of
3 drops of phenolphthalein. The mixture was titrated using 0.1 M KOH until a permanent
pink color was formed. Acid numbers were calculated using the following Equation (4):

Acid number =
56.1 × NKOH × VKOH

m
(4)

where VKOH is the volume of KOH solution used (mL), NKOH is the normality of the KOH
solution in titration, and m is the mass of the biodiesel (g).

2.8.2. Soap Levels

Five grams of biodiesel was added into 5 mL of acetone, followed by 3 drops of
bromophenol blue (0.4% in water). Then, the mixture was titrated with 0.01 N HCl until the
color turned yellow. The soap level (as sodium oleate) was calculated with Equation (5).

Soap number =
304, 000 × NHCl × VHCl

m
(5)

where VHCl is the volume of the HCl solution (mL) used in titration and NHCl is the
normality of the HCl solution.

2.8.3. Free Glycerol Content

Ten grams of biodiesel was added into a mixture containing 100 mL of chloroform and
50 mL of distilled water. The mixture was vigorously shaken for 30–60 s and left until the
organic layer (chloroform) and the water layer were entirely separated. The procedure was
followed by the addition of 3 mL of distilled water and 2 mL of periodic acid, then was
left for 30 min. Then, 0.5 mL of KI was added and titrated with 0.01 N sodium thiosulfate
until the brown color faded. Thereafter, the mixture was added with starch until the color
turned blue. Then, it was titrated again until the color changed. The determination of total
glycerol levels was calculated based on Equation (6).

Gtb =
2.302(B − C)Nsodium sulphate

m
(6)

where Gtb is the free glycerol content in the sample, B is the volume of sodium sulfate
for the blank, C is the sodium sulfate volume of the samples, and Nsodium sulphate is the
normality of the sodium sulfate.

2.9. Regeneration

The membrane was assumed to contain biodiesel impurities after being removed
from the batch purification process. The membranes with biodiesel impurity contents was
recovered using an organic solvent, methanol, as suggested previously [3]. The membrane
was immersed into 250 mL of methanol in a sealed container at room temperature for
24 h. Afterward, the membrane was removed and rinsed with ultrapure water to wash
out the remaining methanol until a neutral pH was achieved. The regenerated membrane
was tested for the subsequent cycles of batch purification using the optimum conditions
obtained earlier.
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3. Results and Discussions
3.1. Isolation of Silica from Rice Husks

Figure 2a shows the X-ray diffractogram of the extracted silica from rice husk. The
analysis shows dominant peaks of 2θ at 21–22◦, indicating the success of the silica particle
extraction with a high purity (>94%), as suggested by other studies [26,28]. The broad peak
indicates the semi-crystalline properties of the material; silica in the form of amorphous,
quart, critobalite, and tridymite.
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The SEM images (Figure 2b) show the particles have a rough surface covered with a
flake-like structure. The particle shape is observed to be rather irregular, suggesting its
ability to form a rough surface on the chitosan matrix during the preparation of the silica-
embedded chitosan IOCM. Using ImageJ software on the SEM images, the determination
of the particle diameter revealed the average particle size of 2.1 µm (Figure 2c). The silica
particles prepared in this study are suitable for embedment onto the chitosan matrix with
such a particle size. Furthermore, the EDS analysis (Figure 2d) substantiated the dominant
percentage of Si and O content (the sum content of Si and O occupying > 94% of the
total weight). The Si and O content could appear in the form of Si–O, Si–O–Si, or Si–OH
functional groups, which contribute to the adsorbent active sites [33]. The next section will
further discuss the analysis of these functional groups.

Based on the N2 adsorption using BET analysis, the surface area of the prepared silica
particles was 113 m2/g (Figure 2e). Meanwhile, the pore diameter and pore volumes were
21 nm and 0.58 mL/g, respectively, according to BJH-modelled N2 desorption. The surface
area obtained in the rice husk-based silica was comparatively higher than that in wheat
husk-based silica, which only reached 0.67 to 0.92 m2/g [34,35]. These data suggest the suf-
ficiency of the silica adsorbent to remove the impurities from the transesterification product.
However, the prepared silica fillers’ BET surface area was lower than that of previously re-
ported carbonaceous adsorbents [36,37]. Reported studies have agreed that the surface area
of an adsorbent plays a significant role in the purification process. This further leads the
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focus of adsorbent activation to enhance the surface area [36]. Overall, the characteristics of
the silica prepared from rice husk suggest the excellent adsorbent potential.

3.2. Thickness, Porosity, and Swelling Degree of the Prepared Membrane

The IOCM membrane in this study was prepared by adding the silica particle filler
obtained and characterized previously. The IOCM was found to be thicker than the neat
chitosan membrane. The neat chitosan membrane had a thickness of 0.045 mm, which was
much lower than the IOCM with a thickness of 0.110 mm. This difference in thickness is due
to the fact that the silica particle added in the chitosan matrix had a higher volume (lower
density). The silica particles are a porous material which consequently possess a lower
density [30]. Therefore, even though the weight of the doping solution of each membrane
was casted on the same sized mold, the thickness of the IOCM increased. However, the
IOCM chitosan–silica porosity and swelling degree were lower than that of the neat chitosan
membrane. The IOCM had a 14.4% porosity and 18.6% swelling degree. These values
were lower than the porosity and swelling degree of the pure chitosan membrane, which
were 40.8% and 53.9%, respectively. The higher porosity and swelling degree of the neat
chitosan is due to its hydrophilicity, allowing more water absorption [38]. In terms of
filler embedment, a lower swelling degree is expected to prevent fillers from leaching out
from the membrane [39]. Since the silica particle plays a significant role in adsorption, as
opposed to chitosan, a lower swelling degree is preferable. Further characteristics using
instrumental analysis such as SEM-EDS and FTIR are discussed in the following.

3.3. Membrane Characteristics

The embedment of silica particles synthesized from rice husk contributes to the adsorp-
tive feature of the IOCM. By modifying the membrane surface, the membrane morphology
before and after the filler addition was captured using SEM under 1000× and 250× mag-
nifications for the surface and cross-section parts, respectively (Figure 3). A smooth and
dense surface could be observed in the chitosan membrane surface, which the cross-section
image further corroborates. Following the filler addition, the membrane surface becomes
rich in embedded particles of irregular shapes affected by the shape of silica particles or
their agglomerates. The presence of a particle in the chitosan matrix leads to the formation
of a rougher surface, which has been known to facilitate impurities uptake [38,40]. In a
study employing bio-charcoal as a filler, a similar finding was reported, where the mem-
brane appeared on a rougher surface and was attributed to higher adsorption than neat
chitosan [40]. Moreover, the cross-section SEM image also shows the bulk structure of the
IOCM governed by tiny irregular pores surrounded by silica particles. In general, the bulk
porosity of the IOCM tends to be less than that of neat chitosan membranes since filler
addition contributes to a higher membrane density [41,42].

Figure 4 shows the elemental composition of the IOCMs from EDS data. Carbon
(37.45%) and oxygen (49.42%) were two major elements in the IOCM, the main components
of the organic chitosan membrane. The silica then follows with a percentage reaching 9.33%,
contributed from the silica particle. Other elements including Na (2.29%), Mg (0.79%),
and Cl (0.71) were also detected. This analysis demonstrates that the filler remained and
immobilized in the membrane matrix during the fabrication. These findings are similar
to those of previous reports, where silica particles were successfully embedded onto the
matrix membrane [3].
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Figure 4. EDS data of the IOCMs containing silica particles from rice husk.

Other IOCM characteristics are shown in the FTIR spectra (Figure 5) compared to
the those of the silica particles and pure chitosan membrane. It can be seen that the
spectrum of the IOCM (a) is a composite spectrum between the spectrum of the silica
particles (b) and pure chitosan membrane (c). The functional groups of IOCMs were
identified by absorption at a wavenumber of 957 cm−1 for Si–O stretching vibration and
a wavenumber of 1092 for Si–O–Si symmetrical stretching vibration, as well as the –OH
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silanol group at a wavenumber of 3422 cm−1. The chitosan content is attributed to the
absorbance at 1634 cm−1 (–C=O carbonyl group), 1570 cm−1 (bending vibrations of NH
groups), 1419 cm−1 (bending vibration of CH group), and 1924 cm−1 (stretching vibration
of aliphatic -CH group). The spectral peak at around 1600 cm−1 from the silica sample,
assigned for the C=O carbonyl group, probably originates from the leftover of the charring
process of the rice husk (corroborated by a small peak of C in the EDS spectra—Figure 2).
The wavenumbers observed herein resemble that of a reported study developing a silica-
based aldehyde chitosan hybrid material [23].
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3.4. Study of Prepared Membrane on Crude Biodiesel Purification
3.4.1. Effect of Contact Time

The acid number and glycerol levels in biodiesel significantly decreased during the
first 60 min (Figure 6), associated with the high diffusion force due to the unoccupied
binding site. At this stage, the adsorption was dominated by the physical forces rather than
chemical interaction [16,32]. The decrease in free glycerol content and the acid number was
much less significant and tended to become saturated after reaching the 120th minute. This
indicates that at the 60th minute, the binding site of the adsorbent had been fully occupied,
and equilibrium of adsorption–desorption occurred. This finding is similar to the previous
study using an IOCM for biodiesel purification that obtained the optimum contact time
during the first hour of batch adsorption [3,9]. Therefore, the batch adsorption procedure
was set for 60 min for further investigations.
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3.4.2. Effect of Silica Particle Loading

The effect of silica particle loading on the IOCM performance in the depletion of soap
content, free glycerol level, and the acid number is presented in Figure 7. The impurities
uptake was higher when more silica particles were loaded onto the chitosan membrane
matrix. The IOCM containing 60% w/w silica particle decreased the soap level, free glycerol
level, and acid number from 547.9 to 12.2 mg/L, 54 to 0.041%, and 2.02 to 1.12 mgKOH/g,
respectively. The criteria of the final product meet the Indonesian National Standards (SNI),
where the soap level is <50 ppm and the acid number is <0.5 mgKOH/g. The results of
the biodiesel purification were similar to those reported by a study using commercial silica
embedded on granular chitosan [23].
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Figure 7. Effect of differences in loading silica particles on the quality of biodiesel: (A) soap level,
(B) acid number, and (C) free glycerol content.

This study revealed that the biodiesel impurities adsorptive removal depends on the
silica particle content. The adsorption of impurities onto silica may be associated with
several interactions, such as chemical bonding, hydrogen bonding, hydrophobic bonding,
or van der Waals. The hydrogen bond is the common interaction mechanism in this case, in
which silica oxide (SiO2) may attract the impurity molecules with O-containing moieties
via hydrogen bonding [33]. SiO2 may also undergo reconstruction and react with the water
molecule, forming a silanol group (SiOH). This group can form a complex with water
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molecules (SiOH–OH2–OH2) [43]. The chitosan matrix may form interactions with the
free acid, glycerol, and water molecules that, along with the silica particles, synergistically
purify the biodiesel [3,23]. In our previous study using the rice husk-derived silica particles
alone to purify the biodiesel (with the same weight of adsorbent), the decrease of acid
number only reached around 30% [31]. Comparatively, in the present study, the acid
number decreased as much as 44.6%, suggesting the synergistic action between the silica
filler and chitosan matrix.

3.4.3. Adsorption Isotherm

The adsorbate–adsorbent interaction during the impurities removal from crude biodiesel
can be predicted using various isotherm models. Herein, we used Langmuir, Freundlich,
BET, and Sips isotherm models based on the plot of adsorption capacity at equilibrium (Qe)
vs. concentration at equilibrium (Ce), obtained from glycerol adsorption (Figure 8). Both
studies using Langmuir and Freundlich isotherm models generate a good curve fitting
with the coefficient of determination (R2) of 0.996 and 0.997, respectively. In this case, the
assumption from both isotherm models may be applied to the experimental data [18,40].
Hence, we further studied the adsorption isotherms using three parameters—BET and
Sips models that combine Langmuir and Freundlich models. The data of adsorption
isotherm studies are presented in Table 1. We then found that the Sips model is the
best isotherm model to predict the impurities adsorption onto the IOCM with R2 = 0.999
and root-mean-square errors (RMSE) = 1.77 × 10−8. This isotherm model is suitable for
predicting adsorption using adsorbent with a heterogenous surface, which has a better
accuracy at increased concentrations than the Freundlich model [44]. The Sips isotherm
model exponent (βS) of 1.00048 explains the linearity of the Qe vs. Ce curve.
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Figure 8. Non-linear fitting of Langmuir, Freundlich, BET, and Sips adsorption isotherm models. The
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Table 1. Determined isothermal parameters obtained from various models.

Isotherm Model Equation Parameters

Langmuir Qe = QmKLCe
1+Kl Ce

R2 0.996
RMSE 1.057

Qm 7.749
KL 0.005

Freundlich Qe = KFCe1/n

R2 0.997
RMSE 0.853

1/n 1.054
KF 0.045

BET Qe = QsCBETCe

(Cs−Ce)[1+(CBET−1)( Ce
Cs )]

R2 0.995
RMSE 1.113

Qs 2.288
CBET 0.035

Cs 2.186

Sips Qe = KsCβS
e

1+asCβS
e

R2 0.999
RMSE 1.77 × 10−8

Ks 0.037
βS 1.00048
as 0.871

Qm = Langmuir maximum adsorption (mg/g); KL = Langmuir isotherm constant (dm3/mg); n = adsorption
intensity; KF = Freundlich isotherm constant (mg/g) (dm3/g)n related to adsorption capacity; Qs = theoretical
isotherm saturation capacity (mg/g); CBET = BET adsorption isotherm relating to the energy of surface interaction
(L/mg); Cs = adsorbate monolayer saturation concentration (mg/L); Ks = Sips isotherm model constant (L/g);
βS = Sips isotherm model exponent; as = Sips isotherm model constant (L/mg).

3.5. Regeneration of the Prepared IOCM

Membrane regeneration was carried out by soaking the used membrane with methanol
for 24 h. In a previous study [3], it has been reported that the use of methanol is better
than ethanol to regenerate membranes in biodiesel purification. Methanol has a smaller
molecule size and more polar solvent so that it easily attracts impurities found in the IOCM
of chitosan–silica. The results of biodiesel quality testing by adding the first and second
regeneration membranes are shown in Figure 9. In general, it can be seen that the first
regenerated membrane is still able to absorb acid numbers, soap levels, and biodiesel levels
with a significant value, where the percentage of acid adsorption reaches 66%, soap level
reaches 75%, and free glycerol reaches 33.5%. As for the second and third regeneration
membrane, the capacity of the IOCM of chitosan–silica to adsorb the impurities present in
biodiesel begins to decrease. The adsorption capacity of the IOCM after being regenerated
twice could only reduce the acid number by 17% (of the original removal), the soap level
by 34%, and free glycerol by 22%. The decrease of the regenerated IOCM in removing
biodiesel impurities could be ascribed to the leaching of silica particles due to chitosan
swelling [45,46]. As revealed by our investigation on silica particle loading, the impurity
adsorptions are dependent on the number of silica particles embedded in the chitosan
matrix. However, there is also the possibility of a less effective regeneration performed in
this study being responsible for the lower adsorption capacity.
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Figure 9. The adsorption capacity of regeneration of the IOCM of chitosan-silica: (A) soap level,
(B) acid number, and (C) free glycerol content.

3.6. Biodiesel Filtration

The IOCM flat sheet has demonstrated its ability as an adsorbent to absorb con-
taminants in biodiesel and can be used repeatedly. The ability of the IOCM to remove
contaminants in biodiesel can also be proven in the biodiesel filtration process. The re-
sults of biodiesel filtration using an IOCM using the dead filtration module are shown
in Figure 10. Figure 10 shows the total removal of free glycerol, acid number, and soap
level contained in biodiesel. The IOCM as an adsorption membrane has the ability to
adsorb contaminants contained in biodiesel in the filtration process. Free glycerol can be
removed above 41%, and the acid number can be reduced by 70%; therefore, soap content
can be removed above 11%. The flux values for clean water and oil filtration were 336 and
275 L/(h m2), respectively. The free glycerol content and acid number follow the quality
standard of biodiesel, while the decrease in soap content contributes to the improvement
of biodiesel quality. The ability of the IOCM to reduce various contaminants in biodiesel
shows that IOCMs can be an alternative in the application of conventional dry washing
methods for biodiesel purification. IOCMs allow combining filtration and adsorption in
one step, which is one of the advantages over conventional dry washing methods. The
preparation method of IOCMs is easy and almost any adsorbent can be incorporated into
the polymer structure, providing flexibility in improving membrane performance.
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4. Conclusions

Silica particles extracted from rice husk ash were obtained with properties supporting
high impurities uptake from crude biodiesel. The silica particles were then embedded
onto the chitosan matrix, resulting in an IOCM with a porous structure. The investigated
chitosan–silica IOCM was used in biodiesel purification, with a final product that is ac-
ceptable in SNI quality. Contact time and silica particle loading significantly affect the
batch purification performance. At optimum contact time and filler loading, the removal
successfully reduced the soap level, free glycerol level, and acid number from 547.9 to
12.2 mg/L, 54 to 0.041%, and 2.02 to 1.12 mgKOH/g, respectively. The glycerol removal
could be best predicted using the Sips isotherm model. Meanwhile, regeneration remains a
challenging factor in this study, though the IOCM demonstrated a good performance in
the biodiesel filtration processes. We recommend improving the regeneration method by
using the pressure of the methanol to pass through the developed composite membrane.
Improving the regeneration of the membrane could help increase the efficiency of biodiesel
purification, hence decreasing the overall production cost of biodiesel.
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