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Abstract: The BCF (bioconcentration factor) of solutes in aquatic organisms is an important parameter
because many undesired chemicals enter the ecosystem and affect the wildlife. Chromatographic
retention factor log kw

IAM obtained from immobilized artificial membrane (IAM) HPLC chromatog-
raphy with buffered, aqueous mobile phases and calculated molecular descriptors obtained for a
group of 120 structurally unrelated compounds were used to generate useful models of log BCF. It
was established that log kw

IAM obtained in the conditions described in this study is not sufficient as
a sole predictor of bioconcentration. Simple, potentially useful models based on log kw

IAM and a
selection of readily available, calculated descriptors and accounting for over 88% of total variability
were generated using multiple linear regression (MLR), partial least squares (PLS) regression and
artificial neural networks (ANN). The models proposed in the study were tested on an external group
of 120 compounds and on a group of 40 compounds with known experimental log BCF values. It
was established that a relatively simple MLR model containing four independent variables leads to
satisfying BCF predictions and is more intuitive than PLS or ANN models.

Keywords: Immobilized artificial membrane; liquid chromatography; multiple linear regression;
partial least squares regression; artificial neural networks; bioconcentration factor

1. Introduction

Immobilized artificial membrane (IAM) chromatography is a valuable technique used
to predict the behavior of compounds towards biological membranes. IAM stationary
phases based on phosphatidylcholine (PC) covalently linked to aminopropyl silica are able
to mimic the natural membrane bilayer [1]. Thanks to this ability, they have become widely
recognized tools for modeling drug distribution in vitro, with applications in medicinal
chemistry including estimation of lipophilicity (a key feature characterizing the biological
distribution of compounds), prediction of the ability of compounds to cross biological
membranes (skin absorption, blood–brain barrier permeability, oral/human intestinal ab-
sorption) and estimation of other biomimetic properties (e.g., volume of distribution or
Caco-2 permeability) [2,3]. More recently, immobilized artificial membrane chromatogra-
phy has attracted the attention of environmental chemists, who used IAM chromatography
to study the bioconcentration of pharmaceuticals [4], ecotoxicity of pesticides (expressed as
LC50) [5] and mobility of substances in soil [6]. Applications of IAM chromatography and
other phospholipid-based in vitro techniques (liposome partitioning and chromatography
on unbound phosphatidylcholine stationary phases) in the studies of drug–biomembrane
interactions are presented in reviews [2,3].

Anthropogenic compounds enter the aquatic environment via a number of routes, pose
a threat to aquatic organisms, accumulate in their tissues and affect their fertility. The risks
associated with the exposure of aquatic organisms to chemical compounds released to the envi-
ronment by humans have been studied extensively, e.g., for organic sunscreens [7–11], per- and
polyfluoroalkyl compounds [12], polycyclic aromatic hydrocarbons [13] or antibiotics [14].
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There is a need to identify compounds that are potentially hazardous—bioaccumulative,
persistent and toxic in the environment. The fish bioconcentration factor (BCF) is the ratio
of the chemical concentration in the organism (CB) and water (CW), accounting for the
absorption via the respiratory route (e.g., gills) and skin. It is commonly used to screen
chemicals for their bioaccumulation potential [15], especially in the absence of the bioaccu-
mulation factor (BAF),which accounts for dietary, dermal and respiratory exposures. When
neither BAF nor BCF data are available, lipophilicity expressed as the octanol–water parti-
tion coefficient Kow is used as a surrogate measure of compounds’ ability to bioaccumulate.
The criteria of bioaccumulation differ depending on regulatory agency; it is accepted that
compounds that bioaccumulate have a BCF > 5000 or BCF > 2000 [16]. If no BCF or BAF
data are available, it may be assumed that bioaccumulative compounds are those with
log Kow > 5 [16,17], >4.5 [18] or >3.3 [19]. Measured and evaluated bioaccumulation data
are also used to assign chemicals to three bioaccumulation categories: not significantly
bioaccumulative (BCF or BAF < 1000), bioaccumulative (BCF or BAF between 1000 and
5000) and highly bioaccumulative (BCF or BAF > 5000) [20].

Experimental toxicity data exist for just a fraction of relevant compounds, and in vivo
measurements of such data require a lot of time and effort. According to Weisbrod et al., the
collection of environmental toxicity data for 1240 potentially bioaccumulative compounds
from the Canadian Domestic Substance List would take 82 years [15], and, as estimated in
2013, the average cost of experimental BCF determination is EUR 35,000 per compound,
with more than 100 fish being sacrificed during tests lasting at least one month [21]. With
the difficulties related to experimental BCF determination in mind, attention has turned
to in vitro or in silico BCF models. Log BCF can be predicted using descriptors related
to the partitioning of molecules between water and lipids, e.g., aqueous solubility [22,23].
However, in the majority of computational BCF models, the key descriptor governing the
ability of compounds to bioconcentrate is the octanol–water partition coefficient log Kow
(Equations (1)–(6)) [22,24–28].

log BCF = 0.542 log Kow + 0.124 (n = 8, R2 = 0.90) (1)

log BCF = 0.85 log Kow − 0.70 (n = 55, R2 = 0.897) (2)

log BCF = log Kow − 1.32 (n = 63, R2 = 0.95) (3)

log BCF = 0.94 log Kow − 1.00 (4)

log BCF = 0.516 log Kow + 0.576 (n = 154, R2 = 0.60) (5)

log BCF = 0.80 log Kow − 0.52 (n = 107, R2 = 0.81) (6)

It was soon noticed [29,30] that the linear log BCF−log Kow dependencies fail for
more lipophilic compounds (log Kow > 6 to 7), so non-linear relationships were developed
(Equations (7)–(9)) [27,28]:

log BCF = −0.164 (log Kow)2 + 2.069 log Kow − 2.592 (n = 154, R2 = 0.83) (7)

log BCF = 0.910 log Kow − 1.975 (6.8 ··· 10−7Kow + 1) − 0.786 (n = 154, R2 = 0.90) (8)

log BCF = 0.0069 (log Kow)4 − 0.185 (log Kow)3 + 1.55 (log Kow)2 − 4.18 log Kow + 4.79 (9)

The often-observed hydrophobicity “cutoff”, i.e., the significantly reduced ability of
lipophilic molecules to bioconcentrate (compared to what might be expected from their
lipophilicity) is, however, disputed by some authors who attribute this phenomenon to
experimental artifacts [31–33].

Other authors studied the influence of molecular size descriptors on the bioconcentra-
tion and bioaccumulation processes. In their opinion, molecular weight or molar volume
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should be incorporated in the BCF models along with log Kow to account for the reduced
uptake of both large and highly lipophilic molecules (Equation (10) [34]):

log BCF = 3.036 log Kow − 0.197 (log Kow)2 − 0.808 VM (n = 28, R2 = 0.817) (10)

where VM—molar volume.
Dimitrov reported that the threshold value of 1.5 nm for the maximal cross-section

diameter discriminates between compounds with log BCF> and <3.3 [35]. Further research
by Dimitrov was concerned with the influence of chemicals’ metabolism in fish liver on their
ability to bioconcentrate (BCF was calculated using Kow as the most important descriptor,
with molecular size and ionization taken into account and a simulator for fish liver used to
reproduce the fish metabolism) [36].

In search for models capable of addressing the hydrophobicity cutoff problem ob-
served for highly lipophilic molecules, QSAR BCF studies were reported by several au-
thors [18,21,37–40]. The most widely recognized models accounting for this phenomenon are:

• The model developed by Meylan [41], including different relationships depending on
the compounds’ properties (Table 1);

• The model developed on the basis of Meylan’s work recommended by US EPA and
available as EPI SuiteTM BCFBAF v. 3.02 freeware [42] (Table 1);

Table 1. log BCF vs. log Kow according to Meylan (a) and US EPA (b) models.

log Kow
Non-Ionic

log Kow
Ionic

Meylan US EPA Meylan a US EPA b

below 1 0.50 0.50 below 5 0.50

1 to 7 0.77 log Kow− 0.70 + ΣFi 0.6598 log Kow− 0.333 + ΣFi 5 to 6 0.75

7 to 10.5 −1.37 log Kow+ 14.4 + ΣFi
−0.49 log Kow+ 7.554 + ΣFi

6 to 7 a or 8 b 1.75

7 a or 8 b to 9 1.00

above 10.5 0.50 above 9 0.50

where ΣFi—sum of correction factors.

• CAESAR method (Equations (11)–(13)) based on eight descriptors: MlogP (Moriguchi
log of the octanol–water partition coefficient), BEHp2 (highest eigenvalue n. 2 of Bur-
den matrix/weighted by atomic polarizabilities), AEige (absolute eigenvalue sum from elec-
tronegativity weighted distance matrix), GATS5v (Geary autocorrelation—lag 5/weighted
by atomic van der Waals volumes), Cl-089 (Cl attached to C1(sp2)), X0sol (solvation connec-
tivity index chi-0), MATS5v (Moran autocorrelation—lag 5/weighted by atomic van der
Waals volumes), SsCl (sum of all (–Cl) E-state values in molecule) [37,43]. According to
the CAESAR method, BCF is calculated according to two models, A and B, whichdiffer
in the selection of descriptors (with MlogP and BEHp2 being common to A and B),
and the BCF value is finally predicted as follows:

log Kow ≤ 1.355 log BCF = 0.936 log BCFmean − 0.123 (11)

1.355 ≤ log Kow ≤ 2.410 log BCF = 0.996 min(log BCFA, log BCFB) (12)

log Kow > 2.410 log BCF = 1.052 log BCFmean (13)

• The model suggested by the Technical Guidance Document (TGD) on risk assess-
ment [18] (Equations (14)–(17)):

log Kow < 1 log BCF = 0.15 (14)
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1 ≤ log Kow ≤ 6 log BCF = 0.85 log Kow − 0.70 (15)

6 < log Kow < 10 log BCF = −0.20 (log Kow)2 + 2.74 log Kow − 4.72 (16)

log Kow ≥ 10 log BCF = 2.68 (17)

Alternative approaches to BCF predictions involve molecular connectivity indices [44–46]
or solvation parameters [47]. BCF may also be estimated on the basis of quantum chemical
descriptors [48] (Equation (18)):

BCF = 0.00250 Mw − 0.0724 ET − 0.214 EHOMO − 0.892 ELUMO − 2.58 (18)

where ET—total energy (hartree), EHOMO—energy of the highest occupied molecular orbital
(eV) and ELUMO—energy of the lowest unoccupied molecular orbital (eV).

The BCF can be estimated using reversed-phase chromatographic retention data.
In particular, retention parameters derived from HPLC chromatography on C18, C8, C2
and phenyl-bonded silica sorbents were used as predictors of BCF of aromatic hydrocar-
bons [49]. C18 and cyanopropyl- and phenyl-bonded silica were used in chromatographic
bioconcentration studies of aromatic hydrocarbons, alkylbenzenes, chlorinated benzenes,
phthalates, nitroaromatics, phenols and aniline [50]. RP-18 TLC chromatographic de-
scriptors were used to investigate the bioconcentration factors of organic sunscreens and
cosmetic preservatives [51]. IAM chromatographic descriptors were used to study the BCF
of structurally unrelated chemicals [4].

The objective of this study was to develop useful and easy-to-use predictive models
of the bioconcentration factor of structurally diverse solutes based on their affinity for
phosphatydylocholine-based artificial membranes. Novel models proposed in this study
were generated using multiple linear regression (MLR), partial least squares (PLS) and artificial
neural network (ANN) techniques. It is the first report on PLS and ANN approaches to
bioconcentration studies involving chromatographic and calculated physico-chemical data.

2. Materials and Methods
2.1. Compounds, IAM Chromatographic Data, Reference BCF Values

The first stage of this study was intended to involve 175 compounds, whose IAM
chromatographic retention factors obtained for purely aqueous mobile phases (log kw

IAM)
were compiled by Sprunger et al. [52]. Because of the lack of experimental BCF data for the
whole group of 175 compounds, log BCF (denoted later as log BCFEPI) was calculated using
the commonly accepted computational approach (EPI SuiteTM, BCFBAF module v. 3.02) [42]
based on Meylan’s model [41]. A large number of compounds considered at this stage of
the study, however, were molecules with arbitrarily assigned log BCF = 0.50. The majority
of such compounds were excluded from the training set because it was suspected that
their theoretical log BCF value may not truly reflect their ability to bioconcentrate [4], and
the models generated in this study were finally based upon a solute set containing 120
compounds from different chemical families (1 to 120). The excluded compounds were later
combined with solutes, whose log kw

IAM values were reported by other authors [53,54],
to form an external test set also containing 120 compounds (121 to 240) with and without
known experimental values of log BCF (log BCFvivo). Reliable reference log BCF values
(log BCFEPI) were available for compounds 1 to 187, and, for the compounds 188 to 240,
log BCF was calculated de novo. The external set of compounds included more lipophilic
molecules, whose log kw

IAM could not be measured directly by chromatography with 100%
aqueous mobile phase and could only be calculated by extrapolation of log kIAM vs. the ϕ
plots obtained for a series of chromatographic experiments with mobile phases containing
different concentrations ϕ of a water-miscible organic solvent, usually according to the
linear Soczewiński–Wachmeister Equation (19) [55]:

log k = log kw + Sϕ (19)
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The values of log BCFvivo were taken from the literature sources and the EPISuiteTM

database [4,29,36,42]. The reference log BCFEPI and the experimental log BCFvivo values for
compounds 1 to 240 (where available) are given in Table S1 (Supplementary Materials); the
IAM chromatographic retention factors are given in Table S2 (Supplementary Materials).

2.2. Calculated Descriptors

Molecular weight (Mw), heavy atom count (#HvAt), aromatic heavy atom count
(#ArHvAt), fraction of sp3 carbons (FCsp3), rotable bond count (FRB), hydrogen donor
count (HD), hydrogen acceptor count (HA), molecular refractivity (MR) and topological
polar surface area (TPSA) were calculated using SwissADME software available freely
on-line [56]. Total energy (Et), energy of the highest occupied molecular orbital (EHOMO),
energy of the lowest unoccupied molecular orbital (ELUMO), dipole point charge (DiPCh),
dipole hybrid (DipH) and dipole sum (DipS) were of Mopac 2016 type and were calculated
using the OCHEM platform [57]. Octanol–water partition coefficient (log Kow) was calculated
according to the KOWWIN algorithm [58] using EPI SuiteTM software [42] (Table S2).

2.3. Partial Least Squares Approach

Multiple linear regression (MLR) is a common approach used in QSAR studies.It is
based on the assumption that the effect of a set of molecule’s properties on its activity is
additive, and the properties are (almost) independent. The conditions that must be satisfied
to generate reliable MLR models are severe—standard regression techniques based on the
least squares estimation give unstable and unreliable results when independent variables
are colinear, and the number of cases must exceed the number of variables (ideally, it
should be at least five times greater). In order to overcome the colinearity problem, partial
least square (PLS) regression was developed. PLS replaces the original variables with
“components”—linear combinations of the variables based on the correlation between the
dependent variable and the independent variable(s) [59,60].

Regression models based on PLS estimation must be optimized in terms of the number
of components—if too many are used, a model is over-fitted (it perfectly fits the training
dataset, but it gives poor prediction results for new cases); if too few components are
used, the model is under-fitted (it is not sufficiently large to capture the important data
variability). Models based on the same number of components can be compared using
RSS (residual sum of squares) or R2, but these parameters are unsuitable for models with
different numbers of components. PLS models are often evaluated using RMSEP calculated
for a separate test set and/or using cross-validation—RMSEP usually decreases as more
variables are added to a small model, then it stabilizes around the optimum number of
components, and it increases when the model becomes over-fitted [61].

2.4. Statistical Tools

Multiple linear regression (MLR) models were generated using Statistica v. 13 by
StatSoft Polska, Kraków, Poland, stepwise forward regression mode. Partial least squares
(PLS) models were generated using Statistica v. 13, NIPALS algorithm with auto-scaling.
Multilayer Perceptron(MLP) artificial neural networks (ANNs), with the number of in-
puts the same as the number of variables, the varying number of hidden units and one
output unit, were generated using Statistica v. 13 (regression mode, Automated Network
Search—ANS module, 1000 networks to train, 50 networks to retain). The neuron activation
functions were selected from the following group: identity, logistic, hyperbolic tangent and
exponential. The BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm was used to train
the network together with the sum of squares (SOS) error function.

The models considered in this study were evaluated using the following procedures
and statistical parameters:

• K-fold cross-validation, with n compounds from the initial training set split into k
even subsets, (k − 1) of which were used to train a new model and the remaining
one to test it; the procedure was repeated k times, each time using a different subset
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of compounds as a test set. After each cross-validation step, the RMSE (root mean
squared error) was calculated for the particular N-compound test subset according to
the following Equation (20):

RMSE =

√√√√∑N
i=1

(
ypred

i − yre f
i

)2

N
(20)

The overall root mean squared error of k-fold cross-validation (RMSECV) is calculated
as follows:

RMSECV =

√
∑k

j=1 RMSE2
j

k
(21)

In this study, n = 120, k = 5 and N = 24; yi
pred and yi

ref are log BCFpred and log BCFEPI,
respectively.

• Relationship between the predicted log BCFpred values (computed for the external
test set of 67 compounds 121 to 187 that were not used to build models) with the
reference values log BCFEPI—using root mean squared error of prediction (RMSEPext),
calculated according to Equation (20);

• Comparison of the predicted log BCFpred values (calculated for 40 compounds, whose
experimental log BCFvivo data are available), and these data—using squared coefficient
of determination (R2

vivo) and root-mean-squared error of prediction (RMSEPvivo),
calculated according to Equation (20).

3. Results and Discussion
3.1. Multiple Linear Regression (MLR) Models

The values of log BCFEPI, calculated for compounds 1 to 120 using EPISuiteTM

software [42], were plotted against the IAM retention factors obtained for aqueous mo-
bile phases log kw

IAM and compiled by Sprunger [52]. The linear relationship between
log BCFEPI and log kw

IAM (Equation (22), MLR1, Figure 1) accounted for 80% of total
log BCFEPI variability.

log BCFEPI = 0.18 (±0.06) + 0.70 (±0.03) log kw
IAM (22)
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(n = 120, R2 = 0.80, R2
adj = 0.80, RMSECV = 0.30, RMSEPext = 0.45, RMSEPvivo = 0.35,

R2
vivo = 0.74, F = 470.5, p < 0.01).

The results of log BCFEPI modeling using a single chromatographic descriptor (log kw
IAM)

obtained in this study (Equation (22), MLR1) are similar to those reported by Tsopelas [4]
(R2 = 0.74, n = 77). Log kw

IAM accounted for ca. 74% of variability of log BCFvivo data
(which proves the importance of the chromatographic parameter), but it was hoped that the
model can be improved by incorporating some additional independent variables expected
to influence the ability of compounds to be absorbed by aquatic animals from the surround-
ing water via the respiratory route and skin. It is likely that, similarly to pharmacokinetic
processes of compound absorption and distribution in humans, the key features responsible
for the ability of molecules to bioconcentrate in aquatic organisms are their lipophilicity
(which, indeed, is the main parameter in the majority of BCF in silico models), ability to
form hydrogen bonds and molecule flexibility and size. Apart from log kw

IAM, which is
strongly related to solutes’ lipophilicity, several molecular descriptors calculated using
SwissADME software were investigated. The improved Equation (23) (MLR2, Figure 2)
was generated using forward stepwise regression:

log BCFEPI = 0.27 (± 0.06) + 0.71 (± 0.03) log kw
IAM − 0.0043 (± 0.0009) TPSA+ 0.24 (± 0.06) FCsp3 − 0.089 (± 0.036) HD (23)
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(n = 120, R2 = 0.87, R2
adj = 0.87, RMSECV = 0.25, RMSEPext = 0.42, RMSEPvivo = 0.27,

R2
vivo = 0.83, F = 198.4, p < 0.01).

The additional independent variables incorporated into Equation (23) (MLR2) were
statistically significant and accounted for ca. 7% of total variability. They were introduced
in the following order: TPSA, FCsp3 and HD, which confirmed the relationship between
TPSA and the phenomenon of bioconcentration reported earlier by Tsopelas [4] (who
also demonstrated the contribution of a biodegradation estimate, BioWin5, calculated
using EPISuiteTM software). Polar surface area is an important parameter that defines
the polar part of a molecule. It is strongly related to the passive transport of molecules
through membranes, and it is known to influence the ADME processes in humans (e.g.,
the blood and brain barrier permeability, transdermal or intestinal absorption [62–64]).
Other BCF predictors incorporated in Equation (23) (MLR2, Figure 2) are the fraction of
sp3 carbons FCsp3 (which, in simple terms, can be considered a measure of molecule’s
flexibility and is positively correlated with log BCF) and the count of H-bond donors HD.



Membranes 2022, 12, 1130 8 of 17

The coefficients for both HD and PSA in Equation (MLR2) are negative—high polar surface
area and the molecule’s strong tendency to form hydrogen bonds reduce its uptake by
aquatic organisms.

Further attempts to improve the MLR models by incorporating other parameters
expected to influence the compounds’ ability to bioconcentrate were not very successful—
Equation (24) (MLR3, Figure 3), obtained using six variables selected by forward step-
wise regression, had slightly better parameters of cross-validation than the model MLR2
(Equation (23)), but this gain didnot justify the risk of over-fitting related to incorporation
of two more parameters (FRB and DipH) that, although both statistically significant, ac-
counted together for only slightly over 1% of total variability. The ability of Equation (24) to
predict log BCF for new cases (the external test set) and the relationship between log BCF
values predicted using this model and the experimental values were comparable to those
reported for Equation (23) (MLR2).

log BCFEPI = 0.14 (± 0.06) + 0.74 (± 0.03) log kw
IAM − 0.0037 (± 0.0011) TPSA + 0.35 (± 0.07)

FCsp3 − 0.16 (± 0.04) HD − 0.026 (± 0.011) FRB + 0.29 (± 0.08) DipH
(24)
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(n = 120, R2 = 0.89, R2
adj = 0.88, RMSECV = 0.17, RMSEPext = 0.45, R2

vivo = 0.83,
RMSEPvivo = 0.27, F = 147.3, p < 0.01).

3.2. Partial Least Square (PLS) Models

In this study, the following PLS models were investigated (details to be found in
Supplementary Materials):

• Models PLS1 based on 16 independent variables—including those involved in MLR
analysis and some other descriptors that were not included in MLR to avoid
colinearity problems;

• Model PLS2 based on a reduced set of independent variables.

PLS1 models based on the set of 16 independent variables and involving between
4 and 12 components were compared using RMSEPext, RMSEPvivo and RMSECV values
(Supplementary Materials). At a later step, multiple linear forward stepwise regression
was also performed on the X-scores of all the possible 16 PLS components. Using these two
approaches, it was established that the optimum number of components is six (Figure 4)—it
led to a model that fitted the training dataset reasonably well, the model’s predictive
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potential was satisfying (i.e., the model was neither over-fitted or under-fitted) and all six
PLS components selected by MLR were statistically significant.
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The importance of descriptors used in PLS models can be evaluated manually based
on their variable importance in the projection (VIP) values calculated for the particular
number of components (descriptors with VIP < 1 in a PLS model are excluded from the
next one) [65] (Table 2). This procedure was applied to PLS1, and it was established
that only two variables, log kw

IAM and MR (a descriptor connected with polarizability of
molecules, not selected in MLR) had a strong influence on log BCF (model PLS2, Figure 5).
Surprisingly, the descriptors selected by stepwise multiple regression (apart from log kw

IAM,
which is of utmost importance in all the models developed in this study) were of lesser
importance in the PLS regression. Model PLS2, however, seemed excessively simplified,
and its performance, evaluated using RMSECV, RMSEext and RMSEvivo, was slightly worse
than that of PLS1 (Table 3).

Table 2. VIP values for independent variables, model PLS1.

Variable VIP Importance

log kw
IAM 2.53 1

MR 1.08 2
#HvAt 0.97 3
Mw 0.97 4
HD 0.92 5
DipPCh 0.88 6
Et 0.84 7
FRB 0.84 8
DipS 0.83 9
TPSA 0.76 10
#ArHvAt 0.72 11
DipH 0.71 12
EHOMO 0.69 13
HA 0.64 14
ELUMO 0.48 15
FCsp3 0.32 16
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Table 3. Summary of MLR, PLS and ANN models developed in this study.

MLR1 MLR2 MLR3 PLS1 PLS2 ANN14 ANN43 ANN44

RMSECV 0.30 0.25 0.17 0.26 0.29 - - -
RMSEPext 0.35 0.42 0.45 0.45 0.46 0.47 0.47 0.47
RMSEPvivo 0.35 0.27 0.27 0.27 0.31 0.28 0.28 0.30
R2

vivo 0.74 0.83 0.83 0.83 0.77 0.81 0.82 0.79

3.3. Artificial Neural Networks

Artificial neural networks are widely used to predict drugs’ bioavailability [66] or
properties such as affinity for phospholipids using IAM chromatography and calculated
descriptors [67]. The great advantages of neural networks compared to MLR are the
possibility of utilizing both linear and non-linear relationships between input data and a
predicted parameter and the ability of ANNs to learn these relationships directly from the
data being modeled.

In this study, the ANN models were built for the same group of compounds (1 to 120)
that was used as the training set in the MLR and PLS analyses. This group of compounds
was randomly assigned to three subgroups: train (70%), test (15%) and validation (15%)—the
latter two groups were needed to optimize the ANNs as they were being created. Similarly
to the MLR and PLS analyses presented in this study, the compounds 121 to 240 were used
as an additional, external test set. At this point, 1000 networks were generated, and 50 with
the smallest error were retained for further examination in search of those that give the
results in the closest agreement with the reference data (log BCFEPI) for compounds 121 to
187 (RMSEPext) and with the experimental data (log BCFvivo) for a subgroup of 40 cases,
whose experimental log BCF values were available (R2

vivo, RMSEPvivo). The selection
of the best exemplary networks generated in this study (ANN14, ANN43 and ANN44,
Figures 6–8) was based on their ability to predict new cases (RMSEPext) and to obtain the
results in the closest possible agreement with the experimental data (R2

vivo, RMSEPvivo)
rather than on their ability to fit the training data (Supplementary Materials).

ANNs make it possible to process a large number of descriptors that can be easily
obtained using readily available software. The selection of ANN input data is an important
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step because, if the number of parameters is excessive considering the number of cases,
models are over-fitted. The importance of independent variables can be evaluated using a
tool known as global sensitivity analysis (GSA), which rates the importance of the models’
input variable by computing sums of squared residuals for the model when the respective
predictor is eliminated compared to the full model. When an input variable scores 1 or less
than 1 in GSA, it means that this particular network is likely to perform better without this
variable; however, in the networks generated in this study, the majority of GSA scores were
at least slightly above this threshold.
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Figure 8. ANN44 model—predicted vs. reference log BCF values.

Log kw
IAM is an important predictor accounting for 80% of log BCF variability. It encodes

the molecule’s properties responsible for its ability to cross biological membranes—lipophilicity
and size (molecular weight, heavy atom count), Table 4—and, when additional descriptors
are incorporated, it leads to efficient BCF models. In this study, the models were generated
using log kw

IAM values obtained directly for aqueous mobile phases. Using the external
test group of solutes, it was demonstrated, however, that log kw

IAM values obtained by
extrapolation of log kIAM values to zero concentration of organic modifiers in the mobile
phase were sufficient to give reasonable predictions—although, since log kw

IAM is the most
important descriptor in all the models, imperfections of this variable in the external test
dataset always had some influence on the RMSEPext values.

Models MLR2, PLS1 and ANN43 were finally compared (Figure 9) by plotting the
predicted log BCF values against the experimental ones (log BCFvivo), and it was confirmed
that their ability to model the experimental log BCF data was similar.
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4. Conclusions 
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this study,the selected MLR, PLS and ANN models gave fairly comparable results in 
terms of their ability to predict new cases (log BCFext), and the results obtained using 
these models were in similar agreement with experimental data (log BCFvivo) (surpris-
ingly, simple MLR equations based on a relatively small number of independent varia-
bles seemed to perform slightly better than more complex ANN or PLS models). Gener-
ally speaking, PLS regression deals with the colinearity of independent variables, and the 
ANN approach is especially useful in the case of non-linear relationships, but, in this 
study, linear equations (especially Equation (23), MLR2) gave satisfying prediction re-
sults, and they were more intuitive. All the models reported above can be easily applied 
during the early steps of the drug discovery process concurrently with IAM chromato-
graphic pharmacokinetic studies and, as described earlier, in the studies of compounds’ 
mobility in the soil–water compartment [6]. In lieu of logkwIAM obtained directly using 
aqueous mobile phases, extrapolated values can be used, although, in such situations, the 
quality of BCF predictions is slightly impaired. The models proposed in this study are 
applicable to compounds over a relatively wide range of lipophilicity, with the exception 
of very lipophilic molecules (log Kow>ca. 7), whose retention times on the IAM chroma-
tographic support are very long and log kwIAM cannot be conveniently measured. This 
limitation of the applicability domain of the models presented in this study, however, is 
not a major drawback—very lipophilic compounds, as demonstrated by some authors, 
do not bioconcentrate or bioaccumulate easily [16,27,28,34], which is either a direct result 
of their hydrophobicity or, indirectly, an effect of the larger molecular size of highly 
lipophilic molecules [32]. Above a certain lipophilicity threshold (log Kow > ca. 7), the bi-
oconcentration factor becomes inversely proportional to lipophilicity and decreases 
rapidly. On the other hand, a large proportion of compounds released to the environ-
ment by agriculture or the pharmaceutical industry (e.g., pesticides or drugs) meets the 
criteria of optimum intestinal, transdermal or lung absorption [19,68–72]. Such com-
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Table 4. Correlations between descriptors analyzed in this study.

log kw
IAM MW #HAt #ArHAt FCsp3 FRB HA HD MR TPSA Et EHOMO ELUMO DipPCh DipH DipS log Kow

log kw
IAM 1.00 0.51 0.51 0.39 −0.07 0.34 0.09 −0.15 0.57 −0.08 −0.44 0.38 −0.17 −0.09 0.05 −0.04 0.84

Mw 0.51 1.00 0.98 0.50 0.07 0.62 0.78 0.38 0.98 0.64 −0.86 0.49 −0.42 0.45 0.52 0.49 0.32
#HAt 0.51 0.98 1.00 0.52 0.06 0.63 0.78 0.37 0.99 0.64 −0.87 0.53 −0.39 0.46 0.52 0.49 0.32
#ArHAt 0.39 0.50 0.52 1.00 −0.58 0.16 0.27 0.02 0.53 0.17 −0.44 0.56 −0.52 0.13 0.40 0.16 0.29
FCsp3 −0.07 0.07 0.06 −0.58 1.00 0.27 0.09 0.06 0.08 0.00 −0.01 −0.29 0.59 −0.01 −0.07 −0.01 −0.04
FRB 0.34 0.62 0.63 0.16 0.27 1.00 0.59 0.31 0.63 0.45 −0.52 0.31 −0.06 0.26 0.33 0.31 0.25
HA 0.09 0.78 0.78 0.27 0.09 0.59 1.00 0.53 0.70 0.86 −0.75 0.25 −0.39 0.61 0.54 0.61 −0.11
HD −0.15 0.38 0.37 0.02 0.06 0.31 0.53 1.00 0.33 0.67 −0.35 0.26 −0.14 0.26 0.52 0.28 −0.27
MR 0.57 0.98 0.99 0.53 0.08 0.63 0.70 0.33 1.00 0.57 −0.84 0.56 −0.36 0.41 0.51 0.44 0.38
TPSA −0.08 0.64 0.64 0.17 0.00 0.45 0.86 0.67 0.57 1.00 −0.63 0.21 −0.43 0.67 0.55 0.68 −0.28
Et −0.44 −0.86 −0.87 −0.44 −0.01 −0.52 −0.75 −0.35 −0.84 −0.63 1.00 −0.43 0.42 −0.48 −0.42 −0.49 −0.25
EHOMO 0.38 0.49 0.53 0.56 −0.29 0.31 0.25 0.26 0.56 0.21 −0.43 1.00 −0.23 0.13 0.44 0.19 0.26
ELUMO −0.17 −0.42 −0.39 −0.52 0.59 −0.06 −0.39 −0.14 −0.36 −0.43 0.42 −0.23 1.00 −0.39 −0.27 −0.38 −0.05
DipPCh −0.09 0.45 0.46 0.13 −0.01 0.26 0.61 0.26 0.41 0.67 −0.48 0.13 −0.39 1.00 0.33 0.97 −0.28
DipH 0.05 0.52 0.52 0.40 −0.07 0.33 0.54 0.52 0.51 0.55 −0.42 0.44 −0.27 0.33 1.00 0.44 −0.11
DipS −0.04 0.49 0.49 0.16 −0.01 0.31 0.61 0.28 0.44 0.68 −0.49 0.19 −0.38 0.97 0.44 1.00 −0.25
log Kow 0.84 0.32 0.32 0.29 −0.04 0.25 −0.11 −0.27 0.38 −0.28 −0.25 0.26 −0.05 −0.28 −0.11 −0.25 1.00
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4. Conclusions

The ability of compounds to bioconcentrate in aquatic organisms is strongly related to
their affinity for phosphatydylocholine-based immobilized artificial membranes (IAM), and
other physico-chemical parameters of a molecule are less important in this process. QSAR
models of log BCF involving the IAM chromatographic retention factor and other descrip-
tors were built using multiple linear regression, partial lest square regression and artificial
neural networks. The MLR approach is a powerful technique with the great advantage
of simplicity—models generated using this technique usually involve a relatively small
number of independent variables (parameters), whose physical meaning and contribution
towards an dependent variable can be easily understood. In this study, the selected MLR,
PLS and ANN models gave fairly comparable results in terms of their ability to predict new
cases (log BCFext), and the results obtained using these models were in similar agreement
with experimental data (log BCFvivo) (surprisingly, simple MLR equations based on a
relatively small number of independent variables seemed to perform slightly better than
more complex ANN or PLS models). Generally speaking, PLS regression deals with the
colinearity of independent variables, and the ANN approach is especially useful in the case
of non-linear relationships, but, in this study, linear equations (especially Equation (23),
MLR2) gave satisfying prediction results, and they were more intuitive. All the models
reported above can be easily applied during the early steps of the drug discovery pro-
cess concurrently with IAM chromatographic pharmacokinetic studies and, as described
earlier, in the studies of compounds’ mobility in the soil–water compartment [6]. In lieu
of logkw

IAM obtained directly using aqueous mobile phases, extrapolated values can be
used, although, in such situations, the quality of BCF predictions is slightly impaired.
The models proposed in this study are applicable to compounds over a relatively wide
range of lipophilicity, with the exception of very lipophilic molecules (log Kow > ca. 7),
whose retention times on the IAM chromatographic support are very long and log kw

IAM

cannot be conveniently measured. This limitation of the applicability domain of the models
presented in this study, however, is not a major drawback—very lipophilic compounds, as
demonstrated by some authors, do not bioconcentrate or bioaccumulate easily [16,27,28,34],
which is either a direct result of their hydrophobicity or, indirectly, an effect of the larger
molecular size of highly lipophilic molecules [32]. Above a certain lipophilicity threshold
(log Kow > ca. 7), the bioconcentration factor becomes inversely proportional to lipophilicity
and decreases rapidly. On the other hand, a large proportion of compounds released to
the environment by agriculture or the pharmaceutical industry (e.g., pesticides or drugs)
meets the criteria of optimum intestinal, transdermal or lung absorption [19,68–72]. Such
compounds are usually moderately lipophilic (log Kow rarely higher than 7, in the majority
of cases, between 0 and 5), so quantitative studies of their bioconcentration using the
models discussed above are feasible.
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