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Abstract: In the present work, the effect of divinylbenzene (DVB) on the kinetics of post-radiation
chemical graft polymerization styrene (St) on polyethylene (PE) film and its structural and morpho-
logical features were investigated. It has been found that the dependence of the degree of polystyrene
(PS) grafting on the DVB concentration in the solution is extreme. An increase in the rate of graft poly-
merization at low concentrations of DVB in the solution is associated with a decrease in the mobility
of the growing chains of PS. A decrease in the rate of graft polymerization at high concentrations of
DVB is associated with a decrease in the rate of diffusion of St and iron(II) ions in the cross-linked
network structure of macromolecules of graft PS. A comparative analysis of the IR transmission
and multiple attenuated total internal reflection spectra of the films with graft PS shows that graft
polymerization of St in the presence of DVB leads to the enrichment of the film surface layers in
PS. These results have been confirmed by the data on the distribution of sulfur in these films after
sulfonation. The micrographs of the surface of the grafted films show the formation of cross-linked
local microphases of PS with fixed interfaces.

Keywords: copolymerizaion; diffusion; divinylbenzene; graft polymerization; irradiation polymerization;
morphology; polyethylene; styrene; sulfocationite membranes

1. Introduction

Synthetic membranes are heterogeneous solid phase barriers between two phases.
The transport of molecular/ionic species of liquids or gases is carried out by contact with
their surfaces under the influence of a driving force. Synthetic membranes can selectively
transport one species of liquid or gas over another (selectivity or degree of separation) or
regulate the transport of different species at different controlled rates (permeability or flux).
The transport of molecular/ionic species across membranes is driven by differences in the
size, shape, chemical properties, or electrical charge of the components of the mixture being
separated. The separation properties of a membrane are determined by both the chemical
and physical nature of the membrane materials, as well as the method of preparation [1].

Among the various methods of ionite membrane production, grafting polymerization
occupies a special place, which makes it possible to regulate their physicochemical and
operational properties within a wide range [2–4]. The nature of the monomer, conditions
of graft polymerization, and degree of grafting make it possible to modify the surface
layer of the polymer material, its volume, and the uniform or gradient distribution of the
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graft polymer over the thickness of the polymer matrix [4,5]. There are various methods
of graft polymerization [6]: “direct” graft; “post effect” graft under irradiation of polymer
in a vacuum, inert atmosphere, or in air; and “post effect” radiation graft polymerization
under irradiation of polymer in air. The latter method is simple and highly reproducible.
In this case, the polymerization process is initiated by the alkoxy radicals generated during
the decomposition of hydro- and diperoxides. As peroxide-reducing agents, to lower the
polymerization temperature, salts of metals of variable valence are added to the monomer
solution. As a rule, these are the iron(II) salts [5].

In most cases, during the synthesis of such membranes, graft polymerization of
St is carried out on films of polyolefins or polyfluoroolefins, followed by the chemical
modification of graft polystyrene (PS) and the production of cation-exchange membranes.
Such sulfocationite membranes obtained by the sulfonation of PE films with grafted PS
have high selectivity when separating mixtures of ethylene with ethane [7,8] and butenes
with butane [9]. They are efficient as separation membranes of fuel cells [10].

In the earlier works of Chalykh et al. [11], we studied the effect of various parameters
of post-radiation chemically grafted polymerization of St on a PE film on the kinetics
of graft polymerization, the distribution of grafted PS along the cross-section of the PE
film, thermochemical parameters and morphology of the phases of PS and PE, and energy
characteristics of the surface of the grafted polymer. It was shown in [12] that the addition
of small amounts (~1 vol. %) of DVB led to an increase in the degree of grafting of PS
during radiation graft polymerization “under the beam” of St on a PE film.

Of particular interest is the diffusion of water molecules, which determines the ionic
conductivity [13]. The diffusion coefficients of water in ion-exchange membranes measured
by pulsed field gradient 1H NMR (PFG NMR) demonstrate two types of water molecules
in the films with low DVB contents.

The purpose of this work is to study the effect of DVB on the post-radiation chemical
graft polymerization of St on the PE film, the distribution of grafted PS over the thickness
of this film, the morphology of these films, and the properties of related sulfocationite
membranes.

2. Experimental
2.1. Materials and Reagents

The following materials and reagents were used: high-pressure PE film with a density
of 0.92 g/cm3 and a thickness of 20 µm, St (Sibreaktiv, pure grade); DVB (Aldrich, St. Louis,
MO, USA, technical grade, 55%); potassium hydroxide (Khimmed, Moscow, Russia, ana-
lytical grade); iron(II) sulfate heptahydrate (Khimmed, chemical purity grade); methanol
(Khimmed, reagent grade).

St was purified from the inhibitor by successive treatment with an aqueous solution
of potassium hydroxide and deionized water, drying, and distillation under vacuum to
withdraw the boiling fraction at 40 ◦C at a residual pressure of 20 mmHg.

2.2. Preparation of Membranes

The PE film was irradiated in air at room temperature under a 60Co γ-radiation source
with a radiation dose of 50 KGy and power of 5.2 Gy/s. The grafting copolymerization of
St and DVB was carried out in a mixture of a methanol solution of 50 vol. % St and DVB
and 50 vol. % methanol at the boiling point. The grafting solution contained 2 g/L iron (II)
sulfate as a homopolymerization inhibitor and a co-initiator.

The degree of grafting (∆p, %) of the copolymer of St and DVB was determined using
Equation (1):

∆p =
m1 − m0

m0
· 100 (1)

where m0 and m1 are the film weights (in g) before and after the grafting copolymerization
stage, respectively.
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Sulfonation of the films was carried out in concentrated (96 wt. %) sulfuric acid at
a temperature of 98 ◦C. At the end of the process, the membranes were washed with
decreasing concentrations of sulfuric acid solutions and distilled water.

2.3. Physicochemical Techniques

IR transmission and multiple attenuated total internal reflection spectra were recorded
using a Perkin Elmer-580 spectrophotometer (Stockholm, Sweden). Multiple attenuated
total internal reflection spectra were recorded using a KRS-5 crystal with an incidence angle
of 45◦ and a film scanning depth of ~5 µm.

Differential scanning calorimetry (DSC) was used to record thermal effects accom-
panying the melting (crystallization) and glass transition of the graft copolymer under
the conditions of programmed temperature changes. The heating rate varied from 4 to
50 deg/min. Measurements were performed on a DSC 204 F1 Phoenix (Netzsch, Selb,
Germany) in the temperature range from 25 to 150 ◦C in an Ar atmosphere with a flow
rate of 60 mL/min. All experiments were performed using samples weighing at least
2 mg. For automatic processing of measurement results, we used the Proteus Analysis
software (Version 6.1.0) in which the glass-transition temperature value Tg was defined as
an inflection point of the ∆Cp(T) curve, and the melting point value Tm was defined as a
maximum (peak) point. The surface area of the peak bounded by the DSC curve and zero
baseline was assumed to be equal to a change in the melting enthalpy (∆Hm). To determine
the glass transition temperature, we also used the tangent method [14], which was applied
to the left, right, and middle parts of the heat capacity step ∆Cp(T).

The degree of crystallinity of the studied sample was determined using the following
equation:

α =
∆H

∆H100%
(2)

where ∆H is the melting enthalpy of the studied sample; ∆H100% is the melting enthalpy
for the completely crystalline polymer; and ∆H100% = 293 J/g [15].

The structural and morphological characteristics of the graft copolymers were studied
using transmission electron microscopy, scanning electron microscopy, and X-ray micro-
analysis. In the first case, the outer surface of the graft films was used as the object of the
study, which was subjected to etching in high-frequency oxygen plasma in order to reveal
the supramolecular structure. The oxygen pressure in the etching zone was 0.03 mm Hg,
the electron energy was 2–3 eV, the etching time was 15–20 min, the generator power was
100 W, and the frequency was 10 MHz. The morphology of the etched surfaces was exam-
ined via the method of one-step carbon-platinum replicas using a TEM-301 transmission
electron microscope (Amsterdam, The Netherlands) at an accelerating voltage of 80 keV.

In the cases of scanning microscopy and X-ray microanalysis, studies were carried out
on cross-sections of the sulfated graft PE film obtained on an LKB cryo ultramicrotome.
Surface analysis was performed using a JSM-U3 scanning electron microscope (JEOL, Tokyo,
Japan) at an accelerating voltage of 5–7 keV equipped with an EDAX energy dispersive
spectrometer (Hamburg, Germany).

The o-xylene absorption (∆m, %) was determined according to Equation (3):

∆m =
ms − md

md
· 100 (3)

where ms and md are the film weights (in g) of the swollen and dry films, respectively.
The degree of swelling on the surface area (∆S, %) in o-xylene was calculated from the

surface area values of the film in the swollen state (As) and in the dried state (Ad) using
Equation (4):

∆S =
As − Ad

Ad
· 100 (4)
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The self-diffusion coefficients of water in the membranes with different DVB con-
tents were measured for 1H with the pulsed field gradient technique at frequencies of
400.22 MHz. The measurements were carried out on a Bruker AVANCE-III-400 NMR spec-
trometer equipped with a diff60 gradient unit. A pulsed field gradient-stimulated echo
sequence was used. Three 90◦ pulses produced a stimulated spin echo at time 2τ + τ1
(where τ is the time interval between the first and second 90◦ pulses, and τ1 is the interval
between the second and third pulses). The magnetic field gradient pulses of amplitude
g and duration δ were applied after the first and third 90◦ pulses. The gradient strength
varied linearly in 32 steps within a range from 0.1 to 27 T/m. The integrated intensities of
the spectral lines were used to obtain the dependence of the echo signal attenuation on g2

(diffusion decay) [16,17]. The evolution of the spin echo signal can be explained using the
following equation:

A(2τ, τ1, g) = A(2τ, τ1) exp(−γ2g2δ2tdDs) (5)

where γ is the gyromagnetic ratio, ∆ is the interval between the gradient pulses, td = ∆ − δ/3
is the diffusion time, and Ds is the self-diffusion coefficient. A(2τ, τ1, 0) can be expressed
using the equation

A(2τ, τ1, g) =
A(0)

2 exp
(
− 2τ

T2
− τ1

T1

) (6)

where A(0) is the signal intensity after the first radio frequency (RF) pulse; and T1 and T2 are
the spin–lattice and spin–spin relaxation times, respectively. During the measurement of
the echo signal evolution, τ and τ1 were fixed and only the dependence of A on g (diffusion
decay) was analyzed.

The experimental diffusion decays were well approximated using Equation (5) by
2–3 orders of magnitude, and the self-diffusion coefficient measurement error was lower
than 10%.

For NMR measurements, the membrane samples were dried by equilibration with
P2O5 at room temperature after they were placed in a desiccator over water vapor until a
constant weight was reached. Membrane plates 3 mm × 40 mm in size were inserted in a
hermetically sealed NMR tube with an outer diameter of 5 mm.

3. Results

Figure 1 shows the typical dependence of the degree of grafting of PS on time with
a change in the concentration of DVB in the polymerization solution from 0 to 2.5 vol. %.
It can be seen that at low concentrations (up to 0.5 vol. %), the addition of DVB leads
to an increase in the initial rate of grafting polymerization. Upon reaching the degree of
grafting ~70%, the gel effect (Trommsdorff effect) is observed. It should be noted that a
similar increase in the degree of grafting of PS on PE in the presence of DVB was observed
in [12] with direct grafting. In [14], it was also shown that the addition of DVB to St leads
to an increase in the overall polymerization rate and the appearance of the gel effect. In
our opinion, such an effect of DVB on the kinetics of St polymerization is due to the fact
that the addition of DVB leads to the cross-linking of growing PS chains, a decrease in
their translational mobility and, consequently, a decrease in the termination constant. In
addition, an increase in the degree of grafting in the presence of DVB is possible due to the
interaction of unvaccinated growing PS chains formed as a result of the chain transfer to
the monomer and thermal polymerization of styrene with the unreacted double bond of
DVB in the chain of the graft polymer.

The same figure shows that at the concentration of DVB above 0.5 vol. %, the initial
rate of grafting polymerization is reduced. A possible reason for this effect is a decrease
in the diffusion rate of the monomer and Fe2+ ions in the cross-linked network structure
of the macromolecules of the grafted PS. The dependence of the degree of grafting on the
concentration of DVB acquires a pronounced extreme character (Figure 2).
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the grafting solution at a polymerization time of 2 (1) and 4 h (2).

Since the formation of the network limits monomer diffusion in the presence of DVB,
the distribution of the grafted PS over the thickness of the PE film should depend on
the concentration of DVB. This distribution was investigated by comparing the ratio of
the optical densities of the bands at 1492 (stretching vibrations of the C-C bond in the
phenyl ring of PS) and 1475 cm−1 (asymmetric bending vibrations of the C-H bond in
PE) (D1492/D1475) [18] measured in the transmission and multiple attenuated total internal
reflection spectra [18,19]. Indeed, as can be seen in Figure 3, an increase in the concentration
of DVB in the polymerization solution leads to an increase in the D1492/D1475 ratio, which
was measured using the multiple attenuated total internal reflection method; over this ratio,
which was measured using the transmission method, the enrichment of the film surface in
PS occurs. Interestingly, when the degree of grafting reaches ~100%, the concentrations
of the grafted polymer on the surface and in the volume of the film are leveled, which
indicates the course of the grafting process throughout the entire volume of the film in spite
of the formation of network structures.

Figure 4 shows a typical microphotograph of the cross-section film obtained in the
second electrons (marked by dotted vertical lines) when grafted polymerization was carried
out in the presence of DVB. It can be seen that the graft layer differs slightly in contrast
to the central part. The distribution of the characteristic X-ray emission of the Kα sulfur
and carbon lines shows a change in the PS concentration from the film surface layers to the
center. The arrows indicate the defective areas in the grafted layers.
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The micrographs of the surface of grafted samples (Figures 5 and 6) demonstrate the
formation of spherical particles: cross-linked phases of PS, the average size of which varies
in the range from 0.3 to 0.8 µm, and their concentration reaches ~5 vol. %. According
to the local X-ray microanalysis data, the elemental composition of these phases does
not differ from that of the composition of the dispersion medium; therefore, we assume
that these dispersed phases belong to fragments of PS microgels cross-linked with DVB.
These dispersed systems are observed in the films with both low (∆p = 34%) and high
(∆p = 93%) degrees of grafting. Their concentration does not increase with an increasing
degree of grafting. This suggests that DVB is consumed in the early stages of grafting
polymerization. This is consistent with the fact that DVB is a more active monomer during
its copolymerization with styrene [20].
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The distribution of the grafted polymer over the thickness of the PE film can be
determined based on the distribution of sulfur in the film after sulfonation.

The graft polymerization of St on the PE film was carried out in [11,19] under the same
conditions as in the present work. In these works, it is shown that the surface layers of the
films are enriched with PS. A similar pattern of the distribution of PS over the thickness of
the PE film was observed in this work (Figures 4 and 7).
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The figure shows that the surface layers of the films are enriched with sulfur. The
difference between the supramolecular organization of the sulfurized PE-PS-DVB film
and the binary PE-PS system is the increased nonuniformity of the sulfur distribution,
the presence in the volume and on the surface of microphase particles of cross-linked
DVB having clearly fixed interfaces, and the formation of the contact zone of the grafted
layer with the volume of the film of extended defects and cracks, arising as a result of the
formation of internal stresses of thermochemical origin. (Figure 8).

In our opinion, the nonuniformities of the sulfur distribution are the result of structural
and morphological heterogeneities in the organization of the membrane films that occur
during the graft polymerization of the monomer, and the participation of polymerization
products in the formation of spatially cross-linked structures of macromolecules of the
grafted polymer when their fragments lose translational mobility. This induces the microgel
particles to spread and coalesce in their contact zone (Figure 9). Nevertheless, the graft
polymerization process continues, and the final stage leads to a more uniform distribution
of the grafted polymer over the entire thickness of the film (Figures 7b and 10).
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Figure 10. (a) Phase distribution of the grafted PS in the volume of the PE film (obtained in the cross-
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Thus, the graft polymerization of St in the presence of DVB leads to the formation of
hybrid membranes with a complex heterogeneous structure. This is also confirmed by a
thermochemical analysis (Figure 11). Five peaks were detected in the typical DSC curve,
which were highlighted using the multiple peak fit (Gaussian) functions of the OriginPro
2017 program. The peak temperatures and peak surface areas were 58 ◦C (10.3 J/g), 89.9 ◦C
(18.3 J/g), 93.5 ◦C (1.1 J/g), 99.7 ◦C (15 J/g), and 104.5 ◦C (18.8 J/g), respectively. The
total surface area of the crystal phase of PE is 63.64 J/g. The degree of crystallinity of the
PE crystallites in relation to the melting heat of an ideal PE crystal was estimated to be
4 (1), 6.3 (2), 0.37 (3), 5.1 (4), and 7.4% (5), respectively. We identified transition 6 as the
glass-transition temperature of PS, corresponding to 83 ◦C.

Membranes 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

  
(a) (b) 

Figure 10. (a) Phase distribution of the grafted PS in the volume of the PE film (obtained in the cross-
section of the membrane); (b) the phase particle of the cross-linked PS in the PE matrix (Δp = 74%, 
[DVB] = 0.5 vol. %). Dotted line indicates the particles of the PE lamella bonded to the surface. 

Thus, the graft polymerization of St in the presence of DVB leads to the formation of 
hybrid membranes with a complex heterogeneous structure. This is also confirmed by a 
thermochemical analysis (Figure 11). Five peaks were detected in the typical DSC curve, 
which were highlighted using the multiple peak fit (Gaussian) functions of the OriginPro 
2017 program. The peak temperatures and peak surface areas were 58 °C (10.3 J/g), 89.9 
°C (18.3 J/g), 93.5 °C (1.1 J/g), 99.7 °C (15 J/g), and 104.5 °C (18.8 J/g), respectively. The total 
surface area of the crystal phase of PE is 63.64 J/g. The degree of crystallinity of the PE 
crystallites in relation to the melting heat of an ideal PE crystal was estimated to be 4 (1), 
6.3 (2), 0.37 (3), 5.1 (4), and 7.4% (5), respectively. We identified transition 6 as the glass-
transition temperature of PS, corresponding to 83 °C. 

 
Figure 11. DSC curves of grafted PE copolymer with PS (Δp = 74%) obtained in the presence of 2.5 
vol. % DVB. The peak temperatures and peak surface areas were 1—58 °C (10.3 J/g), 2—89.9 °C (18.3 
J/g), 3—93.5 °C (1.1 J/g), 4—99.7 °C (15 J/g), and 5—104.5 °C (18.8 J/g), respectively. The total surface 
area of the crystal phase of PE is 63.64 J/g. The 6 is the glass-transition temperature of PS, corre-
sponding to 83 °C. 

Thus, the dispersion medium is registered: the phases of PE (melting point Tm and 
degree of crystallinity, Figure 11), the phase of grafted PS distributed in the dispersion 
medium (glass-transition temperature Tg), and the fragments of cross-linked phases of 
DVB distributed in both media. In some parts of the PE phase, which probably have an 
increased content of amorphous fragments, the microphase of the cross-linked PS is sur-
rounded by the crystals (lamellae) of PE (Figure 10b). 

The membranes obtained in the presence of DVB due to the formation of a three-
dimensional structure slightly change their linear dimensions when swelling in organic 

Figure 11. DSC curves of grafted PE copolymer with PS (∆p = 74%) obtained in the presence of
2.5 vol. % DVB. The peak temperatures and peak surface areas were 1—58 ◦C (10.3 J/g), 2—89.9 ◦C
(18.3 J/g), 3—93.5 ◦C (1.1 J/g), 4—99.7 ◦C (15 J/g), and 5—104.5 ◦C (18.8 J/g), respectively. The total
surface area of the crystal phase of PE is 63.64 J/g. The 6 is the glass-transition temperature of PS,
corresponding to 83 ◦C.

Thus, the dispersion medium is registered: the phases of PE (melting point Tm and
degree of crystallinity, Figure 11), the phase of grafted PS distributed in the dispersion
medium (glass-transition temperature Tg), and the fragments of cross-linked phases of DVB
distributed in both media. In some parts of the PE phase, which probably have an increased
content of amorphous fragments, the microphase of the cross-linked PS is surrounded by
the crystals (lamellae) of PE (Figure 10b).

The membranes obtained in the presence of DVB due to the formation of a three-
dimensional structure slightly change their linear dimensions when swelling in organic
solvents. However, the solvent sorption does not decrease; in fact, it slightly increases
(Figure 12). Apparently, this is due to the formation of a cryptoheterogenic porous structure
during grafting. The pore-forming agents are methanol and St. In the films obtained at
a high concentration of DVB in the solution of graft polymerization when swelling in
o-xylene, the pores are opened and filled with this solvent. They reach a size of several
millimeters and are visually distinguishable. Figure 13 shows that the swelling increases
both with an increase in the degree of grafting of PS and the content of DVB in the solution
of graft polymerization.
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Figure 13. Dependence of the change in the PE film weight during swelling in o-xylene on the degree
of grafting of PS at various concentrations of DVB in the grafting solution. [DVB], vol. %: 1—0; 2—0.5;
and 3—2.5. The swelling time was 3 days.

Thus, the addition of DVB to the grafting solution allows directional control over a
wide range of the distribution of the grafted PS over the thickness of the PE film and the
morphology of the modified film.

The self-diffusion coefficients of water measured by the pulsed field gradient technique
in the PE film with grafted PS with different DVB contents are shown in Table 1. As shown in
our previous papers, water molecules are situated in two parts with different concentrations
of sulfonate groups [21,22]. There are two types of water molecules in the films with low
DVB contents (Table 1). As shown in Table 1, at DVB contents higher than 1 vol. %, only
one type of water molecule is observed in the films. The self-diffusion coefficient of water
tends to decrease. The water content λ is one order of magnitude lower than that of an
uncross-linked film.
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Table 1. Effect of the DVB concentration on the water content and self-diffusion coefficients of water
in the PE film with grafted PS. D1 and D2 are the partial self-diffusion coefficients; p1 and p2 are the
relative parts (populations) of water molecules characterized by self-diffusion coefficients D1 and D2;
∆p is the degree of grafting (%); λ is the number of water molecules per sulfo group.

[DVB], vol. %
Degree of

Grafting (∆p), %
Water Content
λ, [H2O/SO3−]

Self-Diffusion Coefficients D1 and D2 and
Water Populations p1 and p2

D1, m2/s p1 D2, m2/s p2

0 142 29.1 6.3 × 10−10 0.62 9.0 × 10−11 0.38

0.05 91 26 6.1 × 10−10 0.85 9.6 × 10−11 0.15

1 148 2.6 - - 6.0 × 10−11 -

1 93 3.1 - - 3.6 × 10−12 -

2.5 89 3.2 - - 2.0 × 10−11 -

4. Conclusions

The effect of divinylbenzene (DVB) on the kinetics of the post-radiation chemical
graft polymerization of styrene (St) on the polyethylene (PE) film and its structural and
morphological features was investigated. IR transmission, multiply attenuated total in-
ternal reflection spectroscopy, X-ray microanalysis, transmission and scanning electron
microscopy, DSC, and pulsed field gradient NMR technique were applied. The graft poly-
merization of St in the presence of DVB leads to the formation of hybrid membranes with
a complex heterogeneous structure. In the graft PS phase, microphase particles of cross-
linked DVB with fixed interfaces are formed. Extended defects and cracks are formed in
the contact zone of the phases. The effect of DVB on the morphology of PE films with graft
PS and sulfocationite membranes obtained via the sulfonation of these films is shown. The
self-diffusion coefficient of water decreases with increasing DVB content. The membrane
humidity is one order of magnitude lower in the films cross-linked with DVB.
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