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Abstract: The aim of this study was to evaluate the metabolic profiles of yak (Bos grunniens) serum,
feces, and urine by using proton nuclear magnetic resonance (1H-NMR), to serve as a reference guide
for the healthy yak milieu. A total of 108 metabolites, giving information about diet, protein digestion,
and energy generation or gut-microbial co-metabolism, were assigned across the three biological
matrices. A core metabolome of 15 metabolites was ubiquitous across all biofluids. Lactate, acetate,
and creatinine could be regarded as the most abundant metabolites in the metabolome of serum,
feces, and urine, respectively. Metabolic pathway analysis showed that the molecules identified could
be able to give thorough information about four main metabolic pathways, namely valine, leucine,
and isoleucine biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis; glutamine and
glutamate metabolism; and taurine and hypotaurine metabolism.
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1. Introduction

Metabolomics is a powerful approach to a biological system that aims to measure its low weight
metabolites (<900 Da). When untargeted, this characterization of the metabolic phenotype provides
holistic information on the system under investigation because it allows the study of its biochemical
responses to intrinsic (genetics, protein expression) or environmental (diet, gut microbiota) stimuli [1].

1H-NMR spectroscopy is one of the main platforms for metabolomics because the very simple
sample preparation and highly reproducible molecule quantification counterbalance a sensitivity
lower than the one granted by other platforms such as mass spectrometry. For this reason, 1H-NMR
spectroscopy has been employed in domestic animals to obtain the metabolite profiles of several
biofluids, among which urine [2,3], serum [4–6], tracheal wash, and exhaled breath condensate [7].

The yak (Bos grunniens) is regarded as a very peculiar species of ruminant because it represents
the main sustaining food source for the people who live in the region around the Himalayas, with
an altitude ranging from 2500 to 5500 m with no frost-free periods, and mostly above the tree line.
The genetic adaptive evolution of the yak to the harsh conditions has led to larger heart and lungs,
and a higher erythrocyte count, compared to the cattle (Bos taurus) [8], in addition to a more efficient
energy harvesting and nitrogen utilization [9,10]. Therefore, the yak is considered an ideal model
animal for studying adaptation mechanisms to harsh conditions represented by low temperatures and
a paucity of oxygen and energy sources. Despite these peculiarities, the physiology of yak has rarely
been studied through an ”omics” approach. One reason for such a paucity of works may be the limited
accessibility of the geographical areas where the yaks are bred, generally according to traditional
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practices. A few studies can be found focusing on yak milk [11–13] and its genome [8,14,15], with only
one study that described the characteristics of yak meat [16]. The objective of the present study was
to reduce this gap of information by characterizing, for the first time, the metabolome of yak serum,
feces, and urine using 1H-NMR. This study is meant as a reference guide for researchers wishing to
apply a metabolomics approach to the yak. For this reason, in compliance with the guidelines outlined
by the consortium COSMOS (Coordination of Standards in Metabolomics; http://cosmos-fp7.eu/),
the data have been made available on the open platform MetaboLights (study identifier: MTBLS841).

2. Materials and Methods

2.1. Sampling of Biofluids

Serum, feces, and urine sampling was carried out in a public abattoir located in the pastoral area
of Litang County (altitude 4000 m) at the end of August. This is the time of the year when yaks are
traditionally slaughtered for meat, due to their optimal health conditions and highest weight.

Five specimens of male Jiulong yak (approximately three years of age, receiving no
supplementation) were randomly selected for the current experiment. The yaks were transported to
the abattoir (without modern slaughtering equipment), held in lairage for 24 h (water supplementation
until 3 h before slaughtering), and then sacrificed according to the local traditional manual procedures
of yak slaughter [17].

Upon slaughtering, 10 mL of blood was collected using disposable syringes (10 mL, without
clotting activator, Jiangyin Fanmei Medical Device Co., Ltd., Jiangyin, Jiangsu, China) from the
abdominal vein and immediately transferred to sterile conical tubes. Blood samples were left at room
temperature for 45 min to allow coagulation without centrifugation, and subsequently, the serum was
separated from the blood clot. Urine samples were collected by cystocentesis upon direct bladder
visualization using a sterile syringe while feces were collected as the animals defecated during the
slaughtering process. All the above-mentioned samples were transported in dry ice and stored at
−80 ◦C until analysis.

2.2. Metabolomics Analysis of Biofluids

We created an NMR analysis solution with 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium
salt (TSP) 10 mM in D2O, set at pH 7.00 ± 0.02 by means of 1 M phosphate buffer, containing also
10 µL of NaN3 2 mM. TSP was employed as an NMR chemical-shift reference, while NaN3 avoided
microbial proliferation.

Serum samples were prepared for 1H-NMR by thawing and centrifuging 1 mL of each sample
for 15 min at 18,630 g and 4◦C. 500 µL of supernatant was added to 100 µL of NMR analysis solution.
Urine samples were prepared for 1H-NMR by means of thawing and centrifuging them for 15 min
at 18,630 g at 4◦C. An amount of supernatant equal to 350 µL was added to 350 µL of bi-distilled
water and to 200 µL of NMR analysis solution. Fecal samples were prepared for 1H-NMR analysis by
vortex mixing for 5 min 80 mg of stool with 1 mL of deionized water. The obtained mixes were then
centrifuged for 15 min at 18,630 g and 4 ◦C, and 700 µL of supernatant was added to 200 µL of NMR
analysis solution. Finally, each of the obtained samples was centrifuged again at the above conditions
just before analysis.

1H-NMR spectra were recorded at 298 K with an AVANCE III spectrometer (Bruker, Milan,
Italy) operating at a frequency of 600.13 MHz, equipped with the software Topspin 3.5. Following
Zhu et al. [3]. The signals from broad resonances originating from large molecules were suppressed
by a CPMG (Carr. Purcell. Meiboom. Gill) filter composed of 400 echoes with a τ of 400 µs and a
180◦ pulse of 24 µs, for a total filter of 330 ms. The water residual signal was suppressed by means
of presaturation. This was done by employing the cpmgpr1d sequence, part of the standard pulse
sequence library. Each spectrum was acquired by summing up 256 transients using 32 K data points
over a 7184 Hz spectral window, with an acquisition time of 2.28 s.

http://cosmos-fp7.eu/
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Differences in water and fibers content among samples were taken into consideration by
probabilistic quotient normalization [18], more reliable than the once more common normalization on
creatinine. Spectra phase was manually adjusted in Topspin, while the subsequent adjustments were
performed in R computational language by means of script developed in-house [19]. After the removal
of the residual water signal, 1H-NMR spectra were baseline-corrected by means of peak detection,
according to the “rolling ball” principle [20], implemented in the baseline R package [21]. The signals
were assigned by comparing their chemical shift and multiplicity with Chenomx software library
(Chenomx Inc., Edmonton, Alberta, Canada, ver 8.3), as detailed in Figures S1–S36.

In order to apply NMR as a quantitative technique [2], the recycle delay was set to 5 s by
considering the relaxation time of the protons under investigation. Moreover, while TSP could be
used as a reliable internal standard for urine and feces [22], the molecules of the first serum sample
analyzed were quantified by means of an external standard, by taking advantage of the principle of
reciprocity [23].

2.3. Pathway Analysis

Pathway analysis was performed using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca) [24],
which organizes the information about biochemical pathways described in KEGG database (https:
//www.genome.jp). In detail, pathway analysis used high-quality KEGG metabolic pathways as the
backend knowledgebase. The Pathway Analysis module combined results from powerful pathway
enrichment analysis with pathway topology analysis to identify the most relevant pathways involved
in the conditions under study.

3. Results

3.1. 1H-NMR Spectra of Yak Serum, Feces, and Urine

In the current study, we were able to identify and quantify 109 molecules across yak serum,
feces, and urine, giving information about diet, protein digestion, energy generation, or gut-microbial
co-metabolism. For readability, Tables 1 and 2 show the molecules that could be identified in all the
biofluids, while the complete list is reported in Table S1. Typical 1H-NMR spectra of serum, feces,
and urine are reported in Figures 1–3, respectively.

Table 1. Metabolites identified by 1H-NMR in common among yak serum, feces, and urine.

Molecule ppm * Functional Group Multiplicity ** Source [25] ***

3-Hydroxybutyrate 1.1863 CH3 d E
Acetate 1.9071 CH3 s P
Alanine 1.4675 CH3 d P
Creatine 3.0222 CH2 s P

Dimethyl sulfone 3.1391 CH3 s D, M
Ethanol 1.1699 CH3 t E, M
Formate 8.4446 CH s E
Glucose 3.2233 CH-2 dd D, E
Glycine 3.5533 CH2 s P

Isoleucine 1.0020 CH3-9 d P
Lactate 4.1059 CH dd E

Methanol 3.3481 CH3 s E
Succinate 2.3933 CH2 s P, E
Tyrosine 7.1776 CH-3 d P

Valine 1.0206 CH3-7 d P

* Chemical shift of the signal employed for quantification; ** Splitting pattern of the signal (s = singlet; d = doublet;
t = triplet; dd = doublet of doublets); *** Main source of the molecules (D = dietary metabolites, P = protein and
amino acid metabolism, E = energy metabolism, M = gut-microbial co-metabolism).

https://www.metaboanalyst.ca
https://www.genome.jp
https://www.genome.jp
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Table 2. Concentration (median and interquartile range) of metabolites identified by 1H-NMR in
common among yak serum, feces, and urine

Molecules Serum (mmol/L) Feces (mmol/g) Urine (mmol/L)

3-Hydroxybutyrate 1.40 × 10−1 (3.56 × 10−2) 1.52 × 10−5 (1.30 × 10−5) 1.28 × 10−3 (7.54 × 10−4)
Acetate 1.40 × 10−1 (1.59 × 10−1) 3.66 × 10−2 (1.06 × 10−2) 5.66 × 10−4 (4.03 × 10−4)
Alanine 2.78 × 10−1 (1.27 × 10−2) 5.16 × 10−4 (3.25 × 10−4) 2.14 × 10−4 (4.23 × 10−5)
Creatine 2.01 × 10−1 (2.12 × 10−1) 1.91 × 10−5 (1.88 × 10−5) 4.00 × 10−2 (1.80 × 10−2)

Dimethyl sulfone 1.23 × 10−2 (4.15 × 10−3) 1.29 × 10−5 (1.07 × 10−5) 6.15 × 10−4 (1.40 × 10−4)
Ethanol 4.69 × 10−3 (2.74 × 10−3) 7.15 × 10−5 (2.98 × 10−5) 2.62 × 10−4 (3.81 × 10−5)
Formate 1.78 × 10−2 (5.69 × 10−3) 1.17 × 10−4 (2.43 × 10−5) 2.50 × 10−4 (1.70 × 10−4)
Glucose 1.37 (5.97 × 10−1) 3.51 × 10−4 (5.47 × 10−5) 8.33 × 10−4 (4.09 × 10−4)
Glycine 5.11 × 10−1 (3.91 × 10−1) 1.77 × 10−4 (7.46 × 10−6) 8.52 × 10−4 (5.64 × 10−4)

Isoleucine 4.35 × 10−2 (1.62 × 10−2) 6.20 × 10−5 (1.39 × 10−4) 1.33 × 10−4 (7.24 × 10−5)
Lactate 7.25 (5.46 × 10−1) 5.57 × 10−5 (5.13 × 10−5) 9.37 × 10−4 (1.87 × 10−4)

Methanol 7.14 × 10−3 (1.78 × 10−3) 9.12 × 10−5 (4.36 × 10−5) 3.95 × 10−5 (2.32 × 10−5)
Succinate 2.01 × 10−1 (4.09 × 10−2) 1.12 × 10−4 (4.47 × 10−5) 9.15 × 10−5 (7.46 × 10−5)
Tyrosine 2.53 × 10−2 (1.22 × 10−2) 1.16 × 10−4 (6.81 × 10−5) 1.23 × 10−3 (2.26 × 10−5)

Valine 1.48 × 10−1 (1.14 × 10−2) 1.91 × 10−4 (5.42 × 10−5) 1.22 × 10−4 (3.45 × 10−5)
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Figure 3. 1H-NMR signals from yak urine, representative of those registered in the present work.
The name of each molecule appears over the signal used for its quantification. To ease the reader’s visual
inspection, for each portion the spectrum with a convenient signal-to-noise ratio has been selected.

By means of 1H-NMR we were able to identify and quantify 56 molecules in serum, 49 in feces,
and 68 in urine—nearly a twofold increase in comparison to previous works on cattle [4,26]. The area
of the signals of the molecules overall assigned in serum, feces, and urine accounted on average for
85.04%, 87.04%, and 61.40% of the total spectral area, respectively. Among the molecules quantified,
15 were in common among the three biofluids, as shown in Figure 4.
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3.2. Molecule Distribution by Class

As shown in Figure 5, in serum and feces most of the molecules that were detected belong
to the class of organic acids and their derivatives (47.09% and 86.92%, respectively), while amino
acids, peptides, and analogs were mostly represented in the urine. As reported in detail in the
supplementary material, lactate was the most concentrated molecule detected in serum (41.83%),
followed by glucose (27.95%). In feces, the most concentrated molecule detected was acetate (49.04%),
followed by propionate (17.58%) and butyrate (8.55%). In urine, the most concentrated substances
detected were creatinine (28.69%), N-phenylacetylglycine (28.50%), and hippurate (13.28%).
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3.3. Pathway Analysis

We wanted to understand which metabolic pathway could be described in sufficient detail by
the molecules identified in the three biofluids studied. For this purpose, a pathway analysis was
performed by means of the MetaboAnalyst platform on each biofluid, as detailed in Figure 6. Overall,
three pathways were described with an impact as high as 1, namely valine, leucine, and isoleucine
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biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis; and glutamine and glutamate
metabolism. In addition, the first two were described in high detail throughout each of the biofluids
studied. Five more pathways were described with an impact higher than 0.5. These pathways included
alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism; synthesis
and degradation of ketone bodies; D-glutamine, glyoxylate, and dicarboxylate metabolism; and taurine
and hypotaurine metabolism.
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4. Discussion

4.1. Yak Serum Metabolome

To our knowledge, the metabolome of yak serum has never been described before in literature.
The metabolome of serum has been studied before in cattle, a closely related species, but only with a
focus on the biomarkers of specific diseases or viruses, such as milk fever [5], footrot [6], Mycobacterium
tuberculosis [4], and Mycobacterium avium subsp. paratuberculosis [28].

Lactate is the most abundant low-weight metabolite we were able to observe in the yak serum.
In cattle, its presence has been mainly attributed to ruminal microflora [29]. Its presence in yak serum
plays a special role, because its high concentration, together with pyruvate, is a direct consequence
of the adaptation to low oxygen levels connected to altitude [30–32]. In fact, hypoxia prompts a shift
towards anaerobic energy generation through an active withdrawal of pyruvate from the TCA cycle
towards lactate production [33–35]. Another explanation for the presence of lactate in the serum
samples is that the blood was collected after the slaughter of the animal, and so lactate could have been
remarkably concentrated due to stress. Finally, the sample preparation did not include a centrifugation
step, so the lactate may have also come from the erythrocytes that were damaged during freezing
and thawing.

Glucose was the second most abundant molecule we quantified in yak serum. Experiments on
rats suggest that this molecule could offer another direct way to follow the consequences of altitude
on yak metabolism. Glucose utilization has been found to increase with altitude, because alternative
energy generation pathways, such as those involving proteins, can be insufficient for the maintenance
of glycemia, especially after exercise [31].
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4.2. Yak Feces Metabolome

The metabolic composition of fecal extracts provides a window for elucidating the complex
metabolic interplay between mammals and their intestinal ecosystem. Moreover, the metabolite profile
can yield information on a range of gut conditions [36]. To the best of the authors’ knowledge, feces
from cattle have been observed from the microbiome point of view [37], but never from a metabolomics
perspective. Interestingly, considering the total concentration of the molecules detected in the feces
equal to 100, 75.17% was represented by the short chain fatty acids (SCFAs) acetate, propionate,
and butyrate. SCFAs are major products of the microbial fermentation of fiber polysaccharides in
the rumen, which may play an important role in the efficient harvesting of energy from plants [38].
This efficiency seems to be mediated by ruminal microbiome selection, as recently observed by
Zhang et al. [37], who compared animals that were genetically adapted and non-adapted to high
altitudes. Notably, Zhang et al. also found that the rumen microbiome of high-altitude ruminants
showed a significant up-regulation of amino acids metabolism. This finding could be coherent with
our pathway analysis, where the most important pathways described by the yak feces metabolome
indeed entail amino acid metabolism.

4.3. Yak Urine Metabolome

As plasma sampling is invasive by nature, and fecal extracts inherently vary in composition with
the relative abundance of microbial–mammalian metabolites, urine is regarded as the most appropriate
biofluid for the purposes of metabonomic analysis [25].

The most abundant metabolite we quantified in yak urine was creatinine. This molecule is
synthesized in connection to the absorption of creatine phosphate by the muscles, then released to the
serum, and cleared by kidneys. In cattle, this molecule has been found to be proportional to muscle
activity, with specific reference to heart and respiration rates [39], but this is higher in yak than in
cattle [8].

The second and third most abundant metabolites we quantified in yak urine were hippurate
and N-phenylacetylglycine, which are regarded as urinary metabolomic biomarkers of the response
to hypobaric hypoxia, according to Koundal et al. [40]. Koundal et al. built a mouse model to
illustrate how mice urinary metabolomics were changing in response to hypobaric hypoxia. Taurine
metabolism and TCA were highlighted as important pathways that might have contributed to
hypobaric hypoxia-induced pathophysiology, which is in accordance with our findings. Hippurate
and N-phenylacetylglycine are sorted as metabolites relating to gut microflora metabolism and they
also demonstrated that lowered urinary hippurate and N-phenylacetylglycine indicate decreased
gut microflora.

In ruminants, the purine derivative allantoin is regarded as a biomarker of nitrogen clearance,
which is generated from uric acid by uricase. In response to the harsh forage environment, yaks expel
through urine a lower amount of purine derivatives [9], with mechanisms to recycle nitrogen, which
are probably linked to the reduced degradation of nucleic acids by rumen microbiota [41].

5. Conclusions

To the best of our knowledge, this is the first work where 1H-NMR has been employed to study
yak biofluids from a metabolomics perspective. Due to the small number of samples investigated,
the results presented here should be regarded as preliminary. Nevertheless, we were able to
characterize as many as 56, 49, and 68 metabolites in serum, feces, and urine, respectively, which is
almost two times more than previously reported for cattle. The most concentrated metabolites in
the three biofluids were found related to some of the biological reasons for the adaptation of yak to
the ecological niche represented by extreme altitudes. Future research focusing on the comparison
between wild and captive yaks could be useful to even better characterize the metabolome of the yak.
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