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Abstract: Tomato is a major crop suffering substantial yield losses from diseases, as fruit decay at a
postharvest level can claim up to 50% of the total production worldwide. Due to the environmental
risks of fungicides, there is an increasing interest in exploiting plant immunity through priming, which
is an adaptive strategy that improves plant defensive capacity by stimulating induced mechanisms.
Broad-spectrum defence priming can be triggered by the compound ß-aminobutyric acid (BABA). In
tomato plants, BABA induces resistance against various fungal and bacterial pathogens and different
methods of application result in durable protection. Here, we demonstrate that the treatment of tomato
plants with BABA resulted in a durable induced resistance in tomato fruit against Botrytis cinerea,
Phytophthora infestans and Pseudomonas syringae. Targeted and untargeted metabolomics were used to
investigate the metabolic regulations that underpin the priming of tomato fruit against pathogenic
microbes that present different infection strategies. Metabolomic analyses revealed major changes
after BABA treatment and after inoculation. Remarkably, primed responses seemed specific to the
type of infection, rather than showing a common fingerprint of BABA-induced priming. Furthermore,
top-down modelling from the detected metabolic markers allowed for the accurate prediction of
the measured resistance to fruit pathogens and demonstrated that soluble sugars are essential to
predict resistance to fruit pathogens. Altogether, our results demonstrate that metabolomics is
particularly insightful for a better understanding of defence priming in fruit. Further experiments are
underway in order to identify key metabolites that mediate broad-spectrum BABA-induced priming
in tomato fruit.

Keywords: tomato; metabolomics; biochemical phenotyping; priming; BABA; Botrytis cinerea;
Phytophthora infestans; Pseudomonas syringae

1. Introduction

The increase in world food demand and the indiscriminate use of chemical fertilisation highlight
the need to adopt sustainable crop production strategies. Given the major threat of phytopathogenic
microbes to food production [1] and ecosystem stability worldwide [2], novel practices are needed
to combat these threats. Tomatoes are a highly consumed fruit that represent the eleventh largest
commodity, with nearly 183 million tons produced in 4 million hectares in 2017 [3]. Crop yields are
strongly affected by filamentous and bacterial pathogens, including the fungus Botrytis cinerea, the
oomycete Phytophthora infestans and the bacterium Pseudomonas syringae. These pathogens can claim
the complete loss of the crop within days of exposure [4–6]. Currently, strategies of control against
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these biological threats are based on the use of chemical pesticides applied at a pre-harvest stage.
However, up to 50% of tomato losses occur at a post-harvest stage [7] due to, among many reasons,
the inability to use chemicals at this stage due to residue toxicity. Therefore, new methods of disease
control are needed in order to control infections by pathogenic microbes. Exploiting the plant immune
system can represent an effective strategy to provide sustainable disease protection [8,9].

Plants are able to defend themselves against pathogens thanks to their innate immune system [10].
In addition, plants are able to sensitise their immune system to protect themselves against biotic
threats. This is known as the priming of defence, which is commonly referred as the adaptive part
of the plant immune system [11]. Priming occurs after the perception of stimuli that lead to an
enhanced responsiveness of defence mechanisms upon subsequent attack [12]. Among stimuli, the
chemical agent β-aminobutyric acid (BABA) has been widely studied for its capacity to result in
broad-spectrum-induced resistance (IR) in a broad range of plant species [13]. BABA is a non-protein
amino acid that has been demonstrated to be a plant product [14]. The work done in the model plant
Arabidopsis (A.) thaliana revealed that this outstanding performance is due to the priming activity
of multiple signalling pathways [13]. BABA primes salicylic acid (SA)-dependent defences and the
deposition of callose, which result in effective protection against biotrophic and necrotrophic pathogens,
respectively [15,16]. Importantly, it has been reported that, in many plant species, treatments with
BABA result in a stress phenotype that manifests as changes in plant development (e.g., growth,
yield, seed production) [17–19]. The discovery of the molecular receptor of BABA in A. thaliana sheds
light into the reasons behind the stress response associated with this chemical: BABA binds to an
aspartyl-tRNA synthetase and blocks the enzyme, consequently triggering the accumulation of its
canonical substrate, uncharged tRNA, which leads to the activation of the stress response associated
with amino acid imbalance in the plant [20]. Moreover, high concentrations of BABA or in specific plant
species such as potatoes, can also lead to stress, as the chemical directly activates defence mechanisms,
which is a costly trade-off in terms of energy resources to the plant [19,21].

In the tomato system, BABA is known to be able to induce resistance against at least 10 different
pests and pathogens, including B. cinerea, P. infestans and P. syringae [13]. Similarly to what has been
described in A. thaliana, priming of SA-dependent mechanisms has been reported [13]. However, it
is likely that further priming mechanisms are responsible for its capacity to induce broad-spectrum
resistance. Moreover, studies have demonstrated that priming of BABA is long-lasting [22]. For
instance, it has been reported that, after the treatment of tomato seedlings, BABA-IR against B. cinerea
is maintained for weeks in leaves [18]. Moreover, analysis of the resistance phenotypes in tomato fruit
demonstrated that BABA-IR reaches the fruiting stages, as tomatoes from plants that had been treated
with BABA at the seedling stage were more resistant to B. cinerea than the control [23].

Treatments of plants with BABA did not impact yield or fruit size but resulted in delayed fruit
production and ripening [23]. In fruit, durable induced resistance has been linked to the accumulation
of specific metabolites. For example, it was reported that, after treatment of seedlings with BABA, there
was an accumulation of metabolites associated with alkaloid, terpenoid or jasmonate pathways [23]. It
was therefore speculated that these metabolites could be responsible for the enhanced resistance, and
therefore could mark the priming fingerprint in tomato fruit [24]. Importantly, however, the metabolites
responsible for expression of priming of defence mechanisms after infection still remain unknown.
Here, we aimed to determine the metabolic shifts that underpin the BABA priming of immune
responses against pathogens of a different nature that infect fruit, including necrotrophic and biotrophic
microbes. A combination of targeted biochemical phenotyping for major plant compounds involved in
central metabolism and untargeted metabolomics could unveil discriminant metabolic biomarkers that
respond to BABA priming and inoculations. To the best of our knowledge, this is the first metabolomic
study with multiple fruit pathosystems in relation to the priming of immune responses.



Metabolites 2020, 10, 96 3 of 19

2. Results

2.1. Effect of BABA on Broad-Spectrum Resistance in Fruit

We determined whether the treatment of tomato plants with BABA resulted in a durable induced
resistance in tomato fruit against the fungal necrotrophic pathogen B. cinerea (Bot), the biotrophic
oomycete P. infestans (Phy) and the hemibiotrophic bacteria P. syringae pv. tomato (Pst). Box-plots
showing sample datapoints and mean of the scored symptoms (n = 11) revealed that BABA-treated
plants produced fruit that were statistically more resistant to Bot, Phy and Pst (P < 0.01) than the
controls (Figure 1). This indicates that BABA is able to induce resistance in tomato plants for a durable
fruit protection against pathogens that have different infection strategies.
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We investigated whether the treatment of tomato seedlings with BABA could impact fruit 
development and yield. As described previously [23], no differences were found in fruit size (Figure 
2A), but delayed fruit production (Figure 2B) and fruit ripening (Figure 2C,D) were reported. However, 
it was observed that, at 13 weeks of growth, the proportion of green fruit was statistically significantly 
higher in BABA-treated plants (40%) compared to control plants (33%) (Figure 2D), indicating that fruit 
production did not slowdown in BABA-treated plants after ripening processes had begun (Figure 2D). 
This might suggest a positive trade-off for BABA treatment on fruit development. 

Figure 1. ß-aminobutyric acid (BABA) primes tomato fruit for a durable disease resistance against
three different pathogenic microbes. (A) photographs showing tomato fruit 2 days after infection with
Botrytis cinerea (Bot, left), Phytophthora infestans (Phy, middle) or Pseudomonas syringae pv. tomato (Pst,
right). (B) box-plots of disease symptoms from fruit that originated from plants treated with water or
BABA (500 µM) then inoculated with water as a mock control or with Bot (left), Phy (middle) and Pst
(right). Symptoms were scored 2 days after inoculation from 11 biologically replicated fruit (n = 11).
Asterisks indicate statistically significant differences between water- and BABA-treated plants (t-test, P
< 0.01).

2.2. Effect of BABA on Fruit Yield and Development

We investigated whether the treatment of tomato seedlings with BABA could impact fruit
development and yield. As described previously [23], no differences were found in fruit size
(Figure 2A), but delayed fruit production (Figure 2B) and fruit ripening (Figure 2C,D) were reported.
However, it was observed that, at 13 weeks of growth, the proportion of green fruit was statistically
significantly higher in BABA-treated plants (40%) compared to control plants (33%) (Figure 2D),
indicating that fruit production did not slowdown in BABA-treated plants after ripening processes had
begun (Figure 2D). This might suggest a positive trade-off for BABA treatment on fruit development.
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Figure 2. Effect of BABA on fruit yield and development. (A) fruit size (cm) from plants treated with 
water (blue) or 500 µM BABA (yellow). NS: not statistically significant (t-test, P > 0.05). (B) number of 
green fruit produced from water (blue)- or BABA (yellow)-treated plants after weeks of growth. 
Asterisks indicate statistically significant differences (t-test, P > 0.05). (C) number of ripped fruit 
produced from water (blue)- or BABA (yellow)-treated plants after weeks of growth. Asterisks indicate 
statistically significant differences (t-test, P < 0.05). (D) Proportion of fruit at different stages of fruit 
ripening in control and BABA-treated plants, expressed as percentage of occurrence per treatment at 
different weeks of growth. Asterisks indicate statistically significant differences between distributions at 
specific timepoints (Chi-square test, P < 0.05). 
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fruit metabolism from ethanol extracts of freeze-dried tomato pericarps (n = 4) using i) targeted 
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untargeted metabolomics of semi-polar metabolites, including specialised compounds, via ultra-high-
performance liquid chromatography coupled to electrospray ionisation orbitrap high-resolution mass 
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plants were used for pathoassays with B. cinerea (Bot), P. infestans (Phy) and P. syringae (Pst), respectively. 
Unbiased processing of LCMS data, followed by filtering of the most reliable variables, generated 6887 
metabolomic features (see Materials and Methods). A global overview of metabolic profiles was 
visualised by an unsupervised multivariate statistical method, Principal Component Analysis (PCA), 
for all combinations of priming and pathosystems (Figure 3). 

Figure 2. Effect of BABA on fruit yield and development. (A) fruit size (cm) from plants treated with
water (blue) or 500 µM BABA (yellow). NS: not statistically significant (t-test, P > 0.05). (B) number
of green fruit produced from water (blue)- or BABA (yellow)-treated plants after weeks of growth.
Asterisks indicate statistically significant differences (t-test, P > 0.05). (C) number of ripped fruit
produced from water (blue)- or BABA (yellow)-treated plants after weeks of growth. Asterisks indicate
statistically significant differences (t-test, P < 0.05). (D) Proportion of fruit at different stages of fruit
ripening in control and BABA-treated plants, expressed as percentage of occurrence per treatment at
different weeks of growth. Asterisks indicate statistically significant differences between distributions
at specific timepoints (Chi-square test, P < 0.05).

2.3. Global Metabolomics after BABA Treatment and After Inoculation

In order to substantiate the disease resistance after BABA treatment (Figure 1), we investigated fruit
metabolism from ethanol extracts of freeze-dried tomato pericarps (n = 4) using i) targeted biochemical
profiling of several major compounds involved in the central metabolism [25,26], and ii) untargeted
metabolomics of semi-polar metabolites, including specialised compounds, via ultra-high-performance
liquid chromatography coupled to electrospray ionisation orbitrap high-resolution mass spectrometry
(thereafter referred to as LCMS). For this, the first, second and third fruit developed in the plants
were used for pathoassays with B. cinerea (Bot), P. infestans (Phy) and P. syringae (Pst), respectively.
Unbiased processing of LCMS data, followed by filtering of the most reliable variables, generated
6887 metabolomic features (see Materials and Methods). A global overview of metabolic profiles was
visualised by an unsupervised multivariate statistical method, Principal Component Analysis (PCA),
for all combinations of priming and pathosystems (Figure 3).
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Figure 3. Global metabolomic changes after BABA treatment and after pathogen inoculation. Principle
component analysis (PCA) score plots (n = 4) of 6887 LCMS-based metabolomics features (A) and 11
major compounds analysed by targeted biochemical phenotyping (B). Maximal variance explained by
each PC is given in brackets.

Firstly, for the 6887 metabolomic signals (Figure 3A), PCA explained 35% of the maximal variance
of the dataset and resulted in a clear differentiation of the water and BABA treatments, thus suggesting
a greater impact on metabolomic profiles for direct BABA application as compared to other conditions.
This was confirmed by a univariate statistical method through a two-factor ANOVA (P < 0.05), which
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quantitatively resulted in more statistically significant markers for the BABA factor (3052; 44%) than
for the inoculation factor (2309; 33%) or the interaction (401; 6%) (Table 1).

Table 1. Univariate statistical analysis of the metabolomic features and major compounds.

Two factors ANOVA
(P < 0.05)

BABA
(Water vs. BABA)

Inoculation
(Mock vs. Bot/Phy/Pst) BABA × Inoculation

Metabolomic
features Total 6887 3052 2309 401

Major compounds Total 11 0 4 0

Secondly, we tested 10 major compounds involved in central metabolism (sucrose, fructose,
glucose, starch, fructose-6-P, glucose-6-P, glutamate, malate, fumarate and total proteins), as well
as total polyphenols. PCA explained 83% of the maximal variance in the dataset and resulted in a
separation of fruit by developmental characteristics (i.e., the first and second fruit versus the third fruit)
rather than by pathosystems (Figure 3B). Hence, this multivariate differentiation indicates that the
profiles of primary metabolites mostly respond to the developmental stage of the fruit, which supports
the idea that central metabolism is tuned to fruit growth [27–29]. Complementarily, two-factor ANOVA
(P < 0.05) only generated significant markers for the inoculation factor (4; 36%), including sucrose,
fructose, glutamate and fumarate (Table 1 and Figure S1). Interestingly, such markers dropped upon
Bot and Phy infections, while they were not drastically affected by Pst infection (Figure S1). Besides,
fructose pools remained low across all treatments within the Pst pathoassay (i.e., third fruit). Altogether,
this indicates that fruit infection affects the pools of central metabolites and those changes depend on
the pathosystem.

Furthermore, a partial segregation of pathogen inoculations was observed on the PCA score plots
obtained for each pathosystem from a dataset combining LCMS and targeted analyses (Figure 4). This
was further exemplified by a supervised Partial Least Square Discriminant Analysis (PLS-DA) allowing
a better differentiation of pathosystems and priming treatments (Figure S2). Two-factor ANOVA
(P < 0.05) for each pathosystem not only confirmed that the BABA factor quantitatively outweighed the
inoculation factor and the interaction, but also showed that all these factors were substantial (Table 2).
Hence, this indicates that microbial challenges elicit distinct metabolic profiles. Overall, these results
reveal metabolic shifts in fruit upon BABA priming and after pathogen inoculation, notably towards
semi-polar biochemicals potentially involved in plant stress mitigation (i.e., specialised metabolites).

Table 2. Univariate statistical analysis for each pathosystem.

Two Factors ANOVA (P < 0.05)
BABA Inoculation

BABA × Inoculation
Water vs. BABA Mock vs. Pathogen

Botrytis cinerea Total 6998 2297 724 482

Phytophthora infestans Total 6998 1728 805 674

Pseudomonas syringae Total 6998 2097 322 313
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2.4. Primed Responses to Specific Pathogenic Microbes

To gain more insight into BABA priming upon different fruit infections, we next performed
quantitative binary comparisons of metabolic markers for each pathosystem by comparing
water-treated, mock-inoculated fruit versus i) BABA-treated, mock-inoculated fruit, ii) water-treated,
pathogen-inoculated fruit, and iii) BABA-treated, pathogen-inoculated fruit. The resulting statistically
significant metabolic markers (t-test, P < 0.01) were used to construct Venn diagrams showing common
and specific markers (Figure 5A). Very few overlaps were observed between BABA (red) and pathogen
(blue) conditions (2, 2 and 0 for Bot, Phy and Pst, respectively) and between pathogen and BABA priming
(green) conditions (7, 4 and 4 for Bot, Phy and Pst, respectively). Instead, several markers overlapped
between BABA treatment and BABA priming (118, 12 and 158 for Bot, Phy, and Pst respectively),
and most markers were found either for BABA treatment (Phy and Pst) or for BABA priming (Bot)
(Figure 5A). This suggests that BABA results largely in the accumulation of metabolites that could be
used during the expression of priming. In addition, metabolic markers that specifically responded to
BABA priming in the different fruit pathosystems were compared through a Venn diagram in order
to reveal the common metabolic signatures of BABA priming against the three different pathogens
(Figure 5B). Strikingly, no common markers were found upon the three infections, although very few
markers were observed between Pst and Bot (10), Pst and Phy (3), and Bot and Phy (1). Hence, the
primed responses are likely tailored to the encountered pathogenic microbes.
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Figure 5. The primed responses are tailored to the encountered pathogenic microbes. (A) Venn diagrams
showing quantitative binary comparisons were performed for each pathosystem (t-test, n = 4, P < 0.01)
between water-treated, mock-inoculated fruit versus BABA-treated, mock-inoculated fruit (BABA, red);
water-treated, pathogen-inoculated fruit (pathogen, blue); BABA-treated, pathogen-inoculated fruit
(priming, green). (B) Venn diagrams showing the resulting priming clusters for each fruit pathosystem.

2.5. Putative Annotation of Metabolic Markers

We then conducted a tentative annotation of the 14 metabolic markers that were common to Pst and
Bot (10), Pst and Phy (3), and Bot and Phy (1) based on their detected m/z by high-resolution orbitrap-MS
(Table 3). A Kruskal–Wallis test with correction for false rate discovery (Benjamini–Hochberg, P < 0.05)
confirmed that these 14 metabolic markers showed statistically significant variations that were
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visualised by bar charts (Figure S3). Putative prediction of compounds and pathways indicated several
markers that belonged to the plant defence metabolism, including stress hormones and flavonoids.
Interestingly, fungal pathogens (Bot, Phy) were associated with the induction of the putative marker
jasmonoyl–isoleucine. Besides this, (hemi)biotrophic microbes (Pst and Phy) triggered the accumulation
of putative salicylic derivatives and flavonoids (Figure S3). The Pst-related primed response further
correlated with the depletion of a putative cytokinine. Hence, our results suggest that BABA priming
against three different fruit pathogens rely on the induction of pathways involved in the defence
hormonal metabolism. Further analytical studies are required to confirm the putative annotation of
these priming markers.

2.6. Modelling of Resistance to Multiple Fruit Pathogens

Using a predictive biology approach based on generalised linear models [30], we aimed to
determine whether resistance to fruit pathogens could be predicted by the detected metabolic markers
(Figure 6). Based on those models (Figure 6A), good correlations were observed between measured and
predicted values (mean = 0.87), and were statistically different from correlations based on randomly
generated resistance (t-test, P < 2.2 × 10−16), which indicated the robustness of the predictions.
Furthermore, according to the occurrence of metabolic markers in the models (Figure 6B), fructose
appeared to be the best positively correlated predictor (appearing in 99% of the models), as well as
sucrose, to a lesser extent (appearing in 41% of the models) (Table S1). Most predictors (32 out of 34)
also showed a high statistical significance from a Kruskal–Wallis test with correction for false rate
discovery (Benjamini–Hochberg, P < 0.05, Table S1). This corroborates the outcome from the two-way
ANOVA method (Tables 1 and 2, and Figure S1). Hence, this indicates that soluble sugars involved
in the central metabolism are essential to predict resistance to fruit pathogens. The analysis of such
compounds is therefore critical for studies involving fruit–pathogen interactions. In addition to sugars,
other metabolic predictors appearing in more than 25% of the models showed positive (19 markers)
and negative correlations (15 markers) (Figure 6B and Table S1). Further analytical studies are required
to annotate and/or identify such markers. Nonetheless, a tentative annotation of the top 15 predictors
based on their detected m/z by high-resolution orbitrap-MS is presented in Table S1. Unsurprisingly,
the resulting putative metabolites belonged to defence pathways (i.e., phenolics, flavonoids, terpenes,
amino acid conjugates) and lipids. This suggests that immune perception and signalling seem pivotal
in predicting resistance to fruit pathogens.
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Table 3. Putative annotation of the primed response markers.

Primed
Response

Detected
m/z (Da) 1 RT (min) 1 P Value 2 ESI Mode Putative

Adduct
Predicted

m/z ∆ppm Putative Compound Predicted
Formula

Putative
Pathway

Bot and Phy 346.1975 4.1 5.3 × 10−3 + [M+Na]+ 323.2097 4 Jasmonoyl-isoleucine C18H29NO4 Jasmonates

Bot and Pst 450.1119 7.5 6.7 × 10−3 - [M+F]- 431.1206 15 Ribosylzeatin phosphate C15H22N5O8P Cytokinines
289.0896 2.5 5.6 × 10−3 + [M+H-2H2O]+ 324.0998 8 5,6-Dimethoxy-[2”,3”:7,8]furanoflavanone C19H16O5 Flavonoids
380.1489 3.6 5.3 × 10−3 + [M+ACN+H]+ 338.1154 0 3,5,7-Trihydroxy-6-prenylflavone C20H18O5 Flavonoids

451.1238 7.4 8.4 × 10−3 + [M+H]+ 450.1162 0 3,4,2’,4’,6’-Pentahydroxychalcone
2’-glucoside C21H22O11 Flavonoids

437.2213 7.1 3.8 × 10−2 + [M+ACN+Na]+ 373.1889 37 Jasmonoyl-tyrosine C21H27NO5 Jasmonates
535.3117 9.1 1.6 × 10−2 - [M-H]- 536.3114 14 Phosphoglycerolipid (20:2(11Z,14Z)/0:0) C26H49O9P Lipids
268.2271 5.4 2.5 × 10−2 + [M+NH4]+ 250.1933 0 C16:3n-6,9,12 C16H26O2 Lipids
652.4048 6.2 3.7 × 10−2 + [M+NH4]+ 634.3870 24 3-trans-p-Coumaroyl-rotundic acid C39H54O7 Phenolics

272.0644 6.0 1.4 × 10−2 - [M+F]- 253.0586 27 Salicyloyl-aspartic acid C11H11NO6 Salicylic
derivatives

154.0216 6.0 1.2 × 10−2 + - - - - - Unknown

Pst and Phy 479.1402 4.3 4.2 × 10−2 - [M+Na-2H]- 458.1577 16 7-Hydroxy-5,4’-dimethoxy-8-
methylisoflavone 7-O-rhamnoside C24H26O9 Flavonoids

525.1456 4.2 2.6 × 10−2 + [M+NH4]+ 507.1139 3 Delphinidin 3-(acetylglucoside) C23H23O13 Flavonoids

452.1954 4.0 8.2 × 10−3 - [M+CH3COO]- 393.1940 27 Diphenhydramine salicylate C24H27NO4 Salicylic
derivatives

1: metabolomic parameters detected by LCMS. 2: P indicating the statistical significance from a Kruskal–Wallis test followed by correction for false discovery rate using the
Benjamini–Hochberg method.
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Figure 6. Prediction of biotic resistance from metabolic markers. (A) correlation between predicted and
measured resistance based on generalised linear models. (B) occurrence (%) of the metabolic markers
in the models that showed a positive or negative correlation with the resistance to fruit pathogens.
Details of untargeted markers are presented in Table S1.

3. Discussion

In the present study, we evaluated the metabolic composition of tomato fruit in relation to the
BABA-priming of young tomato plants and the infection of three different pathogens at the fruit
stage. To the best of our current knowledge, this is the first metabolomic study on three different fruit
pathosytems interacting with BABA priming.

Firstly, untargeted metabolomic profiling indicated a great impact of BABA treatment on metabolic
profiles (Figure 3A and Table 1). Hence, the treatment of young tomato plants with BABA metabolically
primes fruit tissues, and this stimulation was likely more critical than it was for the pathogen
inoculations. This might result from the hormonal nature of BABA, which deeply affects plant
metabolism, or from stress-related responses that are activated by the chemical itself, as it has been
reported previously for high concentrations of BABA or in another Solanum species (i.e., potato) [21].
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Secondly, targeted analyses of compounds involved in central metabolism demonstrated that the
primary metabolic pools responded to the pathosystem inoculations, which reflected the developmental
stage of the fruit, as exemplified by the multivariate distinction between the first/second fruit and the
third fruit (Figure 3B). In complement, fructose, sucrose, fumarate and glutamate showed statistically
significant variations upon inoculation (Table 1). Since fruit of slightly different ages harbour different
profiles of primary compounds, we could assume that central metabolism is tuned to fruit growth,
more specifically soluble sugars, amino and organic acids. This agrees with previous phenotyping and
modelling studies on tomato that demonstrate metabolic shifts in carbon metabolism in the growing
fruit [25,28,29,31]. Furthermore, it has been recently confirmed through transcriptomics and proteomics
that the developing fruit not only undergoes metabolic shifts in central pathways, but also redox
metabolism, such as for pyridine nucleotides that are detrimental to energy homeostasis [27,32,33].
However, major questions remain regarding the nature and dynamics of shifts in central metabolism
upon pathogen inoculation. It is reasonable to expect that further investigations involving a more
comprehensive view of fruit primary metabolism and how microbial challenges dynamically affect
such pathways might significantly improve our understanding of the relationships between central
metabolism and fruit–pathogen interactions. In turn, this should provide novel strategies to obtain
fruit of better quality and stress resilience [32].

Upon pathogen challenge, while BABA is effective in leaf tissue, very little is known about its
contribution in fruit. According to our fruit pathoassays (Figure 1), the treatment of tomato seedlings
with BABA resulted in a broad-spectrum resistance against microbes that have different infection
strategies, including necrotrophic or biotrophic, and fungal, oomycete or bacterial pathogens. Further,
the primed responses are tailored to the encountered pathogen, as exemplified by the little overlap
between the different primed states of the three pathosystems (Figure 5). This implies that the induced
resistance state is very specific, which strongly suggests that BABA primes multiple signalling pathways
through which such different microbes are resisted in the fruit. Among those metabolic responses,
hormonal regulations appear detrimental to BABA-induced immunity [23,24,34]. Accordingly, putative
annotation of metabolomic markers indicates that hormone conjugates, including salicylic and jasmonic
derivatives, and other defence compounds (i.e., flavonoids), are induced upon infection and BABA
treatment (Table 3). Given the diverse set of immune responses that the fruit deploys against different
microbial stresses, our study highlights the adaptability of priming as a “stimulus-dependent plasticity
of response traits” [35]. For this reason, the exact underlying molecular mechanisms of priming are
difficult to describe precisely and their description requires further research [36].

Whilst BABA treatment in many plant species results in a stress phenotype that manifests through
developmental alterations (e.g., growth, yield, seed production) [17–19], we found no differences upon
BABA application in fruit size, but observed delayed fruit production or fruit ripening (Figure 2), as
described previously [23]. However, after the number of ripened fruit had equalised between both
treatments, BABA-treated plants continued producing fruit at a much faster rate than the water-treated
plants (Figure 2). Seemingly, through its induction of immune responses, BABA thus provides a
positive fitness element for tomato plants. This trade-off might emerge, in part, from the stimulation
of various signalling pathways, more specifically the ones that link to the central metabolism, such
as amino acids or carbohydrates [34]. As a result, BABA-treated plants would perform particularly
well. This agrees with what we know about plant perception of BABA in A. thaliana. The binding of
BABA by an aspartyl-tRNA synthetase blocks the enzyme, consequently triggering the accumulation
of its canonical substrate, uncharged tRNA, which leads to changes in amino acid pools in the plant,
therefore affecting primary metabolism [20]. Subsequent signalling modulations might result from an
alteration in amino acid precursors (e.g., ethylene, auxin) that would alter fruit production [37].

Despite its economic importance, the molecular mechanisms underlying the pathogenicity of
B. cinerea, P. infestans and P. syringae are poorly understood in fruit. From a computational systems
biology perspective, the study of plant–pathogen interactions involved structural and comparative
genomics, transcriptomics, and protein–protein interactions [38]. Further, high-resolution metabolome
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data and sufficient datapoints over time are essential to calculate metabolite coefficients and thus predict
metabolic fluxes [39]. Recently, genome-scale metabolic models of Solanum species (i.e., potato, tomato)
and Phy have been integrated to simulate the metabolic fluxes that occur during infection [40,41].
These studies yield insights into the molecular aspects of photosynthesis suppression by Phy via the
flux of carboxylation to oxygenation reactions, or the nutrient intakes by Phy during different phases
of the infection cycle. Interestingly, stage-specific profiles embedded in the joint metabolism of the
host and pathogen could potentially be refined by integrating the high-resolution metabolome data of
tomato infection [41]. Such elegant works involve leaf tissues. Here, we show that fruit metabolomics
and modelling can assist in addressing fruit–pathogen interactions. Using top-down modelling based
on the construction of generalised linear models [30], we demonstrate that metabolomics data can be
used to accurately predict the measured resistance to various fruit pathogens (Figure 6A). Besides,
through the evaluation of the occurrence of best predictors, our data indicate that soluble sugars, more
specifically fructose [42], and defence metabolites are pivotal to predict the resistance to fruit pathogens
(Table S1). Clearly, a more global systems biology approach based on a higher level of variation in the
conditions (e.g., multiple genotypes or priming treatments, various growth stages of the fruit, several
infection points) will shed some light on the underlying mechanisms of fruit–pathogen interactions.

Overall, our study validates the value of metabolomics and modelling approaches in the field of
phytopathological investigations. This work provides a great perspective for the structural elucidation
of the key metabolites involved in broad-spectrum BABA-induced priming in tomato fruit. Although
it was only possible to tentatively annotate metabolic biomarkers on the basis of detected HR-accurate
m/z (Table 3 and Table S1), our analytical and statistical approach can be further optimised for, e.g.,
metabolite identification through structural elucidation by NMR or targeted MS/MS analyses. A
combination of LCMS with purification steps (e.g., SPE cartridge, fractionation) could prove useful for
de novo identification.

4. Materials and Methods

4.1. Tomato Cultivation

Tomato (Solanum lycopersicum) Micro-Tom was used for all experiments described in this
publication. Seeds were incubated for 4 days in wet paper at 28 ◦C to promote homogeneous
germination. Germinates were then planted in individual 80 mL pots containing M3 soil. Plants were
grown in a controlled-environment greenhouse chamber with 16h of light, at 26 ◦C, and 8 h of darkness
at 21 ◦C, and 200 µM.m−1.s−1 light intensity. Experiments were performed from November 2017 until
May 2018 in the United Kingdom.

4.2. Biochemicals, Reagents and Treatments

All solvents and reagents used in this study were of analytical or MS grades. B-aminobutyric
acid (BABA) was obtained from Sigma-Aldrich (A4420-7). Treatments with BABA were performed
entirely as described in [23]. Briefly, 2 week-old tomato seedlings were soil-drenched with 8 mL per
pot of either water or 5 mM BABA solution, to generate a final concentration of 0.5 mm in the soil.
One week post-treatment, roots were carefully washed under running tap water and then plants were
transplanted into individual 2.2 L pots containing untreated M3 soil. Plants were allowed to grow for
between 9 and 12 weeks until the fruit turned red, at which point they were harvested and infected
with the different pathogens.

4.3. Fitness Parameters of Tomato Fruit

Growth and yield were assessed entirely as described in [23]. Assessment of fruit ripening was
done as described in [29], by classifying fruit in different levels of maturity by colour.
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4.4. Pathogens and Inoculations

Cultivations of Botrytis cinerea strain R16 [43], Phytophthora infestans 88,069 [44] and Pseudomonas
syringae pv. tomato DC3000 (Pst DC3000) [45] were done as described in the corresponding publications.
For inoculations with B. cinerea, the first fruit were used. Inoculations were performed entirely
as described in [23]. For infections with P. infestans, the second fruit were used. Inoculations were
performed by placing 10µl drops of a spore concentration of 5× 104 spores/mL onto the needle-wounded
tip of the tomato fruit. After infection, fruit were kept at 20 ºC in the dark. For P. syringae infections, the
third fruit were used. Inoculations were done by spraying bacteria onto the fruit in a concentration of
108 cells/mL in 10 mM MgSO4 and 0.05% (v/v) Silwet L-77. Infected fruit were kept in the dark at 25 ◦C.
Mock inoculations were performed by following the exact same protocols but without pathogens in
the solutions. Fruit were 56 days post-anthesis (dpa), 63 dpa and 70 dpa for the first, second and third
fruit, respectively.

Scoring of B. cinerea symptoms were performed entirely as described in [23]. Scoring of P. infestans
disease was done by classifying lesions into different categories of fruit colonization: Class 0; healthy,
Class I; necrosis associated with the lesion, Class II; necrosis and mycelium associated with the lesion,
Class III; necrosis and mycelium spread in the fruit. Scoring of Pst DC3000 disease was done by
classifying lesions into different categories of fruit damage: Class 0; healthy, Class I; turgent but cracking
fruit, Class II; cracked fruit, Class III; fruit tissue collapse. Disease severity rates were calculated from
the nominal lesion categories of four fruit per plant (n = 11), as described in [46]. Statistical analysis of
disease phenotypes was performed as described in [23].

4.5. Metabolite Extraction

For metabolome analysis, the first, second and third fruit developed by plants were used for
pathoassays with B. cinerea (Bot), P. infestans (Phy) and P. syringae (Pst), respectively. Experiments
on each type of fruit were separated by one week. Infections were performed as described above
when the corresponding fruit were fully ripened. Two days after inoculation with the different
pathogens, fresh pericarps were rapidly collected into 2 mL-microtubes, then flash-frozen in liquid
nitrogen and freeze-dried for 72 h (Pilote Compact, SARL CRYOTEC, Saint-Gély-du-Fesc, France).
Fine grinding of dried material was subsequently performed using a ball mixer for 2 min at 30 Hz
(Retsch Mill MM400, fisher scientific, Bordeaux, France) after adding two metal beads (Beads inox
AISI 400C 5 mm, CIMAP, Caen, France) to each tube (Micro-tube, 2 mL PP, Sarstedt, Germany). Ten
milligrams of each replicated sample were weighed into 1.1 mL-micronic tubes (MP32033L, Micronic,
Lelystad, Netherlands), randomised onto a 96-micronic rack (MPW51001BC6, Micronic, Lelystad,
Netherlands) then capped using a robotised capper–decapper (Decapper 193000/00, Hamilton, Bienne,
Switzerland). Each rack also contained an empty tube corresponding to the extraction blank. The
resulting micronics were then stored at −80 ◦C. Extraction of metabolites was conducted on four
biologically replicated pericarp samples (n = 4) using a robotised extraction method developed at
Bordeaux Metabolome Facility (https://metabolome.cgfb.u-bordeaux.fr/en, Villenave d’Ornon, France).
The robot was a bespoken piece of equipment that allowed for pipetting solvents, mixing, cooling and
centrifuging racks of micronics. After decapping the micronics, the extraction began by adding 300
µL of solvent A containing 80% ethanol and 0.1% formic acid (v/v) with 250 µg/mL methyl vanillate
as the internal standard. Racks were agitated on the robot (30 sec, 500 rpm) then placed for 15 min
into a sonicator containing ice-cold water (Elmasonic S300, Elma, Singen, Germany). Racks were put
back on the robot and centrifuged (5 min, 1350 g). The first round of extraction stopped by pipetting
300 µL of the resulting supernatant into new 1.1 mL-micronic tubes. A second round of extraction was
performed with 300 µl of solvent A, and the resulting pellet was finally washed with solvent B (50%
ethanol (v/v)). The micronics-containing supernatants were kept for filtration and the micronics with
the pellets were kept for further starch and total protein analysis.

Filtration was also robotised (Microlab STARlet, Hamilton, Bienne, Switzerland) and allowed
for the transfer of the supernatants onto a filtration 96-well sterile clear plate (MSGVS2210, 0.22 µM,

https://metabolome.cgfb.u-bordeaux.fr/en
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Hydrophil. Low Protein Binding Durapore, Millipore, Molsheim, France) according to the supplier’s
instruction. Filtrates were subsequently collected into a new micronic tube. Finally, quality control (QC)
samples were prepared by robotically pipetting 15 µL of each sample into a single tube that was mixed
afterwards (Microlab STARlet, Hamilton, Bienne, Switzerland). Each rack was supplemented with a
micronic tube containing the QC mix. The QC sample was replicated six times along the project run.

4.6. Targeted Biochemical Phenotyping

Targeted analyses of sucrose, fructose, glucose, starch, fructose-6-P, glucose-6-P, glutamate, malate,
fumarate, total soluble proteins and total polyphenols were conducted on the HiTMe plateau at
Bordeaux Metabolome Facility. Measurements were based on coupled enzyme assays as described
previously [25,26], except for total soluble proteins that were evaluated via Bradford assay [47], and
total phenols that were measured colorimetrically using a redox reaction with Folin–Ciocalteu reagent
and gallic acid as the standard [48].

4.7. Untargeted Metabolic Profiling

Untargeted metabolic profiling by UHPLC-LTQ-Orbitrap mass spectrometry (LCMS) was
performed using an Ultimate 3000 ultra-high-pressure liquid chromatography (UHPLC) system
coupled to an LTQ-Orbitrap Elite mass spectrometer interfaced with an electrospray (ESI) ionisation
source (ThermoScientific, Bremen, Germany). The system was controlled by Thermo XCalibur v.3.0.63
software. Chromatographic separation was achieved at a flow rate of 350 µL/min using a GEMINI
UHPLC C18 column (150 × 2 mm, 3 µm, Le Pecq, Phenomenex, France) coupled to a C18 SecurityGuard
GEMINI pre-column (4 × 2 mm, 3 µm, Le Pecq, Phenomenex, France). The column was maintained at
35 ◦C and the injection volume was 5 µL. The mobile phase consisted of solvent A (0.05 % (v/v) formic
acid in water) and solvent B (acetonitrile) with the following gradient: 0–0.5 min 3% B, 0.5–1 min 3% B,
1–9 min 50% B, 9–13 min 100% B, 13–14 min 100% B, 14–14.5 min 3% B, 14.5–18 min 3% B. Ionisation
of samples was performed in both negative and positive mode with the following parameters: ESI-

(Heater temp: 300 ◦C, Sheath Gas Flow Rate: 45 (arb), Aux Gas Flow Rate: 15 (arb), Sweep Gas Flow
Rate: 10 (arb), I Spray Voltage: 2.5 kV, Capillary Temp: 300 ◦C, S-Lens RF Level: 60%), and ESI+

(Heater temp: 300 ◦C, Sheath Gas Flow Rate: 60 (arb), Aux Gas Flow Rate: 20 (arb), Sweep Gas Flow
Rate: 10 (arb), I Spray Voltage: 3.2 kV, Capillary Temp: 300 ◦C, S-Lens RF Level: 55%). MS full scan
detection of ions was operated by FTMS (50–1500 Da) at a resolution of 240,000. Prior to analyses,
the LTQ-Orbitrap was calibrated by infusing a solution of the calibration dependent of the ionisation
mode (Pierce© ESI Negative Ion Calibration Solution (ref: 88324); Pierce LTQ Velos ESI Positive Ion
Calibration solution (ref: 88323). The injection sequence started with three blank extracts, then three
QC samples, then one blank extract, and each group of samples was subsequently injected, followed
by a blank extract. Another two QC samples were injected throughout the analysis. In total, six QC
samples and 16 blank extracts were injected to correct for mass spectrometer signal drift, and to filter
out variables detected in blanks, respectively.

4.8. Processing and Statistical Analysis of Metabolomic Datasets

Processing of raw LCMS data using XCMS in R (v 3.6.1) [49] yielded 10,875 detected RT-m/z pairs
for ESI+ and 5,796 for ESI-. After data-cleaning (blank check, ∆RT < 60 s, ∆m/z < 0.015 Da, CV QC < 30%),
6887 variables were retained for further chemiometrics. Both untargeted and targeted metabolomic
data were first normalised by median normalisation, cube-root transformation and Pareto scaling
using MetaboAnalyst v.3 [50] before applying multivariate and univariate statistical analyses [51]. The
normalised dataset is available as Supplemental Material 1. PCA and PLS-DA were performed with
MetaboAnalyst v.3 providing satisfactory validation parameters of the multivariate models (R2 > 0.87
and Q2 > 0.35). PC coordinates for metabolomic features that are responsible for PC1 and PC2 are
presented in Supplemental Material 2. Univariate statistical methods were performed using MeV
v.4.9.0. [52] at P < 0.05 for two-factor ANOVA and P < 0.01 for binary comparisons by t-tests. In
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addition, MarVis v 1 was used to confirm the statistically significant variation om the priming markers
through a Kruskal–Wallis test at P < 0.05 with correction for false discovery rate [53,54]. Putative
annotation of such markers was performed by screening the detected exact m/z against multiple online
databases, including METLIN chemical database (https://metlin.scripps.edu/) [55] and KNApSAcK
(http://kanaya.naist.jp/KNApSAcK/) [56]. The resulting predicted pathways were checked using the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/).

4.9. Top-down Modelling Approach

Generalised linear models were constructed in R (v 3.6.1) using the glmnet package (v 3.0-2) [30]
in order to identify potential links between detected metabolic markers and resistance to the fruit
pathogens. Those models were used to predict resistance values based on the detected metabolic
markers. Cross-validation was applied by randomly dividing the datasets into two parts: 80 % of the
individuals were used to construct the models and 20 % to check for the quality of the prediction. The
quality of the models was assessed based on the mean square error between real and predicted values.
To cope with this randomisation, 500 models were constructed for each measurement. Generalised
linear models contain a penalisation value, allowing less informative variables to be discarded as this
value increases (1000 values were tested for each of the 500 models), hence variables occurring the
most in the models can be seen as the most stable predictors of resistance to biotic challenges. Given
the high number of metabolic variables and the relatively small set of plants, 500 randomly generated
resistance datasets were created to estimate the chances of predicting random values. A Student’s t-test
was used to compare the quality of predictions of real and random resistances.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/96/s1,
Figure S1. Inoculation-responsive central metabolites. Major compounds involved in central metabolism
statistically responded to the inoculation factor of a two-factor ANOVA (P given into brackets). Bar charts indicate
means of normalised intensities of four independent bioreplicates (n = 4; ± SEM). Bot: Botrytis cinerea, Phy:
Phytophthora infestans, Pst: Pseudomonas syringae pv. tomato, B: BABA-treated plants, W: water-treated plants, M:
mock-inoculated fruit, P: pathogen-inoculated fruit. Figure S2. Partial least square discriminant analysis for
each pathosystem. PLS-DA score plots (n = 4) of 6898 features (6887 LCMS variables + 11 major compounds)
between the three different pathosystems. Validation parameters of the PLS model are given in red for each plot.
Figure S3. Metabolic markers for BABA primed responses against fruit pathogens. LCMS significant markers that
overlap between Bot and Phy (A), Bot and Pst (B) and Phy and Pst (C) in response to BABA priming and after
infection (see Table 3). Markers are labelled according to their high-resolution detected m/z. Bar charts indicate
means of normalised intensities (n = 4; ± SEM). See Figure S1 for sample labels. Table S1. Putative annotation
of the top 15 predictors. Supplemental Material 1: metabolomic parameters detected y LCMS. 2: P indicating
the statistical significance from a Kruskal–Wallis test followed by correction for false discovery rate using the
Benjamini–Hochberg method. Supplemental Material 1. Normalised metabolomics dataset combining 6887 m/z
features and 11 major compounds. Supplemental Material 2. Coordinates for Principal Component Analyses
ranking the important metabolomic variables.

Author Contributions: Conceptualization, E.L. and P.P.; Data curation, E.L., A.F., C.C. (Cédric Cassan) and P.P.;
Formal analysis, E.L., A.F., C.C. (Cédric Cassan), C.C. (Chloé Chevanne), C.F.K., S.P. and P.P.; Funding acquisition,
E.L., Y.G. and P.P.; Investigation, E.L., A.F., C.C. (Cédric Cassan), C.C. (Chloé Chevanne), C.F.K., S.P. and P.P.;
Methodology, E.L., A.F., C.C. (Cédric Cassan), S.P. and P.P.; Project administration, E.L. and P.P.; Resources, E.L.,
S.P., Y.G. and P.P.; Software, S.P.; Supervision, E.L. and P.P.; Validation, E.L., S.P., Y.G. and P.P.; Visualization, E.L.,
S.P. and P.P.; Writing—original draft, E.L. and P.P.; Writing—review & editing, E.L., S.P., Y.G. and P.P. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors are grateful for financial support from MetaboHUB (ANR-11-INBS-0010) and PHENOME
(ANR-11-INBS-0012) projects to INRAE, and for the BBSRC Future Leader Fellowship BB/P00556X/1 and
BB/P00556X/2 to EL.

Acknowledgments: The authors thank Sam Wilkinson for his comments on the project. P. infestans isolate was
provided by Steve Whisson (The James Hutton Institute).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.M.; Savary, S. Modelling the impacts of
pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [CrossRef] [PubMed]

https://metlin.scripps.edu/
http://kanaya.naist.jp/KNApSAcK/
https://pubchem.ncbi.nlm.nih.gov/
http://www.mdpi.com/2218-1989/10/3/96/s1
http://dx.doi.org/10.1016/j.agsy.2017.01.019
http://www.ncbi.nlm.nih.gov/pubmed/28701814


Metabolites 2020, 10, 96 17 of 19

2. Sundström, J.F.; Albihn, A.; Boqvist, S.; Ljungvall, K.; Marstorp, H.; Martiin, C.; Nyberg, K.; Vågsholm, I.;
Yuen, J.; Magnusson, U. Future threats to agricultural food production posed by environmental degradation,
climate change, and animal and plant diseases – a risk analysis in three economic and climate settings.
Food Secur. 2014, 6, 201–215. [CrossRef]

3. FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 7 January 2020).
4. Fry, W. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385–402.

[CrossRef] [PubMed]
5. Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.;

Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012,
13, 614–629. [CrossRef] [PubMed]

6. Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould
disease. Mol. Plant Pathol. 2007, 8, 561–580. [CrossRef] [PubMed]

7. Arah, I.K.; Ahorbo, G.K.; Anku, E.K.; Kumah, E.K.; Amaglo, H. Postharvest Handling Practices and Treatment
Methods for Tomato Handlers in Developing Countries: A Mini Review. Adv. Agric. 2016, 2016, 1–8.
[CrossRef]

8. Luna, E. Using Green Vaccination to Brighten the Agronomic Future. Outlooks Pest Manag. 2016, 27, 136–141.
[CrossRef]

9. Pétriacq, P.; López, A.; Luna, E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? Plants
2018, 7, 77. [CrossRef]

10. Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [CrossRef]
11. Mauch-Mani, B.; Baccelli, I.; Luna, E.; Flors, V. Defense Priming: An Adaptive Part of Induced Resistance.

Annu. Rev. Plant Biol. 2017, 68, 485–512. [CrossRef]
12. Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; van Dam, N.M.;

Conrath, U. Recognizing Plant Defense Priming. Trends Plant Sci. 2016, 21, 818–822. [CrossRef] [PubMed]
13. Cohen, Y.; Vaknin, M.; Mauch-Mani, B. BABA-induced resistance: Milestones along a 55-year journey.

Phytoparasitica 2016, 44, 513–538. [CrossRef]
14. Thevenet, D.; Pastor, V.; Baccelli, I.; Balmer, A.; Vallat, A.; Neier, R.; Glauser, G.; Mauch-Mani, B. The priming

molecule β-aminobutyric acid is naturally present in plants and is induced by stress. New Phytol. 2017, 213,
552–559. [CrossRef] [PubMed]

15. Ton, J.; Jakab, G.; Toquin, V.; Flors, V.; Iavicoli, A.; Maeder, M.N.; Métraux, J.-P.; Mauch-Mani, B. Dissecting
the β-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis. Plant Cell 2005, 17, 987–999.
[CrossRef] [PubMed]

16. Zimmerli, L.; Jakab, G.; Métraux, J.-P.; Mauch-Mani, B. Potentiation of pathogen-specific defense mechanisms
in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 2000, 97, 12920–12925. [CrossRef]

17. Koen, E.; Trapet, P.; Brulé, D.; Kulik, A.; Klinguer, A.; Spicher, L.; Meunier-Prest, R.; Boni, G.; Glauser, G.;
Mauch-Mani, B.; et al. β-Aminobutyric Acid (BABA)-Induced Resistance in Arabidopsis thaliana : Link
with Iron Homeostasis. Mol. Plant-Microbe Interact. 2014. [CrossRef]

18. Luna, E.; Beardon, E.; Ravnskov, S.; Scholes, J.; Ton, J. Optimizing Chemically Induced Resistance in Tomato
Against Botrytis cinerea. Plant Dis. 2016, 100, 704–710. [CrossRef]

19. van Hulten, M.; Pelser, M.; van Loon, L.C.; Pieterse, C.M.J.; Ton, J. Costs and benefits of priming for defense
in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 5602–5607. [CrossRef]

20. Luna, E.; van Hulten, M.; Zhang, Y.; Berkowitz, O.; López, A.; Pétriacq, P.; Sellwood, M.A.; Chen, B.;
Burrell, M.; van de Meene, A.; et al. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA
synthetase. Nat. Chem. Biol. 2014, 10, 450. [CrossRef]

21. Bengtsson, T.; Holefors, A.; Witzell, J.; Andreasson, E.; Liljeroth, E. Activation of defence responses to
Phytophthora infestans in potato by BABA. Plant Pathol. 2014, 63, 193–202. [CrossRef]

22. Worrall, D.; Holroyd, G.H.; Moore, J.P.; Glowacz, M.; Croft, P.; Taylor, J.E.; Paul, N.D.; Roberts, M.R. Treating
seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens.
New Phytol. 2012, 193, 770–778. [CrossRef] [PubMed]

23. Wilkinson, S.W.; Pastor, V.; Paplauskas, S.; Pétriacq, P.; Luna, E. Long-lasting β-aminobutyric acid-induced
resistance protects tomato fruit against Botrytis cinerea. Plant Pathol. 2018, 67, 30–41. [CrossRef]

24. Balmer, A.; Pastor, V.; Gamir, J.; Flors, V.; Mauch-Mani, B. The ‘prime-ome’: Towards a holistic approach to
priming. Trends Plant Sci. 2015, 20, 443–452. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s12571-014-0331-y
http://www.fao.org/faostat/en/#home
http://dx.doi.org/10.1111/j.1364-3703.2007.00465.x
http://www.ncbi.nlm.nih.gov/pubmed/18705878
http://dx.doi.org/10.1111/j.1364-3703.2012.00804.x
http://www.ncbi.nlm.nih.gov/pubmed/22672649
http://dx.doi.org/10.1111/j.1364-3703.2007.00417.x
http://www.ncbi.nlm.nih.gov/pubmed/20507522
http://dx.doi.org/10.1155/2016/6436945
http://dx.doi.org/10.1564/v27_jun_10
http://dx.doi.org/10.3390/plants7040077
http://dx.doi.org/10.1038/nature05286
http://dx.doi.org/10.1146/annurev-arplant-042916-041132
http://dx.doi.org/10.1016/j.tplants.2016.07.009
http://www.ncbi.nlm.nih.gov/pubmed/27507609
http://dx.doi.org/10.1007/s12600-016-0546-x
http://dx.doi.org/10.1111/nph.14298
http://www.ncbi.nlm.nih.gov/pubmed/27782340
http://dx.doi.org/10.1105/tpc.104.029728
http://www.ncbi.nlm.nih.gov/pubmed/15722464
http://dx.doi.org/10.1073/pnas.230416897
http://dx.doi.org/10.1094/MPMI-05-14-0142-R
http://dx.doi.org/10.1094/PDIS-03-15-0347-RE
http://dx.doi.org/10.1073/pnas.0510213103
http://dx.doi.org/10.1038/nchembio.1520
http://dx.doi.org/10.1111/ppa.12069
http://dx.doi.org/10.1111/j.1469-8137.2011.03987.x
http://www.ncbi.nlm.nih.gov/pubmed/22142268
http://dx.doi.org/10.1111/ppa.12725
http://dx.doi.org/10.1016/j.tplants.2015.04.002
http://www.ncbi.nlm.nih.gov/pubmed/25921921


Metabolites 2020, 10, 96 18 of 19

25. Biais, B.; Bénard, C.; Beauvoit, B.; Colombié, S.; Prodhomme, D.; Ménard, G.; Bernillon, S.; Gehl, B.; Gautier, H.;
Ballias, P.; et al. Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under
Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism. Plant Physiol. 2014, 164,
1204–1221. [CrossRef]

26. Gibon, Y.; Vigeolas, H.; Tiessen, A.; Geigenberger, P.; Stitt, M. Sensitive and high throughput metabolite
assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on
a novel enzymic cycling system. Plant J. 2002, 30, 221–235. [CrossRef]

27. Belouah, I.; Nazaret, C.; Pétriacq, P.; Prigent, S.; Bénard, C.; Mengin, V.; Blein-Nicolas, M.; Denton, A.K.;
Balliau, T.; Augé, S.; et al. Modeling Protein Destiny in Developing Fruit. Plant Physiol. 2019, 180, 1709–1724.
[CrossRef]

28. Colombié, S.; Beauvoit, B.; Nazaret, C.; Bénard, C.; Vercambre, G.; Le Gall, S.; Biais, B.; Cabasson, C.;
Maucourt, M.; Bernillon, S.; et al. Respiration climacteric in tomato fruits elucidated by constraint-based
modelling. New Phytol. 2017, 213, 1726–1739. [CrossRef]

29. Colombié, S.; Nazaret, C.; Bénard, C.; Biais, B.; Mengin, V.; Solé, M.; Fouillen, L.; Dieuaide-Noubhani, M.;
Mazat, J.-P.; Beauvoit, B.; et al. Modelling central metabolic fluxes by constraint-based optimization reveals
metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit. Plant J. 2015, 81, 24–39.
[CrossRef]

30. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate
Descent. J. Stat. Softw. 2010, 33, 1–22. [CrossRef]

31. Beauvoit, B.P.; Colombié, S.; Monier, A.; Andrieu, M.-H.; Biais, B.; Bénard, C.; Chéniclet, C.;
Dieuaide-Noubhani, M.; Nazaret, C.; Mazat, J.-P.; et al. Model-Assisted Analysis of Sugar Metabolism
throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole
Expansion. Plant Cell 2014, 26, 3224–3242. [CrossRef]

32. Beauvoit, B.; Belouah, I.; Bertin, N.; Cakpo, C.B.; Colombié, S.; Dai, Z.; Gautier, H.; Génard, M.; Moing, A.;
Roch, L.; et al. Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 2018, 122, 1–21.
[CrossRef] [PubMed]

33. Decros, G.; Beauvoit, B.; Colombié, S.; Cabasson, C.; Bernillon, S.; Arrivault, S.; Guenther, M.; Belouah, I.;
Prigent, S.; Baldet, P.; et al. Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development
Through Transcript and Protein Profiling. Front. Plant Sci. 2019, 10. [CrossRef] [PubMed]

34. Gamir, J.; Cerezo, M.; Flors, V. The plasticity of priming phenomenon activates not only common metabolomic
fingerprint but also specific responses against P. cucumerina. Plant Signal Behav. 2014, 9, e28916. [CrossRef]
[PubMed]

35. Hilker, M.; Schwachtje, J.; Baier, M.; Balazadeh, S.; Bäurle, I.; Geiselhardt, S.; Hincha, D.K.; Kunze, R.;
Mueller-Roeber, B.; Rillig, M.C.; et al. Priming and memory of stress responses in organisms lacking a
nervous system. Biol. Rev. 2016, 91, 1118–1133. [CrossRef]

36. Tugizimana, F.; Mhlongo, M.I.; Piater, L.A.; Dubery, I.A. Metabolomics in Plant Priming Research: The Way
Forward? Int. J. Mol. Sci. 2018, 19, 1759. [CrossRef]

37. Roch, L.; Dai, Z.; Gomès, E.; Bernillon, S.; Wang, J.; Gibon, Y.; Moing, A. Fruit Salad in the Lab: Comparing
Botanical Species to Help Deciphering Fruit Primary Metabolism. Front. Plant Sci. 2019, 10. [CrossRef]

38. Pinzón, A.; Barreto, E.; Bernal, A.; Achenie, L.; González Barrios, A.F.; Isea, R.; Restrepo, S. Computational
models in plant-pathogen interactions: The case of Phytophthora infestans. Theor. Biol. Med Model. 2009, 6,
24. [CrossRef]

39. Kleessen, S.; Irgang, S.; Klie, S.; Giavalisco, P.; Nikoloski, Z. Integration of transcriptomics and metabolomics
data specifies the metabolic response of Chlamydomonas to rapamycin treatment. Plant J. 2015, 81, 822–835.
[CrossRef]

40. Botero, K.; Restrepo, S.; Pinzón, A. A genome-scale metabolic model of potato late blight suggests a
photosynthesis suppression mechanism. BMC Genom. 2018, 19, 863. [CrossRef]

41. Rodenburg, S.Y.A.; Seidl, M.F.; Judelson, H.S.; Vu, A.L.; Govers, F.; de Ridder, D. Metabolic Model of the
Phytophthora infestans-Tomato Interaction Reveals Metabolic Switches during Host Colonization. mBio 2019,
10, e00454-19. [CrossRef]

42. Lecompte, F.; Nicot, P.C.; Ripoll, J.; Abro, M.A.; Raimbault, A.K.; Lopez-Lauri, F.; Bertin, N. Reduced
susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific
adjustment of fructose content in the host sugar pool. Ann. Bot. 2017, 119, 931–943. [CrossRef] [PubMed]

http://dx.doi.org/10.1104/pp.113.231241
http://dx.doi.org/10.1046/j.1365-313X.2001.01278.x
http://dx.doi.org/10.1104/pp.19.00086
http://dx.doi.org/10.1111/nph.14301
http://dx.doi.org/10.1111/tpj.12685
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1105/tpc.114.127761
http://dx.doi.org/10.1093/aob/mcy057
http://www.ncbi.nlm.nih.gov/pubmed/29718072
http://dx.doi.org/10.3389/fpls.2019.01201
http://www.ncbi.nlm.nih.gov/pubmed/31681351
http://dx.doi.org/10.4161/psb.28916
http://www.ncbi.nlm.nih.gov/pubmed/24739434
http://dx.doi.org/10.1111/brv.12215
http://dx.doi.org/10.3390/ijms19061759
http://dx.doi.org/10.3389/fpls.2019.00836
http://dx.doi.org/10.1186/1742-4682-6-24
http://dx.doi.org/10.1111/tpj.12763
http://dx.doi.org/10.1186/s12864-018-5192-x
http://dx.doi.org/10.1128/mBio.00454-19
http://dx.doi.org/10.1093/aob/mcw240
http://www.ncbi.nlm.nih.gov/pubmed/28065923


Metabolites 2020, 10, 96 19 of 19

43. Faretra, F.; Pollastro, S. Genetic studies of the phytopathogenic fungus Botryotinia fuckeliana (Botrytis
cinerea) by analysis of ordered tetrads. Mycol. Res. 1996, 100, 620–624. [CrossRef]

44. Whisson, S.C.; Boevink, P.C.; Moleleki, L.; Avrova, A.O.; Morales, J.G.; Gilroy, E.M.; Armstrong, M.R.;
Grouffaud, S.; van West, P.; Chapman, S.; et al. A translocation signal for delivery of oomycete effector
proteins into host plant cells. Nature 2007, 450, 115–118. [CrossRef] [PubMed]

45. Bais, H.P.; Fall, R.; Vivanco, J.M. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by
Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiol. 2004,
134, 307–319. [CrossRef]

46. Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant Disease Severity Estimated Visually, by Digital
Photography and Image Analysis, and by Hyperspectral Imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107.
[CrossRef]

47. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

48. Vinson, J.A.; Su, X.; Zubik, L.; Bose, P. Phenol Antioxidant Quantity and Quality in Foods: Fruits.
J. Agric. Food Chem. 2001, 49, 5315–5321. [CrossRef]

49. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data
for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006,
78, 779–787. [CrossRef]

50. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0–making metabolomics more meaningful.
Nucleic Acids Res. 2015, 43, W251–W257. [CrossRef]

51. Pétriacq, P.; Williams, A.; Cotton, A.; McFarlane, A.E.; Rolfe, S.A.; Ton, J. Metabolite profiling of non-sterile
rhizosphere soil. Plant J. 2017, 92, 147–162. [CrossRef]

52. Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.;
Thiagarajan, M.; et al. TM4: A Free, Open-Source System for Microarray Data Management and Analysis.
BioTechniques 2003, 34, 374–378. [CrossRef] [PubMed]

53. Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9,
811–818. [CrossRef] [PubMed]

54. Kaever, A.; Landesfeind, M.; Possienke, M.; Feussner, K.; Feussner, I.; Meinicke, P. MarVis-Filter: Ranking,
Filtering, Adduct and Isotope Correction of Mass Spectrometry Data. J. Biomed. Biotechnol. 2012, 2012,
263910. [CrossRef] [PubMed]

55. Smith, C.; O’Maille, G.; Want, E.; Qin, C.; Trauger, S.; Brandon, T.; Custodio, D.; Abagyan, R.; Siuzdak, G.
METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2006, 27, 747–751. [CrossRef] [PubMed]

56. Afendi, F.M.; Okada, T.; Yamazaki, M.; Hirai-Morita, A.; Nakamura, Y.; Nakamura, K.; Ikeda, S.; Takahashi, H.;
Altaf-Ul-Amin, M.; Darusman, L.K.; et al. KNApSAcK Family Databases: Integrated Metabolite–Plant
Species Databases for Multifaceted Plant Research. Plant Cell Physiol. 2011, 53, e1. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0953-7562(96)80018-9
http://dx.doi.org/10.1038/nature06203
http://www.ncbi.nlm.nih.gov/pubmed/17914356
http://dx.doi.org/10.1104/pp.103.028712
http://dx.doi.org/10.1080/07352681003617285
http://dx.doi.org/10.1016/0003-2697(76)90527-3
http://dx.doi.org/10.1021/jf0009293
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1093/nar/gkv380
http://dx.doi.org/10.1111/tpj.13639
http://dx.doi.org/10.2144/03342mt01
http://www.ncbi.nlm.nih.gov/pubmed/12613259
http://dx.doi.org/10.1002/sim.4780090710
http://www.ncbi.nlm.nih.gov/pubmed/2218183
http://dx.doi.org/10.1155/2012/263910
http://www.ncbi.nlm.nih.gov/pubmed/22550397
http://dx.doi.org/10.1097/01.ftd.0000179845.53213.39
http://www.ncbi.nlm.nih.gov/pubmed/16404815
http://dx.doi.org/10.1093/pcp/pcr165
http://www.ncbi.nlm.nih.gov/pubmed/22123792
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Effect of BABA on Broad-Spectrum Resistance in Fruit 
	Effect of BABA on Fruit Yield and Development 
	Global Metabolomics after BABA Treatment and After Inoculation 
	Primed Responses to Specific Pathogenic Microbes 
	Putative Annotation of Metabolic Markers 
	Modelling of Resistance to Multiple Fruit Pathogens 

	Discussion 
	Materials and Methods 
	Tomato Cultivation 
	Biochemicals, Reagents and Treatments 
	Fitness Parameters of Tomato Fruit 
	Pathogens and Inoculations 
	Metabolite Extraction 
	Targeted Biochemical Phenotyping 
	Untargeted Metabolic Profiling 
	Processing and Statistical Analysis of Metabolomic Datasets 
	Top-down Modelling Approach 

	References

