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Abstract: Lipidomics is the comprehensive analysis of lipids in a given biological system. This
investigation is often limited by the low amount and high complexity of biological samples, therefore
highly sensitive lipidomics methods are required. Nanoflow-LC/MS offers extremely high sensi-
tivity; however, it is challenging as a more demanding maintenance is often needed compared to
conventional microflow-LC approaches. Here, we developed a sensitive and reproducible lipidomics
LC method, termed Opti-nQL, which can be applied to any biological system. Opti-nQL has been
validated with cellular lipid extracts of human and mouse origin and with different lipid extraction
methods. Among the resulting 4000 detected features, 700 and even more unique lipid molecular
species have been identified covering 16 lipid sub-classes, while 400 lipids were uniquely structure
defined by MS/MS. These results were obtained by analyzing an amount of lipids extract equiv-
alent to 40 ng of proteins, being highly suitable for low abundant samples. MS analysis showed
that theOpti-nQL method increases the number of identified lipids, which is evidenced by inject-
ing 20 times less material than in microflow based chromatography, being more reproducible and
accurate thus enhancing robustness of lipidomics analysis.

Keywords: lipidomics; nano-LC-MS/MS; lipid species; quantitative analysis; sensitivity

1. Introduction

Lipids are one of the major constituents of biological systems. They are essential for bi-
ological membrane formation and energy storage and participate to many cellular signaling
processes [1]. Maintaining lipid metabolic homeostasis is crucial for every organism. It has
been reported that lipid dysregulation is linked to many diseases such as obesity, chronic
inflammation, cardiovascular and neurodegenerative disorders, diabetes, Parkinson and
cancer [2]. Identification and quantification of lipids have therefore become an impor-
tant need in both biomedical and basic research. The systematic analysis of the overall
lipid composition in a given system is called lipidomics, which is one of the branches of
metabolomics. The most suitable method for lipidomics analysis is mass spectrometry.
Technological advances in this field, such as high mass resolution combined with high
mass accuracy, faster scan rates and high reproducibility, have facilitated the application
of MS-based techniques both in quantitative and qualitative analysis of biomolecules [3].
MS-based lipidomics analysis is able to generate comprehensive, quantitative and repro-
ducible data with high efficiency and robustness. However, this approach displays several
analytical obstacles, mainly related to sample complexity.

Metabolites 2021, 11, 720. https://doi.org/10.3390/metabo11110720 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-5963-4580
https://orcid.org/0000-0002-1217-4046
https://orcid.org/0000-0003-4842-6556
https://orcid.org/0000-0002-4311-998X
https://doi.org/10.3390/metabo11110720
https://doi.org/10.3390/metabo11110720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11110720
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11110720?type=check_update&version=3


Metabolites 2021, 11, 720 2 of 15

According to their chemical structure, lipids are classified into eight categories: fatty
acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenol lipids, saccha-
rolipids, and polyketides [4]. All categories are further subdivided into lipid classes and
lipid subclasses. The number of naturally occurring lipids is calculated around 100,000 or
even more species, being far from the compounds annotated so far in lipids databases [5].
Lipid complexity leads to many potential mass spectral overlaps of lipid molecular ions
and molecular adduct ions, therefore isobaric species are commonly encountered in MS
analysis. Shotgun lipidomics, coupled with high mass resolution instruments, is the prin-
cipal MS based approach used for lipids analysis. Either Direct Infusion (DI) of lipid
extract or LC-based separation coupled with MS detection, are generally used for this
analysis [6]. The term ‘shotgun lipidomics’ generally refers to DI-MS. This method involves
intra-source separation of lipid classes without any prior chromatographic separation, and
the subsequent application of precursor ion and neutral loss scans of polar head group and
fatty acid moieties for lipid identification [6,7]. Compared to LC-based method, DI-MS
is stable in lipid quantitation, simpler in sample handling and faster in sample analysis.
However, the disadvantage is that DI-MS spectra are bias towards the most abundant or
easily ionized lipids. This limitation can be overcome by targeting one class of analytes at a
time using dedicated protocols or by performing specific derivatizations of a defined func-
tional group [8]. Furthermore, DI is hampered by the presence of isobaric species which
might be circumvented by LC-MS based approaches which offer an increased dynamic
range and an additional level of identification based on chromatographic retention time.
The two most widely used chromatographic approaches in LC-MS are reversed-phase
chromatography and hydrophilic interaction liquid chromatography (HILIC) [9]. Reversed-
phase LC separates lipids based on hydrophobic interaction between the fatty acyl groups
and the stationary phase (the retention time increases as the number of carbons increases
and decreases as the number of double bonds increases). HILIC, instead, separates lipids
mainly on the basis of the characteristics of their polar head groups. LC-based separation
coupled to MS detection provides molecular specificity using exact mass measurement,
structural information obtained by MS/MS and retention time to assign a detailed chemical
structure to each lipid identification. Depending on the type of MS/MS analysis there are
different levels of information that can be obtained. The first level of annotation for lipid
identification is the lipid membership class and its rough composition, which is based on
the sum of carbon atoms and double bonds present. For instance, PC 36:2 is phosphatidyl-
choline with 36 carbon atoms and 2 double bonds. Additional information on the length
of saturated and unsaturated fatty acids increases the annotation level to lipid molecular
species: e.g., PC 14:1/22:1 which is phosphatidylcholine with a 14 carbons alkyl chain
in sn1-position carrying 1 insaturation and with a 22 carbons alkyl chain in sn2-position
carrying 1 insaturation. Finally, molecular lipids are fully defined when elucidation of
structural features such as the position of the double bonds are also detected: e.g., PC
14:1(9Z)/22:1(13Z) (ref. HMDB0007920) which is phosphatidylcoline with a 14 carbons
alkyl chain in sn1-position carrying 1 insaturation at position 9 and with a 22 carbons alkyl
chain in sn2-position carrying 1 insaturation at position 13 [10]. The level of annotation is
strictly dependent on the availability of appropriate software tools, on the completeness
of lipids MS/MS databases, on the quality of in silico databases such as LIPID MAPS
and, importantly, on the data acquisition method and on the quality of data. It has to
be mentioned that there are also recent alternative techniques, such as ion mobility-mass
spectrometry (IM-MS), able to refine the structural information on the fatty acyl compo-
sition identifying unsaturated double bond positions and the cis-trans geometry of the
lipid chain [11]. The majority of LC-based lipidomics studies are currently performed
using micro, narrow- or analytical bore LC columns. Traditionally, microLC systems are
preferred because they are considered more robust at the expense of sensitivity, whereas
nanoLC systems are not routinely used because they are more prone to leaks and dead
volumes which cause peak broadening, and to fast clogging of columns and emitters due
to the formation of salt crystals [12]. Nevertheless, nano-scale analytics displays higher
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efficiency and sensitivity, offers low organic solvent consumption and reduced waste and
is essential when the biological material is limited, for example with small amount of tissue
biopsies or rare cell subpopulations [13,14]. Moreover, it can be easily applied for multiple
omics applications that uses small fractions of diluted samples [15]. Here, starting from
the investigation of mobile phases propensity to form salt crystals, we have developed a
robust and fast nano LC-MS/MS method, named Opti-nQL (Optimized-nano Quantitative
Lipidomics) method, able to achieve a comprehensive and high-quality analysis of lipid
species. We further showed that Opti-nQL is compatible with alternative lipid extraction
methods and with different biological samples.

2. Results and Discussion
2.1. Method Development
Lipid Extraction and LC Optimization

Lipid extraction was performed by using the Folch-chloroform based extraction [16],
which is one of the most commonly used methods for extracting lipids from biofluids and
tissues and recently used also for low sample amount [17]. In our protocol, an amount
of sample equivalent to 10 µg of proteins was used for lipid extraction. Following the
guidelines of the Lipidomic Standards Initiative (LSI) [18], Internal standards were spiked
into the samples as recommended by Wang et al. [19]. The extracted internal standards
mixture was used for LC optimization. Compared to micro LC, nano LC suffers the occur-
rence of leaks and clogging due to the formation of salt crystals, reducing chromatographic
column lifetime and analytical reproducibility. Therefore, we first analyzed the suitability
of mobile phases commonly used for lipids LC separation [20,21] with the aim to select
the one with the lower propensity to form salt crystals, hence best suited for nanoflow
analysis. The chosen chromatographic stationary phase was a C-18 reversed-phase, which
separates lipids based on their nonpolar fatty acyl moieties. According to the equivalent
carbon number theory [22], lipids of the same class are separated depending on the num-
ber of fatty acyl carbons and double bonds. We tested two mobile phase compositions,
such as: Phase A1 = CH3CN:CH3OH:H2O 45:45:10; 5 mM NH4COOH; 0.1% HCOOH
and Phase B1 = IPA: H2O 90:10; 5 mM NH4COOH; 0.1% HCOOH and as alternative
Phase A2 = CH3CN:CH3OH:H2O 45:45:10; 5 mM NH4COOCH3; 0.1% HCOOH and Phase
B2 = IPA: H2O 90:10; 5 mM NH4COOCH3; 0.1% HCOOH. We dried 10 mL of the above
described phases on a glass tube and we analyzed salt crystals deposits. From our test,
the presence of NH4COOH determines an increased accumulation of salt crystals when
compared to phases containing NH4COOCH3 (Figure S1). The mobile phases were tested
also in the LC system and as expected, we observed that the presence of NH4COOH gener-
ates frequent column clogging which was not observed in the presence of NH4COOCH3
(data not shown). Therefore, based on these observations we decided to use the mobile
phases A2 and B2 in the Opti-nQL method. We started to set up the method by using
microflow LC and, once the optimal chromatographic conditions were found, we moved to
nanoflow LC, with further optimization. In order to do so, Ekspert nanoLC400 (Eksigent)
system, equipped with nano or micro flow module for nano and micro chromatographic
analysis, was used. For the chromatographic separation of lipids in microflow, we used
reversed phase chromatography with an analytical column HALO C18 90A 0.5 × 50 mm,
2.7 µm particle size, coupled with the solvent system (organic/aqueous) that we have
previously selected, and operated at 10 µL/min. Conversely, for the nanoflow separation,
we used reverse phase chromatography with an analytical column Kinetex EVO C18 100A,
75 µm × 10 cm, 1.7 µm particle size, with the same mobile phase used for microflow at a
flow rate of 150 nL/min. By using a 35 min gradient, we compared, in micro and nano
workflow, the extracted internal standards mixture. The concentration of the sample in-
jected in the nano configuration was 20 times lower than the concentration injected in
microflow. We were able to separate all the internal standards (IS) both in micro and nano
configuration with the exception of glucosylceramide that shows a broader peak and is
almost invisible in the chromatogram (Figure 1A,B).
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Figure 1. LC chromatographic profiles of the standards mixture. (A) Extracted ion chromatogram (EIC) of internal standards
(IS) analyzed with micro-flow workflow. (B) EIC of IS analyzed in nano-flow workflow. (C) EIC of IS analyzed in optimized
nano workflow (Opti-nQL). (D) Peak width at 5% of the peak height for all IS analyzed in microflow, nanoflow and
Opti-nQL. t-test **** p-value < 0.0001. Notably, IS concentration injected in microflow is 1/12 of the amount (pmol) listed in
Table 1 while for nanoflow it is 1/250.
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Table 1. List of internal standards used for lipidomics analysis.

Class Subclass Species Concentration

Glycero-Phospholipids

PG PG 12:0/13:0 7.5 pmol
PI PI 12:0/13:0 54 pmol
PE PE 12:0/13:0 52 pmol
PS PS 12:0/13:0 43 pmol
PC PC 12:0/13:0, 40 pmol

Sphingolipids

CER Ceramide d18:1/25:0 100 pmol
GlcCer GalCer d18:1/12:0 50 pmol
LacCer LacCer d18:1/12:0 50 pmol

Sa Sphinganine (d17:0) 50 pmol
S Sphingosine (d17:1) 50 pmol

S1P Sphingosine-1-P (d17:1) 100 pmol
GalSph Galactosyl(s) Sphingosine-d5 20 pmol

Glycerolipids DAG D5-DAG ISTD Mix I 20 pmol
TAG D5-TAG ISTD Mix I 20 pmol

Sterol Lipids Chol Chol-d7 800 pmol
CE CE (19:0) 100 pmol

We then optimized the chromatographic gradient to obtain sharper peaks also for
glucosylceramide, GlcCer (d18:1/12:0) (Figure 1C). In particular, we removed methanol
from both buffer A and from the resuspension buffer, and we increased the length of
the chromatographic separation of 20 min (Figure 1C). Notably, the chromatographic
resolving power was improved by nano flow as all standards showed sharper elution
peaks. Moreover, the sensitivity of the method resulted highly increased, as many more
lipids were stochastically selected for MS/MS analysis with reduced spectral interferences
(Figure 1D). After the optimization of the nanoflow method, we assessed the linearity of the
peak areas for all the standards. In particular we tested four sequential dilutions from 1 to
10-fold, where 1 corresponds to an amount of IS equivalent to 1/250 of the IS concentration
listed in Table 1. For all the standard we also reported LOD and LOQ (Table S1), whose
values are globally lower compared to recent lipidomics published works [23,24]. Our
data demonstrate that the standards intensities increase proportionally with the injected
amount, as evident by observing the total ion current (TIC) of the analysis (Figure S2). All
the standards showed high linearity, reaching an average R2 of 98% (Figures S2 and S3).
Moreover, both intra- and inter-day variability are very low indicating that the Opti-nQL
method is highly stable (Figure S4). In particular, IS were analyzed twice the same day
or in different days spanning from 0 to 75 days after the first run. Both peak areas and
RT values are highly reproducible during time attesting the robustness of the presented
method (Figure S4).

2.2. Lipidomics Analysis of Mammalian Cells
2.2.1. Semi-Targeted Lipidomics Analysis

To assess the performance of Opti-nQL with complex biological samples, we used
lipids extracts from human (IPSC, Induced Pluripotent Stem Cell) and mouse (MEF, Mouse
Primary Embryonic Fibroblasts) cell lines. The same samples were analyzed both by
micro and nanoLC in order to evaluate the performance of both workflows. LC-MS/MS
analyses were performed exclusively in positive mode as we did not observe a reasonable
improvement in lipid coverage by combining positive and negative acquisitions (data
not shown). Briefly, two biological replicates with two technical replicates, were acquired
for each cell line to assess the reproducibility of the method. Spectra were analyzed by
LipidView (AB-SCIEX) in a semi-targeted approach, by selecting lipid classes, decided
by the user, to be searched in the raw data. The selected lipid classes in our study were:
Glycerophospholipids, Sphingolipids, Glycerolipids and Sterol Lipids. To asses the quality
of the extraction and the matrix effect we evaluated qualitatively and quantitatively the IS
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mixture spiked in the samples. The nanoflow and microflow analyses of the areas of the
spiked standards in extracts from Mouse Embryonic Fibroblasts (MEFs) and human IPSC
cells are reported in Figure S5. As expected, all standards were detected and quantified
in both LC configurations. Indeed, these results reflect the high efficiency of the Folch’s
lipid extraction method as it is reported that the recovery for most prominent lipid classes
(such as PC, SM, PE, TAG, and DAG) is above 90% while lipid classes with more polar and
partially negative charged headgroups (such as PI, PG, PA, and lyso-lipids) have recoveries
of 60–70% [25]. Moreover, the comparison of IS peak area analyzed alone or spiked in
MEFs and IPSC extracts shows that most of the lipid classes do not exhibit matrix effects
(Figure S6) as they were equally detected. As mentioned before, LipidView identifies
lipid species on the basis of class specific precursors ions, class-indicative fragment ions,
fatty acyl product ions and neutral loss ions. Overall, the micro-flow analysis led to the
identification of lipid species across 16 lipid classes with 295 and 330 total lipid species
identified in MEFs and human IPSC, respectively (Figure 2A,B), with an average of 182
and 251 lipids identified and quantified per run (Figure S7A).

Conversely, in nanoflow, injecting 20 times less material, we almost doubled the num-
ber of total identified lipid species in both MEF (698) and human IPSC (608) (Figure 2A,B),
where an average of 559 and 451 lipids was identified and quantified per run (Tables S2–S5
and Figure S7A). Differences in lipid IDs among each run, in both micro- and nano-flow, are
due to the presence of missing values, which are a common problem in omics approaches.
Indeed, missing values occur in datasets for several reasons: lipid amount below the
limit of detection; stochastic nature of precursor selection in data dependent acquisition
methods; missing peak picking by the software and biological variability across different
samples [26]. In line with the total identified lipids, also core lipids across replicates are
doubled in nano-flow compared the micro-flow datasets (Figure S7B). Therefore, the opti-
mized nanoLC method shows better performances in terms of increased number of total
lipids identified and quantified well distributed among each lipid class (Figure 2C,D and
Tables S2–S5), but also in terms of improved technical reproducibility (Figure 2E–H) and
decreased coefficient of variation (Figure 2I,J). The improvements listed above confirm the
nanoLC method as the best choice for a comprehensive lipidomics analysis as it enables
robust quantitation together with high reproducibility and sensitivity. Furthermore, we
analysed the lipidomics profile of melanoma WM115 cells and we obtained a comparable
number of lipids identified and quantified (Table S6), further attesting the reproducibility of
the nanoLC method across different types of samples. Indeed, we extensively utilized the
above described nanoLC analytical method as demonstrated by recent publications [27–29].

Of note, Opti-nQL led to a higher number of identified lipid species if compared
with published lipidomics studies performed on MEFs [30] and IPSC [31] cells by using
micro-flow LC (Figure 3).

2.2.2. Untargeted Lipidomics Analysis

The analysis with LipidViewTM, although user-friendly, shows some limitations as
it is semi targeted and it is based on matching precursor and fragment ion masses to
the in silico tandem MS database embedded in the software. In details, LipidViewTM

enables the identification of lipid species and lipid classes by matching specific lipid
head groups precursor ions, fatty acid characteristic fragments and neutral losses. The
unambiguous assignment of lipids to a precise structure is essential to understand their
biological implications [32]. Within the same class, lipid species differing for the position
of the double-bond moiety or for the relative position of the acyl group, may belong
to different biological pathways, and therefore their accurate identification is pivotal to
elucidate potential physiological links.
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Figure 2. Lipid identification in micro and nano workflow. (A) Total lipids identified in micro and nano-flow methods from
2 biological and 2 technical replicates of each IPSC sample. (B) Total lipids identified in micro and nano-flow methods from
2 biological and 2 technical replicates of each MEF sample. (C) Total lipids per class identified by micro and nano-flow in
IPSC. (D) Total lipids per class identified in micro and nano-flow. (E) Technical reproducibility of the peaks area of the lipids
identified in IPSC with the micro-flow method. (F) Technical reproducibility of the peaks area of the lipids identified in
MEF by the micro-flow method. (G) Technical reproducibility of the peaks area of the lipids identified in IPSC samples
with the nano-flow method. (H) Technical reproducibility of the peaks area of the lipids identified in MEF samples with the
nano-flow method. (I) Coefficient of variation (CV) of the peak areas of all the lipids identified in all the IPSC replicates
in micro and nano flow methods. (J) Coefficient of variation (CV) of the peak areas of all the lipids identified in all MEF
replicates in micro and nano flow methods. t-test **** p-value < 0.0001.
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Figure 3. Comparison of Opti-nQL method with already published lipidomics analysis performed
on the same cell lines. Opti-nQL leads to a higher number of identified lipids.

In order to have a more comprehensive and specific analysis of the lipidome profile,
we further analyzed the samples by SMFinder [27], an in-house developed software able
to match MS and MS/MS spectra with available lipidomics databases. Differently from
the library present in LipidViewTM, lipidomics databases used in SMFinder are library
of empirical spectra or in silico derived lipids fragmentations. In all the analyzed cell
lines, 3000–4000 MS features were detected above the intensity threshold being shared in
at least three out of four replicates of each dataset (two technical, two biological replicates)
(Figure 4).

Overall, 30% of them were fragmented. Given that the detected MS features do
not correspond to the actual number of lipids, as multiple adducts corresponding to the
same lipid might be present, we removed all redundant and contaminant MS signals. We
analyzed the above features by identifying lipids with different levels of confidence, from
the less stringent level, based exclusively on matching to the exact mass of known lipids
listed in LipidMaps database, to the most confident criteria based on matching both exact
mass and MS/MS fragments to the ones contained in currently available lipids databases,
with or without applying FDR filtering [27]. From the analysis of all the datasets, a total of
500–700 lipids matched to biological relevant lipids exclusively by exact mass (putative
lipids) (Figure 4A). A total of 250–450 features matched to known lipids in the lipidomic
databases at both by exact mass and MS/MS fragmentation, half of them also passed the
FDR filter (Figure 4A, Tables S7–S9). The identified lipids span over 20 lipid classes which
were well distributed along the LC gradient (Figure 4B). In particular, each lipid class is
eluted reflecting the structural differences due to its specific chemical composition. For
instance, hydrophilic lipids, such as diacylglycerophospholipids and phospholipids species
(PC, PE, PG, PI, PS) are eluted first in reversed-phase chromatography, while hydrophobic
TAG are at the end of the chromatographic separation (Figure 4B).

Compared to a recent nanoflow-based method [17] that used the same lipid databases
of this study for lipid identification, Opti-nQL leads to a higher number of identified
lipids with the most confident criteria (MS/MS level) (Figure 4C). Generally, the rate
of identification by MS/MS strongly depends on the availability of a lipids database.
Differently from other omics approaches, lipidomics analysis suffers the limited number
of MS/MS data contained in the databases thus limiting the unique identification of
lipids. Moreover, the available lipids databases are highly redundant, as the same lipid
displays multiple entries depending on the type of parameters used for the analysis,
such as MS instruments, ion polarity, collision energy and the formation of different
adducts. The presence of these redundancies might influence lipid identification based on
MS/MS calculated FDR, as the same lipid with different adducts will produce a similar
fragmentation pattern.
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Figure 4. Untargeted lipidomics analysis by SMFinder. (A) Number of features and total lipids
identified by exact mass and MS/MS match with or without FDR filter in all three datasets: MEF,
IPSC, and WM115 cell lines. (B) Lipid classes distribution of all lipids identified by SMFinder along
the gradient in dependence of m/z. (C) Comparison of lipids identified by MS/MS match in this
study and in a recently published work using nanoflow-based lipidomics method.

In conclusion, as more than 3000 features were distinctly detected, we believe that,
once libraries will be updated, Opti-nQL may lead to many more identifications.

2.3. Opti-nQL Is Compatible with Alternative Lipid Extraction Methods

Even though the Folch method is efficient and widespreadly used, other extraction
methods have been reported to lead to higher yield [33,34]. Thus, we tested the performance
of Opti-nQL using a different extraction method, to further demonstrate the versatily of
Opti-nQL. In particular, we used a single-step lipid extraction modifying Folch method
and applied it to the lipidomics analysis of IGR37 human melanoma cell line. We obtained
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an increase in identified and quantified lipids of 20%, from 700 to 900 lipid ID, spanning
on 25 lipid classes and covering the most represented ontologies of the cell (LION analysis)
(Figure 5). The faster and modified lipid extraction coupled with the Opti-nQL analysis
increases sensitivity and comprehensiveness of lipid coverage. Furthermore these results
additionally point to the wide applicability of the proposed method.

Figure 5. Lipidomic analysis with new lipids extraction method in IGR37cell line. (A) Lipids species
identified per class in IGR37 cells with single-step and Folch extraction method. (B) Total number
of lipid species identified in IGR37 cells with single-step and Folch extraction method. (C) Lipid
ontology enrichment analysis performed with LION [35] of the lipid species identified in IGR37 cells.
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3. Materials and Methods
3.1. Materials

Lipid standards and SPLASH® LIPIDOMIX® Mass Spec Standard were purchased
from Avanti Polar Lipids (Alabaster, AL, USA); solvents LCMS grade from Carlo Erba
Reagents (Milan, Italy); reagents and components of buffer solutions were from Sigma-
Aldrich (Darmstadt, Germany) in analytical grade or higher purity and the BCA protein
assay kit was purchased from Thermo Scientific (Rockford, IL, USA).

3.2. Biological Sample Collection and Cell Lysis

The cell lines analyzed were: Induced Pluripotent Stem Cells (IPSC, from Telethon
Genetic Biobank Network, Rome/Milano, Italy); Mouse Embryonic Fibroblasts (MEF,
approval code N◦ 614/2015-PR, from Italian Ministry of Health); melanoma cells: WM115
(from IZSBS, ID BS-TCL74) and IGR37 (from DSMZ, ID ACC 237). Cells were cultured
and collected as described previously [27–29]. The equivalent of 1–3 × 103 cells were
centrifuged at 800× g for 3 min and pellets were washed with 5 mL of PBS, frozen and
stored at −80 ◦C. Cells pellets were resuspended in 250 µL of ammonium bicarbonate
150 mM and mechanically disrupt-ed by passing 20 times through a 26 G syringe needle.
Samples for lipidomics analysis were analyzed either fresh or snap frozen in liquid nitrogen
and stored at −80 ◦C until further processing.

3.3. Proteins Extraction and Quantification

Proteins were extracted form 20 µL of ammonium bicarbonate resuspended pellets
by adding 5 µL of lysis buffer (10% NP40, 2% SDS in PBS) and quantified by BCA protein
assay kit.

3.4. Lipids Extraction

Lipids were extracted starting from an equivalent of ammonium bicarbonate resus-
pended pellets corresponding to 10 µg of proteins, using a 2-steps extraction protocol (Folch
method) with methanol and chloroform in different proportions [16]. Briefly, ammonium
bicarbonate resuspended pellets were spiked in with 16 internal standards (IS mix) and
subjected to a first extraction by adding 1 mL of a mixture of chloroform and methanol
91:9 v/v. After centrifugation at 9300× g for 10 min, the organic phase was recovered.
On the aqueous phase, a second extraction was performed with 1 mL of chloroform and
methanol 66:33 v/v, after 45 min of incubation, the organic phase was recovered, combined
with the previous one and dried out in a Speedvac to be then finally resuspended in 50 µL
of buffer A. Internal standards were spiked in the samples at the concentrations listed in
Table 1. All the operations were performed on ice.

As an alternative, lipids were extracted using a single-step extraction protocol with
methanol and chloroform. Briefly, water resuspended pellets were made up to 170 µL with
water and spiked in with 1 µL of SPLASH® LIPIDOMIX® Mass Spec Standard. The lipid
extraction consisted in adding 700 µL of methanol followed by a sonication of 1 min at 4 ◦C,
and subsequently an addition of 350 µL of chloroform. Samples were mixed on the orbital
shaker for 15 min at 4 ◦C. After that, a further addition of 350 µL of water/chloroform
(1:1 v/v) were added to each suspension and centrifuged 10,000× g for 10 min at 4 ◦C. The
organic phase was recovered and dried out in a Speedvac to be then finally resuspended in
50 µL of ethanol and buffer A 10:90 v/v.

3.5. Liquid Chromatography

Lipids were separated by micro and nano LC chromatography. For microflow anal-
ysis, lipids extracts were resuspended in 50 µL of methanol and 4 µL were injected on a
liquid chromatography system LC Ekspert nanoLC400 (Eksigent; Singapore) set in micro
configuration coupled with a Triple TOF 6600 (AB Sciex; Singapore) mass spectrometer.
Chromatography was performed using an analytical column HALO C18 90A 0.5 × 50 mm,
2.7 um particle size (Eksigent, Singapore) at room temperature. The gradient was starting
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from 5% of mobile phase B (IPA: H2O 90:10; 5 mM NH4COOCH3; 0.1% HCOOH) and 95%
mobile phase A (CH3CN:CH3OH:H2O 45:45:10; 5 mM NH4COOCH3; 0.1% HCOOH) and
linearly increased to 100% B over 35 min at a flow rate of 10 µL/min. For nanoflow analysis,
lipids extracts were resuspended in 50 µL of methanol or in 50 µL of a buffer composed by
95% of mobile phase A (ACN:H2O 40:60; 5 mM NH4COOCH3; 0.1% HCOOH) and 5% of
mobile phase B (IPA:H2O 90:10; 5 mM NH4COOCH3; 0.1% HCOOH), 1 µL was diluted 1:5
and injected on the same liquid chromatography system nLC Ekspert nanoLC400 set in
nano configuration coupled with the Triple TOF 6600. Chromatography was performed
using an in-house packed nanocolumn Kinetex EVO C18, 1.7 µm, 100 A (Phenomenex,
Torrance, CA, USA), 0.75 × 100 mm at room temperature. The gradient started at 5% of
mobile phase B and was linearly increased to 100% B in 5 min, maintained for 45 min, then
returned to the initial ratio in 2 min and maintained for 8 min at a flow rate of 150 nL/min.

3.6. Mass Spectrometry Analysis

The samples were analyzed in technical duplicate, in positive mode with electrospray
ionization. Data acquisition and processing were performed with Analyst TF (version
1.7.1, AB SCIEX, Foster City, CA, USA). For microflow analysis the following parameters
were used: CUR 30 psi, GAS1 30 psi, GAS2 30 psi, source temperature 200 ◦C, capillary
voltage 5500 V. Spectra were acquired by full-mass scan from 200–1800 m/z and information-
dependent acquisition (IDA) from 100–1800 m/z (top 10 spectra per cycle). The de-clustering
potential was fixed at 80 eV, and the collision energy was fixed at 40 eV, target ions were
excluded for 20 sec after 2 occurrences. For nanoflow the following parameters were used:
CUR 10 psi, GAS1 0 psi, GAS2 0 psi, source temperature 80 ◦C, capillary voltage 2000 V.
Spectra were acquired by full-mass scan from 200 to 1700 m/z and information-dependent
acquisition (IDA) from 50 to 1800 m/z (top 8 spectra per cycle). The de-clustering potential
was fixed at 80 eV, and the collision energy was fixed at 40 eV, target ions were excluded
for 20 s after 2 occurrences.

3.7. Data Processing and Analysis

Semi-targeted lipidomics analysis was performed by using LipidView (version 1.3
beta, AB SCIEX, Foster City, CA, USA). Lipid identification was based on exact mass,
retention time, and MS/MS pattern. Lipid species based on precursor fragment ions
were determined using a comprehensive targets list in LipidView. Lipid species iden-
tification was performed using a mass tolerance of 0.05 Da both in MS and in MS/MS,
s/n of 3 and % peak intensity > 0 for positive ion mode. Lipid classes included for statis-
tics and downstream analysis were: cholesterol ester (CE), sphingomyelin (SM), diacyl-
glycerol (DAG), triacylglycerol (TAG), ceramide (Cer) phos-phatidylcholine (PC), phos-
phatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phos-
phatidylserine (PS) and lysophosphatidylcholine (LPC), lysophosphatidylethanolamine
(LPE), lyso-phosphatidylglycerol (LPG), lysophosphatidylinositol (LPI), lysophosphatidylser-
ine (LPS), hexosylceramide (HexCer), dihexosylceramide (Hex2Cer), trihexosylceramide
(Hex3Cer), sulphatides (SGalCer), ceramide-phosphate (CerP). Peak areas of Internal stan-
dards were obtained by using PeakView (AB SCIEX, Foster City, CA, USA). Untargeted
lipidomics analysis was performed by using SMfinder [26]. The processing parameters
were set as follows: resolution of 30,000 with deisotoping option for the peak picker; 120 s
retention time tolerance for “Unique ID”; 10 ppm error with exclusion of halogenated
formulas for MS analysis; blind library with forces association and filter hierarchy based on
FDR and ppm, and minimum count of 3 for the filler function. The databases for the untar-
geted analysis were HMDB [36], MoNA [37], LipidBlast [38] and METLIN [39]. SMfinder
database formats are also available at https://www.ifom.eu/SMfinder/library.php (ac-
cessed on 15 September 2021) [40].

https://www.ifom.eu/SMfinder/library.php


Metabolites 2021, 11, 720 13 of 15

3.8. Statistics

The number of samples and the statistical tests are specified in the legends of each
figure. A p-value < 0.05 was considered statistically significant.

4. Conclusions

In the present work, we presented a sensitive nanoLC method, Opti-nQL, that shows
high reproducibility and robustness for lipidomics identification and quantitation. Up to
now, only few nanoLC methods have been used in lipidomics [17,41] and they all point to
a better performance compared to the most widely used microLC ones. Our method covers
the majority of lipid classes, using only one polarity mode, thus lowering the analysis time
compared to other methods. Moreover, Opti-nQL shows higher sensitivity and enables
the identification of more than 700 lipids, species starting from a lipid extract equivalent
to 40 ng of cellular proteins. Here, we used the Folch extraction method as it is widely
adopted [22] but we have also adopted a single-step extraction method able to improve
qualitatively and quantitatevely the lipid extraction, highlighting the Opti-nQL versatility.
Moreover, we showed that Opti-nQL is highly stable both in terms of lipid quantitation
and retention time variability making it very attractive for routine lipidomics analysis.

A limitation of the method remains the analysis of coeluting isobaric species that might
be overcome by using Opti-nQL with novel techniques based on ion mobility separation
coupled to MS analysis that have the capability to resolve coeluting isobaric compounds.
However, these methods are still limited considering the few updated lipids database
based on cross collisional section (CCS) values, thus requiring in-house developed libraries
and specialized instruments [34].

In conclusion, nanoLC lipidomics is highly versatile, might be easily applied in many
laboratories, and enables a comprehensive and robust lipidomics characterization which
might be further enhanced with the implementation of lipids databases. We strongly
believe that this method might be beneficial for lipidomic studies, both in basic and
biomedical research.
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