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Abstract: Prostate cancer (PCa) is a carcinoma in which fatty acids are abundant. Fatty acid
metabolism is rewired during PCa development. Although PCa can be treated with hormone
therapy, after prolonged treatment, castration-resistant prostate cancer can develop and can lead
to increased mortality. Changes to fatty acid metabolism occur systemically and locally in prostate
cancer patients, and understanding these changes may lead to individualized treatments, especially
in advanced, castration-resistant prostate cancers. The fatty acid metabolic changes are not merely
reflective of oncogenic activity, but in many cases, these represent a critical factor in cancer initiation
and development. In this review, we analyzed the literature regarding systemic changes to fatty acid
metabolism in PCa patients and how these changes relate to obesity, diet, circulating metabolites,
and peri-prostatic adipose tissue. We also analyzed cellular fatty acid metabolism in prostate cancer,
including fatty acid uptake, de novo lipogenesis, fatty acid elongation, and oxidation. This review
broadens our view of fatty acid switches in PCa and presents potential candidates for PCa treatment
and diagnosis.

Keywords: neuroendocrine prostate cancer; castration-resistant prostate cancer; fatty acid; metabolic
reprogramming

1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed malignancy in elderly males
and the second leading cause of cancer-related deaths in western countries [1]. It accounts
for 26% of all cancer diagnoses in males [1]. Because PCa grows relatively slowly, five-year
survival rates tend to be high, approaching 99%, based on data from the Surveillance,
Epidemiology, and End Results program. However, the occurrence of PCa still affects
quality of life and decreases patient life spans. Unfortunately, typical treatments for PCa
lack individualization. Though hormone therapy—including androgen deprivation ther-
apy (ADT), which can be a standard systemic treatment for advanced PCa—eventually,
the cancer becomes castration-resistant PCa (CRPC). Patients with CRPC have a median
survival time of less than two years [2]. Radical prostatectomy is another effective treat-
ment [3]. However, it is a challenge to treat metastases and invasive forms of CRPC [4]. The
development of neuroendocrine prostate cancer (NEPC), a type of CRPC associated with
small cell neuroendocrine cells, contributes to resistance to hormonal treatments, including
treatment with enzalutamide, and ultimately leads to increased mortality [5]. There is still
no effective therapy to combat NEPC in clinic work.

Altered lipid metabolism is known as a hallmark of PCa cells and thus represents a
potential target for novel therapies [6]. In particular, altered activities of lipogenic enzymes
have been connected to the genesis and development of PCa tumors [6], and additional
insight into the process of reprogramming of fatty acid (FA) metabolism may yield effective
therapeutic strategies.
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In this review, we aim to summarize the reprogramming of FA metabolism in PCa,
especially in advanced PCa. Both systemic FA metabolism in PCa patients and cellular
FA metabolism in PCa cells are reviewed. FA metabolism may provide targets for the
treatment or diagnosis of PCa.

2. Systemic FA Metabolism
2.1. Obesity and PCa

The incidence of PCa varies greatly around the world, with higher rates in Australia,
New Zealand, North America, Western Europe, and Northern Europe [7]. One reason for
the relatively high detection of PCa in these regions may be the availability of prostate-
specific antigen (PSA) screening [8]. However, another reason may be the high rates of
obesity in these areas [9]. Accordingly, recent meta-analyses have reported a positive asso-
ciation between obesity (one of the major risk factors for multiple human cancers) and PCa
incidence [9,10], and there is compelling evidence linking obesity with the aggressiveness
of PCa [11].

On the other hand, direct links between PCa incidence and obesity remain controver-
sial. Some findings have reported a lack of association between obesity and PCa [12], and
some have even reported a protective effect of obesity with respect to PCa initiation [13,14].
The differences in findings may be due to the nature of the prostate screening programs, as
indicated by Emma H. et al. in 2013, in that obesity itself may lead to reduced PSA levels,
and obese patients may be ineligible for biopsies that would provide definite diagnoses [15].

Though the relationship of PCa incidence to obesity remains somewhat controversial,
multiple studies have shown that obesity correlates with higher risk for biochemical re-
currence after radical prostatectomy and for PCa-specific mortality [16]. This effect may
be due to obesity-related alterations of serum cytokines and some proliferative hormones,
such as increased serum estrogen, insulin, insulin-like growth factor-1 and leptin, and
reduced testosterone [17,18]. In addition, pathologic analyses also have revealed mecha-
nisms that can explain the links between obesity and PCa advancement. In particular, it
has been established that the uptake and storage of lipids in the form of lipid droplets by
PCa cells play a vital role in the growth and development of PCa [19]; thus, obesity (and
accompanying increased levels of serum lipids) contribute to the aggressiveness of PCa,
though mechanisms explaining impacts of obesity on PCa initiation remain unclear.

Behavioral factors, including intake of food and nutrients, also strongly affect the
incidence and progress of PCa. For PCa prevention, general nutritional guidelines, instead
of individual foods, should be considered as recommendations. Increased vegetable and
fruit consumption and decreased red meat and saturated fat intake have been suggested for
the prevention of PCa [20]. With regard to specific nutrients, an investigation of potential
protective roles of selenium and lycopene supplementation reported no significant effect of
a 2 year therapeutic regimen on PCa [21]. Vitamin C supplements are also ineffective in
preventing incident PCa, and vitamin E supplements may even increase risk of PCa, but
more high-quality studies are needed [20]. Other specific nutrients that may impact PCa
includeω3 andω6 polyunsaturated fatty acids (PUFA), which cannot be synthesized de
novo, and must be taken in from food [22]. Research has suggested that the consumption
of theω3 PUFA arachidonic acid promotes the development of PCa, while eicosapentanoic
acid and docosahexanoic acid might have protective effects [23,24].

One recent report demonstrated that a Mediterranean diet pattern was associated with
a lower risk of aggressive PCa; whereas, there was no relationship of PCa risk with Western
or prudent dietary patterns [25]. However, a meta analysis in 2016 reported that a healthy
diet pattern did not decrease PCa risk significantly (odds ratio (OR) = 0.96; 95% confidence
interval (CI): 0.88–1.04). The Western diet pattern increased the incidence significantly
(OR = 1.34; 95% CI: 1.08–1.65). There were also significant linear trends between the
Western pattern (p = 0.011) and the carbohydrate pattern (p = 0.005) and PCa risk [25]. The
relationships of various diet patterns to PCa are summarized in Table 1.
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Table 1. Diet patterns and prostate cancer (PCa).

Diet Pattern or Nutrients Species (Human or Mice) Major Findings References

High fat diet Human, mice High fat diet fuels prostate cancer progression. [26–28]

Dietary Approaches to Stop
Hypertension (DASH) Human

DASH diet, may reduce the odds of high
aggressive prostate cancer. A weaker inverse

association between DASH scores and
prostate cancer aggressiveness was observed.

[29]

Mediterranean Human
Higher diet quality, as represented by a

Mediterranean-style diet, reduces the rate of
highly aggressive prostate cancer.

[29–31]

Western dietary pattern Human Western dietary pattern increases prostate
cancer risk. [32–34]

Chinese Food Pagoda Human

Not reported in PCa. However, it has shown
that it is related to DNA methylation,

histone modifications and non-coding RNA
expression in cancer cells to attenuate tumor

progression and prevent metastasis.

[35–37]

Multiple studies have observed that exercise and lifestyle may play important roles
in the disease progression, mortality, and overall disease burden for PCa. Randomized
controlled trials have demonstrated that more exercise is helpful for the decreased risk
of cancer incidence and increased progression-free survival, PCa-specific survival, and
overall survival. Exercise may also decrease progression to metastatic CRPC [38,39].

There are numerous potential reasons for the relationships between diet and exercise
and PCa outcomes. First, the ratio of androgen to estrogen may be altered in different
types of diet [40]. Secondly, as has been found in multiple epidemiologic studies, various
foods may contain phytoestrogens (plant-derived xenoestrogens), intake of which may be
related to a decreased risk of PCa [41]. A recently updated meta-analysis also confirmed
this conclusion [42]. Thirdly, the gut microbiome is closely correlated with uptake of
FA [43,44], and gut microbiome may influence cytokine activity throughout the system and
in the prostate.

Though general dietary factors and precise nutrients may influence the PCa process,
the status of the adipose tissue and the energy imbalance caused by diet, exercise, and
lifestyle cannot be ignored. Moreover, visceral fat, which influences the enviroment of or-
gans, is closely related to diet patterns [45], and a Mediterranean pattern, protein-enriched
diet has been reported to decrease visceral fat [42]. In this way, food patterns may also
influence the periprostatic adipose tissue (PPAT), which may contribute to PCa disease
processes. There might also be biases in the analysis of life pattern and PCa; for example,
this might be because family income might be different in individuals with different life
patterns, which might contribute to the PCa screening and treatment.

2.2. Serum Lipid Metabolites in PCa Patients

Peripheral blood-based liquid biopsies are of great importance for cancer diagnoses,
as they detect cytokines, metabolites, and other circulating factors [46]. More importantly,
the sampling is non-invasive (as compared with collecting tissue). However, the biggest
drawback of serum tests is that they reflect the whole body, instead of the just the cancer.
Analysis is needed to make this process more acurate for cancer detection. Though there
are limits in liquid biopsy, they can reflect the status of the entire body and can have effects
on the cells through circulation (Figure 1). Liquid biopsies can also provide evidence
for better understanding of diseases [47]. Metabolic profiling is among the most widely
used of liquid tests, and it plays significant roles in cancer diagnoses. The importance
of metabolic profiling lies in the fact that metabolic reprogramming, which is frequently
effected by oncogenes, is one of the most significant changes in cancers. Conversely,
metabolites produced or regulated by tumors and the whole-body condition can also
cause changes to gene expression epigenetically [48,49]. In recent years, improvements
to mass spectrometry technologies and nuclear magnetic resonance have advanced the
information obtainable through such tests for cancer detection [50–52]. For example, the
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use of nanoflow liquid chromatography–mass spectrometry (nano LC–MS) contributes to
the detection of glycolipids, which can be used in clinical studies; thus, investigation of
serum metabolites can be employed as a novel approach to gain further insight into cancer
diagnoses and potential therapeutic targets.

Metabolites 2021, 11, x FOR PEER REVIEW 4 of 17 
 

 

2.2. Serum Lipid Metabolites in PCa Patients 
Peripheral blood-based liquid biopsies are of great importance for cancer diagnoses, 

as they detect cytokines, metabolites, and other circulating factors [46]. More importantly, 
the sampling is non-invasive (as compared with collecting tissue). However, the biggest 
drawback of serum tests is that they reflect the whole body, instead of the just the cancer. 
Analysis is needed to make this process more acurate for cancer detection. Though there 
are limits in liquid biopsy, they can reflect the status of the entire body and can have effects 
on the cells through circulation (Figure 1). Liquid biopsies can also provide evidence for 
better understanding of diseases [47]. Metabolic profiling is among the most widely used 
of liquid tests, and it plays significant roles in cancer diagnoses. The importance of 
metabolic profiling lies in the fact that metabolic reprogramming, which is frequently 
effected by oncogenes, is one of the most significant changes in cancers. Conversely, 
metabolites produced or regulated by tumors and the whole-body condition can also 
cause changes to gene expression epigenetically [48,49]. In recent years, improvements to 
mass spectrometry technologies and nuclear magnetic resonance have advanced the 
information obtainable through such tests for cancer detection [50–52]. For example, the 
use of nanoflow liquid chromatography–mass spectrometry (nano LC–MS) contributes to 
the detection of glycolipids, which can be used in clinical studies; thus, investigation of 
serum metabolites can be employed as a novel approach to gain further insight into cancer 
diagnoses and potential therapeutic targets. 

 
Figure 1. Systemic fatty acid metabolism changes in prostate cancer patients. The periprostatic adipose tissue (PPAT) is 
able to secrete inflammatory factors, cytokines, and bioactive lipids to the micro-environment of the prostate to affect 
growth and development of cancerous tissues. Cell-to-cell interactions also exist between adipocytes and prostate cancer 
cells, and these interactions contribute to cancer development. Circulating metabolites are changed because of diet 
patterns or lifestyles of individuals, these factors also affect cancer cells’ biology. Moreover, prostate cancer cells 
themselves can also secrete metabolites into the surrounding environment. Phosphatidylcholine—PC; sphingomyelin—
SM; phosphatidylethanolamine—PE; phosphatidylserine—PS; poly-unsaturated fatty acid—PUFA; mono-unsaturated 
fatty acid—MUFA; interleukin—IL; tumor necrosis factor—TNF. 

Serum metabolic profiling panels have been reported to exhibit good diagnostic 
performance for the early detection of hepatocellular carcinoma from at-risk populations 
[53]. Similarly, changes to circulating metabolites in PCa have also been reported [47]. We 
have determined that a lipid metabolite biomarker panel (MET) exhibits good diagnostic 
performance for PCa detection. Lipids in this panel include N,N-dimethyl-

Figure 1. Systemic fatty acid metabolism changes in prostate cancer patients. The periprostatic adipose tissue (PPAT)
is able to secrete inflammatory factors, cytokines, and bioactive lipids to the micro-environment of the prostate to af-
fect growth and development of cancerous tissues. Cell-to-cell interactions also exist between adipocytes and prostate
cancer cells, and these interactions contribute to cancer development. Circulating metabolites are changed because of
diet patterns or lifestyles of individuals, these factors also affect cancer cells’ biology. Moreover, prostate cancer cells
themselves can also secrete metabolites into the surrounding environment. Phosphatidylcholine—PC; sphingomyelin—SM;
phosphatidylethanolamine—PE; phosphatidylserine—PS; poly-unsaturated fatty acid—PUFA; mono-unsaturated fatty
acid—MUFA; interleukin—IL; tumor necrosis factor—TNF.

Serum metabolic profiling panels have been reported to exhibit good diagnostic
performance for the early detection of hepatocellular carcinoma from at-risk popula-
tions [53]. Similarly, changes to circulating metabolites in PCa have also been reported [47].
We have determined that a lipid metabolite biomarker panel (MET) exhibits good di-
agnostic performance for PCa detection. Lipids in this panel include N,N-dimethyl-
phosphatidylethanolamine (18:0/18:2), phosphatidylcholine (16:0/20:2), phosphatidylser-
ine (15:0/18:2), sphingomyelin (d16:0/24:1), and carnitine (C14:0). The diagnostic per-
formance of this MET panel is particularly good in PCa patients with PSA levels of less
than 20 ng/mL [47]. However, no correlation of the MET panel with Gleason scores was
observed in PCa patients [47].

Moreover, using triple quadrupole liquid chromatography electrospray ionization
tandem mass spectrometry, Chen et al. also performed a lipidomic profiling from 30 pa-
tients with PCa, 38 patients with benign prostatic hyperplasia (BPH), and 46 healthy male
controls—the profiles indicated that the identified plasma lipid biomarkers have potential
for the diagnosis of PCa [54]. Pathway analyses have also revealed a statistically signifi-
cant association between lipids and PCa-specific death, and sterol or steroid metabolites
showed the strongest chemical subclass association [55]. Moreover, carnitine-FA also plays
important roles in the PCa detection. As is reported, acylcarnitines can separate PCa from
benign prostatic hyperplasia in a patient derived serum study [56]. Carnitines attached to
FAs and are related to FA oxididation. The specific carnitine levels (such as acyl carnitines)
were reported to be associated with metastatic lethal PCa [57]. Thus, data from multiple
research groups have demonstrated changes to circulating lipid levels in PCa patients.
Lipid metabolites, sterols, steroids, and phospholipids in the serum or plasma might be
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good candidates for PCa detection, and findings correlating serum metabolomics to PCa
may potentially be used for the development of new therapies for PCa [58].

2.3. Periprostatic Adipose Tissue (PPAT)

Obesity is related to PCa aggression and to the status of PPAT. The adipocytokines
secreted by adipose tissues have multiple functions; however, their functions, with regard
to the prostate gland, are partly due to the hormone receptors on the prostate epithelial
cell directly and to the systemic metabolism indirectly. The mutual interactions that lead
to specific functions are complicated and neuron net-like. Visceral fat, which surrounds
organs, is different from subcutaneous fat, in that the visceral fat produces many cytokines
and proinflammatory factors, which tend to induce an unhealthy enviroment for organs.
Subcutaneous fat, on the other hand, is more of an energy and heat producer. As is reported
in ovarian cancer, a majority of tumor cells can be transferred or located to the omentum,
which contains substantive amounts of visceral adipose tissue [59]. Adipocytes also provide
energy and adipocyte factors that encourage rapid tumor growth, causing the development
of cancer and metastasis [59]. All of these factors indicate that the adipose tissue around the
tumor can accelerate the cancer development. The prostate gland has an intimate physical
relationship with visceral adipose tissue in that it tends to have a capsular-like structure
that is surrounded by adipose, which makes adipocytes an important component of the
organ’s environment. PCa often happens in the peripherla zone of prostate. The PCa cells
tend to invade through the capsule infiltrating the PPAT. Thus, the adipokines and direct
cell–cell contacts may influence the phenotypic behavior of cancer cells.

A clinical study has identified a relationship of the PPAT to the development and in-
vasion of PCa. This study, by van Roermund et al. [60], utilized computerized tomography
to identify an association between the area and density of PPAT and high-risk prostate
cancer with PSA > 20 ng/mL, Gleason score ≥ 8, or stage ≥ T3. This study was designed to
use transrectal ultrasonography to determine if the amount of PPAT is a risk factor for the
incidence and aggressiveness of PCa, and it found that the amount of PPAT is a predictor
of PCa and high-grade PCa at biopsy [61]. Iordanescu et al. [62] similarly used magnetic
resonance (MR) analysis to measure the fatty acid composition of PPAT and found that
fatty acid composition is altered in the PPAT of patients with aggressive PCa. The studies
about PPAT and PCa are summarized in Table 2.

Table 2. Periprostatic adipose tissue (PPAT) and prostate cancer (PCa).

Species (Human, Mice, or Cell Line) Study Design Major Findings References

Human Clinic study
48% of PPAT is on prostate surface, 57-59% on

the right and lateral surface, 44% and 36%
along the anterior and posterior region.

[63]

Human Clinic study PPAT area and density were not associated with
PCa aggressiveness. [64]

Human Clinic studies
Significant association between total PPAT area

and density with high-risk, more aggressive
and developed PCa.

[48,49,52–56]

Human PPAT derived from patients Elevated expression of IL-1 and IL-6 in PCa
sample in comparison with normal prostate. [65]

Human PPAT derived from patients Higher secretion of IL-6 from PPAT was
observed in higher tumor grade. [11]

Cell lines PPAT derived from patients
PPAT derived factors increased migration of both

PC3 and LNCaP cell lines, while PPAT had a
strong proliferative effect on PC3 cell lines.

[66]

Cell lines PPAT derived from patients

Conditioned media from PPAT obtained from
patients with prostate cancer: integrin family cells

surface interaction and homeostasis pathway
were enriched pathways in tumor cells after cell

medium culture.

[67]
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Though some hold the view that there is no correlation between PPAT density and
PCa progression [64], most publications have reported that PPAT thickness or volume, as
well as density, were independent predictors of PCa and high-grade PCa [60,61,68–72]. In
addition to use in diagnosis, a study from Sumitomo et al. in 2010 [73] focused on the
effect of PPAT on perioperative outcomes of high-intensity focused ultrasound (HIFU).
HIFU was used to treat PCa, and the researchers evaluated whether obesity affected clinical
outcomes. It was concluded that the thickness of the anterior perirectal fat tissue was one of
the causative factors for poor clinical outcomes. Moreover, this relationship might help to
explain the effect of obestity on PCa development and invasion. Indeed, the PPAT not only
contributes to the HIFU outcomes, but also to the poor outcomes of radical prostatectomy.
The presence of this fat pad may obstruct the surgeon’s view of the field of operation, and
it may enhance adhesion to the surrounding tissues, via the action of cytokines secreted
by adipocytes. Angiogenesis can also be accelerated by thick PPAT, elevating the surgical
challenges and leading to poor post-operative outcomes [74,75].

Adipocytes (the mesenchymal stromal cells) interact with numerous different kinds
of cells. Mammary adipocytes have been reported to significantly enhance casein and
lipid accumulation within the mammary epithelial organoids [76]. Moreover, it has been
shown that 3T3-L1 adipocytes stimulated the growth of SP1 cells, which represent murine
mammary carcinomas, by secreting hepatocyte growth factor (HGF) [77,78]. Similar results
also were reported in skin and cutaneous carcinoma cells in which the differentiation
was promoted upon coculture with subcutaneous adipocytes [79,80]. As for the prostate,
studies in cell culture suggest that cocultured adipocytes modulate the growth, morphology,
and cytokine expression of PC3, a bone-metastatic prostate carcinoma cell line in a three-
dimensional collagen gel matrix [81]. Angiogenesis is another vital progress that is induced
by adipocytes, in part through the increase of the noted growth factors. However, there are
also opposing effects from adipose tissue. As has been reported by our group, adiponectin
defciency contributes to the development and progression of BPH as well as the growth of
PCa cells [82,83].

The changes of the adipose tissues in obesity, including changes to the brown and
white adipose tissues, is significant. Obesity also affects the biological characteristics of
adipocyte in visceral fat. Obesity intensifies the tumor growth and development, and this
provides a mechanistic hypothesis for the worse prognoses in obese PCa patients [84].
Adipose tissue is a metabolic organ producing hormones and cytokines that play multiple
roles in the biology of PCa. The adipocytokines secreted in serum, in particular, tend to
influence the progression of PCa. The adipocyte can secrete numerous hormones, including
tumor necrosis factor, interleukin-6, leptin, ghrelin, and adiponectin [85]. Moreover, not
only the hormones and adipocytokines but also the exosomes produced or stimulated from
adipose tissue take part in the progression of cancer [86,87]. The enviroment around the
prostate cells is partly constituted by adipocyte and the adipocyte-prostate cell interaction
cannot be ignored.

PPAT also contains immune cells that have effects on the development of PCa. The
lipid metabolism in the peripheral cells is also of importance for multiple cancers. As has
been demonstrated by Kumagai et al., FAs provide an advantage for the function of Treg
cells, which are able to present immunosuppressive functions within the environment of
tumor cells [88]. In PCa, we also have previously reported that blocking N-cadherin or
downregulating interleukin-8 is able to attenuate the immunosuppressive function that
is caused by Treg cells. This might contribute to the PD-1 therapy resistance in advanced
PCa [89]; thus, the metabolism in PPAT presents as a potential candidate to improve the
target therapy sensitivity in PCa (Figure 1).

3. Cellular FA Metabolism
3.1. FA Concentration and Uptake in Prostate Cancer

FA concentrations are significantly upregulated in PCa tissues. This can be con-
firmed by magnetic resonance imaging (MRI). The most widely used technique is three-
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dimensional chemical shift imaging, and this technique has been used to demonstrate
that lipids are relatively abundant in PCa tissues [90–93]. PCa tissues are not sensitive
to analysis with 18F-glucose-positron emission tomography or computed tomography
because of the limited glucose uptake and level of glycolysis. Glycolysis does increase
with PCa development, and this technique becomes more sensitive in advanced PCa tissue.
However, as lipid concentrations remain high in PCa tissues, other techniques using fatty
acids are better candidates for detection and diagnosis [94,95]. The high level of FA may
be caused by elevated FA uptake or by the upregulation of de novo lipogenesis. Though
some short-chain FAs can be transported directly through the membrane, it is now gener-
ally recognized that FAs cross the cell membrane via a protein-mediated mechanism [96].
Researchers have also noted that a FA transporter (fatty acid translocase (CD36)) mediated
metabolic changes and correlated with aggressiveness of PCa. In cell culture experiments,
silencing CD36 in human PCa cells reduced FA uptake and cell proliferation. Deleting
CD36 reduced fatty acid uptake and the abundance of oncogenic signaling in a mouse
model of PTEN−/− PCa [97].

Though there is close relationship between FA uptake and PCa progression, different
types of FA have individual effects. The increased uptake of oleic acid and palmitic acid
tend to increase cell proliferation, for instance [98]. However, excess palmitate causes oxy-
gen stress, leading to apoptosis [99], and this effect can be prevented by pre-treatment with
oleate or through triacylglycerol synthesis mediated by diacylglycerol O-acyltransferase
1 (DGAT-1), DGAT-1 is a gene involved in triglyceride synthesis. Accordingly, a DGAT1
inhibitor reduced the lipid droplet number and reduced the growth and development
of PCa [19]. It is also reported that DGAT-1 has a protective role of DGAT1 for bone
health [100]. The triglyceride metabolic process was shown to be elevated in invasive PCa
cells. Adipose triglyceride lipase is important for the formation of DG and knock down of
this protein reduced the rate of triglyceride hydrolysis and increased triglyceride levels in
PCa cells [101].

As is reported for PC3 cells, which is a small cell PCa cell line, docosahexaenoic acid
and eicosapentanoic acid show inhibitory effects on the uptake of phosphatidic acid and
arachidonic acid [102]. In our previous study, we did not find that NEPC cells benefitted
from the uptake of palmitate and oleic acid while arachidonic acid, a kind of PUFA,
contributed to the activation of the AKT–mTOR pathway, inducing the neuroendocrine
switch and enzalutamide resistance [24].

Thus, the concentration of various fatty acids might indicate the development of PCa
and is a potential candidate target to overcome the drug resistance and NE differentiation.

3.2. De Novo Lipogenesis

To use FA as an energy source, normal prostatic cells rely mostly on diet-derived,
circulating lipids (Figure 1). On the other hand, a study from the laboratory of Giorgia
Zadra [103] suggests that PCa is marked by increasing rates of de novo FA synthesis. The
key enzyme for this process is fatty acid synthase (FASN), which catalyzes the synthesis of
palmitate from malonyl-CoA and acetyl-CoA, using metabolites that originate mainly from
glucose or glutamine. Palmitate generation is followed by desaturation and elongation for
the production of more types of FA. In many types of cancers, FASN is overexpressed and
increased as the cancer develops. According to our studies of microarrays from prostate
cancer patients, FASN is upregulated in PCa tissues and is increased with the elevation of
Gleason’s score and clinical stages [104].

As reported by Richard Flavin, Giorgia Zadra, and Massimo Loda [105], natural sense
and pharmacological inhibition experiments have shown the importance of FASN on
proliferation and survival in multiple cancer cell lines. The involvement of the androgen
receptor (AR) in the expression of FASN is likely. In prostate cancer, AR is critical for
initiation and development. As a transcriptional factor, AR has been reported to activate
sterol regulatory element-binding proteins (SREBPs), which play a central role in FA
metabolism, especially in FASN expression. These connections can also explain why FASN



Metabolites 2021, 11, 765 8 of 17

and SREBPs are significantly increased in PCa tissues and cells, especially in metastatic
CRPC cases [103,105].

In CRPC, there are many mechanisms leading to drug resistance, including AR ampli-
fication and hypersensitivity, AR mutations, androgen-independent AR activation, and
intra-tumoral androgen production [106]. Among these, the AR pathway and the genera-
tion of the V7 splice variant (AR-V7) play important roles [107]. AR-V7 lacks the C-terminal
ligand-binding domain of full-length AR (AR-FL), so this version of the receptor cannot be
inhibited by androgen deprivation therapy because the receptor can be activated without
ligands. It drives the growth of mCRPC cells’ escape from androgen deprivation therapy.
AR-V7 mRNA and protein are up-regulated in PCa bone metastases, and overexpres-
sion was found in 39% of bone metastases. This variant was found to be consistently
co-expressed with FASN [107] and associated with a decrease in overall survival [108]
and resistance to either enzalutamide or abiraterone treatment, or both [109]. A FASN
inhibitor, IPI-9119, was reported to reduce the growth of AR-V7-driven CRPC, both in
xenograft models and human mCRPC-derived organoids. FASN inhibition can also elevate
the enzalutamide sensitivity in CRPC cells [103]. These results suggest that FASN and AR
are potential targets for the metabolic treatment of CRPC.

The upregulation of FA generation contributes to the architecture of the cellular mem-
brane [110]. Moreover, it also contributes to the enhancement of cell signaling pathways,
including the activation of the AKT–mTOR pathway and epigenetic regulation of k-RAS
and WNT-1 [111]. It can also regulate endoplasmic reticulum function and resistance to
genotoxic insults [112–114]. In addition, SREBPs are major downstream targets of the
mTOR pathway, as evidenced by increased lipogenesis in response to mTOR activation,
which is also consistent with its effect on hormone therapy resistance [115,116]. Chen et al.
identified the hyperactivation of an aberrant SREBP promoted lipogenic program by MAPK
reactivation. This program leads to a distinctive lipidomic profile as key characteristic
features of PCa in which both PML and PTEN have been deleted [26]. More importantly,
SREBP is a key factor in the regulating of tumor growth and distant metastasis in PCa,
which can be regulated by AR [26,117]. Notably, loss of both TP53 and RB1 is one of the
most important drivers of NE differentiation-induced hormone therapy resistance and
lineage switching. The RB1 gene can also interact with SREBP, which suppresses bind-
ing with target genes. Thus, in NPEC cells in which the retinoblastoma 1 gene has been
deleted, SREBP has the potential to be upregulated, leading to the enhancement of de novo
lipogenesis [118]. Specific TP53 mutations can also interact with SREBP to increase its
activation [118]. However, it remains unclear whether TP53 loss affects cell development,
and further studies are needed in this respect. ATP citrate lyase is also important in the de
novo lipogenesis process. Though there have been no reports regarding prostate cancer,
the effect of a feedback pathway has been observed involving ATP citrate lyase, AMP
kinase, and AR attenuates tumor growth and the acquiring of cisplatin resistance in ovarian
cancer [119]. As AR is a central regulator in PCa, this feedback pathway and its relationship
with lipogenesis suggests additional mechanisms and targets in regard to PCa treatment.

3.3. Fatty Acid Elongation

Fatty acid elongation is another critical pathway in FAs formation. Among the long-
chain fatty acids, polyunsaturated fatty acids (PUFA) are fatty acids containing two or
more double bonds, in whichω3 PUFA orω6 PUFA refer to the position of the first double
bond relative to the methyl end of the fatty acid (Figure 2). They have multiple functions
which can influence the cellular fate. It has been reported that consumption of ω3 FAs
reduced prostate tumor growth and increased survival, while ω6 FAs had the opposite
effect [22,23]. When researchers introduced anω3 desaturase, which convertsω6 FAs to
ω3 FAs, into PTEN knockout mice, they identified a reducing effect on PCa growth [120].
Overall, as is generally understood,ω6 PUFA tend to accelerate inflammation, cancer cell
proliferation, and metastasis, whereas,ω3 typically oppose these effects [22].
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Members of the elongation of very long chain fatty acids (ELOVL) protein family are
key enzymes involved in the FA elongation process. It has been reported that EVOLV7
is involved in PCa growth and negatively correlated with the survival of PCa patients.
ELOVL7 is important for the synthesis of saturated very long chain fatty acids (SVLFAs)
and their derivatives and may be a promising molecular target for the development of new
therapeutic or preventive strategies for prostate cancers [121].

ELOVL5, as another ELOVL member, is the key enzyme for PUFA production. Work
by Centenera et al. identified ELOVL5 as a pro-tumorigenic metabolic factor in PCa that
is androgen-regulated and is critical for metastasis and PCa growth [122]. Intriguingly,
according to our own research [24], FA elongation is enhanced after prolonged androgen
deprivation therapy and in advanced PCa, including neuroendocrine PCa (NEPC). With ad-
ditional arachidonic Acid (AA), one of the main PUFA, in the cell culture medium, prostate
cancer cell lines present more enzalutamide resistance. When ELOVL5 is overexpressed,
PCa cell lines shows elevated enzalutamide resistance, similar to the effect of adding extra
AA to the growth medium. However, after the ELOVL5 downregulates, cells are more sen-
sitive to hormone therapy. This effect is through the lipid raft-mTOR-AKT pathway, which
is significant for CRPC treatment. ELOVL5 can also be significantly regulated by SREBP1-c
and regulates the mTORC2-Akt-FOXO1 pathway by controlling hepatic cis-vaccenic acid
synthesis in diet-induced obese mice [123]. In this way, the inhibition of long chain FA
uptake might be a potential treatment for CRPC and to increase the hormone therapy
sensitivity. Moreover, PUFAs play critical roles in ferroptosis regulation, which may be
important for the protection of prostate cancer cells from damage from reactive oxygen
species [124], which indicates that PUFA might contribute to the survival of NEPC and
hormone therapy resistance through ferroptosis.

During the elongation process, desaturation is also needed. The key enzyme, stearoyl
CoA desaturase (SCD), facilitates proliferation of prostate cancer cells through an AR
dependent pathway [125,126]. An SCD1 inhibitor (BZ36) has been proven to repress the
proliferation of LNCaP and C4-2 cells in vitro and in vivo through the phosphatidylinositol
3-kinase and AKT-dependent pathway [127,128]. Researchers have also studied long-chain
acyl CoA synthetase (ACSL) enzymes in terms of their role in providing fatty acyl-CoAs,
which are downstream metabolites of FA. ACSL1 was shown to regulate production of
various lengths of acyl-CoAs in cancer cells. Expression levels of ACSL1 was elevated in
PCa, contributing to the proliferation and migration of prostate cancer cells in vitro and
in vivo [129].
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3.4. Fatty Acid Oxidation

FA oxidation is typically only associated with energy harvesting (Figure 2). However,
fatty acid reprogramming should also be placed in a different context: as a critical gate-
keeper that is regulated by oncogenic signals to drive cancer growth and development. In
PCa cells, FA oxidation is increased, and the key enzyme, carnitine palmitoyltransferase 1
(CPT1)—which catalyzes the transfer of long-chain FA into the mitochondria for further
oxidation—is upregulated [130,131]. The dominant metabolic role of FA oxidation, rather
than glycolysis, has the potential to fuel PCa growth and to be the basis for imaging-
based diagnoses and targeted treatment of PCa [132]. Findings have also investigated
that carnitine system could regulate the metabolic flexibility of cancer cells, which plays a
fundamental role in switching between the glucose and FA metabolism. The carnitine is
pivotal to tumor growth and survival [133]. MicroRNAs that targeted the carnitine system
also affected tumorigenic properties, such as proliferation, migration, and invasion, in both
PC3 (AR negative) and LNCaP (AR positive) cell lines [134]. Moreover, a recent study using
matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry
imaging (MSI) also indicated the increased levels of carnitine shuttle in prostate cancer
tissues [135].

Cellular FA oxidation produces NADPH, which scavenges reactive oxygen species to
protect cells from oxidative stress and protect cells from oxidative stress [136]. FA oxidation
has been shown to be a driver of cancer metastasis and to be important for activation of the
FA binding protein 12-peroxisome proliferator-activated receptor γ pathway, which has
a role in metastasis of PCa through modulation of the epithelial–mesenchymal transition
process [137,138]. Moreover, PCa metastasis is enhanced by the delivery of FA to nuclear
receptors by FA binding protein 5 (FABP5). This protein is not expressed in normal prostate
but is highly upregulated in metastatic PCa. The pro-metastatic effects of FABP5 are
through PPAR and estrogen-related receptor α pathways [139,140]. Thus, the use of FA,
either for energy or for nuclear transportation, is a critical determinant of cellular fate.

However, in our previous research [24], we did not find that FA oxidation was en-
hanced in CRPC-NEPC cell lines. Instead, the source of oxidation mainly depends on the
FA present in the medium. LNCaP/AR-shp53/shRB PCa cells—which are NE-like PCa
cells—are less sensitive to FA depletion than LNCaP/AR cells are, which indicates that
NE-like PCa cells may depend less on FA oxidation.

The significance of FA metabolism can be probed with etomoxir, the most widely
used inhibitor of CPT1, and hence, block the carnitine shuttle. This inhibitor blocks the
entry of FA into the mitochondria, where FA would be subject to further oxidation and
energy production. It is a safe irreversible inhibitor, having been used in the treatment
of heart failure [141]. When treated with etomoxir, the decreased proliferation level of
NE-like PCa cells is less, when compared with PCa adenocarcinoma cells. This may be
caused by the increased use of glutamine as fuel in NEPC cells [142], which is caused by the
decreased expression of kidney-type glutaminase (KGA) and upregulation of glutaminase
1 in hormone therapy resistant and NEPC cells [142]. Studies from the lab of Jiaoti Huang
demonstrated that NEPC cells become dependent upon glutamine but not on glucose, and
that the splicing form switch is induced by androgen receptor [142]. All these factors might
contribute to the lesser energy decrease after CPT1 inhibition in NEPC cells, compared with
adenocarcinoma cells. Interestingly, CPT1C, which is expressed at a low level in cells and
not the main form of CPT1 enzyme, is critical for the growth and development of small cell
lung cancer. CPT1C is mainly expressed in neurons and can be induced by hypoxia and
glucose deprivation [143]. In breast cancer, CPT1C overexpression increases rapamycin
resistance and it might act in parallel to mTOR-enhanced glycolysis [144]. As CPT1C
expression is closely related to the behavior of neuroendocrine cells and to the process
of glycolysis, this enzyme might be a candidate for the development of NEPC-targeted
therapies. Though it is not the main type for CPT1, it might still play important roles in the
NEPC cell development or the NE differentiation. In a recent publication, the expression of
the related enzyme CPT2 has also been reported to be significantly correlated with therapy
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resistance in PCa; thus, it might be a predictive marker [145,146]. Further studies are
needed to take advantage of the connections between FA oxidation, NEPC differentiation,
and therapy resistance.

4. Conclusions

FA metabolism reprogramming contributes to initiation and development in PCa.
Both systemic and cellular FA metabolism is significantly rewired in PCa. FA metabolism
pathways are potential candidates for diagnosis and treatment of prostate cancer. Especially
in advanced prostate cancer, targets to FA metabolism tend to elevate therapy sensitivity
and decrease the disease’s progression.
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