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Abstract: The ongoing unpredictability of climate changes is exponentially exerting a negative
impact on crop production, further aggravating detrimental abiotic stress effects. Several research
studies have been focused on the genetic modification of crop plants to achieve more crop resilience
against such stress factors; however, there has been a paradigm shift in modern agriculture focusing
on more organic, eco-friendly and long-lasting systems to improve crop yield. As such, extensive
research into the use of microbial and nonmicrobial biostimulants has been at the core of agricultural
studies to improve crop growth and development, as well as to attain tolerance against several
biotic and abiotic stresses. However, the molecular mechanisms underlying the biostimulant activity
remain enigmatic. Thus, this study is a liquid chromatography-mass spectrometry (LC-MS)-based
untargeted metabolomics approach to unravel the hypothetical biochemical framework underlying
effects of a nonmicrobial biostimulant (a silicon-based formulation) on tomato plants (Solanum
lycopersium) under salinity stress conditions. This metabolomics study postulates that Si-based
biostimulants could alleviate salinity stress in tomato plants through modulation of the primary
metabolism involving changes in the tricarboxylic acid cycle, fatty acid and numerous amino acid
biosynthesis pathways, with further reprogramming of several secondary metabolism pathways
such as the phenylpropanoid pathway, flavonoid biosynthesis pathways including flavone and
flavanol biosynthesis. Thus, the postulated hypothetical framework, describing biostimulant-induced
metabolic events in tomato plants, provides actionable knowledge necessary for industries and
farmers to, confidently and innovatively, explore, design, and fully implement Si-based formulations
and strategies into agronomic practices for sustainable agriculture and food production.

Keywords: biostimulants; GNPS; metabolomics; molecular networking; salt stress; Si-biostimulant;
stress tolerance; tomato plants

1. Introduction

The severity of salt stress has been predicted to escalate, with over 50% of arable
land estimated to be heavily salinised by 2050, posing a great threat to food security [1].
Salinity has been described as an accumulation of salts in soil, primarily sodium (Na+)
and chloride (Cl−) ions. Excessive amounts of salt ions in the rhizosphere could occur
naturally from processes such as mineral weathering and gradual withdrawal from the
ocean, or because of irrigation malpractices and overuse of fertilisers [2]. Consequently,
salt stress affects multiple vital processes of plants, leading to several modifications in
the physiological and metabolic processes, both of which are dependent on the duration
and severity of the stress. These changes manifest in two salt stress-induced phases: the
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earlier phase (osmotic stress) and the late phase (ionic stress) [3]. Plant responses to
environmental stresses are multi-layered and highly regulated complex phenomena, which
involve reprogramming of several cellular, molecular and physiological networks [4]. In
addition to nuances in the basis of salt tolerance in plants, some of the key cellular and
molecular events that fundamentally define the plant responses to salinity stress include ion
homeostasis, signalling (reactive oxygen species (ROS), nitric oxide (NO), Ca2+, hormones),
and metabolic remodelling [5,6]. Regardless of the nature of the plant, be it glycophytes or
halophytes, both cannot tolerate excessive amounts of salt in the cytoplasm [3]. Under salt
stress conditions, plants eliminate excess salt ions actively via either transportation into the
vacuole or seclusion into other parts of the plant which are eventually sacrificed to protect
the plant from stress.

Salt stress inhibits several metabolic pathways and enzymatic activities, resulting in
accumulation of ROS which have roles as second messengers in stress signalling [7,8]. In
addition to second messengers (ROS and Ca2+), phytohormones including abscisic acid
(ABA), jasmonic acid (JA), ethylene and gibberellins play significant signalling roles in
response to salt stress, ultimately stimulating modulation of biochemical and physiological
processes involved in plant defences [1,9]. Such signalling cascades are the frontier of plant
responses to salt stress, ultimately leading to alterations in gene and protein expression
for synthesis of stress response-related molecules. Such metabolic reprogramming involve
reconfiguration of both the primary and secondary metabolic pathways involving synthesis
of stress responsive metabolites including amino acids, organic acids, polyamines and phe-
nolic compounds [10–13]. As sessile organisms, plants have naturally and evolutionarily
developed responses against abiotic stresses, however, the extremity and persistence of
such stresses can often lead to huge crop losses. As a result, the main objective of mod-
ern agriculture is to improve crop productivity even in unfavourable salinity conditions
through incorporation of innovative and eco-friendly approaches, among which is the use
of biostimulants [14].

A biostimulant is conceptually described as any substance or microorganism that
is not a nutrient, pesticide or any of the soil improvers, but can promote the health
and growth of a plant through the induction of natural biological processes [15–17]. Plant
biostimulants can be classified into two main groups including microbial and non-microbial
biostimulants. Observed and elucidated effects of biostimulants include increasing the rate
at which the plant absorbs and assimilates the nutrients, and improving the quality traits of
crop plants [15,18]. Furthermore, studies have shown that the application of biostim-
ulants can enhance plant defence mechanisms, resistance and tolerance against biotic
and abiotic stresses [19,20]. Si (Si)-based formulations hold potential for improving plant
growth and tolerance under salt stress conditions [21,22]. According to research, the Silicon-
mediated salt stress alleviation mechanisms include (i) enhancement of water retention
via curbing of transpiration, (ii) maintenance of water content, thus reducing salt-induced
osmotic stress, (iii) regulation of gene expression relating to plant hormones, compatible
solutes, antioxidant enzymes and ion pumps biosynthesis and (iv) alleviation of ion
toxicity [23].

Although studies have suggested the abovementioned mechanisms for Si-mediated
salinity stress alleviation, the limited fundamental knowledgebase of the modes of action
of many biostimulant products is one of the gaps that require scientific attention. The
elucidation of the biological basis of biostimulant function, and a broad mechanism of
action at a molecular level, is a prerequisite for the development of a scientifically-based
biostimulant industry, leading to an effective exploration and application of biostimulants
in agriculture [16,24]. Systems biology approaches, such as metabolomics—a multidisci-
plinary science involving fourth industrial revolution (4IR) technologies—offer an unique
opportunity to understand the modes of actions of plant biostimulants, revealing key
metabolic landscapes that define plant responses to biostimulant applications [25–27]. Such
insights would facilitate the development of effective biostimulant formulations contribut-
ing towards sustainable agriculture and food security. Thus, the work presented here
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is a metabolomics study to unravel a hypothetical framework that describes underlying
biochemical and molecular events of the effects of a Si-based biostimulant on tomato plants
under salinity stress conditions.

2. Results and Discussion

The measurement of the metabolome provides functional readouts and mechanistic
insights of the biological system under consideration [28]. Hence, this global and data-
driven (omics) approach aims to generate predictive models that intelligently grasp and
describe the metabolic landscapes explaining (at a molecular level) the stress-alleviation of
Si-based biostimulants (Section 3). For epistemological articulation of the findings from this
study, results are presented and discussed into three main subsections: (i) the metabolome
coverage and metabolic pathway context; and biological meanings of the biostimulant-
induced alterations in tomato (ii) primary and (iii) secondary metabolism, under salt
stress conditions.

2.1. Metabolome Coverage and Metabolic Pathway/Network Context

Hydromethanolic extracts of biostimulant-treated and tomato leaves (under both nor-
mal and salt stress conditions) were analysed on a reversed phase liquid chromatography
coupled to a high-resolution mass spectrometry (LC-ESI-QTOF-MS) system. Chromato-
graphically, the tomato samples contained a wide range of metabolites of different polari-
ties, with treatment-related differential changes (Figure S1). These observed differential
chromatographic fingerprints point to treatment-induced changes in the metabolism of
tomato plants. Thus, to take an inventory of the measured metabolomes, the LC-MS/MS
data were submitted to mass spectral molecular networking through the global natural
product social molecular networking (GNPS) ecosystem (https://gnps.ucsd.edu (accessed
on 21 June 2021)) [29] (Table S1). Mass spectral molecular networking enables a broad
overview of molecular information that can be inferred from MS/MS data [30,31]. In molec-
ular networking, all identical MS/MS spectra are merged giving a list of unique MS/MS
spectra [32]. These are then subjected to spectral alignment allowing for spectral matching
with offsets based on the precursor mass differences. Molecules generating similar MS/MS
spectra are clustered due to similarities in their fragmentation patterns and are referred
to as molecular families, i.e., structurally related. In addition, the MS/MS spectra are
putatively annotated against reference spectra within the GNPS infrastructure [30,33].

This exploration of the collected ‘fragmentome’ therefore allows for the visual in-
spection of the chemical similarity between the annotated metabolites and the unknown
molecules, hence expanding the metabolome coverage under scrutiny [34,35]. In this study,
molecular networking of the metabolome in question revealed structurally related molec-
ular families in tomato plants: the computed network consisted of 11,346 mass spectral
nodes organized into 14 independent molecular families (Figure 1). The latter span a
spectrum of primary metabolite classes including amino acids, tricarboxylic acids, and
fatty acids and several secondary metabolite classes such as the terpenes, cinnamic acids
and flavonoids. Furthermore, the computed molecular networks provided quantitative
description of the measured metabolome by displaying nodes (ions) as pie charts to reflect
the relative metabolic changes related to the effects of the Si-based biostimulant on tomato
plants responding to salt stress conditions (Figures 1 and 2). As infographically displayed in
Figure 1, the selected clusters representing tricarboxylic acids and derivatives (A), linoleic
acids and derivatives (B) and flavonoid glycosides (C), showed the relative quantification
of respective ions under non-stressed, salt stressed and biostimulant treatment conditions.
These metabolic changes point to roles of the altered metabolites in plant responses to salt
stress, as discussed in detail in sections below.

https://gnps.ucsd.edu
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(tricarboxylic acids, linoleic acids, and flavonoids) are labelled with parent masses and displayed as pie charts representing 
distribution of ion intensities in the non-stressed controls (T1: dark blue), salt stressed (T2: light blue) and Si treated salt 
stressed samples (T3: red). 

To get an overview of the data, principal component analysis (PCA) was applied, 
summarising the variation in the data into a smaller number of latent components. The 
computed PCA models uncovered the overview structure of the data, exploratively re-
vealing distinct treatment-related sample groupings, which include the non-stressed con-
trols, salt stressed and Si-treated salt stressed sample groups (Figures 2A and S2). These 
differential sample groupings evidently reflect an underlying biostimulant-induced met-
abolic reprograming of tomato plants under salt stress conditions, irrespective of the bi-
ostimulant concentration and the application area. For the biological interpretability of 
the data (i.e., evaluating and biologically explaining these PCA-revealed sample group-
ings), a classification model that also allows an identification of metabolic markers was 
then used. Classification can be done using linear ML methods such as PLS and OPLS or 
non-liner methods such as neural network (NN) and support vector machine (SVM) algo-
rithms [25,36]. In this study, linear (supervised) ML methods, (O)PLS-DA (Figure S3A) 
were applied, with a perfect sample classification (Figure S3B–D) and allowing the selec-
tion of significant variables (Figure S4) which were further semi-quantitatively evaluated 
to biologically describe the changes in the tomato metabolome (Table S2). The preliminary 
results indicated that there were no significant differences when the plants were treated 
with the biostimulant at different application areas and concentrations (Figure S4). 

Furthermore, based on pathway over-representation of the differentially abundant 
metabolites (in tomato leaves), 11 biological pathways were the most statistically en-
riched, i.e., uniquely altered by the application of the biostimulant and/or salt stress con-
ditions. These include the biosynthesis of secondary metabolites-, linoleic acid metabo-
lism-, and flavonoid biosynthesis pathways (Figure 2C and Table S3). These biological 

Figure 1. Molecular network of all detected ions using MS/MS data in the negative mode. Nodes from the selected clusters
(tricarboxylic acids, linoleic acids, and flavonoids) are labelled with parent masses and displayed as pie charts representing
distribution of ion intensities in the non-stressed controls (T1: dark blue), salt stressed (T2: light blue) and Si treated salt
stressed samples (T3: red).

To get an overview of the data, principal component analysis (PCA) was applied,
summarising the variation in the data into a smaller number of latent components. The
computed PCA models uncovered the overview structure of the data, exploratively reveal-
ing distinct treatment-related sample groupings, which include the non-stressed controls,
salt stressed and Si-treated salt stressed sample groups (Figure 2A and Figure S2). These dif-
ferential sample groupings evidently reflect an underlying biostimulant-induced metabolic
reprograming of tomato plants under salt stress conditions, irrespective of the biostim-
ulant concentration and the application area. For the biological interpretability of the
data (i.e., evaluating and biologically explaining these PCA-revealed sample groupings),
a classification model that also allows an identification of metabolic markers was then
used. Classification can be done using linear ML methods such as PLS and OPLS or
non-liner methods such as neural network (NN) and support vector machine (SVM) al-
gorithms [25,36]. In this study, linear (supervised) ML methods, (O)PLS-DA (Figure S3A)
were applied, with a perfect sample classification (Figure S3B–D) and allowing the selection
of significant variables (Figure S4) which were further semi-quantitatively evaluated to
biologically describe the changes in the tomato metabolome (Table S2). The preliminary
results indicated that there were no significant differences when the plants were treated
with the biostimulant at different application areas and concentrations (Figure S4).

Furthermore, based on pathway over-representation of the differentially abundant
metabolites (in tomato leaves), 11 biological pathways were the most statistically enriched,
i.e., uniquely altered by the application of the biostimulant and/or salt stress conditions.
These include the biosynthesis of secondary metabolites-, linoleic acid metabolism-, and
flavonoid biosynthesis pathways (Figure 2C and Table S3). These biological pathways
are crucial in conference of salt stress, with roles in the synthesis of stress-responsive
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metabolites responsible for osmoregulation and antioxidant mechanisms (described in
sections below).
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used (Figure 3) [37]. In nature, the relationship between two metabolites can be highly 
complex and diverse, for instance, correlation between two metabolites could be based on 
their highly correlated concentrations, their participation in the same metabolic pathway, 
or due to the direct connection through a biochemical reaction [38,39]. However, it should 
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In this study, metabolite-metabolite correlations were presented in a colour-coded 
matrix, showing linear correlation patterns of the highest positive degree between amino 
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organic acids (Figure 3A). As discussed in subsequent sections, a strong correlation be-
tween the amino acid biosynthesis pathways and the organic acid/TCA cycle in response 

Figure 2. An overview of the metabolome coverage and metabolic changes associated with Si-biostimulant treatment of
salt stressed plants. (A) The 3-dimensional PCA scores plot with 44.6% of 58.5% total explained variation between the
non-stressed controls (T1: red), salt stressed (T2: dark blue), and the soil and foliar biostimulant treated stressed plants
(T3: light blue and T4: green, respectively (B) A sunburst chart that summarises the overall metabolome covered in this
study, displaying the main metabolite classes (amino acids, lipids, phenolics and others), their respective metabolites and
conjugates. (C) The metabolome summary of pathway analysis shows the contribution of each pathway on biostimulant-
induced metabolic changes. Node colour: significance of the pathway based on p-value (red is the most impactful). Node
size: impact of each pathway, largest nodes represent pathways with the greatest impacts (See Table S3). Metabolite
abbreviations are provided in Table S2.

To conduct a correlation analysis for visualisation of the overall correlations be-
tween the different features to identify particular patterns under the different treatments,
Spearman’s algorithm and the debiased sparse partial correlation (DSPC) algorithm were
then used (Figure 3) [37]. In nature, the relationship between two metabolites can be highly
complex and diverse, for instance, correlation between two metabolites could be based on
their highly correlated concentrations, their participation in the same metabolic pathway,
or due to the direct connection through a biochemical reaction [38,39]. However, it should
be noted that two metabolites could be poorly correlated even if they are neighbours in a
metabolic pathway because the modification in enzymes that control them can affect their
levels in different directions, whilst apparently distant metabolites are correlated [40].

In this study, metabolite-metabolite correlations were presented in a colour-coded
matrix, showing linear correlation patterns of the highest positive degree between amino
acids and organic acids (red) and the lowest negative between phenolic compounds and
organic acids (Figure 3A). As discussed in subsequent sections, a strong correlation between
the amino acid biosynthesis pathways and the organic acid/TCA cycle in response to salt
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stress has been established. For better visual inspection, the DSPC network where nodes in
the network are connected based on the similarity between metabolites and with edges
representing the correlations, was constructed. The correlation network only shows the
top 20% correlations based on their p-value rankings, with a cut off at 0.0005. DSPC
graphical models allow discovering weighted connectivity between large numbers of
metabolites, where several associations of metabolites can be discovered. On the network,
very strong correlations were discovered between the flavonoid quercetin and vitexin,
rutin and coumaroyl derivatives, and phenolic acids feruloyl-, coumaroyl- and sinapoyl
derivatives (Figure 3B). This correlation could be based on the fact that synthesis of phenolic
acids and flavonoids stem from the same metabolic pathway, the phenylpropanoid pathway
(discussed in the following sections).
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Figure 3. Correlation analyses among detected metabolites. (A) The correlation matric was obtained using the Spearman’s
correlation coefficient between each pair of metabolites, the colour scheme corresponds to the colour bar, showing positive
(red) and negative (blue) correlations. (B) Debiased sparse partial correlation (DSPC) network shows connectivity between
the top 20% correlated metabolites based on p-value, with the cut off at 0.0005. The nodes represent metabolites, the edges
represent positive (red) and negative (blue) correlations between metabolites. Edge thickness corresponds to the magnitude
of the correlation coefficients. Metabolite abbreviations are provided in Table S2.

In general, correlation analysis can be used as proxy to describe a given physiological
state of the system of interest because the correlation matrix and networks can change with
the steady-state concentrations of metabolites [40,41]. Hence, it is within reason to assume
that differences in the biological processes are reflected in the characteristics or patterns
of the computed correlation models. Although metabolite-metabolite correlation analysis
may not grasp the complete mechanisms underlying metabolic changes, it is a valuable
tool for exploration of metabolomics data that permits a direct analysis of mechanistic
changes in metabolism of the system under different physiological states [42].

In metabolomics studies, correlation analysis provides a powerful view to understand
biological systems where not only individual metabolites are connected, but also their
interconnections, hence providing a more comprehensive understanding of the metabolome
of the system in question [39]. The global correlation networks of differentially abundant
metabolites revealed two main constellations of phenolic compounds (square nodes) and
amino acids (circular nodes) interconnections, based mainly on their chemical relatedness
(grey edges). The metabolic networks also revealed biochemical relationships (green edges)



Metabolites 2021, 11, 820 7 of 26

within several phenolic compounds (naringin—coumaroyl/feruloyl/caffeoyl conjugates)
and between different metabolite groups such as organic acids and phenolics (malic acid—
naringin—feruloyl quinic acid) (Figure 4).
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Figure 4. Metabolic networks displaying interconnections between chemically related metabolites in tomato plants and
their relative responses to salt stress (A) and biostimulant treatment (B). The downregulation, upregulation, and no change
in metabolites under different treatments are represented by red, blue and green nodes, respectively. The black borderline
on the nodes indicates statistical significance (p-value < 0.05). Metabolite classes are represented as node shapes, as per key
indicated. Interconnections between metabolites are represented by grey and green edges for chemical (tmsim) and KEGG
reaction pair (krp), respectively.

Although some amino acids including alanine, leucine, glutamine and methionine
appear to have been downregulated (red) in response to salt stress (Figure 4A), others such
as isoleucine, lysine and glutamate were upregulated (blue). Si-biostimulant treatment
induced an overall increase in amino acid levels, while phenolic compounds were gener-
ally upregulated under both salt-induced duress and biostimulant treatment (Figure 4B).
However, some organic acids and sugars including hydromystic acid and glucarate (re-
spectively) depicted no change (green) under both salt stress and biostimulant treatment
of stressed plants, suggesting a limited role in plant response to salt stress. The observed
metabolic alterations in response to salt stress and biostimulant treatment are discussed in
detail in subsequent sections.

The computed network-based correlation analysis provides a complementary tool
to the statistical and multivariate analysis of metabolomics datasets for identification of
metabolite alterations in different physiological states [39,43]. As such, this method is
essential in generating hypotheses about the regulation of measured changes in metabolite
profiles under different treatment conditions. Thus, correlation networks provide insight
in the changes of the measured chemical space, thereby offering a further dimension to the
understanding of the regulation of key metabolites in response to stressful conditions.

2.2. Primary Metabolism: Roles in Si-Induced Amelioration of Salt Stress Responses

The application of Si-based biostimulants on tomato plants under salt stress con-
ditions induced shifts in primary metabolism, reflected through the reorganisation of
several pathways involving fatty acids-, organic acids-, sugar- and amino acids metabolism
(Table S3; Figure 2C). Primary metabolism defines the highly conserved physiological and
biochemical reactions which are directly associated with normal plant growth, reproduc-
tion and energy production amongst many [44,45]. However, studies have also implicated
the relevance of primary metabolism in regulation of plant defences against several stresses.
It has been suggested that primary metabolism plays essential roles during responses to



Metabolites 2021, 11, 820 8 of 26

abiotic stress conditions, for instance, to provide energy, chemical building blocks, and as
precursors of secondary metabolism [46,47]. In addition, primary metabolism has been
proposed to modulate signalling waves which propagate the stress stimuli throughout the
plant, leading to specialised plant defence responses [48].

2.2.1. Metabolic Reprogramming of Sugars and Organic Acids in Si Treated Salt Stressed
Tomato Plants

Si-biostimulant application to salinity-stressed plants evidently alter the content of
different organic compounds and sugars, e.g., reprogramming of ascorbate and alderate
metabolism, sugar metabolism pathways and the TCA cycle in this current study (Table S3,
Figures 2C and 5). Under salt stress conditions, the untreated plants exhibited a 1.5-fold
decrease compared to the non-stressed plants. On the contrary, biostimulant treatment
of salt-stressed plants resulted in a relative increase of phosphogluconate levels at all
time points, with doubled amounts on the first day post Si application at both 5 L/ha and
10 L/ha concentrations (Figures 5E and S5). The phosphogluconate pathway, also called the
pentose phosphate pathway (PPP), has been reported in numerous studies to be induced or
accelerated in response to different abiotic stress conditions [49,50]. In plant cells, the PPP is
considered the major metabolic defence mechanism against oxidants as it is the main source
of NADPH, which feeds a variety of ROS-scavenging systems [51,52]. Under salt stress
conditions, the PPP is stimulated as the main metabolic pathway, following suppression of
the TCA cycle. Si-based biostimulant treatment of salt-stressed plants lead to an enhanced
activity of both metabolic pathways, signifying generation of energy for both catabolic and
anabolic needs of plants under stressful conditions. These results agree with the studies
of [49,53] on Zea mays and Swertia chirayita, respectively, where phosphogluconate and the
enzymes involved in the PPP were enhanced upon Si formulation inclusion.

On the other hand, arabinose levels were relatively lower in stressed plants com-
pared to the non-stressed and were marginally decreased post-biostimulant treatment
(Figures 5E and S5). Under stressful conditions, arabinose is converted to a PPP interme-
diate, xylulose phosphate, which serves as a precursor for downstream metabolic energy
production (Figure 5A) [54]. In addition, arabinose is also used as a carbon source for
production of organic acids and some amino acids including glutamate, arginine and
lysine, which feed into the TCA cycle intermediate (Figure 5A). Although there are cur-
rently no studies on Si-biostimulant effects on arabinose in stressed plants, the decreased
levels of arabinose in biostimulant-treated salt-stressed plants could point to Si-mitigated
stress alleviation.

In addition to sugars, several studies have reported stress-induced modifications in
the levels of organic acids including most commonly malic acid, citric acid and succinic
acid [55–57]. On the contrary to the increased levels of ascorbic acid in response to salt
stress, malic and citric acids were observed to decrease considerably at all time points
subsequent to salt stress (Figures 5C and S5). Si application (foliar and soil) resulted in a
relative increase in measured organic acids levels at different developmental stages. Citric
acid and malic acid feed into the TCA cycle directly and indirectly, thereby contributing
to energy production (Figure 5A). Furthermore, malate is also a source of carbon diox-
ide in the Calvin cycle, which is enhanced for a rapid production of glucose and other
carbon skeleton donors under stressful conditions [58,59]. Similar to ascorbic acid, citric
acid also has a critical role in the antioxidant responses, both act by scavenging ROS re-
sultant of plant stress. Ascorbic acid also has other roles in plant defence mechanisms,
including repair of stress-induced oxidative damage of membranes, regulation of photo-
synthesis, hormone biosynthesis as well as regeneration of other antioxidants in cases of
elongated stress [55,60,61].

Si treatment of salt-stressed plants has been found to result in accumulation of organic
acids in several plant species: Arabidopsis thaliana [62], Oryza sativa [63], Eucalyptus [64]
and canola plants [65]. In accordance with the current study, these studies suggest that Si
induced accumulation of organic acids and has stress alleviation effects on salt stressed
plants. The key roles of organic acids in response to environmental stresses can be credited
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to their close relationships with sugars, fatty acids and amino acids, as depicted by the
summarised network of amino acid biosynthesis pathways, sugar metabolism pathways
(PPP and glycolysis) and the organic (citric) acid pathway in Figure 5A. Being at the centre
of energy production in plants, the organic acid pathway serves as the “middleman” in
the reversible pathways for degradation of amino acids and fatty acids to supply energy
for the intensive energy-utilising defence metabolic reactions. According to the findings
of this study, and as supported by numerous studies [66–68], it can be asserted that an
upregulation of pathways pertaining to accumulation of sugars and organic acids is but
one of the mechanisms fundamental to Si-induced salt stress alleviation in affected plants.
Hence, the stress mitigation effect of Si-biostimulant can be attributed to the reconfiguration
in the content of sugars and fatty acids, which lead to events including energy supply for
stress-responsive cellular processes, stabilisation and repair of photosynthetic equipment
resultant of salt stress and relief of oxidative stress by ROS scavenging, thus extenuating
salt stress effects and improving tolerance in stressed plants.
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2.2.2. Si Induced Modification of Fatty Acid Metabolism in Salt Stressed Tomato Plants

Hexadecadienoic acid (HDDA) and hydroperoxyoctadecadienoic acid (HPDA) levels
were altered in response to both salt stress and Si application. Salt treatment resulted in
a timely decrease of HDDA levels in salt-stressed plants compared to the non-stressed
plants, and the opposite was observed in HPDA levels, which were relatively increased
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upon longer exposure to salt stress (Figure 5D and Figure S4). Application of 5 L/ha and
10 L/ha Si both resulted in an increase of both HDDA and HPDA levels in salt-stressed
tomato plants, with the most prominent upregulation of HDDA (2-fold) on the third day
post-soil-applied Si treatment (Figure 5D and Figure S5). Changes in the profile of fatty
acids are considered vital in stress tolerance due to the multiple defence-related roles
attributed to this metabolite class. In the reaction catalysed by acetyl-CoA synthase and
fatty acid synthases, citrate is converted to acetyl-CoA which, in turn, is converted to
malonyl-CoA, an intermediate that is elongated into HDDA, also known as palmitic acid
(Figure 5A) [69,70].

Additionally, linoleic acid and its derivatives, including HPDA, trigger lipid-dependent
signalling cascades which mediate expression of defence-related genes and activate plant
adaptation mechanisms [71]. These fatty acids are the main unsaturated lipids involved
in stress response, specifically activating MAPKs and leading to subsequent activation
of stress-responsive transcription factors [13,72]. Furthermore, HPDA can also be converted
to an essential stress-responsive hormone undetected in the current study, JA [8,73,74].
Thus, HDDA, HPDA and related fatty acids regulate membrane fluidity, maintaining
a state suitable for optimised integral protein function, substance exchange, and signal
transduction during stress. Based on our results, supported by the literature [62,71,75], it
can be postulated that one of the mechanisms by which the Si-based biostimulant alleviates
salinity stress is via increasing the fatty acids content in plants. This modulation of the
fatty acid content of the plant cells can lead to different molecular and physiological events,
such as maintaining membrane integrity, regulating stress signalling as well providing
carbon skeleton for energy production, thereby mitigating salt toxicity and improving salt
tolerance in plants.

2.2.3. Reconfiguration of Amino Acid Metabolism in Response to Salt Stress and Si Treatment

In the current study, the free amino acid pool was amplified post-Si treatment of the
salt stressed plants, suggesting these molecules have critical roles in salt stress alleviation.
This increase in amino acid content is credited to Si-induced increases in hydroxyproline,
methionine, glutamine, glutamate, leucine, alanine, isoleucine, phenylalanine and tryp-
tophan at different time points (Figures 5B and 6). On the contrary, proline betaine and
isoleucine levels were significantly reduced upon Si application, most notably on late stages
of plant growth (day 7 and 28 post-biostimulant treatment) (Figure 6). These findings are in
accordance with several studies in which amino acids accumulate significantly in salt stress
conditions, and even more so upon biostimulant treatment of the stressed plants [76–78].
Thus, it can be postulated that several amino acids are involved in plant responses to
salt stress.

Changes in the abovementioned amino acids reflect alterations of several biological
pathways involved in salt stress responses, most notably the alanine, aspartate and gluta-
mate metabolism (H), phenylalanine, tyrosine and tryptophan biosynthesis (I), arginine
and proline biosynthesis (J), and the TCA cycle (M) (Table S3, Figure 2C). Rather than a
linear series of reactions, amino acid biosynthesis is evidently a complex network of reac-
tions reliant on alternative pathways. Although amino acids have primary roles as protein
synthesis precursors and in donation of their carbon skeletons to TCA intermediates, most
have been suggested to also have vital functions in stress alleviation mechanisms [66,79].
As displayed by the diagrammatic network on Figure 5A, the metabolism of amino acids
is heavily intertwined with those of other metabolite classes, most prominently that of
organic acids where amino acids reversibly feed into the TCA cycle.

In response to abiotic stresses, amino acids are known to act as osmolytes and precur-
sors for synthesis of other stress-responsive molecules. While it is known for its antioxidant
capabilities, proline is also classified as one of the major nitrogenous osmolyte responsible
for osmoregulation under osmotic stress conditions [8,80,81]. Moreover, proline plays nu-
merous crucial roles in plant defences, including gene reprogramming for overexpression
of defence-related genes, in growth development, root growth for enhanced mineral and



Metabolites 2021, 11, 820 11 of 26

water absorption [8,82]. Apart from feeding into the TCA cycle intermediates (Figure 5A),
leucine, alanine, and isoleucine have other roles in the physiology and metabolism of
stressed plants, functioning both directly and indirectly as defence molecules which allows
plants to withstand stress [83,84]. Other amino acids with essential roles in stress response
are tryptophan and phenylalanine, both are produced from the shikimate pathway, which
plays a fundamental role not only in plant development and reproduction, but also in
plant defence mechanisms [85,86]. Tryptophan is a precursor in the biosynthesis of stress
defence molecules, while phenylalanine has a major role as a precursor for the synthesis
of phenolics in the phenylpropanoate pathway (Figure 7A). Hence, biostimulant-induced
accumulation of tryptophan and phenylalanine in Si-formulation treated plants serves
as an indicator for the upregulation of the shikimate—and phenylpropanoate pathway,
suggesting stress relief [87–89].

These findings hence suggest that Si nutrition leads to the upregulation of several
pathways including those of amino acid synthesis, and as evidenced in above subsections,
that of organic acids in the TCA cycle. Such Si-based biostimulant-induced accumulation
of amino acids promotes cellular osmotic adjustments, protection of photosynthesis units,
and synthesis of defence-related proteins such as antioxidative enzymes and transport
proteins, thus mitigating protective mechanisms and enhancing tolerance to salt stress.
Moreover, with their metabolism branching out into the shikimate and phenylpropanoid
pathways, amino acids (i.e., phenylalanine, tyrosine, tryptophan) form a link between
primary metabolism focused mostly on plant growth, and secondary metabolism encom-
passing plant-environment interactions and defence-related mechanisms.

2.3. Si-Based Biostimulant Altered Secondary Metabolism towards the Salt-Stress Alleviation in
Tomato Plants

Several studies have suggested an overlap between the primary and secondary (spe-
cialised) metabolism in response to environmental stresses [90–92]. A number of complex
and intertwined specialised adaptive mechanisms have been reported in response to
salinity stress, mainly to reduce oxidative damage caused by the stress-induced accumu-
lation of ROS through synthesis of several compounds (phenolic acids, flavonoids, and
anthocyanins) with antioxidant properties [10,93]. Hence in the current study, predictive
ML-based models were built to evaluate the diversity of the specialised metabolites, reveal-
ing the most impacted phenylpropanoid—(A), secondary metabolites biosynthesis—(E),
flavonoid biosynthesis—(B), and flavone and flavanol biosynthesis (D) pathways post
Si-based biostimulant treatment of salt-stressed plants (Table S3, Figures 2B and 7).

2.3.1. Reconfiguration of Phenolics Metabolism in Response to Salt Stress

An overall increase in the content of total phenolics (phenolic acids and flavonoids)
including caffeic-, coumaric-, sinapoyl- and ferulic acids and their conjugates, as well as
quercetin and kaempferol conjugates was observed in response to salt treatment
(Figures 7 and S6). Interestingly, accumulation of these phenolics was observed on the
early days of stress, with subsequent declines upon long exposure to the salt stress as
observed on days seven and twenty-eight of harvest (Figure S6). This decline was ob-
served with some phenolic acids including caffeoyl-glucaric acid isomers (CGA I and
CGA II), feruloyl-galactarate isomers (Fer-Gal I and Fer-Gal II), sinapoyl-malate (SinM),
and flavonoids such as kaempferol diglucosyl-glucoside (KDG), kaempferol coumaroyl-
diglucosyl glucoside (KCDG), isoquercetin (Ique) and vitexin (Vit). Application of the Si
biostimulant to the salt-stressed tomato plants had contrasting effects, leading to significant
reductions in the content of phenolic compounds such as CGA isomers, SinM, coumaroyl-
glucaric acid (CouGA), sinapoyl-glycoside (Sin-gly), caffeoyl-quinic acid isomers (CQA I
and CQA IV) (Figures 7 and S6). In addition, biostimulant treatment of salt-stressed plants
also had variable effects on levels of flavonoids, entailing considerable declines in the
levels of kaempferol glucoside (Kglu) and Ique, respectively, post biostimulant treatment
(Figures 7 and S6). A general decrease in flavonoid levels post biostimulant application
was also observed with KDG, Vit, KCDG, and rutin (Rut).
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Variable effects of biostimulant treatments on the secondary metabolism pathways
involving production of phenolic compounds suggest involvement of these compounds in
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salt stress response mechanisms. Some of the biological pathways significantly modified
include flavonoid biosynthesis and the phenylpropanoid pathways (Table S3). Phenolics
are known to have remarkable antioxidant capabilities. The chemical structures of phenolic
compounds are predictive of their antioxidant potentials, which circulate around radical
scavenging, hydrogen- or electron- donation, and metal chelating capabilities [94,95]. In re-
sponse to salt stress, phenolics act as direct ROS scavengers by donating a hydrogen atom to
neutralise free radicals, as well as through a single-electron transfer. In this regard, the total
number of hydroxyl groups in the phenolic compound structure influences the mechanism
of antioxidant capability [89,96]. In addition, phenolic compounds also exhibit antioxidant
properties by chelation of metal ions such as iron and copper, which react with hydrogen
peroxide to produce a hydroxyl radicals that are known to cause DNA mutation [97,98].
Furthermore, phenolic antioxidant mechanisms include inhibition of pro-oxidant enzymes
such as nitric oxide synthase (NOS), xanthine oxidoreductase (XOR) and lipoxygenase,
which are responsible for stress-enhanced ROS generation [52,92,99]. Additionally, some
flavonoids have been reported to show interaction with cellular defence systems through
the antioxidant-responsive element (ARE), thereby stimulating antioxidant response genes
including those that code for the antioxidant enzymes NADPH-quinone oxidoreductase
and glutathione S-transferase [100,101].

The synthesis of phenolic compounds has been observed to be up- or downregulated
in response to diverse abiotic stresses, thus leading to the increased (short-term stress)
or decreased (long-term stress) total content of phenolics [11,102]. The decrease in total
content upon long-term exposure to stress indicates the plant’s susceptibility to the stress,
ultimately leading to cell death. In addition, reports have shown that Si treatment results
in short-term accumulation of phenolics followed by a subsequent decline, signalling Si
formulation-induced mitigation of salt stress effect, and hence stress alleviation [75,103].
In line with our findings, studies have also reported a Si-mitigated decline in the content
of phenolics in salt-stressed apples and Jatropha integerrima, respectively [104,105]. In
conclusion, application of Si-based formulations on salt-stressed plants confers higher
tolerance thereof via accumulation of phenolics which, in turn, activate defence-related pro-
teins, repair and regulate photosynthetic apparatus, scavenge ROS, inhibit ROS-producing
enzymes as well as activate antioxidant enzymes.

2.3.2. Terpenes and Polyamine Metabolism in Response to Si Treatment of Salt Stressed Plants

Along with phenolic acids and flavonoids, polyamines, terpenes and their modified
constituents-terpenoids, are also secondary metabolites with critical roles in plant responses
to abiotic stresses, including salinity stress. In this study, the generated molecular network
(see Figure 1) revealed a cluster of terpenes and derivatives in which the quantitative pie
charts showed an overall increase in salt stressed tomato plants, and greater abundance
post Si treatment of the salt stressed plants (Figure 8B). On the contrary, the polyamine
(tricoumaroyl spermidine and spermine) content considerably declined over time upon Si
treatment of the salt stressed plants (Figure 8C).

In tomato, terpenes are found in large quantities in leaves, stems and young fruits,
where the monoterpenes, diterpenes and sesquiterpenes are mainly synthesised from
isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP) in two path-
ways, the mevalonate pathway that takes place in the cytosol and mitochondria, and
the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which occurs in the plasmid
(Figure 8A) [106,107]. Because of their structure entailing conjugated polyenes, these
molecules have the ability to deactivate singlet oxygen and several free radicals produced
in large amounts during stress duress. Terpenes and terpenoids act as hydroxyl radical scav-
engers, protecting the plant against stress-induced oxidative damage [108]. Furthermore,
these molecules have been reported to be directly and indirectly involved in membrane
stabilisation, counteracting the damaging effects of stress-induced ROS [107,109,110]. The
fluctuant levels of terpenes and terpenoids are therefore indicative of the critical function
played by this class of secondary metabolites in stress adaptation.
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Figure 8. Changes in metabolism of terpenes and polyamines in response to salt stress and Si-biostimulant treatment.
(A) A simplified representation of two main terpenes’ biosynthesis pathways: mevalonate pathway, which takes place in
the cytosol (green) and the mitochondria (brown), and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which
occurs in the plasmid (blue). (B) The relative abundance of the measured terpenes across non-stressed controls (dark blue),
salt stressed (light blue) and Si treated plants (red) is presented as pie charts of the molecular network cluster of terpenes
and derivatives (see Figure 1). (C) An outline of polyamine synthesis pathways and corresponding graphs showing levels
of spermidine and spermine across stressed controls (T1), salt stressed (T2) and Si treated plants (T3 and T5) at all time
points. Abbreviations: DMADP, dimethylallyl diphosphate; MEP pathway, 2-C-methyl-D-erythritol 4-phosphate pathway;
IDP, isopentenyl diphosphate; FDP, farnesyl diphosphate; GDP, geranyl diphosphate; GGDP, geranylgeranyl diphosphate.

Polyamines are synthesised in the polyamine biosynthesis pathways, where the
amino acids arginine and ornithine form putrescene, a precursor to the synthesis of other
polyamines [111,112] (Figure 8C). Spermidine and spermine are produced from putrescene
and aminopropyl residues, which are typically provided by methionine. In stressful condi-
tions, polyamines function in concert with proline as the main osmolytes under stressful
conditions [84,113]. Through adjustment of the osmotic balance, polyamines function
towards alleviation of the salt-induced osmotic stress. Spermidine synchronises an array of
biological processes including calcium influx, which plays a functional role in salt stress
signalling [73,113]. Spermine and spermidine have also been reported to electrostatically
bind with negatively charged biomacromolecules such as nucleic acids, acidic proteins
and membrane phospholipids, allowing them to regulate expression of defence-responsive
genes, enzyme activity as well as stabilise the membranes for optimised functioning of
channel proteins and exchange of substances [84,114]. In addition, polyamines enhance
photosynthetic activity and the deactivation of ROS, hence reducing the inhibitory effects of
salt stress [115]. Spermidine levels have also been reported to be elevated under numerous
abiotic stress conditions with supporting evidence of its role in regulation of expression
genes that are involved in osmotic stress tolerance and as signalling molecules [84,114].
Thus, Si-based biostimulant treatment of salt-stressed tomato plants ameliorates the stress
effects via several polyamine- and terpene mediated mechanisms including protection of
macromolecules, osmotic adjustments and detoxification of ROS.

Plants are frequently exposed to the adversity of abiotic stresses which have hostile
effects on plant growth and development. Evolutionarily, plants have adapted several



Metabolites 2021, 11, 820 15 of 26

stress response mechanisms based on the intrinsic metabolic capabilities, to cope with the
rapid fluctuations. Such protective mechanisms induce cellular metabolic reprogramming
to facilitate the bio-physio-chemical pathways in response to the external environment.
Thus, our findings evidenced that the key mechanisms induced by the Si-biostimulant
towards stress alleviation encompassed the primary metabolic reactions such as glycolysis,
TCA cycle, fatty acid- and amino acid biosynthesis pathways (Figure 9). In addition, the
more specialised secondary metabolism was also impacted by the biostimulant applica-
tion through activation of stress-responsive pathways including the phenylpropanoid
pathway, flavonoid biosynthesis pathways and other secondary metabolites biosynthesis
pathways (Figure 9).
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Figure 9. A postulated overview of Si-mitigated alleviation of salt stress effects on tomato plants via modulation of the
primary and secondary metabolic pathways. (A) Scheme portraying the detrimental effects of salt stress on a plant. Excess
accumulation of Na+ and Cl− ions in the soil, hence an increased absorption causes an imbalance in the uptake of other
ions, water and nutrients. Subsequent ionic and osmotic stresses enhance synthesis of ROS, resultant in oxidative damage
of macromolecules and photosynthetic equipment. (B) Si-based biostimulant treatment of the salt-stressed plants leads to
modifications in the slightly overlapping primary (red) and secondary (blue) metabolic pathways for a coherent defence
response. Upregulation of these pathways result in accumulation of osmolytes, enhanced synthesis of enzymatic and
non-enzymatic antioxidants, ROS detoxification and repair of the salt-stress induced oxidative damage. Coherent activities
of the Si-enhanced defence responses ultimately lead to conferred salt stress tolerance in plants (C). Primary metabolic
pathways (blue): glycolysis (1), pentose phosphate pathway (2), tricarboxylic acid cycle (3), amino acid biosynthesis
pathways (4) and the secondary metabolic pathways (red): including shikimate pathway (5), phenylpropanoid pathway
(6, 7) and flavone and flavonol biosynthesis pathways (8). Abbreviations: G6P, Glucose-6-phosphate; EryP, Erythrose
phosphate; PEP, Phosphoenol pyruvate.

The postulated model (Figure 9) therefore suggests that Si-based biostimulant confers
salt stress tolerance through reconfiguration of the plant’s metabolome to synthesise stress-
responsive molecules. Si-induced accumulation of several amino acids, organic acids,
fatty acids and sugars have been suggested to confer salt stress as osmoprotectants in
the first line of response in plants during salinity, hence alleviating the resultant osmotic
stress. Furthermore, these metabolites feed into the TCA cycle for biosynthesis of various
osmotic regulators and an uninterrupted supply of energy needed for the sequestration
of toxic Na+. In addition, Si nutrition resulted in increased production of secondary
metabolites comprising phenolic acids, flavonoids, polyamines and terpenes which are
mainly important antioxidants, functioning coherently with the primary metabolites to
scavenge the salt stress-resultant ROS species, hence improving the oxidative damage.
These findings were reflected by the agronomic and phenotypic data, some of which
reported in this study (Figure S7); where Si treatment of the salt stressed plants translated
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to an increase in the plant height, dry root biomass and the number of tomatoes fruits. In
addition, increased content, and uptake of several nutrients including Ca2+, Cu2+, Fe2+,
Na+, S2−, and Mn2+ was measured post Si treatment of the stressed plants. Ultimately, the
stress and biostimulant-induced metabolic reprogramming leads to several physiological
mechanisms that counteract the salt stress effects including activation of defence-related
genes, repair of the stress-induced damage on the photosynthesis apparatus, stomatal
closure, enhanced rate of ROS scavenging and regulation of ion and nutrient absorption
(Figure 9). As such, Si-based biostimulant treatment of salt stressed plants has been shown
in this study, to alleviate salt stress effects and promote tolerance at the developmental
stages of tomato plants.

3. Materials and Methods

All reagents used from the pre-analytical to data acquisition stages were purchased
from international suppliers in pure or analytical grade quality. Organic solvents used in
metabolite extraction and data acquisition (acetonitrile and methanol) were of LC-MS grade,
from Romil, SPS, (Cambridge, UK). Leucine encephalin and formic acid were acquired
from Sigma Aldrich (Munich, Germany), while the water was purified using an in-house
Milli-Q Gradient A10 system (Siemens, Fahrenburg, Germany).

3.1. Plant Cultivation and Treatments

Hybrid tomatoes (Solanum lycopersium) STAR 9009 were planted in 10 L-pots filled
with coir (20 seeds per pot) and positioned randomly (on rotating tables) in a greenhouse
located at Omnia Group facilities in Sasolburg, Free State, South Africa. The study was
designed as a three-factorial experiment laid out in a split-plot on rotating tables. At
emergence, the plants were thinned to 5 plants per pot based on uniformity and the health
of the plants. Each pot was considered as a biological replicate and contained five plants at
the harvesting time. The study comprised controls and treated groups, all referred to as
treatments (T) (Table 1). Control groups consisted of T1, T2 (no biostimulant application);
and treated groups included T3–6 (salt stress and biostimulant applications). Five biological
replicates (i.e., five pots) per treatment were harvested at each time point (Table 1). The
tomato plants (at 4th leave stage) were exposed to salt stress in a form of sodium chloride
(NaCl) 10 days prior to biostimulant treatment. The first irrigation, to prevent salt shock by
the plants, was application of 25 mmol/L of NaCl. Thereafter, the concentration of the salt
was doubled to 50 mmol/L for the duration of the trial.

Table 1. Description of treatments and their corresponding Si-based biostimulant application rates.

Treatment (T) Treatment Description Application Rate (L/ha)

T1 Control: No salt stress application, no
biostimulant application 0

T2 Control: Salt-stress application and no
biostimulant application 0

T3 Salt stress application and soil applied
biostimulant 5

T4 Salt stress application and foliar applied
biostimulant 5

T5 Salt stress application and soil applied
biostimulant 10

T6 Salt stress application and foliar applied
biostimulant 10

Ten days post 50 mmol/L salt stress induction, the plants were treated with a Si-based
biostimulant formulation (Omnia Group Ltd., Bryanston, South Africa) through soil and
leaf (foliar) application (Table 1). The biostimulant formulation used in this study is Fortisil-K,
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a soluble potassium silicate product (Omnia Group Ltd., Bryanston, South Africa). Here,
for semantics simplicity, the formulation will be referred to as Si-based biostimulant or
simply the biostimulant or Si-formulation. The biological perturbations due to the applied
treatments were monitored over a total of 4 w post-treatment (WPT).

3.2. Harvesting Plant Materials and Metabolite Extraction

The leaves of the tomato plants were harvested at 4 different time points: 1, 3, 7, and
28 d post-biostimulant treatment (DPT), for all treatments and biological replicates. The
leaves were picked randomly and immediately immersed in liquid nitrogen to rapidly
quench enzymatic activity. The leaves were then stored at −20 ◦C until further analysis.
Metabolites were extracted from leaves from all treatments and biological replicates. Liquid
nitrogen was added to the leaves (which were kept at −20 ◦C), followed by grinding of the
frozen material to a powder form using a pestle and mortar. To avoid any chance of sample
crossover, the pestle and mortar were cleaned (washed using dH2O and rinsed with 80%
aqueous methanol) between samples.

Two grams per sample were weighed into a clean Falcon tube and 20 mL of 80% cold
(aqueous) methanol (4 ◦C) was added (1:10 m/v ratio). The mixture was homogenised for
2 min using an Ultra-Turrax homogeniser and sonicated for 30 s with a probe sonicator
(Bandelin Sonopuls, Berlin, Germany) at 55% power. The homogeniser and the probe
were cleaned with 80% aqueous methanol between samples to avoid sample crossover. All
homogenates were centrifuged at 5100 rpm (5525× g) for 15 min at 4 ◦C. The supernatant
from all samples were each concentrated to 1 mL using the Büchi Rotavapor R-200 at
55 ◦C, and dried to completeness with a speed vacuum concentrator (Eppendorf, Merck,
South Africa) set at 45 ◦C. The dried samples were re-suspended in 500 µL of 50% aqueous
methanol (LC-MS grade). All sample suspensions were filtered through 0.22-µm nylon
syringe filters into pre-labelled HPLC glass vials fitted with 500 µL inserts (Shimadzu,
Johannesburg, South Africa). Pooled quality control (QC) samples were prepared by
pipetting equal volumes from each aliquoted sample. All samples were stored at −4 ◦C
until downstream analysis.

3.3. Data Acquisition Using Ultra-High-Performance Liquid Chromatography-High Definition
Mass Spectrometry (UHPLC-HDMS)

Data was acquired through subjection of the aqueous-methanol extracts to UHPLC-
HDMS analyses on a Waters Acquity UHPLC system coupled to a SYNAPT G1 High
Definition (HD) quadrupole time-of-flight (Q-TOF) mass spectrometer (Waters Corporation,
Milford, MA, USA). Chromatographic separation of the analytes in samples was done on
a HSS T3 C18 reverse-phase column (150 mm × 2.1 mm × 1.8 µm) (Waters Corporation,
Milford, MA, USA), thermostatted at 60 ◦C, with 3 replicated injections of 3 µL per sample.
A gradient elution method was employed at a flow rate of 0.4 mL/min, with solution A
(0.1% aqueous formic acid) and solution B (0.1% formic acid and acetonitrile—Romil Pure
Chemistry, Cambridge, UK). Elution of solution B in the binary solvent commenced at
2% (v/v) for 0–1 min, increased to 70% from 1–14 min and further to 95% from 14–17 min.
To clean up and equilibrate the column, elution of solution B was decreased to 2% in the
last minutes of the run (17–20 min). An analysis of solvent blanks and QC samples was
done in parallel with the tomato extracted metabolite samples.

For mass spectrometry analyses, the electrospray ionisation (ESI) source (of the
SYNAPT G1 MS system) operated in both negative and positive modes. The mass analyser—
time-of-flight (TOF)—was operated in V-optics. The centroid data was acquired with the
scan range of 50–1200 Da, with the scan time of 0.1 s and an inter-scan delay of 0.02 s.
Leucine enkephalin solution (50 pg/mL), [M + H]+ = 556.2766 and [M − H]− = 554.2615,
was continuously sampled to ensure acquisition of high mass accuracy (1–3 mDa) of
analytes via MassLynxTM software automatic corrections of small deviations from the
exact mass value. This standard solution was sampled every 15 s, producing an aver-
age intensity of 350 counts per scan in centroid mode. Other mass analyses parameters
entailed: source temperature set at 120 ◦C and desolvation temperature at 450 ◦C, with
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capillary-, sampling cone-, and extraction cone voltages at 2.5 kV, 30 V and 4 V, respectively.
Nitrogen gas was the nebulisation gas at a flow rate of 700 L/h. A data-independent
acquisition (DIA) method, MSE/MSAll, was applied, using alternating low-energy collision-
induced dissociation (CID) and high-energy CID: i.e., full scan (non-fragmented, 0 eV) and
five high-energy CID (10–50 eV). The low-energy CID is to obtain precursor ion mass spec-
tra, and the high-energy CID is used to acquire product ion (fragmentation) information.
The collected fragmentation data were used for downstream compound identification and
structural elucidation. All data was manipulated using MassLynxTM 4.1 (SCN 704, Waters
Corporation Milford, MA, USA).

Pooled quality control (QC) samples were used for assessment of the reliability and
reproducibility of the data generated, as well as for corrections of the non-linear signals. A
QC sample was injected after each 10 randomised sample injections to accurately monitor
the deviations caused by the instrument. In addition, 6 injections of a QC sample were
done at the beginning and the end of each batch to ensure equilibration of the system and
reduce bias in the measurements. The blank samples (consisting of 50% methanol) were
also randomly run to detect any background noise.

3.4. Data Mining: Data Processing, Multivariate Data Exploration and Machine Learning-
Based Classification

Centroid raw data acquired from both positive and negative ESI modes was visu-
alised and pre-processed using MassLynx XSTM 4.1 (Waters Corporation, Manchester,
UK), generating a data matrix of paired retention time (Rt) and m/z variables, with their
respective peak intensities. For data processing, the MarkerLynx software parameters
were set to process the m/z domain of 100–1200 Da within the retention time (Rt) range
of 0.9–14 min. Mass tolerance of 0.05 Da and intensity threshold counts of 100 were set
for both positive and negative data, with a Rt window of 0.2 min. Prior to computation
of peak intensities, MarkerLynx software was set to execute a modified Savitzky-Golay
smoothing and integration, retaining only data matrices with the noise levels below 10%
(as determined by MarkerLynx) for subsequent data analysis. After data extraction (by
MarkerLynx), a mandatory data scrutiny was meticulously done, including assessment
of the number of extracted features (<10,000 features, as a rule of thumb), applying the
80% rule (i.e., features found in less than 20% of the analysed samples were removed)
and monitoring the quality of data and stability of the analysis using QC samples. Data
transformation methods—centering, scaling or transformation—were ‘exploratively’ em-
ployed to put all variables on equal footing, minimise variable redundancy and adjust for
measurement errors.

The MassLynx generated data matrices were exported to SIMCA (soft independent
modelling of class analogy) software, version 15 (Umetrics, Umeå, Sweden) and a web-
based data analysis tool, MetaboAnalyst version 4.0 (Chong et al., 2018) for data mining and
interpretation. The approach followed in this study was a chemometric approach: (i) firstly,
exploration of the data using unsupervised chemometrics methods, such as principal com-
ponent analysis (PCA), to reduce the dimensionality of the data, evaluate the structures
and characteristics of the data (natural groupings, trends and outliers); (ii) following unsu-
pervised modelling, and based on the insights extracted from it, supervised multivariate
hybrid machine learning (ML)/classical statistical methods such as orthogonal projection
to latent structures-discriminant analysis (OPLS-DA) were applied. This allowed for sam-
ple classification (in low dimensional space) as well as the identification and selection of
variables (metabolite features) underlying the discrimination between groups or classes.
Different metrics and tests were applied for model validation, and these include evaluation
of explained and predicted variation (cumulative R2 and Q2), cross-validation analysis of
variance (CV-ANOVA) and permutation testing.

Prior to computing chemometric and ML models, pre-treatment methods such as data
transformation and Pareto-scaling were applied to normalise and adjust all the variables
to a comparable footing. An adjusted non-linear iterative partial least square (NIPALS)
algorithm was used to manage the missing values, with a correction factor of 3.0 and a
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default threshold of 50% [116]. A seven-fold cross-validation (CV) method was applied as a
tuning procedure in model computations. This k-fold cross-validation is the most common
method for model evaluation and selection in machine learning, where a dataset is iterated
k times. In each iteration, the dataset is divided into k parts: validation and training
subsets. This implies that, in the case of a 7-fold CV, for a fixed number of components,
the Y values of all individuals of each subset are predicted using a sub-model computed
with the 6 other subsets. Results of this k-fold cross-validation procedure are summarised
by quality parameters, such as R2 and Q2 metrics in this case. R2 indicates the explained
variation (i.e., goodness of fit) and Q2 refers to predicted variation (i.e., the predictive
ability of the model) [117,118].

3.5. Molecular Networking

The raw MS/MS data was converted to ‘analysis base file’ (ABF) format using
the Reifys Abf converter software (https://www.reifycs.com/AbfConverter (accessed
on 6 June 2021)) then uploaded into the Mass Spectrometry-Data Independent AnaLysis
(MS-DIAL) software (http://prime.psc.riken.jp/compms/msdial/main.html (accessed on
21 June 2021)). The MS-DIAL data-processing program uses the deconvolution algorithm
to perform mass spectral deconvolution of data-independent acquisition (DIA) data, thus
making it applicable for the extensive untargeted metabolomics analysis of both DIA and
data-dependent acquisition (DDA) centroid datasets [119]. The data were processed using
the following parameters: mass accuracy (MS1 and MS2 tolerance) of 0.05 Da, minimum
peak height of 10 amplitude and mass slice width of 0.05 Da for peak detection, a 0.5 sigma
window value and a 0 MS/MS abundance cut-off for data deconvolution; a retention time
tolerance of 0.05 min was used under alignment parameter settings with one of the QC
samples used as a reference file for alignment. The GNPS (Global Natural Products Social
Molecular Networking) files (GnpsMgf and GnpsTable/feature quantification table were
exported and uploaded into the GNPS environment (https://gnps.ucsd.edu/ (accessed on
21 June 2021)) using the WinSCP server for molecular networking.

The respective feature quantification table, MGF file and a metadata file describing
the properties of the sample file (i.e., treatment, days, plant condition, Si-biostimulant
concentration and stress level) were uploaded for generation of a feature-based molecular
network (FBMN). The MS/MS fragmentation spectra were assembled using the MS-Cluster
algorithm with a precursor ion mass tolerance of 0.05 Da and fragment ion mass tolerance
of 0.05 Da. A network was generated where the lines/edges connecting the nodes were
filtered to have a cosine score above 0.7 and a minimum of 4 corresponding fragment ions.
The MN spectra were then searched against the spectral libraries housed in GNPS where
the same parameters (i.e., cosine score > 0.7 and min-matched fragments of 4) were used
for metabolite annotation. To improve the chemical structural annotations, the generated
molecular network data was enhanced with MolNetEnhancer then visualised on the
Cytoscape (https://cytoscape.org/ (accessed on 30 September 2021)) network visualization
tool/software (version 3.8.2), where the nodes were labelled with the precursor mass
(m/z) and coloured based on metabolite class. The individual nodes, representative of
measured ions, were also coloured to display colour-coded pie charts illustrating relative
ion abundance across different treatments. The edges were coloured based on the type
of interaction: Kyoto Encyclopaedia of Genes and Genomes (KEGG) reactant repair (krp)
and the Tanimoto chemical similarity (tmsim) between the metabolites. The fragmentation
spectra of all the putatively annotated metabolites matched to the GNPS spectral libraries
were manually validated as described in the next session.

3.6. Metabolite Annotation and Biological Interpretation

The chemometrically and statistically selected variables (spectral features) from data
modelling were confidently annotated through a multistep workflow, and metabolites
were annotated to the level 2 as classified by the Metabolomics Standard Initiative (MSI)
(Sumner et al., 2007). Thus, the main steps followed for metabolite annotation in this
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study included: (i) computation of the molecular formula (MF) based on mass accu-
racy and the golden heuristic rules integrated in MarkerLynx formula generator algo-
rithms (i.e., nitrogen rules, mass variances, isotopic fit, ring double bond equivalents
(RDBE) and element number restrictions); (ii) the computed MF were manually and au-
tomatically searched against various databases such as KEGG (https://www.genome.jp/
kegg/ (accessed on 18 October 2020)), Dictionary of Natural Product (DNP), ChemSpider
(http://www.chemspider.com/ (accessed on 12 April 2020)) [120] and an in-house li-
brary to putatively assign compound names to the MF; (iii) structural elucidation was
executed through careful evaluation of fragmentation patterns on MS1 and MSE spectra
of selected metabolite candidates; (iv) structural confirmation was done by comparative
assessment of in silico and experimental fragmentation information, searching against
in-house spectral library and annotation details (of a metabolite under consideration)
reported in the literature. Furthermore, metabolic pathway and network analysis of the an-
notated metabolites (and targeted compounds) was done using the MetPA (Metabolomics
Pathway Analysis) module of the MetaboAnalyst bioinformatics tool suite (version 4.0)
(https://www.metaboanalyst.ca/ (accessed on 17 August 2021)) [121], which allowed for
the extraction of the impacted metabolic pathways, analysis thereof and visualisation. In
addition, KEGG was also used for construction of web-works to enable analysis, visuali-
sation, integration and understanding of the complex mechanisms underlying Si effects
on salt-stressed tomato plants. A correlation network was constructed from MetaMapp-
encoded chemical structures of all identified metabolites retrieved from the PubChem and
KEGG databases using MetaMapp (http://metamapp.fiehnlab.ucdavis.edu/ (accessed on
30 August 2021)) and visualized on Cytoscape v3.8.1 for a global view of the metabolic
changes across different treatments.

4. Conclusions

Identifying and delving into the regulatory mechanisms of biostimulants in improving
plant stress tolerance will help fine-tune the most effective application rates, areas, con-
centrations, and biostimulant-plant specificities which may collectively yield the highest
impact on stress protection. Fundamental knowledge and understanding of such mecha-
nisms are pivotal for the development and generation of biostimulants, where synergies
of microbial and/or nonmicrobial mechanisms are functionally and complementarily de-
signed, offering the potential to overcome specific and general stresses to a spectrum of
plant species. A comprehensive and systematic approach to discover the mode of action of
biostimulants has been proposed—metabolomics. This multidisciplinary omics technique
can be used to interrogate cellular biochemistry, providing a window to understand cel-
lular and molecular language in the context of biostimulant-plant interactions. As such,
metabolomics reveals mechanisms that define biostimulant activity in stress alleviation.
Meta-analysis of the Si-biostimulant-mitigated salt stress alleviation was conducted in
this study.

The predictive models derived show positive modulations in the primary and sec-
ondary mechanisms of Si-biostimulant-treated plants under salt stress conditions, including
reconfigurations in the metabolite profiles of amino acids, fatty acids, organic acids, and
phenolics. The analysis found that Si-biostimulant application induces accumulation of
primary metabolites in such treated plants, which collectively replenish the energy for
several metabolic reactions, modulate stress signalling waves that lead to specialised plant
stress responses, act as osmotic and photosynthetic protectants and are precursors for
the more defence-oriented secondary metabolic reactions. Moreover, Si-biostimulant is
postulated to confer salt stress tolerance via accumulation of phenolics, as indicated by
the timely decrease in their content which points to stress alleviation. These specialised
metabolites define a huge part of secondary metabolism with defence-related roles includ-
ing ROS scavenging, activation of defence-related proteins and antioxidant enzymes, and
inhibition of ROS-generating enzymes. Such metabolite reprogramming spans several
biostimulant-impacted primary metabolism pathways including the TCA cycle, amino acid-
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and fatty acid biosynthesis pathways, the PPP and secondary metabolic mechanisms such
as the phenylpropanoid pathway, flavonoid biosynthesis pathway, and other secondary
metabolite biosynthesis pathways.

As illuminating as the current study is, emphasis of future studies for an expanded
and hypothesis testing could be extended to (i) a targeted analysis focused on the pro-
posed mechanisms that define a nonmicrobial biostimulant activity, (ii) development of
integrated omics technologies (genomics, transcriptomics, proteomics, metabolomics) re-
search for a systems biology approach towards biostimulants and (iii) synergistic effects of
microbial and/or nonmicrobial biostimulant formulations against a plethora of biotic and
abiotic stresses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11120820/s1, Figure S1: Representative UHPLC-MS BPI chromatograms from the
ESI negative data showing treatment-related metabolic variations, Figure S2: Unsupervised ma-
chine learning (ML)-based chemometric modelling of the ESI negative data—principal component
analysis (PCA) scores plots, Figure S3: Representation of supervised machine learning (ML)-based
orthogonal projection of latent structures discriminant analysis (OPLS-DA) modelling of the data,
Figure S4: Identification of the statistically significant features/metabolites in different treatments
discriminations using the variable importance in projections (VIP) plots, Figure S5: Summarised
effects of silicon treatment of salt-stressed plants on detected primary metabolism components of
organic acids (MA, AA, CA), sugars (Pglu, Ara) and fatty acids (HDDA, HPDA), Figure S6: An
overview of relative phenolics and polyamine content fluctuations in different treatments, Figure S7:
The effects of different treatments on the agronomic and phenotypic states of the plant samples.
Table S1: Metamapp data used for generation of a network (Figure 4), Table S2: An overview of all
metabolites detected and annotated from all different treatments (T1–T6) at all timeA-points_days 1,
3, 7 and 28), Table S3: The most significantly altered pathways based on impact factor >0.1, Holm
adjusted p-value < 0.05 and FDR < 0.05. The indication letters correspond to the labelled pathways
on the pathway impact plot (Figure 3B).
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