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Abstract: Epithelial-mesenchymal transition (EMT) is a dedifferentiation program in which polarized,
differentiated epithelial cells lose their cell-cell adhesions and transform into matrix-producing
mesenchymal cells. EMT of retinal pigment epithelial (RPE) cells plays a crucial role in many retinal
diseases, including age-related macular degeneration, proliferative vitreoretinopathy, and diabetic
retinopathy. This dynamic process requires complex metabolic reprogramming to accommodate the
demands of this dramatic cellular transformation. Both transforming growth factor-beta 2 (TGFβ2)
and tumor necrosis factor-alpha (TNFα) have the capacity to induce EMT in RPE cells; however, little
is known about their impact on the RPE metabolome. Untargeted metabolomics using high-resolution
mass spectrometry was performed to reveal the metabolomic signatures of cellular and secreted
metabolites of primary human fetal RPE cells treated with either TGFβ2 or TNFα for 5 days. A
total of 638 metabolites were detected in both samples; 188 were annotated as primary metabolites.
Metabolomics profiling showed distinct metabolomic signatures associated with TGFβ2 and TNFα
treatment. Enrichment pathway network analysis revealed alterations in the pentose phosphate
pathway, galactose metabolism, nucleotide and pyrimidine metabolism, purine metabolism, and
arginine and proline metabolism in TNFα-treated cells compared to untreated control cells, whereas
TGFβ2 treatment induced perturbations in fatty acid biosynthesis metabolism, the linoleic acid
pathway, and the Notch signaling pathway. These results provide a broad metabolic understanding
of the bioenergetic rewiring processes governing TGFβ2- and TNFα-dependent induction of EMT.
Elucidating the contributions of TGFβ2 and TNFα and their mechanistic differences in promoting
EMT of RPE will enable the identification of novel biomarkers for diagnosis, management, and
tailored drug development for retinal fibrotic diseases.

Keywords: retinal pigment epithelium (RPE); metabolomics; metabolism; mitochondria; tumor necrosis
factor-alpha (TNFα); transforming growth factor-beta (TGFβ); epithelial-mesenchymal transition (EMT);
OXPHOS; glycolysis; age-related macular degeneration; proliferative vitreoretinopathy

1. Introduction

Epithelial-mesenchymal transition (EMT) is a process in which polarized, differen-
tiated epithelial cells dedifferentiate into matrix-producing mesenchymal cells [1]. This
complex biological process is defined by a cascade of cellular and molecular events, includ-
ing loss of cell–cell adhesions, excessive deposition of extracellular matrix (ECM) proteins,
profound cytoskeletal reorganization, increased invasiveness and contractility, and reduced
expression of epithelial markers such as E-cadherin and zonula occludens (ZO)-1 [2]. EMT
of retinal pigment epithelial (RPE) cells plays an integral role in many retinal pathologies,
including dry age-related macular degeneration (AMD) [3–8], wet AMD [9,10], proliferative
vitreoretinopathy (PVR) [8,11–14], and diabetic retinopathy (DR) [15].
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Metabolic reprogramming has emerged as a prominent hallmark of EMT, particularly
in the field of cancer metastasis [16]. Since the seminal observations of the Warburg effect,
which found that cancer cells preferentially use glycolysis over mitochondrial oxidative
phosphorylation (OXPHOS) for energy generation despite the presence of oxygen [17],
numerous examples of dysregulated metabolic pathways in EMT have been documented in
glycine metabolism [18], glutamine metabolism [19], the pentose phosphate pathway [19],
and lipid metabolism [20]. With significant advances in the field of metabolic reprogram-
ming in EMT during cancer, efforts have been directed towards deciphering the metabolic
alterations in retinal EMT. Work in our laboratory has explored the metabolic changes
induced by two key EMT inducers: transforming growth factor-beta 2 (TGFβ2) and tumor
necrosis factor-alpha (TNFα). While both cytokines potently induce EMT in RPE, they
exhibit dramatically distinct bioenergetic profiles: TGFβ2 suppresses mitochondrial res-
piration and enhances glycolytic capacity [14], whereas TNFα enhances mitochondrial
respiration and reduces glycolysis [8].

Both TGFβ2 and TNFα have been implicated in the pathogenesis of AMD. Persistent
expression of the TGFβ pathway in RPE is associated with choroidal neovascularization
and geographic atrophy [3], and a polymorphism in the TGFβ receptor type I (TGFBR1)
gene is linked to an increased risk of developing AMD [21]. In contrast, TNFα drives the
inflammatory component of AMD and mediates the formation of choroidal neovascular
membranes by regulating the expression of vascular endothelial growth factor (VEGF)
in RPE [22]. Patients with enhanced serum levels of pro-inflammatory cytokines such as
interleukin-6 (IL-6) and TNFα respond more favorably to anti-VEGF therapy [23]. Single
nucleotide polymorphisms in the TNFα gene have been observed in AMD patients [24].

Among the suite of omics technologies available to elucidate the molecular and bio-
chemical perturbations underpinning retinal EMT, metabolomics is particularly power-
ful [25]. Metabolomics, defined as the comprehensive analysis of the multitude of native
small molecules (metabolites) in a biological specimen, is a rapidly expanding area. Al-
terations in metabolic fluxes are directly linked to changes in the level of intermediates in
affected metabolic pathways and are downstream of changes in gene expression as well as
post-transcriptional and post-translational events [16].

In this study, we harnessed the broad scope of untargeted metabolomics to characterize
the metabolic reprogramming associated with TNFα- and TGFβ2-induced EMT of RPE.
The complete metabolome comprises the endo-metabolome (metabolites within the cell)
and the exo-metabolome (metabolites in the extracellular medium) [26]. The untargeted
approach enables the generation of an unbiased and comprehensive understanding of
how the endo- and exo-metabolome are affected in RPE mesenchymal transition with
two distinct stimulators of EMT. In this study, we evaluated both the cellular and media
metabolites of H-RPE treated with TNFα or TGFβ2 compared to untreated control H-RPE.
We profiled 638 metabolites in both the cellular and secreted metabolome associated with
TNFα and TGFβ2 treatments of primary human fetal RPE cells. We aimed to determine the
significantly altered metabolites during retinal EMT by comparing the altered metabolite
profiles between TNFα-treated or TGFβ2-treated cells vs. untreated control cells as well as
differences between the metabolite profiles of TNFα and TGFβ2 treatments.

2. Materials and Methods
2.1. Cell Culture

Primary human fetal RPE (H-RPE, Lonza, Walkersville, MD, USA) were cultured in
an RtEGM Retinal Pigment Epithelial Cell Growth Medium supplemented with RtEGM
SingleQuots (Lonza, Walkersville, MD, USA), as described previously [8,14]. H-RPE were
plated in T25 flasks and maintained in a humidified incubator at 37 ◦C and 5% CO2. Cells
were passaged 1:3 up to a maximum of 5 passages. Half of the media was changed every
two–four days for a month to allow sufficient time for RPE maturation, including pigment
accumulation. Cells were tested monthly for mycoplasma contamination (Mycoplasma
PCR Test, Applied Biological Materials). Following maturation, cells were serum-starved
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for two days before treatment for five days with recombinant human TGFβ2 (Peprotech,
Rocky Hill, NJ, USA) or TNFα (Peprotech, Rocky Hill, NJ, USA), both at 10 ng/mL in
serum-free media. Growth factors were added freshly each day. This dosage and duration
are required for proper mesenchymal transition of H-RPE, as shown in our previous
studies [8,14]. Analysis was performed on three groups (control, TGFβ2 and TNFα) with
N = 8 in each group.

2.2. Sample Preparation

Sample preparation for analysis of secreted metabolites involved collecting cell culture
media (1.5 mL) from each flask and clarifying by centrifugation at 200× g for 30 s. One mL
of supernatant was transferred into a fresh tube, snap-frozen in liquid nitrogen, and stored
at −80 ◦C until analysis.

For sample preparation of cellular metabolites, H-RPE were rinsed in HEPES-buffered
saline and then trypsinized using the ReagentPackTM Subculture Reagents (Lonza, Walk-
ersville, MD, USA) for 5 min in a 37 ◦C incubator. Cells were then rinsed in trypsin
neutralizing solution and centrifuged at 200× g for 3.5 min. The cell pellet was rinsed
in phosphate buffered saline (PBS), and cells were counted using a hemocytometer. Five
million cells per sample were centrifuged at 200× g for 3.5 min, and the final cell pellet was
snap-frozen in liquid nitrogen and stored at −80 ◦C until analysis.

2.3. Metabolomics Data Acquisition Using Gas Chromatography Time-of-Flight Mass
Spectrometry (GC-TOF MS)

Cellular and media samples were shipped on dry ice to the NIH West Coast Metabolomics
Center (UC Davis, LA, USA) for sample processing and analysis as described in [27].
Samples were extracted using 1 mL of 3:3:2 acetonitrile:isopropanol:H2O (v/v/v). Half of the
sample was completely dried and then derivatized to increase the volatility and stability
for subsequent GC-TOF MS data acquisition. The derivatization process involved adding
10 uL of 40 mg/mL methoxyamine to pyridine and shaking at 30 ◦C for 1.5 h. Following
this, 91 uL of a mixture of MSTFA and FAMEs was added to each sample with shaking at
37 ◦C for 0.5 h to complete derivatization. Samples were then vialed, capped, and injected
onto the instrument. Samples were run on a 7890A GC coupled with a LECO TOF. The
derivatized sample (0.5 uL) was injected using a splitless method onto a RESTEK RTX-5SIL
MS column with an Integra-Guard at 275 ◦C with a helium flow of 1 mL/min. The GC
oven was set to hold at 50 ◦C for 1 min and then ramp to 20 ◦C/min to 330 ◦C and then
hold for 5 min. The transfer line was set to 280 ◦C, while the EI ion source was set to 250 ◦C.
Metabolites were identified as peaks characterized by mass-over-charge ratio (m/z) and
retention time. The parameters for mass spectrometry were set to collect data from 85 m/z
to 500 m/z at an acquisition rate of 17 spectra/second. Raw data was deconvoluted using
ChromaTOF software v2.32 (LECO Corporation) and processed by the BinBase algorithm
for compound identification and quantification.

2.4. Metabolomics Data Analysis

Metabolomics data were first processed using an in-house R script. Processed data
were first inspected for sample clustering and variance difference via Principal Component
Analysis (PCA) and Partial Least Square Discriminant Analysis (PLSDA), in which PLSDA
plots were generated using the R package mixOmics v6.18.1 [28]. Raw p-values were
adjusted using the Benjamini–Hochberg correction and then tested for significance using
the Welch method for metabolite profiling using the R package Omu v1.0.6 [29]. Differential
metabolite analysis between the TNFα- and TGFβ2-treated samples compared to control
(untreated) samples for both cell and media metabolites was generated by the R package
Omu using the count_fold_change function, with the log FoldChange (FC) >1.5 or <−1.5
(TNFα-treated H-RPE vs. control H-RPE), logFC > 1.0, and logFC < −1.0 (TGFβ2-treated
H-RPE vs. control H-RPE), with a Benjamini–Hochberg adjusted p-value cut off < 0.05 [29].
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The Enriched Pathway Network Analysis was generated using the KEGG database of
Homo sapiens [30], which was loaded locally using the functions buildGraphFromKEGGREST()
and buildDataFromGraph() in the R package FELLA v1.14.0 [31]. The lists of metabolites
that were significantly different from the TNFα-treated vs. control and TGFβ2-treated vs.
control were extracted. The KEGG compound hierarchy was assigned to the extracted list
of metabolites for the two comparisons using the function defineCompounds() in FELLA
by mapping the metabolite compounds against the loaded database. The KEGG-assigned
metabolomics data were then used as input for pathway enrichment analysis using the
undirected heat diffusion model followed by statistical normalization using Z-scores for
sub-network analysis in the R package FELLA v1.14.0 [31]. For the pathway enrichment
analysis, metabolites with logFC > 1.5 or <−1.5 (TNFα-treated vs. control), logFC > 1.0,
and logFC < −1.0 (TGFβ2-treated vs. control), with a Benjamini–Hochberg adjusted
p-value < 0.05 were included. The purpose of two different fold-change cutoffs was due
to differences in metabolite changes between TNFα-treated and TGFβ2-treated H-RPE,
enabling the capture of sufficient differential metabolites in each group for generating a
comprehensive network analysis. The enrichment analysis outputs were then mapped to
the Homo sapiens (hsa) KEGG graphs and subsequently used for network analysis. Optimal
visualization of the metabolic network graphs was generated with the number of nodes
limit (nlimit) of 250 for TNFα-treated H-RPE vs. control and nlimit of 160 for TGFβ2-
treated H-RPE vs. control using the generateResultsGraph() in FELLA. KEGG IDs unmapped
to the KEGG graphs were retrieved and searched against the KEGG pathway database
(https://www.genome.jp/kegg/pathway.html, accessed on 28 December 2022).

3. Results
3.1. TNFα- or TGFβ2-Treated H-RPE Exhibited Distinct Cellular Metabolomic Signatures

Principal Component Analysis (PCA) was performed for both cell and media samples
to generate clustering patterns of metabolite profiles and detect outliers. For cellular
metabolites, three clusters were identified in the PCA score plot (Figure 1A), indicating
significant differences between control, TNFα, and TGFβ2. One sample in the TGFβ2
cellular metabolite group was identified as an outlier by cluster analysis and excluded in
subsequent analyses. However, for the secreted metabolites, no definitive clusters were
observed (Figure S1). We further confirmed the lack of separation between these two
groups by performing PLSDA analysis, where overlap occurred between the clusters from
media derived from untreated cells (control) and media derived from TNFα and TGFβ2.
However, distinct clusters were observed between media samples derived from TNFα- and
TGFβ2-treated cells (Figure S1). Analysis of the differential metabolites of media samples
showed that for each treatment, only one primary metabolite was significantly different.
For media derived from TNFα-treated cells, tartaric acid showed a significant increase
compared to media derived from untreated H-RPE cells (logFC > 1.0, p-value < 0.05);
in media samples derived from TGFβ2-treated cells, isobutylamine showed significant
downregulation compared to control (logFC < −1.0, p-value < 0.05).

A total of 638 metabolites were detected in both cell metabolite samples; 188 were
annotated as primary metabolites and displayed as a heatmap (Figure 1B). A comparison
of cellular metabolite changes between TNFα-treated H-RPE and control cells revealed
that peptides and organic acids were among the most prominent metabolite classes with
significant changes (padj < 0.05, p-value < 0.05) at ~ 30% and ~32% percent, respectively
(Figure 1C). Other metabolite classes that showed significant variation following TNFα
treatment were vitamins and cofactors (~26%), lipids (~9%), and nucleic acids (~5%). Com-
parison of cellular metabolite changes between TGFβ2 and control revealed that lipids and
organic acids were most prominently affected at ~50% and ~42%, respectively (Figure 1C).
Nucleic acids contributed only 9% of the metabolites altered in the TGFβ2 group.

https://www.genome.jp/kegg/pathway.html
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Figure 1. Metabolite profile clustering of TNFα- and TGFβ2-treated H-RPE cells compared to
untreated control cells. (A) Principal Component Analysis (PCA) score plots show distinct clusters
for samples in the control, TNFα and TGFβ2 cellular metabolite groups. (B) A heatmap of the
differential fold changes for all annotated metabolites in each sample analyzed for the three groups.
(C) Categorization of differentially expressed metabolites between TNFα- and TGFβ2-treated H-RPE
cells compared to untreated control cells.
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Since organic acids, nucleic acids, and lipids were common metabolite classes affected
in both TNFα and TGFβ2 groups, we examined the compounds in these classes that were
significantly changed due to either TNFα- and TGFβ2-treatment (Figure S2). Arachidonic
acid (lipid metabolite class) and adenosine (nucleic acid metabolite class) were upregulated
in TNFα-treated H-RPE cells, while uridine (nucleic acid metabolite class) was downregu-
lated in TNFα-treated H-RPE cells compared to control. All organic acid compounds (lactic
acid, parabanic acid, and malonic acid) were higher in TNFα-treated H-RPE cells compared
to control. In TGFβ2-treated H-RPE cells, lipids (linoleic acid and palmitoleic acid) were
upregulated, whereas malic acid (organic acid metabolite class) and urea (nucleic acid
metabolite class) were downregulated with TGFβ2 treatment compared to control cells.

For visualization of the statistical significance of differential metabolite alterations,
volcano plots were generated by comparing the fold change size (x-axis) to the adjusted
p value (y-axis) for both TNFα- and TGFβ2-treated cells compared to the control. The plot
for TNFα-treated cells highlighted a significant upregulation of galactose 6-phosphate and
nicotinamide along with a downregulation of putrescine, uridine, cadaverine, syringic acid,
and trans−4−hydroxy−L−proline (Figure 2A). Alterations in these metabolites across
each sample in the TNFα and control groups are depicted in the heatmap (Figure 2B).

The volcano plot comparing TGFβ2 to control cells revealed a significant upregu-
lation of linoleic acid and palmitoleic acid as well as a downregulation in malic acid,
kynurenine, and urea (Figure 3A), as further depicted in the heatmap (Figure 3B). A com-
parison of metabolites between TNFα-and TGFβ2-treated cells highlights upregulation
of ribose-5-phosphate, ribulose-5-phosphate, nicotinamide, and galactose-6-phosphate in
TNFα-treated cells (Figure 4), whereas palmitoleic acid and linoleic acid were upregulated
in TGFβ2-treated cells (Figure 4). Uridine, trans-4-hydroxy-L-proline, syringic acid, pu-
trescine, and cadaverine were downregulated in TNFα-treated cells, whereas urea, malic
acid, and kynurenine were significantly downregulated in TGFβ2-treated cells (Figure 4).

3.2. Metabolite Pathway Enrichment Analysis Revealed Distinct Regulatory Networks for TNFα
and TGFβ2

Metabolite pathway network associations for both TNFα- and TGFβ2-treated cells vs.
control were identified and visualized using pathway enrichment analysis. We first per-
formed pathway enrichment followed by network analysis with metabolites by inputting
the list of significantly different metabolites in the respective comparisons. In TNFα-
treated H-RPE cells, 19 key pathways were enriched (Figure 5A) with 10 compounds. The
pentose phosphate pathway (putrescine) and galactose metabolism pathway (D-galactose-
6-phosphate), both part of carbohydrate metabolism, were shown to be enriched with
TNFα treatment. Other primary enriched pathways included protein digestion and adsorp-
tion (cadaverine), the nuclear factor kappa B (NF-κB) signaling pathway (nicotinamide),
Nod-like receptor signaling pathway, base excision repair (nicotinamide), nucleotide and
pyrimidine metabolism (uridine), purine metabolism (parabanic acid), and arginine and
proline metabolism (trans-4-hydroxy-L-proline). These primary enriched pathways im-
pacted several secondary pathways, such as HIF-1 signaling, apoptosis, and hematopoietic
cell lineage pathways (Figure 5A).
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plot illustrating the most significantly altered metabolites relative to fold change and statistical
significance. (B) A heatmap of the most significantly altered metabolites for each sample analyzed
for TNFα vs. control.
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Figure 3. Differential metabolite analysis of TGFβ2-treated H-RPE cells vs. control. (A) A volcano
plot illustrating the most significantly altered metabolites relative to fold change and statistical
significance. (B) A heatmap of the most significantly altered metabolites for each sample analyzed
for TGFβ2 vs. control.
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Figure 4. A heatmap depicting differential metabolite changes between TNFα-treated and TGFβ2-
treated H-RPE cells. Upregulated metabolites are displayed in red, and downregulated metabolites
are displayed in blue. Both annotated (primary) and non-annotated metabolites were included in this
analysis. padj < 0.05.

For TGFβ2-treated H-RPE cells, 18 key pathways were enriched in the network analy-
sis with three compounds: urea, linoleic acid, and palmitoleic acid (Figure 5B). Primary
pathways directly associated with the altered metabolites were the linoleic acid pathway
(linoleic acid), the Notch signaling pathway (urea), and the fatty acid synthesis pathway
(palmitoleic acid). These were then shown to impact a cascade of 15 secondary pathways,
including the TGFβ2 signaling pathway, Wnt signaling pathway, Hippo signaling pathway,
and ubiquitination pathway (Figure 5B).

We further investigated the three compounds that did not directly map onto the hsa
KEGG graph within the FELLA package: syringic acid (C10833) for TNFα-treated H-RPE
cells as well as kynurenine (C01718) and malate (C00711) for TGFβ2-treated H-RPE cells.
These compounds were manually inputted into the KEGG pathway database to render the
pathway network. Syringate, a benzoate ester of syringic acid, is part of the aminobenzoate
pathway (Figure S3). (S)-malate is involved in glyoxylate and dicarboxylate metabolism,
which feeds into the carbohydrate metabolism cycle (Figure S4A). L-kynurenine, an isomer
of kynurenine, is involved in the tryptophan signaling pathway (Figure S4B).
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4. Discussion

EMT is a metabolically demanding process and, as such, requires dramatic reprogram-
ming of cellular metabolism. Here we provide a comprehensive analysis of the metabolomic
alterations associated with two potent inducers of EMT in RPE. Despite both inducing EMT,
TNFα and TGFβ2 appear to induce divergent metabolic alterations in RPE, highlighting the
complexity of the interplay between metabolic reprogramming and EMT. Their divergent
metabolomic profiles may be responsible, at least in part, for their differential impact on
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inflammation: TNFα induces a robust pro-inflammatory response in RPE [8], whereas
TGFβ2 exhibits an anti-inflammatory effect [32].

Inflammation is closely intertwined with metabolic reprogramming. In our study,
TNFα upregulated arachidonic acid, an ω-6 polyunsaturated fatty acid, which serves
as a precursor to a cascade of pro-inflammatory eicosanoids, including prostaglandins
and thromboxanes catalyzed by cyclooxygenase-1 and -2 enzymes, and leukotrienes cat-
alyzed by the 5-lipoxygenase enzyme [33]. Arachidonic acid has been found to reduce
the phagocytic capacity of RPE [34], and inhibition of 5-lipoxygenase protects RPE from
sodium-iodate-induced degeneration [35]. TNFα can directly stimulate arachidonic acid in
neutrophils, perpetuating the inflammatory cascade [36].

Intriguingly, we found that TNFα also significantly increased levels of the anti-
inflammatory and antioxidant metabolite, nicotinamide (vitamin B3) [37]. In a metabolomics
analysis of plasma samples from AMD patients vs. controls, nicotinamide was found to be
significantly altered [38]. Nicotinamide potently suppresses complement activation and
inflammation in RPE [39] and enhances mitochondrial metabolism to promote RPE differ-
entiation [40]. A complex relationship exists between nicotinamide and TNFα. Paradoxical
increases in levels of nicotinamide adenine dinucleotide (NAD+) have been associated with
LPS-induced TNFα release in proinflammatory macrophages [41,42] and may be linked to
dependence on the NAD+ salvage pathway to counteract the increased production of mito-
chondrial reactive oxygen species (ROS) [43]. It is possible that the increased nicotinamide
seen with TNFα in RPE is a compensatory response that prolongs survival in the face of
excessive TNFα-induced inflammation and oxidative stress.

Upregulation of the pentose phosphate pathway (PPP) by TNFα in RPE further sup-
ports the notion that antioxidants are upregulated to detoxify the increased ROS associated
with TNFα. Diverting metabolic substrates from glycolysis into the PPP enables the gener-
ation of NADPH for antioxidant defense that serves as a cofactor required by glutathione
reductase to reduce oxidized glutathione [44]. Moreover, the PPP supports reductive
biosynthesis and ribose biogenesis [45], which are required for the cellular transformation
involved in EMT. We also found secondary upregulation of the HIF-1 pathway by TNFα,
which is a positive transcriptional regulator of PPP enzymes [46].

Our data showed that TGFβ2 significantly reduces malic acid, a key intermediate
metabolite of the TCA cycle, corroborating our previous finding that TGFβ2 suppresses
mitochondrial OXPHOS capacity in RPE [14]. In the TCA cycle, the conversion of malate to
oxaloacetate is catalyzed by malate dehydrogenase (MDH) using NAD+ or NADP+ as a
cofactor [47]. MDH1 is frequently overexpressed in cancer cells, where it has been shown
to enhance glycolysis by replenishing the cytosolic cofactor NAD+ [48]. We previously
found that exposure to TGFβ2 leads to similar metabolic rewiring with H-RPE showing
enhanced glycolysis [14]. In mammals, there is a malate-succinate shuttle between the RPE
and neural retina, in which malate exported from the RPE is imported into the retina to
fuel succinate production [49,50]. Our data show that suppression of malate by TGFβ2
in RPE in vitro may have significant consequences for neighboring cells in vivo through
disruption of the retinal metabolic ecosystem [51].

RPE phagocytose and digest the shed photoreceptor outer segment membranes that
are rich in fatty acids [52]. Unsurprisingly, RPE exploit fatty acids as a key energy substrate
and are highly dependent on fatty acid metabolism for ATP generation [53]. In this
study, TGFβ2 treatment led to decreased levels of both palmitoleic acid and linoleic acid,
indicating a disruption in fatty acid metabolism. Dysregulated lipid metabolism has been
similarly linked to EMT in cancer; metastatic cells display increased lipolysis, which releases
endogenous free fatty acids to generate the reduced form of NADPH through fatty acid
oxidation (FAO) [54]. FAO confers a survival advantage for tumor cells by maintaining
sufficient energy generation and redox homeostasis, as well as providing a source of lipids
for membrane biogenesis [55]. It is possible that TGFβ2-treated RPE overutilize and deplete
fatty acid supplies to enable increased FAO.
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In conclusion, our results demonstrate the metabolic flexibility of RPE to rapidly adapt
and rewire metabolic pathways during the induction of EMT. Despite both inducing EMT,
TNFα and TGFβ2 trigger divergent metabolic signatures. While TNFα disrupted metabolic
pathways that are involved in inflammation and oxidative stress, including arachidonic
acid metabolism and the pentose phosphate pathway, TGFβ2 disrupted the TCA cycle
and fatty acid oxidation. With a more complete understanding of the metabolites altered
during retinal EMT, we can better comprehend the pathobiology of retinal pathologies
such as AMD, PVR, and DR, as well as identify novel biomarkers for diagnosis, prognosis,
treatment monitoring, and tailored drug development.

Future investigations will be aimed at exploring the endo- and exo-metabolomic
profiles observed in pre-clinical in vivo models of AMD, PVR, and DR. A comparison
of the differential metabolite changes from our study on TNFα and TGFβ2 in RPE with
data obtained from in vivo models will better inform the individual contributions of these
two EMT inducers. Furthermore, studies exploring changes in the metabolome of other
retinal cell types involved in AMD, PVR, and DR, including endothelial cells and microglial,
following exposure to TNFα and TGFβ2 would be of interest to clarify the contributions of
different cell types to metabolomic alterations found in vivo. Identification of key disease-
associated metabolic pathways will inform the design of drug screenings to assess the
efficacy of novel pharmacotherapies in combating retinal fibrosis.
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in the aminobenzoate pathway with TNFα-treated H-RPE cells; and Supplementary Figure S4. Iden-
tification of changes in the carbohydrate metabolism cycle and tryptophan signaling pathway in
TGFβ2-treated H-RPE cells. Supplementary data S1: Raw metabolomics data for control, TNFα-,
and TGFβ2-treated samples from cells and media; Supplementary data S2: Differential metabolite
analysis results for control, TNFα-, and TGFβ2-treated samples from cells and media; Supplementary
data S3: Metadata for pathway enrichment and network analysis of metabolites of control, TNFα-,
and TGFβ2-treated samples from cells.
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