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Abstract: The importance of animal welfare and the organic production of chicken eggs has increased
in the European Union in recent years. Legal regulation for organic husbandry makes the production
of organic chicken eggs more expensive compared to conventional husbandry and thus increases the
risk of food fraud. Therefore, the aim of this study was to develop a non-targeted lipidomic LC-ESI-
IM-qToF-MS method based on 270 egg samples, which achieved a classification accuracy of 96.3%.
Subsequently, surrogate minimal depth (SMD) was applied to select important variables identified
as carotenoids and lipids based on their MS/MS spectra. The LC-MS results were compared with
FT-NIR spectroscopy analysis as a low-resolution screening method and achieved 80.0% accuracy.
Here, SMD selected parts of the spectrum which are associated with lipids and proteins. Furthermore,
we used SMD for low-level data fusion to analyze relations between the variables of the LC-MS and
the FT-NIR spectroscopy datasets. Thereby, lipid-associated bands of the FT-NIR spectrum were
related to the identified lipids from the LC-MS analysis, demonstrating that FT-NIR spectroscopy
partially provides similar information about the lipidome. In future applications, eggs can therefore
be analyzed with FT-NIR spectroscopy to identify conspicuous samples that can subsequently be
counter-tested by mass spectrometry.

Keywords: authentication; egg; FT-NIR; LC-MS; SMD; organic vs. conventional

1. Introduction

In recent years, organic husbandry is becoming more important, for example for the
production of organic chicken eggs. In particular, more attention is focused on animal
welfare and organic breeding methods and more environmentally friendly conditions [1–4].
In the European Union, there are different types of husbandries, which in the case of
laying hens are divided into three systems: free range, barn and organic. The husbandry
and the marketing of hen eggs are regulated in the European Union in Regulation (EU)
No. 1308/2013, Regulation (EC) No. 589/2008, Directive 2002/4/EC and Directive
1999/74/EC. Regulation (EC) No. 2018/848 regulates the specific requirements for or-
ganic animal husbandry, animal breeding and feeding. Accordingly, the production of
organic eggs is subject to strict specifications that ensure a high level of animal welfare.
Organic feed may only consist of organically grown ingredients, while the addition of
synthetic carotenoids to influence the color of the egg yolk is permitted in conventional
feed [5–8].

Due to legal requirements, organic husbandry is more expensive compared to conven-
tional husbandry, which is why organic products have to be marketed at higher prices [3,9].
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Since consumers are willing to accept this higher price, organic egg production is growing
steadily in the European Union [4,10]. However, it is not possible to visually identify the
husbandry of an undamaged egg, which is why a false declaration is possible without being
noticed. Especially in recent years, several cases of relabeled conventional eggs have been
reported in the European Union [11–14]. In addition, in recent years it has become evident
that food fraud involving organic food is the main target and has increased worldwide [15].
It has already been shown in China that eggs from different breeding systems are subject to
food fraud, which can have a negative impact on egg quality, safety, fair competition and
sustainable consumer confidence [16]. Accordingly, it is important that objective methods
will be developed to combat food fraud worldwide, including countries with a low-trust
food chain system such as in Africa or Asia.

The potential and limitations of metabolomics-based approaches for the discrimination
of husbandries of animal-based food have already been demonstrated in several studies.
It has been shown that polyunsaturated fatty acids (PUFA) and omega-3-fatty acids espe-
cially are more concentrated in organic meat and sheep milk [17,18]. In addition, several
studies have already focused on the differentiation of the production method of eggs using
different analytical strategies, including carotenoid profiling, stable isotope analysis, ele-
mental composition, fatty acid profiling and fluorescence excitation spectroscopy [2,19–25].
Furthermore, UV-VIS-NIR spectroscopy showed potential to authenticate eggs according
to their husbandry system [26,27].

The aim of this study was to develop an analytical strategy to discriminate and to
analyze the main differences between the husbandry conditions of chicken eggs. To this
end, high resolution LC-ESI-IM-qToF-MS lipidomic profiling and FT-NIR spectroscopy
were applied as a low-resolution screening approach to 270 egg samples and the data
obtained were analyzed by machine learning methods, in particular random forest (RF)
methods. RF is based on multiple binary decision trees, each based on a different boot-
strap sample containing about 63% of the samples. Therefore, for each tree, 37% of the
samples, called out-of-bag (OOB) samples, remain to be evaluated and independent error
estimates (OOB errors) are obtained, which do not require any further data [28]. Other
advantages of RF are its very good suitability for high-dimensional data and low risk of
overfitting [29,30]. To select important variables and to analyze the differences between
the husbandries, surrogate minimal depth (SMD) was used [31]. SMD differs from other
variable selection techniques since the variables are not evaluated individually, but as
interacting groups. This is achieved by the combination of surrogate variables, originally
introduced to deal with missing predictor variables, with the importance measure being
minimal depth, which assess variables by their first appearance in the decision trees [32].
Furthermore, in addition to analyzing the importance of the variables, SMD can also be
applied to analyze their relationship based on the mean adjusted agreement parameter.
This parameter evaluates the mutual influence of variables on the classification model and
has already been successfully applied to FT-NIR spectroscopy and LC-MS data [33,34].
The impact of dyes (carotenoids) for distinguishing the husbandry type was additionally
investigated with photometry. Finally, to verify whether LC-MS and FT-NIR spectroscopy
provide complementary or corresponding information for classification, low-level data
fusion was applied and SMD was used to analyze relations across the datasets of the two
analytical techniques.

2. Materials and Methods
2.1. Reagents and Chemicals

Demineralized water was ultra-purified using a Direct-Q 3 UV-R system (Merck, Milli-
pore, Darmstadt, Germany). Isopropanol (LC-MS grade), ß-Carotin, Canthaxanthin (trans)
and trans-ß-Apo-8′-carotenal were purchased from Merck KgaA (Darmstadt, Germany)
and chloroform (HPLC grade), methanol (LC-MS grade) and ammonium formiate (LC-MS
grade) were obtained from Carl Roth GmbH and Co. KG (Karlsruhe, Germany). Lutein
and Zeaxanthin were obtained from Extrasynthese (Genay, France).
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2.2. Samples

Sample acquisition was performed by the Chemical and Veterinary Investigation
Office (CVUA), Karlsruhe [35]. A total of 270 egg samples were analyzed, which had
already been analyzed by NMR spectroscopy as part of a previous study [35]. Most of the
270 egg samples came from Baden-Württemberg and were taken by official food inspectors.
A smaller proportion originated from other federal states in Germany and neighboring
countries. A total of 92 organic, 105 barn and 73 free-range-produced egg samples were
analyzed. For statistical analysis, the barn and free-range samples were combined as
conventionally produced eggs. An overview of the detailed sample information has
already been published elsewhere [35].

Sample Preparation

The sample acquisition and processing were performed by the CVUA [35]. One sample
consisted of 6 to 10 eggs, each provided by a farm in the form of one or two egg boxes.
First, the egg was separated into yolk and white and both parts were mixed vigorously.
The egg white was stored at −20 ◦C and not used for other analytical purposes. A total of
30 g of the yolk was lyophilized and then stored at −20 ◦C.

2.3. LC-ESI-IM-qToF-MS Data Acquisition

For the analysis of nonpolar compounds, 50.0 ± 0.5 mg of the 270 lyophilized egg yolk
samples was weighed in a 1.5 mL reaction tube (Eppendorf, Hamburg, Germany), mixed
with 1 mL of ice-cold extracting solvent [chloroform/isopropanol (1:2, v/v)] and two steel
balls (
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= 3.25 mm). Subsequently, the samples were ball-milled for 3 min at 3 m/s using a
Bead Ruptor 24 equipped with a 1.5 mL microtube carriage kit (Biolabproducts, Bebensee,
Germany). The remaining suspension was centrifuged for 5 min at 14,000× g and at 4 ◦C
(Sigma 3-16PK, Sigma, Osterode, Germany). The supernatant was centrifuged again for
20 min under the same conditions to ensure that proteins were completely removed. For
analysis, the supernatant was diluted to a 1:4 (v/v) ratio using the extraction solvent. To
ensure that the signals identified in the egg samples were not present as contaminants in the
instrument, chemicals or consumables, an extraction blank was also processed analogously.
Each extract was measured on the day it was made, as well. In addition, a pooled extract
was prepared by mixing 10 µL of each of the 270 egg yolk extracts and was used for
MS/MS measurements.

A 6560 Ion Mobility qToF LC-MS system was used for sample analysis (Agilent Tech-
nologies, Santa Clara, CA, USA). Liquid chromatography was performed with an Agilent
1290 Infinity II UHPLC System equipped with a high-speed pump (G7120A, 1290 high-
speed pump), multisampler (G7167B, 1290 multisampler) and a temperature-controlled
column compartment (G7116B, 1290 MCT). Non-polar metabolites were separated with an
Accucore RP-MS UPLC column (150 mm × 2.1 mm i.d., 2.6 µm) equipped with a guard
column of the same material (10 mm × 2.1 mm, i.d., 2.6 µm) (Thermo Fisher Scientific,
Braunschweig, Germany).

To check the reproducibility, a quality control (QC) sample (randomized chosen sam-
ple) was injected every ten measurements. Every five measurements a blank sample was
analyzed where no injection was done. Samples were measured in random order, taking
into account the drifts of the instrument. The autosampler was tempered to 5 ◦C. To ensure
constant conditions, the column oven was set to 30 ◦C, with a flow rate of 300 µL/min. The
mobile phase was water and isopropanol/methanol (3:1, v/v), with the addition of 0.1 mM
ammonium formate at pH 3.5. The chromatography gradient is shown in Table S1 in the
Supplementary Materials. The injection volume was set to 2 µL.

Analysis was performed in positive ionization mode in a mass range from 50–1700 m/z
with the following settings: gas temperature, 225 ◦C; drying gas flow rate, 10 L/min;
nebulizer, 40 psi; sheath gas temperature, 375 ◦C; sheath gas flow rate, 12 L/min; and
capillary voltage, 3000 V. The IMS parameter were drift gas, nitrogen; drift gas pressure,
3.95 Torr; frame rate, 0.9 frame/s; IM transient rate, 18 IM transients/frame; max. drift time,
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60 ms; TOF Transient rate, 600 Transients/IM transients; trap fill time, 3900 µs; trap release
time, 250 µs; and multiplexing pulse sequence length, 4 bit. Drift times were calibrated
by infusing the Agilent Technologies ESI tuning mix (Agilent Technologies, Santa Clara,
CA, USA, part number: G1969-85000) and Hexamethoxyphosphazine under the same
conditions for 1 min, once a day.

The instrument was calibrated immediately before the series of measurements with the
tuning mix. Furthermore, a lock mass calibration was conducted using a second sprayer dur-
ing measurements using purine and Hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine.

MS/MS spectra were recorded for the most important marker substances. Identifica-
tion was based on the high-resolution mass and fragment spectra and partially supported
by the Lipid Annotator software (Agilent Technologies, Santa Clara, CA, USA) as well
as by the database LipidMaps [36]. In addition, the CCS values were compared with the
LipidCCS database [37].

2.4. MS Data Processing

A PNNL Preprocessor (version 2020.03.23) was used for the demultiplexing of IM-TOF
data files with the following parameters: demultiplexing checked; moving average window
size 5 frame; moving average smoothing checked; m/z not used; drift 3; chromatogra-
phy/infusion 3, and signal intensity lower threshold 20 counts. The calibration of CCS
values was carried out with IM-MS Browser software (version 10.0). Four-dimensional
feature finding was performed with Mass Profiler software (version 10.0) with the following
parameters: restrict RT to 0.0–30.0 min; ion intensity > 150.0 counts; isotope model com-
mon organic (no halogens); limit charge states to a range of 1–2; report single-ion features
with charge state z = 1; RT tolerance = ±10.0% + 0.50 min; DT tolerance = ±1.5%; mass
tolerance = ±20.0 ppm + 2.0 mDa; and Q-Score > 70.0. The bucket table was exported as
an .xls file. A bucket had to be detectable in at least 50% of all samples from one sample
group (organic and conventional), leaving 1727 variables for statistical analysis. Vector
normalization and autoscaling were performed.

2.5. Fourier Transform near Infrared Spectroscopy

A total of 1.3± 0.1 g of the 270 lyophilized egg yolk samples was weighed directly into
glass vials (52.0 mm × 22.0 mm × 1.2 mm, Nipro Diagnostics Germany GmbH, Ratingen,
Germany) and measurements were performed at 22 ± 2 ◦C. The glass vials were shaken
thoroughly, levelled out uniformly and used directly for the FT-NIR spectroscopy analysis
by using an FT-NIR spectrometer from Bruker with an integration sphere used, equipped
with OPUS software (TANGO, Bruker Optics, Bremen, Germany). The spectrum was
recorded in reflectance mode with 50 scans in a wavenumber range of 11,550–3950 cm−1

and a resolution of 4 cm−1. Five technical replicates were measured per sample.

2.6. FT-NIR Spectra Preprocessing

Preprocessing was performed using MATLAB R2021b (The MathWorks Inc., Natick,
MA, USA). Different particle sizes of the sample material led to so-called scattered light ef-
fects. Therefore, first, multiplicative scattered light correction (MSC) was used to normalize
the data and reduce effects such as additive and multiplicative scattering [38]. In the next
step, the first derivative of the spectra was calculated, reducing offsets and other additive
effects [39,40]. Smoothing was then performed using a Savitzky–Golay filter, which can
improve the signal-to-noise (S/N) ratio [41]. Binning of five adjacent wavenumbers was
performed, reducing the number of variables (3720 original variables), leaving 744 variables
for data analysis, and decreasing the calculation time [34,42]. Since in an FT-NIR spectrum
contiguous wavenumbers correlate strongly with each other, this makes the data easier to
handle without loss of information [43]. In the last step, the median of the five spectra of
one sample was calculated.
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2.7. Photometry

A total of 200 µL of the undiluted extracts from each of the 270 egg yolk samples of the
LC-MS analysis were pipetted in a 96-well microtiter plate for photometric analysis. The
data were acquired with a SpectraMax M5e instrument (Molecular Devices, LCC, San Jose,
CA, USA) equipped with the software SoftMax Pro 6.1 (Molecular Devices, LCC, San Jose,
CA, USA). A photometric spectrum in a wavelength range of 380–790 nm with a resolution
of 1 nm was acquired, resulting in 411 variables for statistical analysis.

2.8. Multivariate Data Analysis

Principal component analysis (PCA) was performed with the software MATLAB
R2021b. For the application of random forest approaches, the R packages ranger in
version 0.14.1 [44] and Surrogate Minimal Depth in version 0.2.0 [31] were applied in
R version 4.2.2 to the processed LC-MS (1727 variables), photometry (411 variables) and
FT-NIR spectroscopy (744 variables) datasets separately, with the parameters ntree = 10,000
and minimal.node.size = 1. In addition, mtry was set to 267, 142 and 91 for the LC-MS,
FT-NIR spectroscopy and photometry dataset (corresponding to the 3/4 power of the total
variables), respectively. To compensate for the class imbalance, the parameter case.weights
was chosen accordingly, meaning that the weights of the samples of the smaller class
(organic) were weighted higher and the samples of the larger class (conventional) were
weighted lower. The weight of each class was therefore determined by dividing the size
of the largest class by the size of the respective class. For SMD, the number of surrogate
variables was set to 87 for LC-MS and 149 for FT-NIR spectroscopy, corresponding to 5
and 20% of the total variables of the LC-MS and FT-NIR dataset, respectively. The value
for s was chosen as in previous applications and was higher for the FT-NIR data, since the
variables show higher collinearity [33,34]. The LC-MS and FT-NIR spectroscopy datasets
were then merged and analyzed using the same parameters as for the individual datasets,
but with an mtry of 350 and 124. For visualization of the relation parameter mean adjusted
agreement, a heatmap was created using the R package pheatmap [45].

3. Results and Discussion
3.1. LC-ESI-IM-qToF-MS

The first objective of this study was to analyze the 270 egg samples with LC-ESI-
IM-qToF-MS with the aim of determining differences between the husbandry systems of
chicken eggs. To evaluate the reproducibility of the LC-MS analysis, the preprocessed
data containing 1727 variables of the 270 egg samples and the 28 measurements of the QC
sample were analyzed with PCA. Based on the scores, the QC samples showed little scatter,
so that the measurements were reproducible (Figure S1 in the Supplementary Materials).
An exemplary total ion chromatogram of a pooled extract from all 270 egg samples with an
assignment of the main substance classes (Lyso-glycerophosphocholines, phosphocholines,
sphingomyelins, triacylglycerols) is shown in Figure S2 in the Supplementary Materials.

In order to analyze the main differences in the LC-MS data of the egg yolk, PCA was
performed and the scores of the first two principal components, together representing 27.5%
of the total variance, were depicted according to their husbandry (Figure 1). PC1 and PC2
combined represent only a small amount of the total variance of the data set. Nevertheless,
for PCAs with LC-MS data and a high number of variables that are not correlated but
independent, it often occurs that the PCs only show low variances [46–48]. Only a few
samples from conventional husbandry are located in the lower right corner of the scores
plot and show no overlap with samples from organic husbandry. However, there is no clear
separation between organic and conventional samples with the unsupervised approach
PCA, which is why the supervised approach random forest was applied subsequently with
all 1727 variables.

The confusion matrix of the classification of the 270 egg yolk samples with random
forest is shown in Table 1 in percentage. The classification result implies that it is possible
to distinguish the husbandry type of chicken eggs by LC-MS. Only 2.2% (2 samples) of the
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organic samples were misclassified, while only 4.5% (8 samples) of the conventional eggs
were classified as organic.
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Table 1. Confusion matrix of the random forest for the differentiation of the husbandries of the
270 egg samples based on LC-MS data.

Predicted

Organic (%) Conventional (%) Sensitivity (%)

True

Organic (%) 97.8 2.2 97.8

Conventional (%) 4.5 95.5 95.5

Specificity (%) 91.8 98.8 96.3

In order to analyze the differences between the husbandry types in more detail and
to select important variables, a total of 211 variables were selected (see Table S2 for a
list of selected variables together with their SMD score). From this group, a total of
33 variables were identified based on their MS/MS spectra, including six triacylglycerols
(TAG) identified as [M + Na]+ and [M + NH4]+ adducts, ultimately leaving 27 identified
marker compounds. The classes of identified lipids included carotenoids and TAGs (see
Table S3 for a list of all selected marker compounds with identification parameters).

The four most important variables with the lowest SMD values (approx. 0.02) were
signals at the retention times of 7.4 min and 7.7 min, both of which could be divided into
two different signals due to different drift times and thus different CCS values. Based
on these values and additional MS/MS investigations in connection with the analysis of
reference samples (compare Figures S3 and S4), the selected variables could be assigned
to canthaxanthin, showing elevated concentrations in conventional samples and values at
0 for organic samples (Figure 2A). Hens are not able to biosynthesize canthaxanthin, so it
is determined by the feed [49]. Adding it to the feed is not allowed in organic husbandry
according to the council regulation No 2018/848. Therefore, canthaxanthin could be a
useful marker for conventional husbandry, which was already shown in another study [50].
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Furthermore, two additionally selected variables were identified as carotenoids that
showed elevated concentrations in samples from organic husbandry (Figure 2B). These
metabolites were isobaric compounds (m/z: 569.4) that eluted at a retention time of 6.5 min
and could be separated by the ion mobility cell (CCS value: 291 Å and 308 Å; see Table S3
in the Supplementary Materials). The MS/MS spectrum showed a signal at 551 m/z, which
identified the two signals as lutein/zeaxanthin. Since both differ only by the position
of a double bond, the fragmentation patterns are comparable, which was confirmed by
measurements of commercial standards (Figures S5 and S6) [51]. The color of the yolk
in organically produced eggs is determined by the vegetables fed, and since mainly corn
containing lutein/zeaxanthin is used, these substances are more concentrated in these
eggs [52,53].

To evaluate the influence of the identified carotenoids on the classification of the
eggs, the 270 egg samples and carotenoid standards were measured photometrically and
the classification was conducted in the same way as for LC-MS analysis. An accuracy of
92.2% was obtained (Table S4 in the Supplementary Materials). In Figure S7, the spectra
of the averaged samples from organic and conventional husbandry are compared and the
absorbance of the organic samples in the range from 430–450 nm is higher and flattens
out faster after the absorption maximum at 480 nm than for the conventional samples. In
contrast, the spectra of the conventional samples show comparatively high absorption at
wavelengths above 500 nm. The analysis of the carotenoid standards shows an absorbance
maximum around 480 nm for canthaxanthin, while lutein/zeaxanthin have their absorbance
maxima around 450 nm (Figure S8 in the Supplementary Materials). In summary, these
results demonstrate that carotenoids have a significant influence on the differentiation of
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the husbandry conditions of conventionally and organically produced eggs. Although the
classification results with photometry are promising and this method has potential to be
used as a rapid screening method, its suitability is limited since the carotenoid profile can
be easily influenced by the feed [54].

In addition to carotenoids, the selected variables could also be assigned to lipids
(mainly TAGs, which ionized as [M + Na]+ and [M + NH4]+ adducts). TAGs were identified
by the fragments that result from the cleavage of a fatty acid and the neutral loss of this
fatty acid [55]. In addition, [RCOO + 58]+ fragments were used for structural elucida-
tion [56]. A total of 21 different lipids were identified (Table S3 in the Supplementary
Materials). Figure 2C,D shows boxplots of the exemplary chosen TAG (18:1/16:1/16:1) and
TAG (18:3/18:2/18:1). It is apparent that the identified lipids containing polyunsaturated
fatty acids (PUFA) have an increased concentration in organic eggs (Figure 2D), while
conventionally produced eggs contain lipids with saturated or monounsaturated fatty
acids (Figure 2C; see Table S3). These findings are consistent with results of NMR analysis,
where signals from PUFAs were increased in organically produced samples [35]. Mugnai
et al. showed that PUFA concentrations are increased in organically produced eggs because
hens have more access to outdoor space and for this reason have more access to grass [21].

In summary, carotenoids and lipids were selected as possible marker substances to
distinguish eggs from different husbandries by LC-MS. The reason for the differences in
carotenoid composition is probably due to synthetic carotenoids added to the hen feed in
conventional husbandry, but not in organic husbandry [54]. It has already been shown
that the fatty acid composition of the egg yolk is influenced by the feed [57], nevertheless
the adjustment of a specific lipid composition is not as easily controllable as in the case of
carotenoids. As egg producers with the intention of fraud could easily adapt the feed they
give to hens from conventional husbandry, lipids are more suitable as marker substances
for the differentiation of the husbandry.

3.2. FT-NIR Spectroscopy

The 270 egg samples were also analyzed by FT-NIR spectroscopy as a low-resolution
screening method to differentiate the husbandry of chicken eggs. First, to analyze the main
differences in the FT-NIR data of the egg yolk measurements, PCA was performed on the
data containing 744 variables and the scores of the first two principal components, together
representing 96.2% of the total variance, were depicted according to their husbandry
(Figure 3). The scores show a strong overlap of the samples from both husbandries and no
differentiation is evident. For this reason, random forest was used as a supervised approach
to determine differences between the husbandries.

The classification and variable selection were performed in the same way as for LC-MS
analysis. The confusion matrix is shown in Table 2 in percentage.

Table 2. Confusion matrix of the random forest for the differentiation of the husbandries of the
270 egg samples based on FT-NIR spectroscopy data.

Predicted

Organic (%) Conventional (%) Sensitivity (%)

True

Organic (%) 71.7 28.3 71.7

Conventional (%) 15.7 84.3 84.3

Specificity (%) 70.2 85.2 80.0

Compared to the LC-MS classification result, more samples were misclassified with
the FT-NIR spectroscopy data. A total of 28.3% (26 samples) of the organic samples
were assigned as conventional and 15.7% (28 samples) of the conventional samples as
organic. The difference between the two classification results was to be expected, as FT-NIR
spectroscopy is a low-resolution method and the achievable depth of information is lower
compared to LC-MS analysis. SMD selected 166 bins from the FT-NIR spectrum, which
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are highlighted in Figure 4. A full list of all selected variables is given in Table S5 in
the Supplementary Materials. Variables were selected in different regions of the FT-NIR
spectrum that could be assigned to different molecule vibrations and thus to different
substance classes, namely to lipids and proteins (SMD approx. 0.01–0.30).
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Variables from several regions of the spectrum associated with lipids were selected.
Most of them were in the range between 5700 and 6000 cm−1, assigned to the first overtone
of saturated and unsaturated fatty acids. Furthermore, variables in the ranges between
4000 and 4300 cm−1 and 8400 and 8600 cm−1 could be assigned to the first overtone of
C-H vibrations and the second overtone of C-H stretching from unsaturated fatty acids,
respectively, while the signals at 8300 cm−1 are associated with the second overtone of C-H
stretching vibrations [58]. In addition, several variables were selected in the range between
6000 and 7300 cm−1. They could be assigned to the first overtone of the N-H and O-H
vibrations of the peptide bond [58].

3.3. Data Fusion

Low-level data fusion was performed to evaluate if the classification accuracy increases
by merging the data from LC-MS and FT-NIR spectroscopy. Furthermore, SMD was applied
to analyze the relations of the variables of the two analytical techniques. The confusion
matrix of the merged dataset from the 270 egg samples is shown in Table S6 in percentage.

Both the classification accuracy of 96.3% and the misclassified samples are equal to the
LC-MS analysis. Thus, no improvement of the classification can be achieved by combining
the data (Table S6). However, more interesting than the classification result is the analysis
of the relations between the variables of both datasets, which are shown in a heatmap in
Figure 5.
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Figure 5. Results of the relation analysis of selected variables with SMD. A hierarchical cluster analysis
using Euclidean distances and the Ward algorithm was applied to the mean adjusted agreement
values, and the variables of the LC-MS and FT-NIR spectroscopy dataset are marked in green and
blue, respectively. The intensity of the coloring indicates the mean adjustment agreement between
the respective variables. The clusters are labeled with (I–III) and were assigned to: (I) carotenoids
from the LC-MS analysis; (II) protein-associated bands of the FT-NIR spectrum; and (III) lipids from
the LC-MS analysis and lipid-associated bands of the FT-NIR spectrum.

In the heatmap, different types of clusters are apparent. First, there is one cluster
(Cluster I) that contains only LC-MS variables that have a high relation. This cluster contains
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all of the identified canthaxanthin variables. This is in accordance with a previous study
using SMD for the analysis of LC-MS data, in which related variables could often either be
assigned to the same metabolite (e.g., different adducts) or to metabolites with meaningful
biological relations (e.g., metabolic pathways) [33]. Since this cluster only contains LC-MS
variables, it can be concluded that carotenoids have only little impact on the FT-NIR spectra.
This assumption is supported by other studies, in which the carotenoid content of passion
fruit, corn, apricot and palm oil was investigated using NIR spectroscopy [59–62]. In these
studies, the determination of the carotenoid content showed high error rates, which was
explained by a low intensity of the absorption bands of carotenoids compared to the bands
of the main ingredients [59,62].

Cluster II contains only FT-NIR spectroscopy variables between 5900 and 6100 cm−1.
This is due to the fact that these variables can be assigned to N-H and C=O groups of
the peptide backbone, referred to as the ß-sheet structure [58]. No LC-MS variables are
present in this cluster, since the proteome is not covered by the used method, as proteins
are precipitated during the extraction process [63]. In a previous study in which SMD
was applied to an FT-NIR spectroscopy dataset, it was already shown that neighboring
variables in the FT-NIR spectrum are related. This is due to the fact that several signals are
caused by the same substance [34].

Cluster III is more interesting than the clusters already mentioned because, here,
both LC-MS and FT-NIR spectroscopy variables are present, implying that the variables
of the two analytical approaches may be associated to the same metabolites. The FT-
NIR spectroscopy variables are in the range around 5800 cm−1 and can be assigned to
the C-H vibration of the first overtone of methylene groups in hydrocarbon chains [58].
The corresponding LC-MS variables are predominantly signals from TAGs that contain
saturated, monounsaturated, and polyunsaturated fatty acids. Therefore, this cluster
probably contains variables from TAGs detected by both analytical techniques.

In summary, the analysis of variable relations showed that carotenoids are only de-
tected by LC-MS, proteins only by FT-NIR spectroscopy and lipids by both approaches.

4. Conclusions

In this study, high-resolution LC-ESI-IM-qToF-MS and FT-NIR spectroscopy were
successfully applied to distinguish the husbandries of chicken eggs. Based on the results
of a low-level data fusion, it was shown that FT-NIR spectroscopy and LC-MS partially
covered the same parts of the lipidome of eggs. Therefore, FT-NIR spectroscopy could be
used to indicate suspicious samples during an incoming inspection, which can then be
analyzed in more detail by LC-MS to determine the husbandries. For this purpose, the
identified marker lipids can be analyzed using a targeted approach, e.g., an LC-ESI-QqQ-
MS instrument. SMD was successfully applied to a fused dataset for the first time and has
shown promise for analyzing relations between different datasets in future studies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo13080882/s1, Figure S1: Scores of the PCA in which
the 28 measurements of the quality control (QC) sample and the measurements of the 270 authentic
samples were depicted; Figure S2: An exemplary total ion chromatogram of a pooled egg yolk ex-
tract; Figure S3: MS/MS spectrum of the m/z ratio 565.403 at an RT of 7.7 min in an egg sample extract;
Figure S4: MS/MS spectrum of a canthaxanthin standard (m/z: 565.403; RT: 7.7 min);
Figure S5: MS/MS spectrum of a lutein standard (m/z: 569.434; RT: 6.5 min); Figure S6: MS/MS
spectrum of a zeaxanthin standard (m/z: 569.434; RT: 6.5 min); Figure S7: Comparison of the photom-
etry spectra of egg yolk extracts from organic (blue) and conventional (orange dashed) husbandry;
Figure S8: Comparison of the photometry spectra of carotenoid standards; Table S1: Overview of the
chromatography gradient; Table S2: Summary of the selected variables of the LC-MS dataset with
surrogate minimal depth; Table S3: Summary of identification parameters of marker compounds
that were selected by SMD; Table S4: Confusion matrix of the random forest for the differentiation
of the husbandries of eggs based on photometry data; Table S5: Summary of the selected variables
of the FT-NIR spectroscopy dataset with SMD; Table S6: Confusion matrix of the random forest for
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the differentiation of the husbandries of eggs based on the merged LC-MS and FT-NIR spectroscopy
data; Table S7: Summary of the selected LC-MS variables from the merged LC-MS and FT-NIR
spectroscopy dataset with SMD; Table S8: Summary of the selected FT-NIR spectroscopy variables
from the merged LC-MS and FT-NIR spectroscopy dataset with SMD.
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